make vfs & filesystems use failable copying
[minix3.git] / kernel / arch / i386 / protect.c
blobe75022de12ba1a978e9c9d28d44901b148eddf63
1 /* This file contains code for initialization of protected mode, to initialize
2 * code and data segment descriptors, and to initialize global descriptors
3 * for local descriptors in the process table.
4 */
6 #include <assert.h>
7 #include <string.h>
9 #include <minix/cpufeature.h>
10 #include <sys/types.h>
11 #include <machine/multiboot.h>
12 #include "kernel/kernel.h"
14 #include "archconst.h"
15 #include "arch_proto.h"
17 #include <sys/exec.h>
18 #include <libexec.h>
20 #define INT_GATE_TYPE (INT_286_GATE | DESC_386_BIT)
21 #define TSS_TYPE (AVL_286_TSS | DESC_386_BIT)
23 /* This is OK initially, when the 1:1 mapping is still there. */
24 char *video_mem = (char *) MULTIBOOT_VIDEO_BUFFER;
26 /* Storage for gdt, idt and tss. */
27 struct segdesc_s gdt[GDT_SIZE] __aligned(DESC_SIZE);
28 struct gatedesc_s idt[IDT_SIZE] __aligned(DESC_SIZE);
29 struct tss_s tss[CONFIG_MAX_CPUS];
31 u32_t k_percpu_stacks[CONFIG_MAX_CPUS];
33 int prot_init_done = 0;
35 phys_bytes vir2phys(void *vir)
37 extern char _kern_vir_base, _kern_phys_base; /* in kernel.lds */
38 u32_t offset = (vir_bytes) &_kern_vir_base -
39 (vir_bytes) &_kern_phys_base;
40 return (phys_bytes)vir - offset;
43 /*===========================================================================*
44 * enable_iop *
45 *===========================================================================*/
46 void enable_iop(struct proc *pp)
48 /* Allow a user process to use I/O instructions. Change the I/O Permission
49 * Level bits in the psw. These specify least-privileged Current Permission
50 * Level allowed to execute I/O instructions. Users and servers have CPL 3.
51 * You can't have less privilege than that. Kernel has CPL 0, tasks CPL 1.
53 pp->p_reg.psw |= 0x3000;
57 /*===========================================================================*
58 * sdesc *
59 *===========================================================================*/
60 void sdesc(struct segdesc_s *segdp, phys_bytes base, vir_bytes size)
62 /* Fill in the size fields (base, limit and granularity) of a descriptor. */
63 segdp->base_low = base;
64 segdp->base_middle = base >> BASE_MIDDLE_SHIFT;
65 segdp->base_high = base >> BASE_HIGH_SHIFT;
67 --size; /* convert to a limit, 0 size means 4G */
68 if (size > BYTE_GRAN_MAX) {
69 segdp->limit_low = size >> PAGE_GRAN_SHIFT;
70 segdp->granularity = GRANULAR | (size >>
71 (PAGE_GRAN_SHIFT + GRANULARITY_SHIFT));
72 } else {
73 segdp->limit_low = size;
74 segdp->granularity = size >> GRANULARITY_SHIFT;
76 segdp->granularity |= DEFAULT; /* means BIG for data seg */
79 /*===========================================================================*
80 * init_dataseg *
81 *===========================================================================*/
82 void init_param_dataseg(register struct segdesc_s *segdp,
83 phys_bytes base, vir_bytes size, const int privilege)
85 /* Build descriptor for a data segment. */
86 sdesc(segdp, base, size);
87 segdp->access = (privilege << DPL_SHIFT) | (PRESENT | SEGMENT |
88 WRITEABLE | ACCESSED);
89 /* EXECUTABLE = 0, EXPAND_DOWN = 0, ACCESSED = 0 */
92 void init_dataseg(int index, const int privilege)
94 init_param_dataseg(&gdt[index], 0, 0xFFFFFFFF, privilege);
97 /*===========================================================================*
98 * init_codeseg *
99 *===========================================================================*/
100 static void init_codeseg(int index, int privilege)
102 /* Build descriptor for a code segment. */
103 sdesc(&gdt[index], 0, 0xFFFFFFFF);
104 gdt[index].access = (privilege << DPL_SHIFT)
105 | (PRESENT | SEGMENT | EXECUTABLE | READABLE);
106 /* CONFORMING = 0, ACCESSED = 0 */
109 static struct gate_table_s gate_table_pic[] = {
110 { hwint00, VECTOR( 0), INTR_PRIVILEGE },
111 { hwint01, VECTOR( 1), INTR_PRIVILEGE },
112 { hwint02, VECTOR( 2), INTR_PRIVILEGE },
113 { hwint03, VECTOR( 3), INTR_PRIVILEGE },
114 { hwint04, VECTOR( 4), INTR_PRIVILEGE },
115 { hwint05, VECTOR( 5), INTR_PRIVILEGE },
116 { hwint06, VECTOR( 6), INTR_PRIVILEGE },
117 { hwint07, VECTOR( 7), INTR_PRIVILEGE },
118 { hwint08, VECTOR( 8), INTR_PRIVILEGE },
119 { hwint09, VECTOR( 9), INTR_PRIVILEGE },
120 { hwint10, VECTOR(10), INTR_PRIVILEGE },
121 { hwint11, VECTOR(11), INTR_PRIVILEGE },
122 { hwint12, VECTOR(12), INTR_PRIVILEGE },
123 { hwint13, VECTOR(13), INTR_PRIVILEGE },
124 { hwint14, VECTOR(14), INTR_PRIVILEGE },
125 { hwint15, VECTOR(15), INTR_PRIVILEGE },
126 { NULL, 0, 0}
129 static struct gate_table_s gate_table_exceptions[] = {
130 { divide_error, DIVIDE_VECTOR, INTR_PRIVILEGE },
131 { single_step_exception, DEBUG_VECTOR, INTR_PRIVILEGE },
132 { nmi, NMI_VECTOR, INTR_PRIVILEGE },
133 { breakpoint_exception, BREAKPOINT_VECTOR, USER_PRIVILEGE },
134 { overflow, OVERFLOW_VECTOR, USER_PRIVILEGE },
135 { bounds_check, BOUNDS_VECTOR, INTR_PRIVILEGE },
136 { inval_opcode, INVAL_OP_VECTOR, INTR_PRIVILEGE },
137 { copr_not_available, COPROC_NOT_VECTOR, INTR_PRIVILEGE },
138 { double_fault, DOUBLE_FAULT_VECTOR, INTR_PRIVILEGE },
139 { copr_seg_overrun, COPROC_SEG_VECTOR, INTR_PRIVILEGE },
140 { inval_tss, INVAL_TSS_VECTOR, INTR_PRIVILEGE },
141 { segment_not_present, SEG_NOT_VECTOR, INTR_PRIVILEGE },
142 { stack_exception, STACK_FAULT_VECTOR, INTR_PRIVILEGE },
143 { general_protection, PROTECTION_VECTOR, INTR_PRIVILEGE },
144 { page_fault, PAGE_FAULT_VECTOR, INTR_PRIVILEGE },
145 { copr_error, COPROC_ERR_VECTOR, INTR_PRIVILEGE },
146 { alignment_check, ALIGNMENT_CHECK_VECTOR, INTR_PRIVILEGE },
147 { machine_check, MACHINE_CHECK_VECTOR, INTR_PRIVILEGE },
148 { simd_exception, SIMD_EXCEPTION_VECTOR, INTR_PRIVILEGE },
149 { ipc_entry_softint_orig, IPC_VECTOR_ORIG, USER_PRIVILEGE },
150 { kernel_call_entry_orig, KERN_CALL_VECTOR_ORIG, USER_PRIVILEGE },
151 { ipc_entry_softint_um, IPC_VECTOR_UM, USER_PRIVILEGE },
152 { kernel_call_entry_um, KERN_CALL_VECTOR_UM, USER_PRIVILEGE },
153 { NULL, 0, 0}
156 int tss_init(unsigned cpu, void * kernel_stack)
158 struct tss_s * t = &tss[cpu];
159 int index = TSS_INDEX(cpu);
160 struct segdesc_s *tssgdt;
162 tssgdt = &gdt[index];
164 init_param_dataseg(tssgdt, (phys_bytes) t,
165 sizeof(struct tss_s), INTR_PRIVILEGE);
166 tssgdt->access = PRESENT | (INTR_PRIVILEGE << DPL_SHIFT) | TSS_TYPE;
168 /* Build TSS. */
169 memset(t, 0, sizeof(*t));
170 t->ds = t->es = t->fs = t->gs = t->ss0 = KERN_DS_SELECTOR;
171 t->cs = KERN_CS_SELECTOR;
172 t->iobase = sizeof(struct tss_s); /* empty i/o permissions map */
175 * make space for process pointer and cpu id and point to the first
176 * usable word
178 k_percpu_stacks[cpu] = t->sp0 = ((unsigned) kernel_stack) - X86_STACK_TOP_RESERVED;
180 * set the cpu id at the top of the stack so we know on which cpu is
181 * this stak in use when we trap to kernel
183 *((reg_t *)(t->sp0 + 1 * sizeof(reg_t))) = cpu;
185 /* Set up Intel SYSENTER support if available. */
186 if(minix_feature_flags & MKF_I386_INTEL_SYSENTER) {
187 ia32_msr_write(INTEL_MSR_SYSENTER_CS, 0, KERN_CS_SELECTOR);
188 ia32_msr_write(INTEL_MSR_SYSENTER_ESP, 0, t->sp0);
189 ia32_msr_write(INTEL_MSR_SYSENTER_EIP, 0, (u32_t) ipc_entry_sysenter);
192 /* Set up AMD SYSCALL support if available. */
193 if(minix_feature_flags & MKF_I386_AMD_SYSCALL) {
194 u32_t msr_lo, msr_hi;
196 /* set SYSCALL ENABLE bit in EFER MSR */
197 ia32_msr_read(AMD_MSR_EFER, &msr_hi, &msr_lo);
198 msr_lo |= AMD_EFER_SCE;
199 ia32_msr_write(AMD_MSR_EFER, msr_hi, msr_lo);
201 /* set STAR register value */
202 #define set_star_cpu(forcpu) if(cpu == forcpu) { \
203 ia32_msr_write(AMD_MSR_STAR, \
204 ((u32_t)USER_CS_SELECTOR << 16) | (u32_t)KERN_CS_SELECTOR, \
205 (u32_t) ipc_entry_syscall_cpu ## forcpu); }
206 set_star_cpu(0);
207 set_star_cpu(1);
208 set_star_cpu(2);
209 set_star_cpu(3);
210 set_star_cpu(4);
211 set_star_cpu(5);
212 set_star_cpu(6);
213 set_star_cpu(7);
214 assert(CONFIG_MAX_CPUS <= 8);
217 return SEG_SELECTOR(index);
220 phys_bytes init_segdesc(int gdt_index, void *base, int size)
222 struct desctableptr_s *dtp = (struct desctableptr_s *) &gdt[gdt_index];
223 dtp->limit = size - 1;
224 dtp->base = (phys_bytes) base;
226 return (phys_bytes) dtp;
229 void int_gate(struct gatedesc_s *tab,
230 unsigned vec_nr, vir_bytes offset, unsigned dpl_type)
232 /* Build descriptor for an interrupt gate. */
233 register struct gatedesc_s *idp;
235 idp = &tab[vec_nr];
236 idp->offset_low = offset;
237 idp->selector = KERN_CS_SELECTOR;
238 idp->p_dpl_type = dpl_type;
239 idp->offset_high = offset >> OFFSET_HIGH_SHIFT;
242 void int_gate_idt(unsigned vec_nr, vir_bytes offset, unsigned dpl_type)
244 int_gate(idt, vec_nr, offset, dpl_type);
247 void idt_copy_vectors(struct gate_table_s * first)
249 struct gate_table_s *gtp;
250 for (gtp = first; gtp->gate; gtp++) {
251 int_gate(idt, gtp->vec_nr, (vir_bytes) gtp->gate,
252 PRESENT | INT_GATE_TYPE |
253 (gtp->privilege << DPL_SHIFT));
257 void idt_copy_vectors_pic(void)
259 idt_copy_vectors(gate_table_pic);
262 void idt_init(void)
264 idt_copy_vectors_pic();
265 idt_copy_vectors(gate_table_exceptions);
268 struct desctableptr_s gdt_desc, idt_desc;
270 void idt_reload(void)
272 x86_lidt(&idt_desc);
275 multiboot_module_t *bootmod(int pnr)
277 int i;
279 assert(pnr >= 0);
281 /* Search for desired process in boot process
282 * list. The first NR_TASKS ones do not correspond
283 * to a module, however, so we don't search those.
285 for(i = NR_TASKS; i < NR_BOOT_PROCS; i++) {
286 int p;
287 p = i - NR_TASKS;
288 if(image[i].proc_nr == pnr) {
289 assert(p < MULTIBOOT_MAX_MODS);
290 assert(p < kinfo.mbi.mi_mods_count);
291 return &kinfo.module_list[p];
295 panic("boot module %d not found", pnr);
298 int booting_cpu = 0;
300 void prot_load_selectors(void)
302 /* this function is called by both prot_init by the BSP and
303 * the early AP booting code in mpx.S by secondary CPU's.
304 * everything is set up the same except for the TSS that is per-CPU.
306 x86_lgdt(&gdt_desc); /* Load gdt */
307 idt_init();
308 idt_reload();
309 x86_lldt(LDT_SELECTOR); /* Load bogus ldt */
310 x86_ltr(TSS_SELECTOR(booting_cpu));
312 x86_load_kerncs();
313 x86_load_ds(KERN_DS_SELECTOR);
314 x86_load_es(KERN_DS_SELECTOR);
315 x86_load_fs(KERN_DS_SELECTOR);
316 x86_load_gs(KERN_DS_SELECTOR);
317 x86_load_ss(KERN_DS_SELECTOR);
320 /*===========================================================================*
321 * prot_init *
322 *===========================================================================*/
323 void prot_init()
325 extern char k_boot_stktop;
327 if(_cpufeature(_CPUF_I386_SYSENTER))
328 minix_feature_flags |= MKF_I386_INTEL_SYSENTER;
329 if(_cpufeature(_CPUF_I386_SYSCALL))
330 minix_feature_flags |= MKF_I386_AMD_SYSCALL;
332 memset(gdt, 0, sizeof(gdt));
333 memset(idt, 0, sizeof(idt));
335 /* Build GDT, IDT, IDT descriptors. */
336 gdt_desc.base = (u32_t) gdt;
337 gdt_desc.limit = sizeof(gdt)-1;
338 idt_desc.base = (u32_t) idt;
339 idt_desc.limit = sizeof(idt)-1;
340 tss_init(0, &k_boot_stktop);
342 /* Build GDT */
343 init_param_dataseg(&gdt[LDT_INDEX],
344 (phys_bytes) 0, 0, INTR_PRIVILEGE); /* unusable LDT */
345 gdt[LDT_INDEX].access = PRESENT | LDT;
346 init_codeseg(KERN_CS_INDEX, INTR_PRIVILEGE);
347 init_dataseg(KERN_DS_INDEX, INTR_PRIVILEGE);
348 init_codeseg(USER_CS_INDEX, USER_PRIVILEGE);
349 init_dataseg(USER_DS_INDEX, USER_PRIVILEGE);
351 /* Currently the multiboot segments are loaded; which is fine, but
352 * let's replace them with the ones from our own GDT so we test
353 * right away whether they work as expected.
355 prot_load_selectors();
357 /* Set up a new post-relocate bootstrap pagetable so that
358 * we can map in VM, and we no longer rely on pre-relocated
359 * data.
362 pg_clear();
363 pg_identity(&kinfo); /* Still need 1:1 for lapic and video mem and such. */
364 pg_mapkernel();
365 pg_load();
367 prot_init_done = 1;
370 static int alloc_for_vm = 0;
372 void arch_post_init(void)
374 /* Let memory mapping code know what's going on at bootstrap time */
375 struct proc *vm;
376 vm = proc_addr(VM_PROC_NR);
377 get_cpulocal_var(ptproc) = vm;
378 pg_info(&vm->p_seg.p_cr3, &vm->p_seg.p_cr3_v);
381 static int libexec_pg_alloc(struct exec_info *execi, vir_bytes vaddr, size_t len)
383 pg_map(PG_ALLOCATEME, vaddr, vaddr+len, &kinfo);
384 pg_load();
385 memset((char *) vaddr, 0, len);
386 alloc_for_vm += len;
387 return OK;
390 void arch_boot_proc(struct boot_image *ip, struct proc *rp)
392 multiboot_module_t *mod;
393 struct ps_strings *psp;
394 char *sp;
396 if(rp->p_nr < 0) return;
398 mod = bootmod(rp->p_nr);
400 /* Important special case: we put VM in the bootstrap pagetable
401 * so it can run.
404 if(rp->p_nr == VM_PROC_NR) {
405 struct exec_info execi;
407 memset(&execi, 0, sizeof(execi));
409 /* exec parameters */
410 execi.stack_high = kinfo.user_sp;
411 execi.stack_size = 64 * 1024; /* not too crazy as it must be preallocated */
412 execi.proc_e = ip->endpoint;
413 execi.hdr = (char *) mod->mod_start; /* phys mem direct */
414 execi.filesize = execi.hdr_len = mod->mod_end - mod->mod_start;
415 strlcpy(execi.progname, ip->proc_name, sizeof(execi.progname));
416 execi.frame_len = 0;
418 /* callbacks for use in the kernel */
419 execi.copymem = libexec_copy_memcpy;
420 execi.clearmem = libexec_clear_memset;
421 execi.allocmem_prealloc_junk = libexec_pg_alloc;
422 execi.allocmem_prealloc_cleared = libexec_pg_alloc;
423 execi.allocmem_ondemand = libexec_pg_alloc;
424 execi.clearproc = NULL;
426 /* parse VM ELF binary and alloc/map it into bootstrap pagetable */
427 if(libexec_load_elf(&execi) != OK)
428 panic("VM loading failed");
430 /* Setup a ps_strings struct on the stack, pointing to the
431 * following argv, envp. */
432 sp = (char *)execi.stack_high;
433 sp -= sizeof(struct ps_strings);
434 psp = (struct ps_strings *) sp;
436 /* Take the stack pointer down three words to give startup code
437 * something to use as "argc", "argv" and "envp".
439 sp -= (sizeof(void *) + sizeof(void *) + sizeof(int));
441 // linear address space, so it is available.
442 psp->ps_argvstr = (char **)(sp + sizeof(int));
443 psp->ps_nargvstr = 0;
444 psp->ps_envstr = psp->ps_argvstr + sizeof(void *);
445 psp->ps_nenvstr = 0;
447 arch_proc_init(rp, execi.pc, (vir_bytes)sp,
448 execi.stack_high - sizeof(struct ps_strings),
449 ip->proc_name);
451 /* Free VM blob that was just copied into existence. */
452 add_memmap(&kinfo, mod->mod_start, mod->mod_end-mod->mod_start);
453 mod->mod_end = mod->mod_start = 0;
455 /* Remember them */
456 kinfo.vm_allocated_bytes = alloc_for_vm;