make vfs & filesystems use failable copying
[minix3.git] / kernel / arch / earm / pre_init.c
blob86b4e52aa4ebd41399af19b08efb125600eb545a
1 #define UNPAGED 1 /* for proper kmain() prototype */
3 #include "kernel/kernel.h"
4 #include <assert.h>
5 #include <stdlib.h>
6 #include <minix/minlib.h>
7 #include <minix/const.h>
8 #include <minix/type.h>
9 #include <minix/board.h>
10 #include <minix/com.h>
11 #include <sys/types.h>
12 #include <sys/param.h>
13 #include <sys/reboot.h>
14 #include "string.h"
15 #include "arch_proto.h"
16 #include "direct_utils.h"
17 #include "bsp_serial.h"
18 #include "glo.h"
19 #include <machine/multiboot.h>
21 #if USE_SYSDEBUG
22 #define MULTIBOOT_VERBOSE 1
23 #endif
25 /* to-be-built kinfo struct, diagnostics buffer */
26 kinfo_t kinfo;
27 struct kmessages kmessages;
29 /* pg_utils.c uses this; in this phase, there is a 1:1 mapping. */
30 phys_bytes vir2phys(void *addr) { return (phys_bytes) addr; }
32 static void setup_mbi(multiboot_info_t *mbi, char *bootargs);
34 /* String length used for mb_itoa */
35 #define ITOA_BUFFER_SIZE 20
37 /* Kernel may use memory */
38 int kernel_may_alloc = 1;
40 extern u32_t _edata;
41 extern u32_t _end;
43 /**
45 * The following function combines a few things together
46 * that can well be done using standard libc like strlen/strstr
47 * and such but these are not available in pre_init stage.
49 * The function expects content to be in the form of space separated
50 * key value pairs.
51 * param content the contents to search in
52 * param key the key to find (this *should* include the key/value delimiter)
53 * param value a pointer to an initialized char * of at least value_max_len length
54 * param value_max_len the maximum length of the value to store in value including
55 * the end char
57 **/
58 int find_value(char * content,char * key,char *value,int value_max_len){
60 char *iter,*keyp;
61 int key_len,content_len,match_len,value_len;
63 /* return if the input is invalid */
64 if (key == NULL || content == NULL || value == NULL) {
65 return 1;
68 /* find the key and content length */
69 key_len = content_len =0;
70 for(iter = key ; *iter != '\0'; iter++, key_len++);
71 for(iter = content ; *iter != '\0'; iter++, content_len++);
73 /* return if key or content length invalid */
74 if (key_len == 0 || content_len == 0) {
75 return 1;
78 /* now find the key in the contents */
79 match_len =0;
80 for (iter = content ,keyp=key; match_len < key_len && *iter != '\0' ; iter++) {
81 if (*iter == *keyp) {
82 match_len++;
83 keyp++;
84 continue;
86 /* The current key does not match the value , reset */
87 match_len =0;
88 keyp=key;
91 if (match_len == key_len) {
92 printf("key found at %d %s\n", match_len, &content[match_len]);
93 value_len = 0;
94 /* copy the content to the value char iter already points to the first
95 char value */
96 while(*iter != '\0' && *iter != ' ' && value_len + 1< value_max_len) {
97 *value++ = *iter++;
98 value_len++;
100 *value='\0';
101 return 0;
103 return 1; /* not found */
106 static int mb_set_param(char *bigbuf,char *name,char *value, kinfo_t *cbi)
108 /* bigbuf contains a list of key=value pairs separated by \0 char.
109 * The list itself is ended by a second \0 terminator*/
110 char *p = bigbuf;
111 char *bufend = bigbuf + MULTIBOOT_PARAM_BUF_SIZE;
112 char *q;
113 int namelen = strlen(name);
114 int valuelen = strlen(value);
116 /* Some variables we recognize */
117 if(!strcmp(name, SERVARNAME)) { cbi->do_serial_debug = 1; }
118 if(!strcmp(name, SERBAUDVARNAME)) { cbi->serial_debug_baud = atoi(value); }
120 /* Delete the item if already exists */
121 while (*p) {
122 if (strncmp(p, name, namelen) == 0 && p[namelen] == '=') {
123 q = p;
124 /* let q point to the end of the entry */
125 while (*q) q++;
126 /* now copy the remained of the buffer */
127 for (q++; q < bufend; q++, p++)
128 *p = *q;
129 break;
132 /* find the end of the buffer */
133 while (*p++);
134 p++;
138 /* find the first empty spot */
139 for (p = bigbuf; p < bufend && (*p || *(p + 1)); p++);
141 /* unless we are the first entry step over the delimiter */
142 if (p > bigbuf) p++;
144 /* Make sure there's enough space for the new parameter */
145 if (p + namelen + valuelen + 3 > bufend) {
146 return -1;
149 strcpy(p, name);
150 p[namelen] = '=';
151 strcpy(p + namelen + 1, value);
152 p[namelen + valuelen + 1] = 0;
153 p[namelen + valuelen + 2] = 0; /* end with a second delimiter */
154 return 0;
157 int overlaps(multiboot_module_t *mod, int n, int cmp_mod)
159 multiboot_module_t *cmp = &mod[cmp_mod];
160 int m;
162 #define INRANGE(mod, v) ((v) >= mod->mod_start && (v) <= thismod->mod_end)
163 #define OVERLAP(mod1, mod2) (INRANGE(mod1, mod2->mod_start) || \
164 INRANGE(mod1, mod2->mod_end))
165 for(m = 0; m < n; m++) {
166 multiboot_module_t *thismod = &mod[m];
167 if(m == cmp_mod) continue;
168 if(OVERLAP(thismod, cmp)) {
169 return 1;
172 return 0;
175 /* XXX: hard-coded stuff for modules */
176 #define MB_MODS_NR NR_BOOT_MODULES
177 #define MB_MODS_BASE 0x82000000
178 #define MB_MODS_ALIGN 0x00800000 /* 8 MB */
179 #define MB_MMAP_START 0x80000000
180 #define MB_MMAP_SIZE 0x10000000 /* 256 MB */
182 multiboot_module_t mb_modlist[MB_MODS_NR];
183 multiboot_memory_map_t mb_memmap;
185 void setup_mbi(multiboot_info_t *mbi, char *bootargs)
187 memset(mbi, 0, sizeof(*mbi));
188 mbi->flags = MULTIBOOT_INFO_MODS | MULTIBOOT_INFO_MEM_MAP |
189 MULTIBOOT_INFO_CMDLINE;
190 mbi->mi_mods_count = MB_MODS_NR;
191 mbi->mods_addr = (u32_t)&mb_modlist;
193 int i;
194 for (i = 0; i < MB_MODS_NR; ++i) {
195 mb_modlist[i].mod_start = MB_MODS_BASE + i * MB_MODS_ALIGN;
196 mb_modlist[i].mod_end = mb_modlist[i].mod_start + MB_MODS_ALIGN
197 - ARM_PAGE_SIZE;
198 mb_modlist[i].cmdline = 0;
201 /* morph the bootargs into multiboot */
202 mbi->cmdline = (u32_t) bootargs;
204 mbi->mmap_addr =(u32_t)&mb_memmap;
205 mbi->mmap_length = sizeof(mb_memmap);
207 mb_memmap.size = sizeof(multiboot_memory_map_t);
208 mb_memmap.mm_base_addr = MB_MMAP_START;
209 mb_memmap.mm_length = MB_MMAP_SIZE;
210 mb_memmap.type = MULTIBOOT_MEMORY_AVAILABLE;
213 void get_parameters(kinfo_t *cbi, char *bootargs)
215 multiboot_memory_map_t *mmap;
216 multiboot_info_t *mbi = &cbi->mbi;
217 int var_i,value_i, m, k;
218 char *p;
219 extern char _kern_phys_base, _kern_vir_base, _kern_size,
220 _kern_unpaged_start, _kern_unpaged_end;
221 phys_bytes kernbase = (phys_bytes) &_kern_phys_base,
222 kernsize = (phys_bytes) &_kern_size;
223 #define BUF 1024
224 static char cmdline[BUF];
226 /* get our own copy of the multiboot info struct and module list */
227 setup_mbi(mbi, bootargs);
229 /* Set various bits of info for the higher-level kernel. */
230 cbi->mem_high_phys = 0;
231 cbi->user_sp = (vir_bytes) &_kern_vir_base;
232 cbi->vir_kern_start = (vir_bytes) &_kern_vir_base;
233 cbi->bootstrap_start = (vir_bytes) &_kern_unpaged_start;
234 cbi->bootstrap_len = (vir_bytes) &_kern_unpaged_end -
235 cbi->bootstrap_start;
236 cbi->kmess = &kmess;
238 /* set some configurable defaults */
239 cbi->do_serial_debug = 1;
240 cbi->serial_debug_baud = 115200;
242 /* parse boot command line */
243 if (mbi->flags&MULTIBOOT_INFO_CMDLINE) {
244 static char var[BUF];
245 static char value[BUF];
247 /* Override values with cmdline argument */
248 memcpy(cmdline, (void *) mbi->cmdline, BUF);
249 p = cmdline;
250 while (*p) {
251 var_i = 0;
252 value_i = 0;
253 while (*p == ' ') p++; /* skip spaces */
254 if (!*p) break; /* is this the end? */
255 while (*p && *p != '=' && *p != ' ' && var_i < BUF - 1)
256 var[var_i++] = *p++ ;
257 var[var_i] = 0;
258 if (*p++ != '=') continue; /* skip if not name=value */
259 while (*p && *p != ' ' && value_i < BUF - 1) {
260 value[value_i++] = *p++ ;
262 value[value_i] = 0;
264 mb_set_param(cbi->param_buf, var, value, cbi);
268 /* let higher levels know what we are booting on */
269 mb_set_param(cbi->param_buf, ARCHVARNAME, (char *)get_board_arch_name(machine.board_id), cbi);
270 mb_set_param(cbi->param_buf, BOARDVARNAME,(char *)get_board_name(machine.board_id) , cbi);
273 /* round user stack down to leave a gap to catch kernel
274 * stack overflow; and to distinguish kernel and user addresses
275 * at a glance (0xf.. vs 0xe..)
277 cbi->user_sp &= 0xF0000000;
278 cbi->user_end = cbi->user_sp;
280 /* kernel bytes without bootstrap code/data that is currently
281 * still needed but will be freed after bootstrapping.
283 kinfo.kernel_allocated_bytes = (phys_bytes) &_kern_size;
284 kinfo.kernel_allocated_bytes -= cbi->bootstrap_len;
286 assert(!(cbi->bootstrap_start % ARM_PAGE_SIZE));
287 cbi->bootstrap_len = rounddown(cbi->bootstrap_len, ARM_PAGE_SIZE);
288 assert(mbi->flags & MULTIBOOT_INFO_MODS);
289 assert(mbi->mi_mods_count < MULTIBOOT_MAX_MODS);
290 assert(mbi->mi_mods_count > 0);
291 memcpy(&cbi->module_list, (void *) mbi->mods_addr,
292 mbi->mi_mods_count * sizeof(multiboot_module_t));
294 memset(cbi->memmap, 0, sizeof(cbi->memmap));
295 /* mem_map has a variable layout */
296 if(mbi->flags & MULTIBOOT_INFO_MEM_MAP) {
297 cbi->mmap_size = 0;
298 for (mmap = (multiboot_memory_map_t *) mbi->mmap_addr;
299 (unsigned long) mmap < mbi->mmap_addr + mbi->mmap_length;
300 mmap = (multiboot_memory_map_t *)
301 ((unsigned long) mmap + mmap->size + sizeof(mmap->size))) {
302 if(mmap->type != MULTIBOOT_MEMORY_AVAILABLE) continue;
303 add_memmap(cbi, mmap->mm_base_addr, mmap->mm_length);
305 } else {
306 assert(mbi->flags & MULTIBOOT_INFO_MEMORY);
307 add_memmap(cbi, 0, mbi->mem_lower_unused*1024);
308 add_memmap(cbi, 0x100000, mbi->mem_upper_unused*1024);
311 /* Sanity check: the kernel nor any of the modules may overlap
312 * with each other. Pretend the kernel is an extra module for a
313 * second.
315 k = mbi->mi_mods_count;
316 assert(k < MULTIBOOT_MAX_MODS);
317 cbi->module_list[k].mod_start = kernbase;
318 cbi->module_list[k].mod_end = kernbase + kernsize;
319 cbi->mods_with_kernel = mbi->mi_mods_count+1;
320 cbi->kern_mod = k;
322 for(m = 0; m < cbi->mods_with_kernel; m++) {
323 #if 0
324 printf("checking overlap of module %08lx-%08lx\n",
325 cbi->module_list[m].mod_start, cbi->module_list[m].mod_end);
326 #endif
327 if(overlaps(cbi->module_list, cbi->mods_with_kernel, m))
328 panic("overlapping boot modules/kernel");
329 /* We cut out the bits of memory that we know are
330 * occupied by the kernel and boot modules.
332 cut_memmap(cbi,
333 cbi->module_list[m].mod_start,
334 cbi->module_list[m].mod_end);
339 * During low level init many things are not supposed to work
340 * serial being one of them. We therefore can't rely on the
341 * serial to debug. POORMANS_FAILURE_NOTIFICATION can be used
342 * before we setup our own vector table and will result in calling
343 * the bootloader's debugging methods that will hopefully show some
344 * information like the currnet PC at on the serial.
346 #define POORMANS_FAILURE_NOTIFICATION asm volatile("svc #00\n")
348 /* use the passed cmdline argument to determine the machine id */
349 void set_machine_id(char *cmdline)
352 char boardname[20];
353 memset(boardname,'\0',20);
354 if (find_value(cmdline,"board_name=",boardname,20)){
355 /* we expect the bootloader to pass a board_name as argument
356 * this however did not happen and given we still are in early
357 * boot we can't use the serial. We therefore generate an interrupt
358 * and hope the bootloader will do something nice with it */
359 POORMANS_FAILURE_NOTIFICATION;
361 machine.board_id = get_board_id_by_short_name(boardname);
363 if (machine.board_id ==0){
364 /* same thing as above there is no safe escape */
365 POORMANS_FAILURE_NOTIFICATION;
369 kinfo_t *pre_init(int argc, char **argv)
371 char *bootargs;
372 /* This is the main "c" entry point into the kernel. It gets called
373 from head.S */
375 /* Clear BSS */
376 memset(&_edata, 0, (u32_t)&_end - (u32_t)&_edata);
378 /* we get called in a c like fashion where the first arg
379 * is the program name (load address) and the rest are
380 * arguments. by convention the second argument is the
381 * command line */
382 if (argc != 2) {
383 POORMANS_FAILURE_NOTIFICATION;
386 bootargs = argv[1];
387 set_machine_id(bootargs);
388 bsp_ser_init();
389 /* Get our own copy boot params pointed to by ebx.
390 * Here we find out whether we should do serial output.
392 get_parameters(&kinfo, bootargs);
394 /* Make and load a pagetable that will map the kernel
395 * to where it should be; but first a 1:1 mapping so
396 * this code stays where it should be.
398 dcache_clean(); /* clean the caches */
399 pg_clear();
400 pg_identity(&kinfo);
401 kinfo.freepde_start = pg_mapkernel();
402 pg_load();
403 vm_enable_paging();
405 /* Done, return boot info so it can be passed to kmain(). */
406 return &kinfo;
409 /* pre_init gets executed at the memory location where the kernel was loaded by the boot loader.
410 * at that stage we only have a minimum set of functionality present (all symbols gets renamed to
411 * ensure this). The following methods are used in that context. Once we jump to kmain they are no
412 * longer used and the "real" implementations are visible
414 void send_diag_sig(void) { }
415 void minix_shutdown(minix_timer_t *t) { arch_shutdown(0); }
416 void busy_delay_ms(int x) { }
417 int raise(int n) { panic("raise(%d)\n", n); }
418 int kern_phys_map_ptr( phys_bytes base_address, vir_bytes io_size, int vm_flags,
419 struct kern_phys_map * priv, vir_bytes ptr) {};
420 struct machine machine; /* pre init stage machine */