add/re-enable at_wini debug output
[minix3.git] / kernel / proc.c
blobdede6f9e4f479f939cac70f8b254a19e65560726
1 /* This file contains essentially all of the process and message handling.
2 * Together with "mpx.s" it forms the lowest layer of the MINIX kernel.
3 * There is one entry point from the outside:
5 * sys_call: a system call, i.e., the kernel is trapped with an INT
7 * As well as several entry points used from the interrupt and task level:
9 * lock_notify: notify a process of a system event
10 * lock_send: send a message to a process
11 * lock_enqueue: put a process on one of the scheduling queues
12 * lock_dequeue: remove a process from the scheduling queues
14 * Changes:
15 * Aug 19, 2005 rewrote scheduling code (Jorrit N. Herder)
16 * Jul 25, 2005 rewrote system call handling (Jorrit N. Herder)
17 * May 26, 2005 rewrote message passing functions (Jorrit N. Herder)
18 * May 24, 2005 new notification system call (Jorrit N. Herder)
19 * Oct 28, 2004 nonblocking send and receive calls (Jorrit N. Herder)
21 * The code here is critical to make everything work and is important for the
22 * overall performance of the system. A large fraction of the code deals with
23 * list manipulation. To make this both easy to understand and fast to execute
24 * pointer pointers are used throughout the code. Pointer pointers prevent
25 * exceptions for the head or tail of a linked list.
27 * node_t *queue, *new_node; // assume these as global variables
28 * node_t **xpp = &queue; // get pointer pointer to head of queue
29 * while (*xpp != NULL) // find last pointer of the linked list
30 * xpp = &(*xpp)->next; // get pointer to next pointer
31 * *xpp = new_node; // now replace the end (the NULL pointer)
32 * new_node->next = NULL; // and mark the new end of the list
34 * For example, when adding a new node to the end of the list, one normally
35 * makes an exception for an empty list and looks up the end of the list for
36 * nonempty lists. As shown above, this is not required with pointer pointers.
39 #include <minix/com.h>
40 #include <minix/callnr.h>
41 #include <minix/endpoint.h>
42 #include "debug.h"
43 #include "kernel.h"
44 #include "proc.h"
45 #include <signal.h>
46 #include <minix/portio.h>
48 /* Scheduling and message passing functions. The functions are available to
49 * other parts of the kernel through lock_...(). The lock temporarily disables
50 * interrupts to prevent race conditions.
52 FORWARD _PROTOTYPE( int mini_send, (struct proc *caller_ptr, int dst_e,
53 message *m_ptr, unsigned flags));
54 FORWARD _PROTOTYPE( int mini_receive, (struct proc *caller_ptr, int src,
55 message *m_ptr, unsigned flags));
56 FORWARD _PROTOTYPE( int mini_notify, (struct proc *caller_ptr, int dst));
57 FORWARD _PROTOTYPE( int deadlock, (int function,
58 register struct proc *caller, int src_dst));
59 FORWARD _PROTOTYPE( void enqueue, (struct proc *rp));
60 FORWARD _PROTOTYPE( void dequeue, (struct proc *rp));
61 FORWARD _PROTOTYPE( void sched, (struct proc *rp, int *queue, int *front));
62 FORWARD _PROTOTYPE( void pick_proc, (void));
64 #define BuildMess(m_ptr, src, dst_ptr) \
65 (m_ptr)->m_source = proc_addr(src)->p_endpoint; \
66 (m_ptr)->m_type = NOTIFY_FROM(src); \
67 (m_ptr)->NOTIFY_TIMESTAMP = get_uptime(); \
68 switch (src) { \
69 case HARDWARE: \
70 (m_ptr)->NOTIFY_ARG = priv(dst_ptr)->s_int_pending; \
71 priv(dst_ptr)->s_int_pending = 0; \
72 break; \
73 case SYSTEM: \
74 (m_ptr)->NOTIFY_ARG = priv(dst_ptr)->s_sig_pending; \
75 priv(dst_ptr)->s_sig_pending = 0; \
76 break; \
79 #define CopyMess(s,sp,sm,dp,dm) \
80 cp_mess(proc_addr(s)->p_endpoint, \
81 (sp)->p_memmap[D].mem_phys, \
82 (vir_bytes)sm, (dp)->p_memmap[D].mem_phys, (vir_bytes)dm)
84 /*===========================================================================*
85 * sys_call *
86 *===========================================================================*/
87 PUBLIC int sys_call(call_nr, src_dst_e, m_ptr, bit_map)
88 int call_nr; /* system call number and flags */
89 int src_dst_e; /* src to receive from or dst to send to */
90 message *m_ptr; /* pointer to message in the caller's space */
91 long bit_map; /* notification event set or flags */
93 /* System calls are done by trapping to the kernel with an INT instruction.
94 * The trap is caught and sys_call() is called to send or receive a message
95 * (or both). The caller is always given by 'proc_ptr'.
97 register struct proc *caller_ptr = proc_ptr; /* get pointer to caller */
98 int function = call_nr & SYSCALL_FUNC; /* get system call function */
99 unsigned flags = call_nr & SYSCALL_FLAGS; /* get flags */
100 int mask_entry; /* bit to check in send mask */
101 int group_size; /* used for deadlock check */
102 int result; /* the system call's result */
103 int src_dst;
104 vir_clicks vlo, vhi; /* virtual clicks containing message to send */
106 #if 1
107 if (RTS_ISSET(caller_ptr, SLOT_FREE))
109 kprintf("called by the dead?!?\n");
110 return EINVAL;
112 #endif
114 /* Require a valid source and/ or destination process, unless echoing. */
115 if (src_dst_e != ANY && function != ECHO) {
116 if(!isokendpt(src_dst_e, &src_dst)) {
117 #if DEBUG_ENABLE_IPC_WARNINGS
118 kprintf("sys_call: trap %d by %d with bad endpoint %d\n",
119 function, proc_nr(caller_ptr), src_dst_e);
120 #endif
121 return EDEADSRCDST;
123 } else src_dst = src_dst_e;
125 /* Check if the process has privileges for the requested call. Calls to the
126 * kernel may only be SENDREC, because tasks always reply and may not block
127 * if the caller doesn't do receive().
129 if (! (priv(caller_ptr)->s_trap_mask & (1 << function)) ||
130 (iskerneln(src_dst) && function != SENDREC
131 && function != RECEIVE)) {
132 #if DEBUG_ENABLE_IPC_WARNINGS
133 kprintf("sys_call: trap %d not allowed, caller %d, src_dst %d\n",
134 function, proc_nr(caller_ptr), src_dst);
135 #endif
136 return(ETRAPDENIED); /* trap denied by mask or kernel */
139 /* If the call involves a message buffer, i.e., for SEND, RECEIVE, SENDREC,
140 * or ECHO, check the message pointer. This check allows a message to be
141 * anywhere in data or stack or gap. It will have to be made more elaborate
142 * for machines which don't have the gap mapped.
144 if (function & CHECK_PTR) {
145 vlo = (vir_bytes) m_ptr >> CLICK_SHIFT;
146 vhi = ((vir_bytes) m_ptr + MESS_SIZE - 1) >> CLICK_SHIFT;
147 if (vlo < caller_ptr->p_memmap[D].mem_vir || vlo > vhi ||
148 vhi >= caller_ptr->p_memmap[S].mem_vir +
149 caller_ptr->p_memmap[S].mem_len) {
150 #if DEBUG_ENABLE_IPC_WARNINGS
151 kprintf("sys_call: invalid message pointer, trap %d, caller %d\n",
152 function, proc_nr(caller_ptr));
153 #endif
154 return(EFAULT); /* invalid message pointer */
158 /* If the call is to send to a process, i.e., for SEND, SENDREC or NOTIFY,
159 * verify that the caller is allowed to send to the given destination.
161 if (function & CHECK_DST) {
162 if (! get_sys_bit(priv(caller_ptr)->s_ipc_to, nr_to_id(src_dst))) {
163 #if DEBUG_ENABLE_IPC_WARNINGS
164 kprintf("sys_call: ipc mask denied trap %d from %d to %d\n",
165 function, proc_nr(caller_ptr), src_dst);
166 #endif
167 return(ECALLDENIED); /* call denied by ipc mask */
171 /* Check for a possible deadlock for blocking SEND(REC) and RECEIVE. */
172 if (function & CHECK_DEADLOCK) {
173 if (group_size = deadlock(function, caller_ptr, src_dst)) {
174 #if DEBUG_ENABLE_IPC_WARNINGS
175 kprintf("sys_call: trap %d from %d to %d deadlocked, group size %d\n",
176 function, proc_nr(caller_ptr), src_dst, group_size);
177 #endif
178 return(ELOCKED);
182 /* Now check if the call is known and try to perform the request. The only
183 * system calls that exist in MINIX are sending and receiving messages.
184 * - SENDREC: combines SEND and RECEIVE in a single system call
185 * - SEND: sender blocks until its message has been delivered
186 * - RECEIVE: receiver blocks until an acceptable message has arrived
187 * - NOTIFY: nonblocking call; deliver notification or mark pending
188 * - ECHO: nonblocking call; directly echo back the message
190 switch(function) {
191 case SENDREC:
192 /* A flag is set so that notifications cannot interrupt SENDREC. */
193 caller_ptr->p_misc_flags |= REPLY_PENDING;
194 /* fall through */
195 case SEND:
196 result = mini_send(caller_ptr, src_dst_e, m_ptr, flags);
197 if (function == SEND || result != OK) {
198 break; /* done, or SEND failed */
199 } /* fall through for SENDREC */
200 case RECEIVE:
201 if (function == RECEIVE)
202 caller_ptr->p_misc_flags &= ~REPLY_PENDING;
203 result = mini_receive(caller_ptr, src_dst_e, m_ptr, flags);
204 break;
205 case NOTIFY:
206 result = mini_notify(caller_ptr, src_dst);
207 break;
208 case ECHO:
209 CopyMess(caller_ptr->p_nr, caller_ptr, m_ptr, caller_ptr, m_ptr);
210 result = OK;
211 break;
212 default:
213 result = EBADCALL; /* illegal system call */
216 /* Now, return the result of the system call to the caller. */
217 return(result);
220 /*===========================================================================*
221 * deadlock *
222 *===========================================================================*/
223 PRIVATE int deadlock(function, cp, src_dst)
224 int function; /* trap number */
225 register struct proc *cp; /* pointer to caller */
226 int src_dst; /* src or dst process */
228 /* Check for deadlock. This can happen if 'caller_ptr' and 'src_dst' have
229 * a cyclic dependency of blocking send and receive calls. The only cyclic
230 * depency that is not fatal is if the caller and target directly SEND(REC)
231 * and RECEIVE to each other. If a deadlock is found, the group size is
232 * returned. Otherwise zero is returned.
234 register struct proc *xp; /* process pointer */
235 int group_size = 1; /* start with only caller */
236 int trap_flags;
238 while (src_dst != ANY) { /* check while process nr */
239 int src_dst_e;
240 xp = proc_addr(src_dst); /* follow chain of processes */
241 group_size ++; /* extra process in group */
243 /* Check whether the last process in the chain has a dependency. If it
244 * has not, the cycle cannot be closed and we are done.
246 if (RTS_ISSET(xp, RECEIVING)) { /* xp has dependency */
247 if(xp->p_getfrom_e == ANY) src_dst = ANY;
248 else okendpt(xp->p_getfrom_e, &src_dst);
249 } else if (RTS_ISSET(xp, SENDING)) { /* xp has dependency */
250 okendpt(xp->p_sendto_e, &src_dst);
251 } else {
252 return(0); /* not a deadlock */
255 /* Now check if there is a cyclic dependency. For group sizes of two,
256 * a combination of SEND(REC) and RECEIVE is not fatal. Larger groups
257 * or other combinations indicate a deadlock.
259 if (src_dst == proc_nr(cp)) { /* possible deadlock */
260 if (group_size == 2) { /* caller and src_dst */
261 /* The function number is magically converted to flags. */
262 if ((xp->p_rts_flags ^ (function << 2)) & SENDING) {
263 return(0); /* not a deadlock */
266 return(group_size); /* deadlock found */
269 return(0); /* not a deadlock */
272 /*===========================================================================*
273 * mini_send *
274 *===========================================================================*/
275 PRIVATE int mini_send(caller_ptr, dst_e, m_ptr, flags)
276 register struct proc *caller_ptr; /* who is trying to send a message? */
277 int dst_e; /* to whom is message being sent? */
278 message *m_ptr; /* pointer to message buffer */
279 unsigned flags; /* system call flags */
281 /* Send a message from 'caller_ptr' to 'dst'. If 'dst' is blocked waiting
282 * for this message, copy the message to it and unblock 'dst'. If 'dst' is
283 * not waiting at all, or is waiting for another source, queue 'caller_ptr'.
285 register struct proc *dst_ptr;
286 register struct proc **xpp;
287 int dst_p;
289 dst_p = _ENDPOINT_P(dst_e);
290 dst_ptr = proc_addr(dst_p);
292 if (RTS_ISSET(dst_ptr, NO_ENDPOINT)) return EDSTDIED;
294 /* Check if 'dst' is blocked waiting for this message. The destination's
295 * SENDING flag may be set when its SENDREC call blocked while sending.
297 if ( (RTS_ISSET(dst_ptr, RECEIVING) && !RTS_ISSET(dst_ptr, SENDING)) &&
298 (dst_ptr->p_getfrom_e == ANY
299 || dst_ptr->p_getfrom_e == caller_ptr->p_endpoint)) {
300 /* Destination is indeed waiting for this message. */
301 CopyMess(caller_ptr->p_nr, caller_ptr, m_ptr, dst_ptr,
302 dst_ptr->p_messbuf);
303 RTS_UNSET(dst_ptr, RECEIVING);
304 } else if ( ! (flags & NON_BLOCKING)) {
305 /* Destination is not waiting. Block and dequeue caller. */
306 caller_ptr->p_messbuf = m_ptr;
307 RTS_SET(caller_ptr, SENDING);
308 caller_ptr->p_sendto_e = dst_e;
310 /* Process is now blocked. Put in on the destination's queue. */
311 xpp = &dst_ptr->p_caller_q; /* find end of list */
312 while (*xpp != NIL_PROC) xpp = &(*xpp)->p_q_link;
313 *xpp = caller_ptr; /* add caller to end */
314 caller_ptr->p_q_link = NIL_PROC; /* mark new end of list */
315 } else {
316 return(ENOTREADY);
318 return(OK);
321 /*===========================================================================*
322 * mini_receive *
323 *===========================================================================*/
324 PRIVATE int mini_receive(caller_ptr, src_e, m_ptr, flags)
325 register struct proc *caller_ptr; /* process trying to get message */
326 int src_e; /* which message source is wanted */
327 message *m_ptr; /* pointer to message buffer */
328 unsigned flags; /* system call flags */
330 /* A process or task wants to get a message. If a message is already queued,
331 * acquire it and deblock the sender. If no message from the desired source
332 * is available block the caller, unless the flags don't allow blocking.
334 register struct proc **xpp;
335 register struct notification **ntf_q_pp;
336 message m;
337 int bit_nr;
338 sys_map_t *map;
339 bitchunk_t *chunk;
340 int i, src_id, src_proc_nr, src_p;
342 if(src_e == ANY) src_p = ANY;
343 else
345 okendpt(src_e, &src_p);
346 if (RTS_ISSET(proc_addr(src_p), NO_ENDPOINT)) return ESRCDIED;
350 /* Check to see if a message from desired source is already available.
351 * The caller's SENDING flag may be set if SENDREC couldn't send. If it is
352 * set, the process should be blocked.
354 if (!RTS_ISSET(caller_ptr, SENDING)) {
356 /* Check if there are pending notifications, except for SENDREC. */
357 if (! (caller_ptr->p_misc_flags & REPLY_PENDING)) {
359 map = &priv(caller_ptr)->s_notify_pending;
360 for (chunk=&map->chunk[0]; chunk<&map->chunk[NR_SYS_CHUNKS]; chunk++) {
362 /* Find a pending notification from the requested source. */
363 if (! *chunk) continue; /* no bits in chunk */
364 for (i=0; ! (*chunk & (1<<i)); ++i) {} /* look up the bit */
365 src_id = (chunk - &map->chunk[0]) * BITCHUNK_BITS + i;
366 if (src_id >= NR_SYS_PROCS) break; /* out of range */
367 src_proc_nr = id_to_nr(src_id); /* get source proc */
368 #if DEBUG_ENABLE_IPC_WARNINGS
369 if(src_proc_nr == NONE) {
370 kprintf("mini_receive: sending notify from NONE\n");
372 #endif
373 if (src_e!=ANY && src_p != src_proc_nr) continue;/* source not ok */
374 *chunk &= ~(1 << i); /* no longer pending */
376 /* Found a suitable source, deliver the notification message. */
377 BuildMess(&m, src_proc_nr, caller_ptr); /* assemble message */
378 CopyMess(src_proc_nr, proc_addr(HARDWARE), &m, caller_ptr, m_ptr);
379 return(OK); /* report success */
383 /* Check caller queue. Use pointer pointers to keep code simple. */
384 xpp = &caller_ptr->p_caller_q;
385 while (*xpp != NIL_PROC) {
386 if (src_e == ANY || src_p == proc_nr(*xpp)) {
387 #if 1
388 if (RTS_ISSET(*xpp, SLOT_FREE))
390 kprintf("listening to the dead?!?\n");
391 return EINVAL;
393 #endif
395 /* Found acceptable message. Copy it and update status. */
396 CopyMess((*xpp)->p_nr, *xpp, (*xpp)->p_messbuf, caller_ptr, m_ptr);
397 RTS_UNSET(*xpp, SENDING);
398 *xpp = (*xpp)->p_q_link; /* remove from queue */
399 return(OK); /* report success */
401 xpp = &(*xpp)->p_q_link; /* proceed to next */
405 /* No suitable message is available or the caller couldn't send in SENDREC.
406 * Block the process trying to receive, unless the flags tell otherwise.
408 if ( ! (flags & NON_BLOCKING)) {
409 caller_ptr->p_getfrom_e = src_e;
410 caller_ptr->p_messbuf = m_ptr;
411 RTS_SET(caller_ptr, RECEIVING);
412 return(OK);
413 } else {
414 return(ENOTREADY);
418 /*===========================================================================*
419 * mini_notify *
420 *===========================================================================*/
421 PRIVATE int mini_notify(caller_ptr, dst)
422 register struct proc *caller_ptr; /* sender of the notification */
423 int dst; /* which process to notify */
425 register struct proc *dst_ptr = proc_addr(dst);
426 int src_id; /* source id for late delivery */
427 message m; /* the notification message */
429 /* Check to see if target is blocked waiting for this message. A process
430 * can be both sending and receiving during a SENDREC system call.
432 if ( (RTS_ISSET(dst_ptr, RECEIVING) && !RTS_ISSET(dst_ptr, SENDING)) &&
433 ! (dst_ptr->p_misc_flags & REPLY_PENDING) &&
434 (dst_ptr->p_getfrom_e == ANY ||
435 dst_ptr->p_getfrom_e == caller_ptr->p_endpoint)) {
437 /* Destination is indeed waiting for a message. Assemble a notification
438 * message and deliver it. Copy from pseudo-source HARDWARE, since the
439 * message is in the kernel's address space.
441 BuildMess(&m, proc_nr(caller_ptr), dst_ptr);
442 CopyMess(proc_nr(caller_ptr), proc_addr(HARDWARE), &m,
443 dst_ptr, dst_ptr->p_messbuf);
444 RTS_UNSET(dst_ptr, RECEIVING);
445 return(OK);
448 /* Destination is not ready to receive the notification. Add it to the
449 * bit map with pending notifications. Note the indirectness: the system id
450 * instead of the process number is used in the pending bit map.
452 src_id = priv(caller_ptr)->s_id;
453 set_sys_bit(priv(dst_ptr)->s_notify_pending, src_id);
454 return(OK);
457 /*===========================================================================*
458 * lock_notify *
459 *===========================================================================*/
460 PUBLIC int lock_notify(src_e, dst_e)
461 int src_e; /* (endpoint) sender of the notification */
462 int dst_e; /* (endpoint) who is to be notified */
464 /* Safe gateway to mini_notify() for tasks and interrupt handlers. The sender
465 * is explicitely given to prevent confusion where the call comes from. MINIX
466 * kernel is not reentrant, which means to interrupts are disabled after
467 * the first kernel entry (hardware interrupt, trap, or exception). Locking
468 * is done by temporarily disabling interrupts.
470 int result, src, dst;
472 if(!isokendpt(src_e, &src) || !isokendpt(dst_e, &dst))
473 return EDEADSRCDST;
475 /* Exception or interrupt occurred, thus already locked. */
476 if (k_reenter >= 0) {
477 result = mini_notify(proc_addr(src), dst);
480 /* Call from task level, locking is required. */
481 else {
482 lock(0, "notify");
483 result = mini_notify(proc_addr(src), dst);
484 unlock(0);
486 return(result);
489 /*===========================================================================*
490 * enqueue *
491 *===========================================================================*/
492 PRIVATE void enqueue(rp)
493 register struct proc *rp; /* this process is now runnable */
495 /* Add 'rp' to one of the queues of runnable processes. This function is
496 * responsible for inserting a process into one of the scheduling queues.
497 * The mechanism is implemented here. The actual scheduling policy is
498 * defined in sched() and pick_proc().
500 int q; /* scheduling queue to use */
501 int front; /* add to front or back */
503 #if DEBUG_SCHED_CHECK
504 check_runqueues("enqueue1");
505 if (rp->p_ready) kprintf("enqueue() already ready process\n");
506 #endif
508 /* Determine where to insert to process. */
509 sched(rp, &q, &front);
511 /* Now add the process to the queue. */
512 if (rdy_head[q] == NIL_PROC) { /* add to empty queue */
513 rdy_head[q] = rdy_tail[q] = rp; /* create a new queue */
514 rp->p_nextready = NIL_PROC; /* mark new end */
516 else if (front) { /* add to head of queue */
517 rp->p_nextready = rdy_head[q]; /* chain head of queue */
518 rdy_head[q] = rp; /* set new queue head */
520 else { /* add to tail of queue */
521 rdy_tail[q]->p_nextready = rp; /* chain tail of queue */
522 rdy_tail[q] = rp; /* set new queue tail */
523 rp->p_nextready = NIL_PROC; /* mark new end */
526 /* Now select the next process to run. */
527 pick_proc();
529 #if DEBUG_SCHED_CHECK
530 rp->p_ready = 1;
531 check_runqueues("enqueue2");
532 #endif
535 /*===========================================================================*
536 * dequeue *
537 *===========================================================================*/
538 PRIVATE void dequeue(rp)
539 register struct proc *rp; /* this process is no longer runnable */
541 /* A process must be removed from the scheduling queues, for example, because
542 * it has blocked. If the currently active process is removed, a new process
543 * is picked to run by calling pick_proc().
545 register int q = rp->p_priority; /* queue to use */
546 register struct proc **xpp; /* iterate over queue */
547 register struct proc *prev_xp;
549 /* Side-effect for kernel: check if the task's stack still is ok? */
550 if (iskernelp(rp)) {
551 if (*priv(rp)->s_stack_guard != STACK_GUARD)
552 panic("stack overrun by task", proc_nr(rp));
555 #if DEBUG_SCHED_CHECK
556 check_runqueues("dequeue1");
557 if (! rp->p_ready) kprintf("%s:%d: dequeue() already unready process\n",
558 f_str, f_line);
559 #endif
561 /* Now make sure that the process is not in its ready queue. Remove the
562 * process if it is found. A process can be made unready even if it is not
563 * running by being sent a signal that kills it.
565 prev_xp = NIL_PROC;
566 for (xpp = &rdy_head[q]; *xpp != NIL_PROC; xpp = &(*xpp)->p_nextready) {
568 if (*xpp == rp) { /* found process to remove */
569 *xpp = (*xpp)->p_nextready; /* replace with next chain */
570 if (rp == rdy_tail[q]) /* queue tail removed */
571 rdy_tail[q] = prev_xp; /* set new tail */
572 if (rp == proc_ptr || rp == next_ptr) /* active process removed */
573 pick_proc(); /* pick new process to run */
574 break;
576 prev_xp = *xpp; /* save previous in chain */
579 #if DEBUG_SCHED_CHECK
580 rp->p_ready = 0;
581 check_runqueues("dequeue2");
582 #endif
585 /*===========================================================================*
586 * sched *
587 *===========================================================================*/
588 PRIVATE void sched(rp, queue, front)
589 register struct proc *rp; /* process to be scheduled */
590 int *queue; /* return: queue to use */
591 int *front; /* return: front or back */
593 /* This function determines the scheduling policy. It is called whenever a
594 * process must be added to one of the scheduling queues to decide where to
595 * insert it. As a side-effect the process' priority may be updated.
597 int time_left = (rp->p_ticks_left > 0); /* quantum fully consumed */
599 /* Check whether the process has time left. Otherwise give a new quantum
600 * and lower the process' priority, unless the process already is in the
601 * lowest queue.
603 if (! time_left) { /* quantum consumed ? */
604 rp->p_ticks_left = rp->p_quantum_size; /* give new quantum */
605 if (rp->p_priority < (IDLE_Q-1)) {
606 rp->p_priority += 1; /* lower priority */
610 /* If there is time left, the process is added to the front of its queue,
611 * so that it can immediately run. The queue to use simply is always the
612 * process' current priority.
614 *queue = rp->p_priority;
615 *front = time_left;
618 /*===========================================================================*
619 * pick_proc *
620 *===========================================================================*/
621 PRIVATE void pick_proc()
623 /* Decide who to run now. A new process is selected by setting 'next_ptr'.
624 * When a billable process is selected, record it in 'bill_ptr', so that the
625 * clock task can tell who to bill for system time.
627 register struct proc *rp; /* process to run */
628 int q; /* iterate over queues */
630 /* Check each of the scheduling queues for ready processes. The number of
631 * queues is defined in proc.h, and priorities are set in the task table.
632 * The lowest queue contains IDLE, which is always ready.
634 for (q=0; q < NR_SCHED_QUEUES; q++) {
635 if ( (rp = rdy_head[q]) != NIL_PROC) {
636 next_ptr = rp; /* run process 'rp' next */
637 if (priv(rp)->s_flags & BILLABLE)
638 bill_ptr = rp; /* bill for system time */
639 return;
644 /*===========================================================================*
645 * balance_queues *
646 *===========================================================================*/
647 #define Q_BALANCE_TICKS 100
648 PUBLIC void balance_queues(tp)
649 timer_t *tp; /* watchdog timer pointer */
651 /* Check entire process table and give all process a higher priority. This
652 * effectively means giving a new quantum. If a process already is at its
653 * maximum priority, its quantum will be renewed.
655 static timer_t queue_timer; /* timer structure to use */
656 register struct proc* rp; /* process table pointer */
657 clock_t next_period; /* time of next period */
658 int ticks_added = 0; /* total time added */
660 for (rp=BEG_PROC_ADDR; rp<END_PROC_ADDR; rp++) {
661 if (! isemptyp(rp)) { /* check slot use */
662 lock(5,"balance_queues");
663 if (rp->p_priority > rp->p_max_priority) { /* update priority? */
664 if (rp->p_rts_flags == 0) dequeue(rp); /* take off queue */
665 ticks_added += rp->p_quantum_size; /* do accounting */
666 rp->p_priority -= 1; /* raise priority */
667 if (rp->p_rts_flags == 0) enqueue(rp); /* put on queue */
669 else {
670 ticks_added += rp->p_quantum_size - rp->p_ticks_left;
671 rp->p_ticks_left = rp->p_quantum_size; /* give new quantum */
673 unlock(5);
676 #if DEBUG
677 kprintf("ticks_added: %d\n", ticks_added);
678 #endif
680 /* Now schedule a new watchdog timer to balance the queues again. The
681 * period depends on the total amount of quantum ticks added.
683 next_period = MAX(Q_BALANCE_TICKS, ticks_added); /* calculate next */
684 set_timer(&queue_timer, get_uptime() + next_period, balance_queues);
687 /*===========================================================================*
688 * lock_send *
689 *===========================================================================*/
690 PUBLIC int lock_send(dst_e, m_ptr)
691 int dst_e; /* to whom is message being sent? */
692 message *m_ptr; /* pointer to message buffer */
694 /* Safe gateway to mini_send() for tasks. */
695 int result;
696 lock(2, "send");
697 result = mini_send(proc_ptr, dst_e, m_ptr, NON_BLOCKING);
698 unlock(2);
699 return(result);
702 /*===========================================================================*
703 * lock_enqueue *
704 *===========================================================================*/
705 PUBLIC void lock_enqueue(rp)
706 struct proc *rp; /* this process is now runnable */
708 /* Safe gateway to enqueue() for tasks. */
709 lock(3, "enqueue");
710 enqueue(rp);
711 unlock(3);
714 /*===========================================================================*
715 * lock_dequeue *
716 *===========================================================================*/
717 PUBLIC void lock_dequeue(rp)
718 struct proc *rp; /* this process is no longer runnable */
720 /* Safe gateway to dequeue() for tasks. */
721 if (k_reenter >= 0) {
722 /* We're in an exception or interrupt, so don't lock (and ...
723 * don't unlock).
725 dequeue(rp);
726 } else {
727 lock(4, "dequeue");
728 dequeue(rp);
729 unlock(4);
733 /*===========================================================================*
734 * isokendpt_f *
735 *===========================================================================*/
736 #if DEBUG_ENABLE_IPC_WARNINGS
737 PUBLIC int isokendpt_f(file, line, e, p, fatalflag)
738 char *file;
739 int line;
740 #else
741 PUBLIC int isokendpt_f(e, p, fatalflag)
742 #endif
743 endpoint_t e;
744 int *p, fatalflag;
746 int ok = 0;
747 /* Convert an endpoint number into a process number.
748 * Return nonzero if the process is alive with the corresponding
749 * generation number, zero otherwise.
751 * This function is called with file and line number by the
752 * isokendpt_d macro if DEBUG_ENABLE_IPC_WARNINGS is defined,
753 * otherwise without. This allows us to print the where the
754 * conversion was attempted, making the errors verbose without
755 * adding code for that at every call.
757 * If fatalflag is nonzero, we must panic if the conversion doesn't
758 * succeed.
760 *p = _ENDPOINT_P(e);
761 if(!isokprocn(*p)) {
762 #if DEBUG_ENABLE_IPC_WARNINGS
763 kprintf("kernel:%s:%d: bad endpoint %d: proc %d out of range\n",
764 file, line, e, *p);
765 #endif
766 } else if(isemptyn(*p)) {
767 #if DEBUG_ENABLE_IPC_WARNINGS
768 kprintf("kernel:%s:%d: bad endpoint %d: proc %d empty\n", file, line, e, *p);
769 #endif
770 } else if(proc_addr(*p)->p_endpoint != e) {
771 #if DEBUG_ENABLE_IPC_WARNINGS
772 kprintf("kernel:%s:%d: bad endpoint %d: proc %d has ept %d (generation %d vs. %d)\n", file, line,
773 e, *p, proc_addr(*p)->p_endpoint,
774 _ENDPOINT_G(e), _ENDPOINT_G(proc_addr(*p)->p_endpoint));
775 #endif
776 } else ok = 1;
777 if(!ok && fatalflag) {
778 panic("invalid endpoint ", e);
780 return ok;