tools/llvm: Do not build with symbols
[minix3.git] / external / bsd / nvi / dist / common / key.c
blobe9ed4707841f26b515fee4e1e500985ed1bd0e49
1 /* $NetBSD: key.c,v 1.3 2013/11/25 22:43:46 christos Exp $ */
2 /*-
3 * Copyright (c) 1991, 1993, 1994
4 * The Regents of the University of California. All rights reserved.
5 * Copyright (c) 1991, 1993, 1994, 1995, 1996
6 * Keith Bostic. All rights reserved.
8 * See the LICENSE file for redistribution information.
9 */
11 #include "config.h"
13 #ifndef lint
14 static const char sccsid[] = "Id: key.c,v 10.48 2001/06/25 15:19:10 skimo Exp (Berkeley) Date: 2001/06/25 15:19:10 ";
15 #endif /* not lint */
17 #include <sys/types.h>
18 #include <sys/queue.h>
19 #include <sys/time.h>
21 #include <bitstring.h>
22 #include <ctype.h>
23 #include <errno.h>
24 #include <limits.h>
25 #include <locale.h>
26 #include <stdio.h>
27 #include <stdlib.h>
28 #include <string.h>
29 #include <unistd.h>
31 #include "common.h"
32 #include "../vi/vi.h"
34 static int v_event_append __P((SCR *, EVENT *));
35 static int v_event_grow __P((SCR *, int));
36 static int v_key_cmp __P((const void *, const void *));
37 static void v_keyval __P((SCR *, int, scr_keyval_t));
38 static void v_sync __P((SCR *, int));
41 * !!!
42 * Historic vi always used:
44 * ^D: autoindent deletion
45 * ^H: last character deletion
46 * ^W: last word deletion
47 * ^Q: quote the next character (if not used in flow control).
48 * ^V: quote the next character
50 * regardless of the user's choices for these characters. The user's erase
51 * and kill characters worked in addition to these characters. Nvi wires
52 * down the above characters, but in addition permits the VEOF, VERASE, VKILL
53 * and VWERASE characters described by the user's termios structure.
55 * Ex was not consistent with this scheme, as it historically ran in tty
56 * cooked mode. This meant that the scroll command and autoindent erase
57 * characters were mapped to the user's EOF character, and the character
58 * and word deletion characters were the user's tty character and word
59 * deletion characters. This implementation makes it all consistent, as
60 * described above for vi.
62 * !!!
63 * This means that all screens share a special key set.
65 KEYLIST keylist[] = {
66 {K_BACKSLASH, '\\'}, /* \ */
67 {K_CARAT, '^'}, /* ^ */
68 {K_CNTRLD, '\004'}, /* ^D */
69 {K_CNTRLR, '\022'}, /* ^R */
70 {K_CNTRLT, '\024'}, /* ^T */
71 {K_CNTRLZ, '\032'}, /* ^Z */
72 {K_COLON, ':'}, /* : */
73 {K_CR, '\r'}, /* \r */
74 {K_ESCAPE, '\033'}, /* ^[ */
75 {K_FORMFEED, '\f'}, /* \f */
76 {K_HEXCHAR, '\030'}, /* ^X */
77 {K_NL, '\n'}, /* \n */
78 {K_RIGHTBRACE, '}'}, /* } */
79 {K_RIGHTPAREN, ')'}, /* ) */
80 {K_TAB, '\t'}, /* \t */
81 {K_VERASE, '\b'}, /* \b */
82 {K_VKILL, '\025'}, /* ^U */
83 {K_VLNEXT, '\021'}, /* ^Q */
84 {K_VLNEXT, '\026'}, /* ^V */
85 {K_VWERASE, '\027'}, /* ^W */
86 {K_ZERO, '0'}, /* 0 */
88 #define ADDITIONAL_CHARACTERS 4
89 {K_NOTUSED, 0}, /* VEOF, VERASE, VKILL, VWERASE */
90 {K_NOTUSED, 0},
91 {K_NOTUSED, 0},
92 {K_NOTUSED, 0},
94 static int nkeylist =
95 (sizeof(keylist) / sizeof(keylist[0])) - ADDITIONAL_CHARACTERS;
98 * v_key_init --
99 * Initialize the special key lookup table.
101 * PUBLIC: int v_key_init __P((SCR *));
104 v_key_init(SCR *sp)
106 int ch;
107 GS *gp;
108 KEYLIST *kp;
109 int cnt;
111 gp = sp->gp;
114 * XXX
115 * 8-bit only, for now. Recompilation should get you any 8-bit
116 * character set, as long as nul isn't a character.
118 (void)setlocale(LC_ALL, "");
119 #if __linux__
121 * In libc 4.5.26, setlocale(LC_ALL, ""), doesn't setup the table
122 * for ctype(3c) correctly. This bug is fixed in libc 4.6.x.
124 * This code works around this problem for libc 4.5.x users.
125 * Note that this code is harmless if you're using libc 4.6.x.
127 (void)setlocale(LC_CTYPE, "");
128 #endif
129 v_key_ilookup(sp);
131 v_keyval(sp, K_CNTRLD, KEY_VEOF);
132 v_keyval(sp, K_VERASE, KEY_VERASE);
133 v_keyval(sp, K_VKILL, KEY_VKILL);
134 v_keyval(sp, K_VWERASE, KEY_VWERASE);
136 /* Sort the special key list. */
137 qsort(keylist, nkeylist, sizeof(keylist[0]), v_key_cmp);
139 /* Initialize the fast lookup table. */
140 for (kp = keylist, cnt = nkeylist; cnt--; ++kp)
141 gp->special_key[kp->ch] = kp->value;
143 /* Find a non-printable character to use as a message separator. */
144 for (ch = 1; ch <= UCHAR_MAX; ++ch)
145 if (!isprint(ch)) {
146 gp->noprint = ch;
147 break;
149 if (ch != gp->noprint) {
150 msgq(sp, M_ERR, "079|No non-printable character found");
151 return (1);
153 return (0);
157 * v_keyval --
158 * Set key values.
160 * We've left some open slots in the keylist table, and if these values exist,
161 * we put them into place. Note, they may reset (or duplicate) values already
162 * in the table, so we check for that first.
164 static void
165 v_keyval(SCR *sp, int val, scr_keyval_t name)
167 KEYLIST *kp;
168 CHAR_T ch;
169 int dne;
171 /* Get the key's value from the screen. */
172 if (sp->gp->scr_keyval(sp, name, &ch, &dne))
173 return;
174 if (dne)
175 return;
177 /* Check for duplication. */
178 for (kp = keylist; kp->value != K_NOTUSED; ++kp)
179 if (kp->ch == ch) {
180 kp->value = val;
181 return;
184 /* Add a new entry. */
185 if (kp->value == K_NOTUSED) {
186 keylist[nkeylist].ch = ch;
187 keylist[nkeylist].value = val;
188 ++nkeylist;
193 * v_key_ilookup --
194 * Build the fast-lookup key display array.
196 * PUBLIC: void v_key_ilookup __P((SCR *));
198 void
199 v_key_ilookup(SCR *sp)
201 UCHAR_T ch;
202 unsigned char *p, *t;
203 GS *gp;
204 size_t len;
206 for (gp = sp->gp, ch = 0;; ++ch) {
207 for (p = gp->cname[ch].name, t = v_key_name(sp, ch),
208 len = gp->cname[ch].len = sp->clen; len--;)
209 *p++ = *t++;
210 if (ch == MAX_FAST_KEY)
211 break;
216 * v_key_len --
217 * Return the length of the string that will display the key.
218 * This routine is the backup for the KEY_LEN() macro.
220 * PUBLIC: size_t v_key_len __P((SCR *, ARG_CHAR_T));
222 size_t
223 v_key_len(SCR *sp, ARG_CHAR_T ch)
225 (void)v_key_name(sp, ch);
226 return (sp->clen);
230 * v_key_name --
231 * Return the string that will display the key. This routine
232 * is the backup for the KEY_NAME() macro.
234 * PUBLIC: u_char *v_key_name __P((SCR *, ARG_CHAR_T));
236 u_char *
237 v_key_name(SCR *sp, ARG_CHAR_T ach)
239 static const char hexdigit[] = "0123456789abcdef";
240 static const char octdigit[] = "01234567";
241 int ch;
242 size_t len, i;
243 const char *chp;
245 if (INTISWIDE(ach))
246 goto vis;
247 ch = (unsigned char)ach;
249 /* See if the character was explicitly declared printable or not. */
250 if ((chp = O_STR(sp, O_PRINT)) != NULL)
251 for (; *chp != '\0'; ++chp)
252 if (*chp == ch)
253 goto pr;
254 if ((chp = O_STR(sp, O_NOPRINT)) != NULL)
255 for (; *chp != '\0'; ++chp)
256 if (*chp == ch)
257 goto nopr;
260 * Historical (ARPA standard) mappings. Printable characters are left
261 * alone. Control characters less than 0x20 are represented as '^'
262 * followed by the character offset from the '@' character in the ASCII
263 * character set. Del (0x7f) is represented as '^' followed by '?'.
265 * XXX
266 * The following code depends on the current locale being identical to
267 * the ASCII map from 0x40 to 0x5f (since 0x1f + 0x40 == 0x5f). I'm
268 * told that this is a reasonable assumption...
270 * XXX
271 * This code will only work with CHAR_T's that are multiples of 8-bit
272 * bytes.
274 * XXX
275 * NB: There's an assumption here that all printable characters take
276 * up a single column on the screen. This is not always correct.
278 if (isprint(ch)) {
279 pr: sp->cname[0] = ch;
280 len = 1;
281 goto done;
283 nopr: if (iscntrl(ch) && (ch < 0x20 || ch == 0x7f)) {
284 sp->cname[0] = '^';
285 sp->cname[1] = ch == 0x7f ? '?' : '@' + ch;
286 len = 2;
287 goto done;
289 vis: for (i = 1; i <= sizeof(CHAR_T); ++i)
290 if ((ach >> i * CHAR_BIT) == 0)
291 break;
292 ch = (ach >> --i * CHAR_BIT) & UCHAR_MAX;
293 if (O_ISSET(sp, O_OCTAL)) {
294 sp->cname[0] = '\\';
295 sp->cname[1] = octdigit[(ch & 0300) >> 6];
296 sp->cname[2] = octdigit[(ch & 070) >> 3];
297 sp->cname[3] = octdigit[ ch & 07 ];
298 } else {
299 sp->cname[0] = '\\';
300 sp->cname[1] = 'x';
301 sp->cname[2] = hexdigit[(ch & 0xf0) >> 4];
302 sp->cname[3] = hexdigit[ ch & 0x0f ];
304 len = 4;
305 done: sp->cname[sp->clen = len] = '\0';
306 return (sp->cname);
310 * v_key_val --
311 * Fill in the value for a key. This routine is the backup
312 * for the KEY_VAL() macro.
314 * PUBLIC: e_key_t v_key_val __P((SCR *, ARG_CHAR_T));
316 e_key_t
317 v_key_val(SCR *sp, ARG_CHAR_T ch)
319 KEYLIST k, *kp;
321 k.ch = ch;
322 kp = bsearch(&k, keylist, nkeylist, sizeof(keylist[0]), v_key_cmp);
323 return (kp == NULL ? K_NOTUSED : kp->value);
327 * v_event_push --
328 * Push events/keys onto the front of the buffer.
330 * There is a single input buffer in ex/vi. Characters are put onto the
331 * end of the buffer by the terminal input routines, and pushed onto the
332 * front of the buffer by various other functions in ex/vi. Each key has
333 * an associated flag value, which indicates if it has already been quoted,
334 * and if it is the result of a mapping or an abbreviation.
336 * PUBLIC: int v_event_push __P((SCR *, EVENT *, const CHAR_T *, size_t, u_int));
339 v_event_push(SCR *sp, EVENT *p_evp, const CHAR_T *p_s, size_t nitems, u_int flags)
341 /* Push event. */
342 /* Push characters. */
343 /* Number of items to push. */
344 /* CH_* flags. */
346 EVENT *evp;
347 WIN *wp;
348 size_t total;
350 /* If we have room, stuff the items into the buffer. */
351 wp = sp->wp;
352 if (nitems <= wp->i_next ||
353 (wp->i_event != NULL && wp->i_cnt == 0 && nitems <= wp->i_nelem)) {
354 if (wp->i_cnt != 0)
355 wp->i_next -= nitems;
356 goto copy;
360 * If there are currently items in the queue, shift them up,
361 * leaving some extra room. Get enough space plus a little
362 * extra.
364 #define TERM_PUSH_SHIFT 30
365 total = wp->i_cnt + wp->i_next + nitems + TERM_PUSH_SHIFT;
366 if (total >= wp->i_nelem && v_event_grow(sp, MAX(total, 64)))
367 return (1);
368 if (wp->i_cnt)
369 MEMMOVE(wp->i_event + TERM_PUSH_SHIFT + nitems,
370 wp->i_event + wp->i_next, wp->i_cnt);
371 wp->i_next = TERM_PUSH_SHIFT;
373 /* Put the new items into the queue. */
374 copy: wp->i_cnt += nitems;
375 for (evp = wp->i_event + wp->i_next; nitems--; ++evp) {
376 if (p_evp != NULL)
377 *evp = *p_evp++;
378 else {
379 evp->e_event = E_CHARACTER;
380 evp->e_c = *p_s++;
381 evp->e_value = KEY_VAL(sp, evp->e_c);
382 FL_INIT(evp->e_flags, flags);
385 return (0);
389 * v_event_append --
390 * Append events onto the tail of the buffer.
392 static int
393 v_event_append(SCR *sp, EVENT *argp)
395 CHAR_T *s; /* Characters. */
396 EVENT *evp;
397 WIN *wp;
398 size_t nevents; /* Number of events. */
400 /* Grow the buffer as necessary. */
401 nevents = argp->e_event == E_STRING ? argp->e_len : 1;
402 wp = sp->wp;
403 if (wp->i_event == NULL ||
404 nevents > wp->i_nelem - (wp->i_next + wp->i_cnt))
405 v_event_grow(sp, MAX(nevents, 64));
406 evp = wp->i_event + wp->i_next + wp->i_cnt;
407 wp->i_cnt += nevents;
409 /* Transform strings of characters into single events. */
410 if (argp->e_event == E_STRING)
411 for (s = argp->e_csp; nevents--; ++evp) {
412 evp->e_event = E_CHARACTER;
413 evp->e_c = *s++;
414 evp->e_value = KEY_VAL(sp, evp->e_c);
415 evp->e_flags = 0;
417 else
418 *evp = *argp;
419 return (0);
422 /* Remove events from the queue. */
423 #define QREM(len) { \
424 if ((wp->i_cnt -= len) == 0) \
425 wp->i_next = 0; \
426 else \
427 wp->i_next += len; \
431 * v_event_get --
432 * Return the next event.
434 * !!!
435 * The flag EC_NODIGIT probably needs some explanation. First, the idea of
436 * mapping keys is that one or more keystrokes act like a function key.
437 * What's going on is that vi is reading a number, and the character following
438 * the number may or may not be mapped (EC_MAPCOMMAND). For example, if the
439 * user is entering the z command, a valid command is "z40+", and we don't want
440 * to map the '+', i.e. if '+' is mapped to "xxx", we don't want to change it
441 * into "z40xxx". However, if the user enters "35x", we want to put all of the
442 * characters through the mapping code.
444 * Historical practice is a bit muddled here. (Surprise!) It always permitted
445 * mapping digits as long as they weren't the first character of the map, e.g.
446 * ":map ^A1 xxx" was okay. It also permitted the mapping of the digits 1-9
447 * (the digit 0 was a special case as it doesn't indicate the start of a count)
448 * as the first character of the map, but then ignored those mappings. While
449 * it's probably stupid to map digits, vi isn't your mother.
451 * The way this works is that the EC_MAPNODIGIT causes term_key to return the
452 * end-of-digit without "looking" at the next character, i.e. leaving it as the
453 * user entered it. Presumably, the next term_key call will tell us how the
454 * user wants it handled.
456 * There is one more complication. Users might map keys to digits, and, as
457 * it's described above, the commands:
459 * :map g 1G
460 * d2g
462 * would return the keys "d2<end-of-digits>1G", when the user probably wanted
463 * "d21<end-of-digits>G". So, if a map starts off with a digit we continue as
464 * before, otherwise, we pretend we haven't mapped the character, and return
465 * <end-of-digits>.
467 * Now that that's out of the way, let's talk about Energizer Bunny macros.
468 * It's easy to create macros that expand to a loop, e.g. map x 3x. It's
469 * fairly easy to detect this example, because it's all internal to term_key.
470 * If we're expanding a macro and it gets big enough, at some point we can
471 * assume it's looping and kill it. The examples that are tough are the ones
472 * where the parser is involved, e.g. map x "ayyx"byy. We do an expansion
473 * on 'x', and get "ayyx"byy. We then return the first 4 characters, and then
474 * find the looping macro again. There is no way that we can detect this
475 * without doing a full parse of the command, because the character that might
476 * cause the loop (in this case 'x') may be a literal character, e.g. the map
477 * map x "ayy"xyy"byy is perfectly legal and won't cause a loop.
479 * Historic vi tried to detect looping macros by disallowing obvious cases in
480 * the map command, maps that that ended with the same letter as they started
481 * (which wrongly disallowed "map x 'x"), and detecting macros that expanded
482 * too many times before keys were returned to the command parser. It didn't
483 * get many (most?) of the tricky cases right, however, and it was certainly
484 * possible to create macros that ran forever. And, even if it did figure out
485 * what was going on, the user was usually tossed into ex mode. Finally, any
486 * changes made before vi realized that the macro was recursing were left in
487 * place. We recover gracefully, but the only recourse the user has in an
488 * infinite macro loop is to interrupt.
490 * !!!
491 * It is historic practice that mapping characters to themselves as the first
492 * part of the mapped string was legal, and did not cause infinite loops, i.e.
493 * ":map! { {^M^T" and ":map n nz." were known to work. The initial, matching
494 * characters were returned instead of being remapped.
496 * !!!
497 * It is also historic practice that the macro "map ] ]]^" caused a single ]
498 * keypress to behave as the command ]] (the ^ got the map past the vi check
499 * for "tail recursion"). Conversely, the mapping "map n nn^" went recursive.
500 * What happened was that, in the historic vi, maps were expanded as the keys
501 * were retrieved, but not all at once and not centrally. So, the keypress ]
502 * pushed ]]^ on the stack, and then the first ] from the stack was passed to
503 * the ]] command code. The ]] command then retrieved a key without entering
504 * the mapping code. This could bite us anytime a user has a map that depends
505 * on secondary keys NOT being mapped. I can't see any possible way to make
506 * this work in here without the complete abandonment of Rationality Itself.
508 * XXX
509 * The final issue is recovery. It would be possible to undo all of the work
510 * that was done by the macro if we entered a record into the log so that we
511 * knew when the macro started, and, in fact, this might be worth doing at some
512 * point. Given that this might make the log grow unacceptably (consider that
513 * cursor keys are done with maps), for now we leave any changes made in place.
515 * PUBLIC: int v_event_get __P((SCR *, EVENT *, int, u_int32_t));
518 v_event_get(SCR *sp, EVENT *argp, int timeout, u_int32_t flags)
520 EVENT *evp, ev;
521 GS *gp;
522 SEQ *qp;
523 int init_nomap, ispartial, istimeout, remap_cnt;
524 WIN *wp;
526 gp = sp->gp;
527 wp = sp->wp;
529 /* If simply checking for interrupts, argp may be NULL. */
530 if (argp == NULL)
531 argp = &ev;
533 retry: istimeout = remap_cnt = 0;
536 * If the queue isn't empty and we're timing out for characters,
537 * return immediately.
539 if (wp->i_cnt != 0 && LF_ISSET(EC_TIMEOUT))
540 return (0);
543 * If the queue is empty, we're checking for interrupts, or we're
544 * timing out for characters, get more events.
546 if (wp->i_cnt == 0 || LF_ISSET(EC_INTERRUPT | EC_TIMEOUT)) {
548 * If we're reading new characters, check any scripting
549 * windows for input.
551 if (F_ISSET(gp, G_SCRWIN) && sscr_input(sp))
552 return (1);
553 loop: if (gp->scr_event(sp, argp,
554 LF_ISSET(EC_INTERRUPT | EC_QUOTED | EC_RAW), timeout))
555 return (1);
556 switch (argp->e_event) {
557 case E_ERR:
558 case E_SIGHUP:
559 case E_SIGTERM:
561 * Fatal conditions cause the file to be synced to
562 * disk immediately.
564 v_sync(sp, RCV_ENDSESSION | RCV_PRESERVE |
565 (argp->e_event == E_SIGTERM ? 0: RCV_EMAIL));
566 return (1);
567 case E_TIMEOUT:
568 istimeout = 1;
569 break;
570 case E_INTERRUPT:
571 /* Set the global interrupt flag. */
572 F_SET(sp->gp, G_INTERRUPTED);
575 * If the caller was interested in interrupts, return
576 * immediately.
578 if (LF_ISSET(EC_INTERRUPT))
579 return (0);
580 goto append;
581 default:
582 append: if (v_event_append(sp, argp))
583 return (1);
584 break;
589 * If the caller was only interested in interrupts or timeouts, return
590 * immediately. (We may have gotten characters, and that's okay, they
591 * were queued up for later use.)
593 if (LF_ISSET(EC_INTERRUPT | EC_TIMEOUT))
594 return (0);
596 newmap: evp = &wp->i_event[wp->i_next];
599 * If the next event in the queue isn't a character event, return
600 * it, we're done.
602 if (evp->e_event != E_CHARACTER) {
603 *argp = *evp;
604 QREM(1);
605 return (0);
609 * If the key isn't mappable because:
611 * + ... the timeout has expired
612 * + ... it's not a mappable key
613 * + ... neither the command or input map flags are set
614 * + ... there are no maps that can apply to it
616 * return it forthwith.
618 if (istimeout || FL_ISSET(evp->e_flags, CH_NOMAP) ||
619 !LF_ISSET(EC_MAPCOMMAND | EC_MAPINPUT) ||
620 ((evp->e_c & ~MAX_BIT_SEQ) == 0 &&
621 !bit_test(gp->seqb, evp->e_c)))
622 goto nomap;
624 /* Search the map. */
625 qp = seq_find(sp, NULL, evp, NULL, wp->i_cnt,
626 LF_ISSET(EC_MAPCOMMAND) ? SEQ_COMMAND : SEQ_INPUT, &ispartial);
629 * If get a partial match, get more characters and retry the map.
630 * If time out without further characters, return the characters
631 * unmapped.
633 * !!!
634 * <escape> characters are a problem. Cursor keys start with <escape>
635 * characters, so there's almost always a map in place that begins with
636 * an <escape> character. If we timeout <escape> keys in the same way
637 * that we timeout other keys, the user will get a noticeable pause as
638 * they enter <escape> to terminate input mode. If key timeout is set
639 * for a slow link, users will get an even longer pause. Nvi used to
640 * simply timeout <escape> characters at 1/10th of a second, but this
641 * loses over PPP links where the latency is greater than 100Ms.
643 if (ispartial) {
644 if (O_ISSET(sp, O_TIMEOUT))
645 timeout = (evp->e_value == K_ESCAPE ?
646 O_VAL(sp, O_ESCAPETIME) :
647 O_VAL(sp, O_KEYTIME)) * 100;
648 else
649 timeout = 0;
650 goto loop;
653 /* If no map, return the character. */
654 if (qp == NULL) {
655 nomap: if (!ISDIGIT(evp->e_c) && LF_ISSET(EC_MAPNODIGIT))
656 goto not_digit;
657 *argp = *evp;
658 QREM(1);
659 return (0);
663 * If looking for the end of a digit string, and the first character
664 * of the map is it, pretend we haven't seen the character.
666 if (LF_ISSET(EC_MAPNODIGIT) &&
667 qp->output != NULL && !ISDIGIT(qp->output[0])) {
668 not_digit: argp->e_c = CH_NOT_DIGIT;
669 argp->e_value = K_NOTUSED;
670 argp->e_event = E_CHARACTER;
671 FL_INIT(argp->e_flags, 0);
672 return (0);
675 /* Find out if the initial segments are identical. */
676 init_nomap = !e_memcmp(qp->output, &wp->i_event[wp->i_next], qp->ilen);
678 /* Delete the mapped characters from the queue. */
679 QREM(qp->ilen);
681 /* If keys mapped to nothing, go get more. */
682 if (qp->output == NULL)
683 goto retry;
685 /* If remapping characters... */
686 if (O_ISSET(sp, O_REMAP)) {
688 * Periodically check for interrupts. Always check the first
689 * time through, because it's possible to set up a map that
690 * will return a character every time, but will expand to more,
691 * e.g. "map! a aaaa" will always return a 'a', but we'll never
692 * get anywhere useful.
694 if ((++remap_cnt == 1 || remap_cnt % 10 == 0) &&
695 (gp->scr_event(sp, &ev,
696 EC_INTERRUPT, 0) || ev.e_event == E_INTERRUPT)) {
697 F_SET(sp->gp, G_INTERRUPTED);
698 argp->e_event = E_INTERRUPT;
699 return (0);
703 * If an initial part of the characters mapped, they are not
704 * further remapped -- return the first one. Push the rest
705 * of the characters, or all of the characters if no initial
706 * part mapped, back on the queue.
708 if (init_nomap) {
709 if (v_event_push(sp, NULL, qp->output + qp->ilen,
710 qp->olen - qp->ilen, CH_MAPPED))
711 return (1);
712 if (v_event_push(sp, NULL,
713 qp->output, qp->ilen, CH_NOMAP | CH_MAPPED))
714 return (1);
715 evp = &wp->i_event[wp->i_next];
716 goto nomap;
718 if (v_event_push(sp, NULL, qp->output, qp->olen, CH_MAPPED))
719 return (1);
720 goto newmap;
723 /* Else, push the characters on the queue and return one. */
724 if (v_event_push(sp, NULL, qp->output, qp->olen, CH_MAPPED | CH_NOMAP))
725 return (1);
727 goto nomap;
731 * v_sync --
732 * Walk the screen lists, sync'ing files to their backup copies.
734 static void
735 v_sync(SCR *sp, int flags)
737 GS *gp;
738 WIN *wp;
740 gp = sp->gp;
741 TAILQ_FOREACH(wp, &gp->dq, q)
742 TAILQ_FOREACH(sp, &wp->scrq, q)
743 rcv_sync(sp, flags);
744 TAILQ_FOREACH(sp, &gp->hq, q)
745 rcv_sync(sp, flags);
749 * v_event_err --
750 * Unexpected event.
752 * PUBLIC: void v_event_err __P((SCR *, EVENT *));
754 void
755 v_event_err(SCR *sp, EVENT *evp)
757 switch (evp->e_event) {
758 case E_CHARACTER:
759 msgq(sp, M_ERR, "276|Unexpected character event");
760 break;
761 case E_EOF:
762 msgq(sp, M_ERR, "277|Unexpected end-of-file event");
763 break;
764 case E_INTERRUPT:
765 msgq(sp, M_ERR, "279|Unexpected interrupt event");
766 break;
767 case E_IPCOMMAND:
768 msgq(sp, M_ERR, "318|Unexpected command or input");
769 break;
770 case E_REPAINT:
771 msgq(sp, M_ERR, "281|Unexpected repaint event");
772 break;
773 case E_STRING:
774 msgq(sp, M_ERR, "285|Unexpected string event");
775 break;
776 case E_TIMEOUT:
777 msgq(sp, M_ERR, "286|Unexpected timeout event");
778 break;
779 case E_WRESIZE:
780 msgq(sp, M_ERR, "316|Unexpected resize event");
781 break;
784 * Theoretically, none of these can occur, as they're handled at the
785 * top editor level.
787 case E_ERR:
788 case E_SIGHUP:
789 case E_SIGTERM:
790 default:
791 abort();
796 * v_event_flush --
797 * Flush any flagged keys, returning if any keys were flushed.
799 * PUBLIC: int v_event_flush __P((SCR *, u_int));
802 v_event_flush(SCR *sp, u_int flags)
804 WIN *wp;
805 int rval;
807 for (rval = 0, wp = sp->wp; wp->i_cnt != 0 &&
808 FL_ISSET(wp->i_event[wp->i_next].e_flags, flags); rval = 1)
809 QREM(1);
810 return (rval);
814 * v_event_grow --
815 * Grow the terminal queue.
817 static int
818 v_event_grow(SCR *sp, int add)
820 WIN *wp;
821 size_t new_nelem, olen;
823 wp = sp->wp;
824 new_nelem = wp->i_nelem + add;
825 olen = wp->i_nelem * sizeof(wp->i_event[0]);
826 BINC_RET(sp, EVENT, wp->i_event, olen, new_nelem * sizeof(EVENT));
827 wp->i_nelem = olen / sizeof(wp->i_event[0]);
828 return (0);
832 * v_key_cmp --
833 * Compare two keys for sorting.
835 static int
836 v_key_cmp(const void *ap, const void *bp)
838 return (((const KEYLIST *)ap)->ch - ((const KEYLIST *)bp)->ch);