Explicitly mask off 8-bit values (so new sanity check doesn't trip)
[minix3.git] / drivers / floppy / floppy.c
blob9891c330e735c4fb3b2833d1c642da8d40d9375b
1 /* This file contains the device dependent part of the driver for the Floppy
2 * Disk Controller (FDC) using the NEC PD765 chip.
4 * The file contains two entry points:
6 * floppy_task: main entry when system is brought up
8 * Changes:
9 * Sep 11, 2005 code cleanup (Andy Tanenbaum)
10 * Dec 01, 2004 floppy driver moved to user-space (Jorrit N. Herder)
11 * Sep 15, 2004 sync alarms/ local timer management (Jorrit N. Herder)
12 * Aug 12, 2003 null seek no interrupt fix (Mike Haertel)
13 * May 14, 2000 d-d/i rewrite (Kees J. Bot)
14 * Apr 04, 1992 device dependent/independent split (Kees J. Bot)
15 * Mar 27, 1992 last details on density checking (Kees J. Bot)
16 * Feb 14, 1992 check drive density on opens only (Andy Tanenbaum)
17 * 1991 len[] / motors / reset / step rate / ... (Bruce Evans)
18 * May 13, 1991 renovated the errors loop (Don Chapman)
19 * 1989 I/O vector to keep up with 1-1 interleave (Bruce Evans)
20 * Jan 06, 1988 allow 1.44 MB diskettes (Al Crew)
21 * Nov 28, 1986 better resetting for 386 (Peter Kay)
22 * Oct 27, 1986 fdc_results fixed for 8 MHz (Jakob Schripsema)
25 #include "floppy.h"
26 #include <timers.h>
27 #include <ibm/diskparm.h>
28 #include <minix/sysutil.h>
29 #include <minix/syslib.h>
31 /* I/O Ports used by floppy disk task. */
32 #define DOR 0x3F2 /* motor drive control bits */
33 #define FDC_STATUS 0x3F4 /* floppy disk controller status register */
34 #define FDC_DATA 0x3F5 /* floppy disk controller data register */
35 #define FDC_RATE 0x3F7 /* transfer rate register */
36 #define DMA_ADDR 0x004 /* port for low 16 bits of DMA address */
37 #define DMA_TOP 0x081 /* port for top 8 bits of 24-bit DMA addr */
38 #define DMA_COUNT 0x005 /* port for DMA count (count = bytes - 1) */
39 #define DMA_FLIPFLOP 0x00C /* DMA byte pointer flip-flop */
40 #define DMA_MODE 0x00B /* DMA mode port */
41 #define DMA_INIT 0x00A /* DMA init port */
42 #define DMA_RESET_VAL 0x006
44 #define DMA_ADDR_MASK 0xFFFFFF /* mask to verify DMA address is 24-bit */
46 /* Status registers returned as result of operation. */
47 #define ST0 0x00 /* status register 0 */
48 #define ST1 0x01 /* status register 1 */
49 #define ST2 0x02 /* status register 2 */
50 #define ST3 0x00 /* status register 3 (return by DRIVE_SENSE) */
51 #define ST_CYL 0x03 /* slot where controller reports cylinder */
52 #define ST_HEAD 0x04 /* slot where controller reports head */
53 #define ST_SEC 0x05 /* slot where controller reports sector */
54 #define ST_PCN 0x01 /* slot where controller reports present cyl */
56 /* Fields within the I/O ports. */
57 /* Main status register. */
58 #define CTL_BUSY 0x10 /* bit is set when read or write in progress */
59 #define DIRECTION 0x40 /* bit is set when reading data reg is valid */
60 #define MASTER 0x80 /* bit is set when data reg can be accessed */
62 /* Digital output port (DOR). */
63 #define MOTOR_SHIFT 4 /* high 4 bits control the motors in DOR */
64 #define ENABLE_INT 0x0C /* used for setting DOR port */
66 /* ST0. */
67 #define ST0_BITS_TRANS 0xD8 /* check 4 bits of status */
68 #define TRANS_ST0 0x00 /* 4 bits of ST0 for READ/WRITE */
69 #define ST0_BITS_SEEK 0xF8 /* check top 5 bits of seek status */
70 #define SEEK_ST0 0x20 /* top 5 bits of ST0 for SEEK */
72 /* ST1. */
73 #define BAD_SECTOR 0x05 /* if these bits are set in ST1, recalibrate */
74 #define WRITE_PROTECT 0x02 /* bit is set if diskette is write protected */
76 /* ST2. */
77 #define BAD_CYL 0x1F /* if any of these bits are set, recalibrate */
79 /* ST3 (not used). */
80 #define ST3_FAULT 0x80 /* if this bit is set, drive is sick */
81 #define ST3_WR_PROTECT 0x40 /* set when diskette is write protected */
82 #define ST3_READY 0x20 /* set when drive is ready */
84 /* Floppy disk controller command bytes. */
85 #define FDC_SEEK 0x0F /* command the drive to seek */
86 #define FDC_READ 0xE6 /* command the drive to read */
87 #define FDC_WRITE 0xC5 /* command the drive to write */
88 #define FDC_SENSE 0x08 /* command the controller to tell its status */
89 #define FDC_RECALIBRATE 0x07 /* command the drive to go to cyl 0 */
90 #define FDC_SPECIFY 0x03 /* command the drive to accept params */
91 #define FDC_READ_ID 0x4A /* command the drive to read sector identity */
92 #define FDC_FORMAT 0x4D /* command the drive to format a track */
94 /* DMA channel commands. */
95 #define DMA_READ 0x46 /* DMA read opcode */
96 #define DMA_WRITE 0x4A /* DMA write opcode */
98 /* Parameters for the disk drive. */
99 #define HC_SIZE 2880 /* # sectors on largest legal disk (1.44MB) */
100 #define NR_HEADS 0x02 /* two heads (i.e., two tracks/cylinder) */
101 #define MAX_SECTORS 18 /* largest # sectors per track */
102 #define DTL 0xFF /* determines data length (sector size) */
103 #define SPEC2 0x02 /* second parameter to SPECIFY */
104 #define MOTOR_OFF (3*HZ) /* how long to wait before stopping motor */
105 #define WAKEUP (2*HZ) /* timeout on I/O, FDC won't quit. */
107 /* Error codes */
108 #define ERR_SEEK (-1) /* bad seek */
109 #define ERR_TRANSFER (-2) /* bad transfer */
110 #define ERR_STATUS (-3) /* something wrong when getting status */
111 #define ERR_READ_ID (-4) /* bad read id */
112 #define ERR_RECALIBRATE (-5) /* recalibrate didn't work properly */
113 #define ERR_DRIVE (-6) /* something wrong with a drive */
114 #define ERR_WR_PROTECT (-7) /* diskette is write protected */
115 #define ERR_TIMEOUT (-8) /* interrupt timeout */
117 /* No retries on some errors. */
118 #define err_no_retry(err) ((err) <= ERR_WR_PROTECT)
120 /* Encoding of drive type in minor device number. */
121 #define DEV_TYPE_BITS 0x7C /* drive type + 1, if nonzero */
122 #define DEV_TYPE_SHIFT 2 /* right shift to normalize type bits */
123 #define FORMAT_DEV_BIT 0x80 /* bit in minor to turn write into format */
125 /* Miscellaneous. */
126 #define MAX_ERRORS 6 /* how often to try rd/wt before quitting */
127 #define MAX_RESULTS 7 /* max number of bytes controller returns */
128 #define NR_DRIVES 2 /* maximum number of drives */
129 #define DIVISOR 128 /* used for sector size encoding */
130 #define SECTOR_SIZE_CODE 2 /* code to say "512" to the controller */
131 #define TIMEOUT_MICROS 500000L /* microseconds waiting for FDC */
132 #define TIMEOUT_TICKS 30 /* ticks waiting for FDC */
133 #define NT 7 /* number of diskette/drive combinations */
134 #define UNCALIBRATED 0 /* drive needs to be calibrated at next use */
135 #define CALIBRATED 1 /* no calibration needed */
136 #define BASE_SECTOR 1 /* sectors are numbered starting at 1 */
137 #define NO_SECTOR (-1) /* current sector unknown */
138 #define NO_CYL (-1) /* current cylinder unknown, must seek */
139 #define NO_DENS 100 /* current media unknown */
140 #define BSY_IDLE 0 /* busy doing nothing */
141 #define BSY_IO 1 /* busy doing I/O */
142 #define BSY_WAKEN 2 /* got a wakeup call */
144 /* Seven combinations of diskette/drive are supported.
146 * # Diskette Drive Sectors Tracks Rotation Data-rate Comment
147 * 0 360K 360K 9 40 300 RPM 250 kbps Standard PC DSDD
148 * 1 1.2M 1.2M 15 80 360 RPM 500 kbps AT disk in AT drive
149 * 2 360K 720K 9 40 300 RPM 250 kbps Quad density PC
150 * 3 720K 720K 9 80 300 RPM 250 kbps Toshiba, et al.
151 * 4 360K 1.2M 9 40 360 RPM 300 kbps PC disk in AT drive
152 * 5 720K 1.2M 9 80 360 RPM 300 kbps Toshiba in AT drive
153 * 6 1.44M 1.44M 18 80 300 RPM 500 kbps PS/2, et al.
155 * In addition, 720K diskettes can be read in 1.44MB drives, but that does
156 * not need a different set of parameters. This combination uses
158 * 3 720K 1.44M 9 80 300 RPM 250 kbps PS/2, et al.
160 PRIVATE struct density {
161 u8_t secpt; /* sectors per track */
162 u8_t cyls; /* tracks per side */
163 u8_t steps; /* steps per cylinder (2 = double step) */
164 u8_t test; /* sector to try for density test */
165 u8_t rate; /* data rate (2=250, 1=300, 0=500 kbps) */
166 clock_t start; /* motor start (clock ticks) */
167 u8_t gap; /* gap size */
168 u8_t spec1; /* first specify byte (SRT/HUT) */
169 } fdensity[NT] = {
170 { 9, 40, 1, 4*9, 2, 4*HZ/8, 0x2A, 0xDF }, /* 360K / 360K */
171 { 15, 80, 1, 14, 0, 4*HZ/8, 0x1B, 0xDF }, /* 1.2M / 1.2M */
172 { 9, 40, 2, 2*9, 2, 4*HZ/8, 0x2A, 0xDF }, /* 360K / 720K */
173 { 9, 80, 1, 4*9, 2, 6*HZ/8, 0x2A, 0xDF }, /* 720K / 720K */
174 { 9, 40, 2, 2*9, 1, 4*HZ/8, 0x23, 0xDF }, /* 360K / 1.2M */
175 { 9, 80, 1, 4*9, 1, 4*HZ/8, 0x23, 0xDF }, /* 720K / 1.2M */
176 { 18, 80, 1, 17, 0, 6*HZ/8, 0x1B, 0xCF }, /* 1.44M / 1.44M */
179 /* The following table is used with the test_sector array to recognize a
180 * drive/floppy combination. The sector to test has been determined by
181 * looking at the differences in gap size, sectors/track, and double stepping.
182 * This means that types 0 and 3 can't be told apart, only the motor start
183 * time differs. If a read test succeeds then the drive is limited to the
184 * set of densities it can support to avoid unnecessary tests in the future.
187 #define b(d) (1 << (d)) /* bit for density d. */
189 PRIVATE struct test_order {
190 u8_t t_density; /* floppy/drive type */
191 u8_t t_class; /* limit drive to this class of densities */
192 } test_order[NT-1] = {
193 { 6, b(3) | b(6) }, /* 1.44M {720K, 1.44M} */
194 { 1, b(1) | b(4) | b(5) }, /* 1.2M {1.2M, 360K, 720K} */
195 { 3, b(2) | b(3) | b(6) }, /* 720K {360K, 720K, 1.44M} */
196 { 4, b(1) | b(4) | b(5) }, /* 360K {1.2M, 360K, 720K} */
197 { 5, b(1) | b(4) | b(5) }, /* 720K {1.2M, 360K, 720K} */
198 { 2, b(2) | b(3) }, /* 360K {360K, 720K} */
199 /* Note that type 0 is missing, type 3 can read/write it too, which is
200 * why the type 3 parameters have been pessimized to be like type 0.
204 /* Variables. */
205 PRIVATE struct floppy { /* main drive struct, one entry per drive */
206 unsigned fl_curcyl; /* current cylinder */
207 unsigned fl_hardcyl; /* hardware cylinder, as opposed to: */
208 unsigned fl_cylinder; /* cylinder number addressed */
209 unsigned fl_sector; /* sector addressed */
210 unsigned fl_head; /* head number addressed */
211 char fl_calibration; /* CALIBRATED or UNCALIBRATED */
212 u8_t fl_density; /* NO_DENS = ?, 0 = 360K; 1 = 360K/1.2M; etc.*/
213 u8_t fl_class; /* bitmap for possible densities */
214 timer_t fl_tmr_stop; /* timer to stop motor */
215 struct device fl_geom; /* Geometry of the drive */
216 struct device fl_part[NR_PARTITIONS]; /* partition's base & size */
217 } floppy[NR_DRIVES];
219 PRIVATE int irq_hook_id; /* id of irq hook at the kernel */
220 PRIVATE int motor_status; /* bitmap of current motor status */
221 PRIVATE int need_reset; /* set to 1 when controller must be reset */
222 PRIVATE unsigned f_drive; /* selected drive */
223 PRIVATE unsigned f_device; /* selected minor device */
224 PRIVATE struct floppy *f_fp; /* current drive */
225 PRIVATE struct density *f_dp; /* current density parameters */
226 PRIVATE struct density *prev_dp;/* previous density parameters */
227 PRIVATE unsigned f_sectors; /* equal to f_dp->secpt (needed a lot) */
228 PRIVATE u16_t f_busy; /* BSY_IDLE, BSY_IO, BSY_WAKEN */
229 PRIVATE struct device *f_dv; /* device's base and size */
230 PRIVATE struct disk_parameter_s fmt_param; /* parameters for format */
231 PRIVATE u8_t f_results[MAX_RESULTS];/* the controller can give lots of output */
233 /* The floppy uses various timers. These are managed by the floppy driver
234 * itself, because only a single synchronous alarm is available per process.
235 * Besides the 'f_tmr_timeout' timer below, the floppy structure for each
236 * floppy disk drive contains a 'fl_tmr_stop' timer.
238 PRIVATE timer_t f_tmr_timeout; /* timer for various timeouts */
239 PRIVATE timer_t *f_timers; /* queue of floppy timers */
240 PRIVATE clock_t f_next_timeout; /* the next timeout time */
241 FORWARD _PROTOTYPE( void f_expire_tmrs, (struct driver *dp, message *m_ptr) );
242 FORWARD _PROTOTYPE( void f_set_timer, (timer_t *tp, clock_t delta,
243 tmr_func_t watchdog) );
244 FORWARD _PROTOTYPE( void stop_motor, (timer_t *tp) );
245 FORWARD _PROTOTYPE( void f_timeout, (timer_t *tp) );
247 FORWARD _PROTOTYPE( struct device *f_prepare, (int device) );
248 FORWARD _PROTOTYPE( char *f_name, (void) );
249 FORWARD _PROTOTYPE( void f_cleanup, (void) );
250 FORWARD _PROTOTYPE( int f_transfer, (int proc_nr, int opcode, u64_t position,
251 iovec_t *iov, unsigned nr_req, int) );
252 FORWARD _PROTOTYPE( int dma_setup, (int opcode) );
253 FORWARD _PROTOTYPE( void start_motor, (void) );
254 FORWARD _PROTOTYPE( int seek, (void) );
255 FORWARD _PROTOTYPE( int fdc_transfer, (int opcode) );
256 FORWARD _PROTOTYPE( int fdc_results, (void) );
257 FORWARD _PROTOTYPE( int fdc_command, (u8_t *cmd, int len) );
258 FORWARD _PROTOTYPE( void fdc_out, (int val) );
259 FORWARD _PROTOTYPE( int recalibrate, (void) );
260 FORWARD _PROTOTYPE( void f_reset, (void) );
261 FORWARD _PROTOTYPE( int f_intr_wait, (void) );
262 FORWARD _PROTOTYPE( int read_id, (void) );
263 FORWARD _PROTOTYPE( int f_do_open, (struct driver *dp, message *m_ptr) );
264 FORWARD _PROTOTYPE( void floppy_stop, (struct driver *dp, message *m_ptr));
265 FORWARD _PROTOTYPE( int test_read, (int density) );
266 FORWARD _PROTOTYPE( void f_geometry, (struct partition *entry) );
268 /* Entry points to this driver. */
269 PRIVATE struct driver f_dtab = {
270 f_name, /* current device's name */
271 f_do_open, /* open or mount request, sense type of diskette */
272 do_nop, /* nothing on a close */
273 do_diocntl, /* get or set a partitions geometry */
274 f_prepare, /* prepare for I/O on a given minor device */
275 f_transfer, /* do the I/O */
276 f_cleanup, /* cleanup before sending reply to user process */
277 f_geometry, /* tell the geometry of the diskette */
278 floppy_stop, /* floppy cleanup on shutdown */
279 f_expire_tmrs,/* expire all alarm timers */
280 nop_cancel,
281 nop_select,
282 NULL,
283 NULL
286 /*===========================================================================*
287 * floppy_task *
288 *===========================================================================*/
289 PUBLIC void main()
291 /* Initialize the floppy structure and the timers. */
293 struct floppy *fp;
294 int s;
296 f_next_timeout = TMR_NEVER;
297 tmr_inittimer(&f_tmr_timeout);
299 for (fp = &floppy[0]; fp < &floppy[NR_DRIVES]; fp++) {
300 fp->fl_curcyl = NO_CYL;
301 fp->fl_density = NO_DENS;
302 fp->fl_class = ~0;
303 tmr_inittimer(&fp->fl_tmr_stop);
306 /* Set IRQ policy, only request notifications, do not automatically
307 * reenable interrupts. ID return on interrupt is the IRQ line number.
309 irq_hook_id = FLOPPY_IRQ;
310 if ((s=sys_irqsetpolicy(FLOPPY_IRQ, 0, &irq_hook_id )) != OK)
311 panic("FLOPPY", "Couldn't set IRQ policy", s);
312 if ((s=sys_irqenable(&irq_hook_id)) != OK)
313 panic("FLOPPY", "Couldn't enable IRQs", s);
315 /* Ignore signals */
316 signal(SIGHUP, SIG_IGN);
318 driver_task(&f_dtab);
321 /*===========================================================================*
322 * f_expire_tmrs *
323 *===========================================================================*/
324 PRIVATE void f_expire_tmrs(struct driver *dp, message *m_ptr)
326 /* A synchronous alarm message was received. Check if there are any expired
327 * timers. Possibly reschedule the next alarm.
329 clock_t now; /* current time */
330 timer_t *tp;
331 int s;
333 /* Get the current time to compare the timers against. */
334 if ((s=getuptime(&now)) != OK)
335 panic("FLOPPY","Couldn't get uptime from clock.", s);
337 /* Scan the timers queue for expired timers. Dispatch the watchdog function
338 * for each expired timers. FLOPPY watchdog functions are f_tmr_timeout()
339 * and stop_motor(). Possibly a new alarm call must be scheduled.
341 tmrs_exptimers(&f_timers, now, NULL);
342 if (f_timers == NULL) {
343 f_next_timeout = TMR_NEVER;
344 } else { /* set new sync alarm */
345 f_next_timeout = f_timers->tmr_exp_time;
346 if ((s=sys_setalarm(f_next_timeout, 1)) != OK)
347 panic("FLOPPY","Couldn't set synchronous alarm.", s);
351 /*===========================================================================*
352 * f_set_timer *
353 *===========================================================================*/
354 PRIVATE void f_set_timer(tp, delta, watchdog)
355 timer_t *tp; /* timer to be set */
356 clock_t delta; /* in how many ticks */
357 tmr_func_t watchdog; /* watchdog function to be called */
359 clock_t now; /* current time */
360 int s;
362 /* Get the current time. */
363 if ((s=getuptime(&now)) != OK)
364 panic("FLOPPY","Couldn't get uptime from clock.", s);
366 /* Add the timer to the local timer queue. */
367 tmrs_settimer(&f_timers, tp, now + delta, watchdog, NULL);
369 /* Possibly reschedule an alarm call. This happens when the front of the
370 * timers queue was reinserted at another position, i.e., when a timer was
371 * reset, or when a new timer was added in front.
373 if (f_timers->tmr_exp_time != f_next_timeout) {
374 f_next_timeout = f_timers->tmr_exp_time;
375 if ((s=sys_setalarm(f_next_timeout, 1)) != OK)
376 panic("FLOPPY","Couldn't set synchronous alarm.", s);
380 /*===========================================================================*
381 * f_prepare *
382 *===========================================================================*/
383 PRIVATE struct device *f_prepare(device)
384 int device;
386 /* Prepare for I/O on a device. */
388 f_device = device;
389 f_drive = device & ~(DEV_TYPE_BITS | FORMAT_DEV_BIT);
390 if (f_drive < 0 || f_drive >= NR_DRIVES) return(NIL_DEV);
392 f_fp = &floppy[f_drive];
393 f_dv = &f_fp->fl_geom;
394 if (f_fp->fl_density < NT) {
395 f_dp = &fdensity[f_fp->fl_density];
396 f_sectors = f_dp->secpt;
397 f_fp->fl_geom.dv_size = mul64u((long) (NR_HEADS * f_sectors
398 * f_dp->cyls), SECTOR_SIZE);
401 /* A partition? */
402 if ((device &= DEV_TYPE_BITS) >= MINOR_fd0p0)
403 f_dv = &f_fp->fl_part[(device - MINOR_fd0p0) >> DEV_TYPE_SHIFT];
405 return f_dv;
408 /*===========================================================================*
409 * f_name *
410 *===========================================================================*/
411 PRIVATE char *f_name()
413 /* Return a name for the current device. */
414 static char name[] = "fd0";
416 name[2] = '0' + f_drive;
417 return name;
420 /*===========================================================================*
421 * f_cleanup *
422 *===========================================================================*/
423 PRIVATE void f_cleanup()
425 /* Start a timer to turn the motor off in a few seconds. */
426 tmr_arg(&f_fp->fl_tmr_stop)->ta_int = f_drive;
427 f_set_timer(&f_fp->fl_tmr_stop, MOTOR_OFF, stop_motor);
429 /* Exiting the floppy driver, so forget where we are. */
430 f_fp->fl_sector = NO_SECTOR;
433 /*===========================================================================*
434 * f_transfer *
435 *===========================================================================*/
436 PRIVATE int f_transfer(proc_nr, opcode, pos64, iov, nr_req, safe)
437 int proc_nr; /* process doing the request */
438 int opcode; /* DEV_GATHER_S or DEV_SCATTER_S */
439 u64_t pos64; /* offset on device to read or write */
440 iovec_t *iov; /* pointer to read or write request vector */
441 unsigned nr_req; /* length of request vector */
442 int safe;
444 #define NO_OFFSET -1
445 struct floppy *fp = f_fp;
446 iovec_t *iop, *iov_end = iov + nr_req;
447 int s, r, errors, nr;
448 unsigned block; /* Seen any 32M floppies lately? */
449 unsigned nbytes, count, chunk, sector;
450 unsigned long dv_size = cv64ul(f_dv->dv_size);
451 vir_bytes user_offset, iov_offset = 0, iop_offset;
452 off_t position;
453 signed long uoffsets[MAX_SECTORS], *up;
454 cp_grant_id_t ugrants[MAX_SECTORS], *ug;
455 u8_t cmd[3];
457 if (ex64hi(pos64) != 0)
458 return OK; /* Way beyond EOF */
459 position= cv64ul(pos64);
461 /* Check disk address. */
462 if ((position & SECTOR_MASK) != 0) return(EINVAL);
464 #if 0 /* XXX hack to create a disk driver that crashes */
465 { static int count= 0; if (++count > 10) {
466 printf("floppy: time to die\n"); *(int *)-1= 42;
468 #endif
470 errors = 0;
471 while (nr_req > 0) {
472 /* How many bytes to transfer? */
473 nbytes = 0;
474 for (iop = iov; iop < iov_end; iop++) nbytes += iop->iov_size;
476 /* Which block on disk and how close to EOF? */
477 if (position >= dv_size) return(OK); /* At EOF */
478 if (position + nbytes > dv_size) nbytes = dv_size - position;
479 block = div64u(add64ul(f_dv->dv_base, position), SECTOR_SIZE);
481 if ((nbytes & SECTOR_MASK) != 0) return(EINVAL);
483 /* Using a formatting device? */
484 if (f_device & FORMAT_DEV_BIT) {
485 if (opcode != DEV_SCATTER_S) return(EIO);
486 if (iov->iov_size < SECTOR_SIZE + sizeof(fmt_param))
487 return(EINVAL);
489 if(safe) {
490 s=sys_safecopyfrom(proc_nr, iov->iov_addr,
491 SECTOR_SIZE + iov_offset, (vir_bytes) &fmt_param,
492 (phys_bytes) sizeof(fmt_param), D);
493 } else {
494 s=sys_datacopy(proc_nr, iov->iov_addr +
495 SECTOR_SIZE + iov_offset,
496 SELF, (vir_bytes) &fmt_param,
497 (phys_bytes) sizeof(fmt_param));
500 if(s != OK)
501 panic("FLOPPY", "Sys_*copy failed", s);
503 /* Check that the number of sectors in the data is reasonable,
504 * to avoid division by 0. Leave checking of other data to
505 * the FDC.
507 if (fmt_param.sectors_per_cylinder == 0) return(EIO);
509 /* Only the first sector of the parameters now needed. */
510 iov->iov_size = nbytes = SECTOR_SIZE;
513 /* Only try one sector if there were errors. */
514 if (errors > 0) nbytes = SECTOR_SIZE;
516 /* Compute cylinder and head of the track to access. */
517 fp->fl_cylinder = block / (NR_HEADS * f_sectors);
518 fp->fl_hardcyl = fp->fl_cylinder * f_dp->steps;
519 fp->fl_head = (block % (NR_HEADS * f_sectors)) / f_sectors;
521 /* For each sector on this track compute the user address it is to
522 * go or to come from.
524 for (up = uoffsets; up < uoffsets + MAX_SECTORS; up++) *up = NO_OFFSET;
525 count = 0;
526 iop = iov;
527 sector = block % f_sectors;
528 nr = 0;
529 iop_offset = iov_offset;
530 for (;;) {
531 nr++;
532 user_offset = iop_offset;
533 chunk = iop->iov_size;
534 if ((chunk & SECTOR_MASK) != 0) return(EINVAL);
536 while (chunk > 0) {
537 ugrants[sector] = iop->iov_addr;
538 uoffsets[sector++] = user_offset;
539 chunk -= SECTOR_SIZE;
540 user_offset += SECTOR_SIZE;
541 count += SECTOR_SIZE;
542 if (sector == f_sectors || count == nbytes)
543 goto track_set_up;
545 iop_offset = 0;
546 iop++;
548 track_set_up:
550 /* First check to see if a reset is needed. */
551 if (need_reset) f_reset();
553 /* See if motor is running; if not, turn it on and wait. */
554 start_motor();
556 /* Set the stepping rate and data rate */
557 if (f_dp != prev_dp) {
558 cmd[0] = FDC_SPECIFY;
559 cmd[1] = f_dp->spec1;
560 cmd[2] = SPEC2;
561 (void) fdc_command(cmd, 3);
562 if ((s=sys_outb(FDC_RATE, f_dp->rate)) != OK)
563 panic("FLOPPY","Sys_outb failed", s);
564 prev_dp = f_dp;
567 /* If we are going to a new cylinder, perform a seek. */
568 r = seek();
570 /* Avoid read_id() if we don't plan to read much. */
571 if (fp->fl_sector == NO_SECTOR && count < (6 * SECTOR_SIZE))
572 fp->fl_sector = 0;
574 for (nbytes = 0; nbytes < count; nbytes += SECTOR_SIZE) {
575 if (fp->fl_sector == NO_SECTOR) {
576 /* Find out what the current sector is. This often
577 * fails right after a seek, so try it twice.
579 if (r == OK && read_id() != OK) r = read_id();
582 /* Look for the next job in uoffsets[] */
583 if (r == OK) {
584 for (;;) {
585 if (fp->fl_sector >= f_sectors)
586 fp->fl_sector = 0;
588 up = &uoffsets[fp->fl_sector];
589 ug = &ugrants[fp->fl_sector];
590 if (*up != NO_OFFSET) break;
591 fp->fl_sector++;
595 if (r == OK && opcode == DEV_SCATTER_S) {
596 /* Copy the user bytes to the DMA buffer. */
597 if(safe) {
598 s=sys_safecopyfrom(proc_nr, *ug, *up,
599 (vir_bytes) tmp_buf,
600 (phys_bytes) SECTOR_SIZE, D);
601 } else {
602 s=sys_datacopy(proc_nr, *ug + *up, SELF,
603 (vir_bytes) tmp_buf,
604 (phys_bytes) SECTOR_SIZE);
606 if(s != OK)
607 panic("FLOPPY", "Sys_vircopy failed", s);
610 /* Set up the DMA chip and perform the transfer. */
611 if (r == OK) {
612 if (dma_setup(opcode) != OK) {
613 /* This can only fail for addresses above 16MB
614 * that cannot be handled by the controller,
615 * because it uses 24-bit addressing.
617 return(EIO);
619 r = fdc_transfer(opcode);
622 if (r == OK && opcode == DEV_GATHER_S) {
623 /* Copy the DMA buffer to user space. */
624 if(safe) {
625 s=sys_safecopyto(proc_nr, *ug, *up,
626 (vir_bytes) tmp_buf,
627 (phys_bytes) SECTOR_SIZE, D);
628 } else {
629 s=sys_datacopy(SELF, (vir_bytes) tmp_buf,
630 proc_nr, *ug + *up,
631 (phys_bytes) SECTOR_SIZE);
633 if(s != OK)
634 panic("FLOPPY", "Sys_vircopy failed", s);
637 if (r != OK) {
638 /* Don't retry if write protected or too many errors. */
639 if (err_no_retry(r) || ++errors == MAX_ERRORS) {
640 return(EIO);
643 /* Recalibrate if halfway. */
644 if (errors == MAX_ERRORS / 2)
645 fp->fl_calibration = UNCALIBRATED;
647 nbytes = 0;
648 break; /* retry */
652 /* Book the bytes successfully transferred. */
653 position += nbytes;
654 for (;;) {
655 if (nbytes < iov->iov_size) {
656 /* Not done with this one yet. */
657 iov_offset += nbytes;
658 iov->iov_size -= nbytes;
659 break;
661 iov_offset = 0;
662 nbytes -= iov->iov_size;
663 iov->iov_size = 0;
664 if (nbytes == 0) {
665 /* The rest is optional, so we return to give FS a
666 * chance to think it over.
668 return(OK);
670 iov++;
671 nr_req--;
674 return(OK);
677 /*===========================================================================*
678 * dma_setup *
679 *===========================================================================*/
680 PRIVATE int dma_setup(opcode)
681 int opcode; /* DEV_GATHER_S or DEV_SCATTER_S */
683 /* The IBM PC can perform DMA operations by using the DMA chip. To use it,
684 * the DMA (Direct Memory Access) chip is loaded with the 20-bit memory address
685 * to be read from or written to, the byte count minus 1, and a read or write
686 * opcode. This routine sets up the DMA chip. Note that the chip is not
687 * capable of doing a DMA across a 64K boundary (e.g., you can't read a
688 * 512-byte block starting at physical address 65520).
690 * Warning! Also note that it's not possible to do DMA above 16 MB because
691 * the ISA bus uses 24-bit addresses. Addresses above 16 MB therefore will
692 * be interpreted modulo 16 MB, dangerously overwriting arbitrary memory.
693 * A check here denies the I/O if the address is out of range.
695 pvb_pair_t byte_out[9];
696 int s;
698 /* First check the DMA memory address not to exceed maximum. */
699 if (tmp_phys != (tmp_phys & DMA_ADDR_MASK)) {
700 report("FLOPPY", "DMA denied because address out of range", NO_NUM);
701 return(EIO);
704 /* Set up the DMA registers. (The comment on the reset is a bit strong,
705 * it probably only resets the floppy channel.)
707 pv_set(byte_out[0], DMA_INIT, DMA_RESET_VAL); /* reset the dma controller */
708 pv_set(byte_out[1], DMA_FLIPFLOP, 0); /* write anything to reset it */
709 pv_set(byte_out[2], DMA_MODE, opcode == DEV_SCATTER_S ? DMA_WRITE : DMA_READ);
710 pv_set(byte_out[3], DMA_ADDR, (unsigned) (tmp_phys >> 0) & 0xff);
711 pv_set(byte_out[4], DMA_ADDR, (unsigned) (tmp_phys >> 8) & 0xff);
712 pv_set(byte_out[5], DMA_TOP, (unsigned) (tmp_phys >> 16) & 0xff);
713 pv_set(byte_out[6], DMA_COUNT, (((SECTOR_SIZE - 1) >> 0)) & 0xff);
714 pv_set(byte_out[7], DMA_COUNT, (SECTOR_SIZE - 1) >> 8);
715 pv_set(byte_out[8], DMA_INIT, 2); /* some sort of enable */
717 if ((s=sys_voutb(byte_out, 9)) != OK)
718 panic("FLOPPY","Sys_voutb in dma_setup() failed", s);
719 return(OK);
722 /*===========================================================================*
723 * start_motor *
724 *===========================================================================*/
725 PRIVATE void start_motor()
727 /* Control of the floppy disk motors is a big pain. If a motor is off, you
728 * have to turn it on first, which takes 1/2 second. You can't leave it on
729 * all the time, since that would wear out the diskette. However, if you turn
730 * the motor off after each operation, the system performance will be awful.
731 * The compromise used here is to leave it on for a few seconds after each
732 * operation. If a new operation is started in that interval, it need not be
733 * turned on again. If no new operation is started, a timer goes off and the
734 * motor is turned off. I/O port DOR has bits to control each of 4 drives.
737 int s, motor_bit, running;
738 message mess;
740 motor_bit = 1 << f_drive; /* bit mask for this drive */
741 running = motor_status & motor_bit; /* nonzero if this motor is running */
742 motor_status |= motor_bit; /* want this drive running too */
744 if ((s=sys_outb(DOR,
745 (motor_status << MOTOR_SHIFT) | ENABLE_INT | f_drive)) != OK)
746 panic("FLOPPY","Sys_outb in start_motor() failed", s);
748 /* If the motor was already running, we don't have to wait for it. */
749 if (running) return; /* motor was already running */
751 /* Set an alarm timer to force a timeout if the hardware does not interrupt
752 * in time. Expect HARD_INT message, but check for SYN_ALARM timeout.
754 f_set_timer(&f_tmr_timeout, f_dp->start, f_timeout);
755 f_busy = BSY_IO;
756 do {
757 receive(ANY, &mess);
758 if (mess.m_type == SYN_ALARM) {
759 f_expire_tmrs(NULL, NULL);
760 } else if(mess.m_type == DEV_PING) {
761 notify(mess.m_source);
762 } else {
763 f_busy = BSY_IDLE;
765 } while (f_busy == BSY_IO);
766 f_fp->fl_sector = NO_SECTOR;
769 /*===========================================================================*
770 * stop_motor *
771 *===========================================================================*/
772 PRIVATE void stop_motor(tp)
773 timer_t *tp;
775 /* This routine is called from an alarm timer after several seconds have
776 * elapsed with no floppy disk activity. It turns the drive motor off.
778 int s;
779 motor_status &= ~(1 << tmr_arg(tp)->ta_int);
780 if ((s=sys_outb(DOR, (motor_status << MOTOR_SHIFT) | ENABLE_INT)) != OK)
781 panic("FLOPPY","Sys_outb in stop_motor() failed", s);
784 /*===========================================================================*
785 * floppy_stop *
786 *===========================================================================*/
787 PRIVATE void floppy_stop(struct driver *dp, message *m_ptr)
789 /* Stop all activity and cleanly exit with the system. */
790 int s;
791 sigset_t sigset = m_ptr->NOTIFY_ARG;
792 if (sigismember(&sigset, SIGTERM) || sigismember(&sigset, SIGKSTOP)) {
793 if ((s=sys_outb(DOR, ENABLE_INT)) != OK)
794 panic("FLOPPY","Sys_outb in floppy_stop() failed", s);
795 exit(0);
799 /*===========================================================================*
800 * seek *
801 *===========================================================================*/
802 PRIVATE int seek()
804 /* Issue a SEEK command on the indicated drive unless the arm is already
805 * positioned on the correct cylinder.
808 struct floppy *fp = f_fp;
809 int r;
810 message mess;
811 u8_t cmd[3];
813 /* Are we already on the correct cylinder? */
814 if (fp->fl_calibration == UNCALIBRATED)
815 if (recalibrate() != OK) return(ERR_SEEK);
816 if (fp->fl_curcyl == fp->fl_hardcyl) return(OK);
818 /* No. Wrong cylinder. Issue a SEEK and wait for interrupt. */
819 cmd[0] = FDC_SEEK;
820 cmd[1] = (fp->fl_head << 2) | f_drive;
821 cmd[2] = fp->fl_hardcyl;
822 if (fdc_command(cmd, 3) != OK) return(ERR_SEEK);
823 if (f_intr_wait() != OK) return(ERR_TIMEOUT);
825 /* Interrupt has been received. Check drive status. */
826 fdc_out(FDC_SENSE); /* probe FDC to make it return status */
827 r = fdc_results(); /* get controller status bytes */
828 if (r != OK || (f_results[ST0] & ST0_BITS_SEEK) != SEEK_ST0
829 || f_results[ST1] != fp->fl_hardcyl) {
830 /* seek failed, may need a recalibrate */
831 return(ERR_SEEK);
833 /* Give head time to settle on a format, no retrying here! */
834 if (f_device & FORMAT_DEV_BIT) {
835 /* Set a synchronous alarm to force a timeout if the hardware does
836 * not interrupt. Expect HARD_INT, but check for SYN_ALARM timeout.
838 f_set_timer(&f_tmr_timeout, HZ/30, f_timeout);
839 f_busy = BSY_IO;
840 do {
841 receive(ANY, &mess);
842 if (mess.m_type == SYN_ALARM) {
843 f_expire_tmrs(NULL, NULL);
844 } else if(mess.m_type == DEV_PING) {
845 notify(mess.m_source);
846 } else {
847 f_busy = BSY_IDLE;
849 } while (f_busy == BSY_IO);
851 fp->fl_curcyl = fp->fl_hardcyl;
852 fp->fl_sector = NO_SECTOR;
853 return(OK);
856 /*===========================================================================*
857 * fdc_transfer *
858 *===========================================================================*/
859 PRIVATE int fdc_transfer(opcode)
860 int opcode; /* DEV_GATHER_S or DEV_SCATTER_S */
862 /* The drive is now on the proper cylinder. Read, write or format 1 block. */
864 struct floppy *fp = f_fp;
865 int r, s;
866 u8_t cmd[9];
868 /* Never attempt a transfer if the drive is uncalibrated or motor is off. */
869 if (fp->fl_calibration == UNCALIBRATED) return(ERR_TRANSFER);
870 if ((motor_status & (1 << f_drive)) == 0) return(ERR_TRANSFER);
872 /* The command is issued by outputting several bytes to the controller chip.
874 if (f_device & FORMAT_DEV_BIT) {
875 cmd[0] = FDC_FORMAT;
876 cmd[1] = (fp->fl_head << 2) | f_drive;
877 cmd[2] = fmt_param.sector_size_code;
878 cmd[3] = fmt_param.sectors_per_cylinder;
879 cmd[4] = fmt_param.gap_length_for_format;
880 cmd[5] = fmt_param.fill_byte_for_format;
881 if (fdc_command(cmd, 6) != OK) return(ERR_TRANSFER);
882 } else {
883 cmd[0] = opcode == DEV_SCATTER_S ? FDC_WRITE : FDC_READ;
884 cmd[1] = (fp->fl_head << 2) | f_drive;
885 cmd[2] = fp->fl_cylinder;
886 cmd[3] = fp->fl_head;
887 cmd[4] = BASE_SECTOR + fp->fl_sector;
888 cmd[5] = SECTOR_SIZE_CODE;
889 cmd[6] = f_sectors;
890 cmd[7] = f_dp->gap; /* sector gap */
891 cmd[8] = DTL; /* data length */
892 if (fdc_command(cmd, 9) != OK) return(ERR_TRANSFER);
895 /* Block, waiting for disk interrupt. */
896 if (f_intr_wait() != OK) {
897 printf("%s: disk interrupt timed out.\n", f_name());
898 return(ERR_TIMEOUT);
901 /* Get controller status and check for errors. */
902 r = fdc_results();
903 if (r != OK) return(r);
905 if (f_results[ST1] & WRITE_PROTECT) {
906 printf("%s: diskette is write protected.\n", f_name());
907 return(ERR_WR_PROTECT);
910 if ((f_results[ST0] & ST0_BITS_TRANS) != TRANS_ST0) return(ERR_TRANSFER);
911 if (f_results[ST1] | f_results[ST2]) return(ERR_TRANSFER);
913 if (f_device & FORMAT_DEV_BIT) return(OK);
915 /* Compare actual numbers of sectors transferred with expected number. */
916 s = (f_results[ST_CYL] - fp->fl_cylinder) * NR_HEADS * f_sectors;
917 s += (f_results[ST_HEAD] - fp->fl_head) * f_sectors;
918 s += (f_results[ST_SEC] - BASE_SECTOR - fp->fl_sector);
919 if (s != 1) return(ERR_TRANSFER);
921 /* This sector is next for I/O: */
922 fp->fl_sector = f_results[ST_SEC] - BASE_SECTOR;
923 #if 0
924 if (processor < 386) fp->fl_sector++; /* Old CPU can't keep up. */
925 #endif
926 return(OK);
929 /*===========================================================================*
930 * fdc_results *
931 *===========================================================================*/
932 PRIVATE int fdc_results()
934 /* Extract results from the controller after an operation, then allow floppy
935 * interrupts again.
938 int s, result_nr;
939 unsigned long status;
940 clock_t t0,t1;
942 /* Extract bytes from FDC until it says it has no more. The loop is
943 * really an outer loop on result_nr and an inner loop on status.
944 * A timeout flag alarm is set.
946 result_nr = 0;
947 getuptime(&t0);
948 do {
949 /* Reading one byte is almost a mirror of fdc_out() - the DIRECTION
950 * bit must be set instead of clear, but the CTL_BUSY bit destroys
951 * the perfection of the mirror.
953 if ((s=sys_inb(FDC_STATUS, &status)) != OK)
954 panic("FLOPPY","Sys_inb in fdc_results() failed", s);
955 status &= (MASTER | DIRECTION | CTL_BUSY);
956 if (status == (MASTER | DIRECTION | CTL_BUSY)) {
957 unsigned long tmp_r;
958 if (result_nr >= MAX_RESULTS) break; /* too many results */
959 if ((s=sys_inb(FDC_DATA, &tmp_r)) != OK)
960 panic("FLOPPY","Sys_inb in fdc_results() failed", s);
961 f_results[result_nr] = tmp_r;
962 result_nr ++;
963 continue;
965 if (status == MASTER) { /* all read */
966 if ((s=sys_irqenable(&irq_hook_id)) != OK)
967 panic("FLOPPY", "Couldn't enable IRQs", s);
969 return(OK); /* only good exit */
971 } while ( (s=getuptime(&t1))==OK && (t1-t0) < TIMEOUT_TICKS );
972 if (OK!=s) printf("FLOPPY: warning, getuptime failed: %d\n", s);
973 need_reset = TRUE; /* controller chip must be reset */
975 if ((s=sys_irqenable(&irq_hook_id)) != OK)
976 panic("FLOPPY", "Couldn't enable IRQs", s);
977 return(ERR_STATUS);
980 /*===========================================================================*
981 * fdc_command *
982 *===========================================================================*/
983 PRIVATE int fdc_command(cmd, len)
984 u8_t *cmd; /* command bytes */
985 int len; /* command length */
987 /* Output a command to the controller. */
989 /* Set a synchronous alarm to force a timeout if the hardware does
990 * not interrupt. Expect HARD_INT, but check for SYN_ALARM timeout.
991 * Note that the actual check is done by the code that issued the
992 * fdc_command() call.
994 f_set_timer(&f_tmr_timeout, WAKEUP, f_timeout);
996 f_busy = BSY_IO;
997 while (len > 0) {
998 fdc_out(*cmd++);
999 len--;
1001 return(need_reset ? ERR_DRIVE : OK);
1004 /*===========================================================================*
1005 * fdc_out *
1006 *===========================================================================*/
1007 PRIVATE void fdc_out(val)
1008 int val; /* write this byte to floppy disk controller */
1010 /* Output a byte to the controller. This is not entirely trivial, since you
1011 * can only write to it when it is listening, and it decides when to listen.
1012 * If the controller refuses to listen, the FDC chip is given a hard reset.
1014 clock_t t0, t1;
1015 int s;
1016 unsigned long status;
1018 if (need_reset) return; /* if controller is not listening, return */
1020 /* It may take several tries to get the FDC to accept a command. */
1021 getuptime(&t0);
1022 do {
1023 if ( (s=getuptime(&t1))==OK && (t1-t0) > TIMEOUT_TICKS ) {
1024 if (OK!=s) printf("FLOPPY: warning, getuptime failed: %d\n", s);
1025 need_reset = TRUE; /* hit it over the head */
1026 return;
1028 if ((s=sys_inb(FDC_STATUS, &status)) != OK)
1029 panic("FLOPPY","Sys_inb in fdc_out() failed", s);
1031 while ((status & (MASTER | DIRECTION)) != (MASTER | 0));
1033 if ((s=sys_outb(FDC_DATA, val)) != OK)
1034 panic("FLOPPY","Sys_outb in fdc_out() failed", s);
1037 /*===========================================================================*
1038 * recalibrate *
1039 *===========================================================================*/
1040 PRIVATE int recalibrate()
1042 /* The floppy disk controller has no way of determining its absolute arm
1043 * position (cylinder). Instead, it steps the arm a cylinder at a time and
1044 * keeps track of where it thinks it is (in software). However, after a
1045 * SEEK, the hardware reads information from the diskette telling where the
1046 * arm actually is. If the arm is in the wrong place, a recalibration is done,
1047 * which forces the arm to cylinder 0. This way the controller can get back
1048 * into sync with reality.
1051 struct floppy *fp = f_fp;
1052 int r;
1053 u8_t cmd[2];
1055 /* Issue the RECALIBRATE command and wait for the interrupt. */
1056 cmd[0] = FDC_RECALIBRATE; /* tell drive to recalibrate itself */
1057 cmd[1] = f_drive; /* specify drive */
1058 if (fdc_command(cmd, 2) != OK) return(ERR_SEEK);
1059 if (f_intr_wait() != OK) return(ERR_TIMEOUT);
1061 /* Determine if the recalibration succeeded. */
1062 fdc_out(FDC_SENSE); /* issue SENSE command to request results */
1063 r = fdc_results(); /* get results of the FDC_RECALIBRATE command*/
1064 fp->fl_curcyl = NO_CYL; /* force a SEEK next time */
1065 fp->fl_sector = NO_SECTOR;
1066 if (r != OK || /* controller would not respond */
1067 (f_results[ST0] & ST0_BITS_SEEK) != SEEK_ST0 || f_results[ST_PCN] != 0) {
1068 /* Recalibration failed. FDC must be reset. */
1069 need_reset = TRUE;
1070 return(ERR_RECALIBRATE);
1071 } else {
1072 /* Recalibration succeeded. */
1073 fp->fl_calibration = CALIBRATED;
1074 fp->fl_curcyl = f_results[ST_PCN];
1075 return(OK);
1079 /*===========================================================================*
1080 * f_reset *
1081 *===========================================================================*/
1082 PRIVATE void f_reset()
1084 /* Issue a reset to the controller. This is done after any catastrophe,
1085 * like the controller refusing to respond.
1087 pvb_pair_t byte_out[2];
1088 int s,i;
1089 message mess;
1091 /* Disable interrupts and strobe reset bit low. */
1092 need_reset = FALSE;
1094 /* It is not clear why the next lock is needed. Writing 0 to DOR causes
1095 * interrupt, while the PC documentation says turning bit 8 off disables
1096 * interrupts. Without the lock:
1097 * 1) the interrupt handler sets the floppy mask bit in the 8259.
1098 * 2) writing ENABLE_INT to DOR causes the FDC to assert the interrupt
1099 * line again, but the mask stops the cpu being interrupted.
1100 * 3) the sense interrupt clears the interrupt (not clear which one).
1101 * and for some reason the reset does not work.
1103 (void) fdc_command((u8_t *) 0, 0); /* need only the timer */
1104 motor_status = 0;
1105 pv_set(byte_out[0], DOR, 0); /* strobe reset bit low */
1106 pv_set(byte_out[1], DOR, ENABLE_INT); /* strobe it high again */
1107 if ((s=sys_voutb(byte_out, 2)) != OK)
1108 panic("FLOPPY", "Sys_voutb in f_reset() failed", s);
1110 /* A synchronous alarm timer was set in fdc_command. Expect a HARD_INT
1111 * message to collect the reset interrupt, but be prepared to handle the
1112 * SYN_ALARM message on a timeout.
1114 do {
1115 receive(ANY, &mess);
1116 if (mess.m_type == SYN_ALARM) {
1117 f_expire_tmrs(NULL, NULL);
1118 } else if(mess.m_type == DEV_PING) {
1119 notify(mess.m_source);
1120 } else { /* expect HARD_INT */
1121 f_busy = BSY_IDLE;
1123 } while (f_busy == BSY_IO);
1125 /* The controller supports 4 drives and returns a result for each of them.
1126 * Collect all the results now. The old version only collected the first
1127 * result. This happens to work for 2 drives, but it doesn't work for 3
1128 * or more drives, at least with only drives 0 and 2 actually connected
1129 * (the controller generates an extra interrupt for the middle drive when
1130 * drive 2 is accessed and the driver panics).
1132 * It would be better to keep collecting results until there are no more.
1133 * For this, fdc_results needs to return the number of results (instead
1134 * of OK) when it succeeds.
1136 for (i = 0; i < 4; i++) {
1137 fdc_out(FDC_SENSE); /* probe FDC to make it return status */
1138 (void) fdc_results(); /* flush controller */
1140 for (i = 0; i < NR_DRIVES; i++) /* clear each drive */
1141 floppy[i].fl_calibration = UNCALIBRATED;
1143 /* The current timing parameters must be specified again. */
1144 prev_dp = NULL;
1147 /*===========================================================================*
1148 * f_intr_wait *
1149 *===========================================================================*/
1150 PRIVATE int f_intr_wait()
1152 /* Wait for an interrupt, but not forever. The FDC may have all the time of
1153 * the world, but we humans do not.
1155 message mess;
1157 /* We expect a HARD_INT message from the interrupt handler, but if there is
1158 * a timeout, a SYN_ALARM notification is received instead. If a timeout
1159 * occurs, report an error.
1161 do {
1162 receive(ANY, &mess);
1163 if (mess.m_type == SYN_ALARM) {
1164 f_expire_tmrs(NULL, NULL);
1165 } else if(mess.m_type == DEV_PING) {
1166 notify(mess.m_source);
1167 } else {
1168 f_busy = BSY_IDLE;
1170 } while (f_busy == BSY_IO);
1172 if (f_busy == BSY_WAKEN) {
1174 /* No interrupt from the FDC, this means that there is probably no
1175 * floppy in the drive. Get the FDC down to earth and return error.
1177 need_reset = TRUE;
1178 return(ERR_TIMEOUT);
1180 return(OK);
1183 /*===========================================================================*
1184 * f_timeout *
1185 *===========================================================================*/
1186 PRIVATE void f_timeout(tp)
1187 timer_t *tp;
1189 /* This routine is called when a timer expires. Usually to tell that a
1190 * motor has spun up, but also to forge an interrupt when it takes too long
1191 * for the FDC to interrupt (no floppy in the drive). It sets a flag to tell
1192 * what has happened.
1194 if (f_busy == BSY_IO) {
1195 f_busy = BSY_WAKEN;
1199 /*===========================================================================*
1200 * read_id *
1201 *===========================================================================*/
1202 PRIVATE int read_id()
1204 /* Determine current cylinder and sector. */
1206 struct floppy *fp = f_fp;
1207 int result;
1208 u8_t cmd[2];
1210 /* Never attempt a read id if the drive is uncalibrated or motor is off. */
1211 if (fp->fl_calibration == UNCALIBRATED) return(ERR_READ_ID);
1212 if ((motor_status & (1 << f_drive)) == 0) return(ERR_READ_ID);
1214 /* The command is issued by outputting 2 bytes to the controller chip. */
1215 cmd[0] = FDC_READ_ID; /* issue the read id command */
1216 cmd[1] = (fp->fl_head << 2) | f_drive;
1217 if (fdc_command(cmd, 2) != OK) return(ERR_READ_ID);
1218 if (f_intr_wait() != OK) return(ERR_TIMEOUT);
1220 /* Get controller status and check for errors. */
1221 result = fdc_results();
1222 if (result != OK) return(result);
1224 if ((f_results[ST0] & ST0_BITS_TRANS) != TRANS_ST0) return(ERR_READ_ID);
1225 if (f_results[ST1] | f_results[ST2]) return(ERR_READ_ID);
1227 /* The next sector is next for I/O: */
1228 fp->fl_sector = f_results[ST_SEC] - BASE_SECTOR + 1;
1229 return(OK);
1232 /*===========================================================================*
1233 * f_do_open *
1234 *===========================================================================*/
1235 PRIVATE int f_do_open(dp, m_ptr)
1236 struct driver *dp;
1237 message *m_ptr; /* pointer to open message */
1239 /* Handle an open on a floppy. Determine diskette type if need be. */
1241 int dtype;
1242 struct test_order *top;
1244 /* Decode the message parameters. */
1245 if (f_prepare(m_ptr->DEVICE) == NIL_DEV) return(ENXIO);
1247 dtype = f_device & DEV_TYPE_BITS; /* get density from minor dev */
1248 if (dtype >= MINOR_fd0p0) dtype = 0;
1250 if (dtype != 0) {
1251 /* All types except 0 indicate a specific drive/medium combination.*/
1252 dtype = (dtype >> DEV_TYPE_SHIFT) - 1;
1253 if (dtype >= NT) return(ENXIO);
1254 f_fp->fl_density = dtype;
1255 (void) f_prepare(f_device); /* Recompute parameters. */
1256 return(OK);
1258 if (f_device & FORMAT_DEV_BIT) return(EIO); /* Can't format /dev/fdN */
1260 /* The device opened is /dev/fdN. Experimentally determine drive/medium.
1261 * First check fl_density. If it is not NO_DENS, the drive has been used
1262 * before and the value of fl_density tells what was found last time. Try
1263 * that first. If the motor is still running then assume nothing changed.
1265 if (f_fp->fl_density != NO_DENS) {
1266 if (motor_status & (1 << f_drive)) return(OK);
1267 if (test_read(f_fp->fl_density) == OK) return(OK);
1270 /* Either drive type is unknown or a different diskette is now present.
1271 * Use test_order to try them one by one.
1273 for (top = &test_order[0]; top < &test_order[NT-1]; top++) {
1274 dtype = top->t_density;
1276 /* Skip densities that have been proven to be impossible */
1277 if (!(f_fp->fl_class & (1 << dtype))) continue;
1279 if (test_read(dtype) == OK) {
1280 /* The test succeeded, use this knowledge to limit the
1281 * drive class to match the density just read.
1283 f_fp->fl_class &= top->t_class;
1284 return(OK);
1286 /* Test failed, wrong density or did it time out? */
1287 if (f_busy == BSY_WAKEN) break;
1289 f_fp->fl_density = NO_DENS;
1290 return(EIO); /* nothing worked */
1293 /*===========================================================================*
1294 * test_read *
1295 *===========================================================================*/
1296 PRIVATE int test_read(density)
1297 int density;
1299 /* Try to read the highest numbered sector on cylinder 2. Not all floppy
1300 * types have as many sectors per track, and trying cylinder 2 finds the
1301 * ones that need double stepping.
1303 int device;
1304 off_t position;
1305 iovec_t iovec1;
1306 int result;
1308 f_fp->fl_density = density;
1309 device = ((density + 1) << DEV_TYPE_SHIFT) + f_drive;
1311 (void) f_prepare(device);
1312 position = (off_t) f_dp->test << SECTOR_SHIFT;
1313 iovec1.iov_addr = (vir_bytes) tmp_buf;
1314 iovec1.iov_size = SECTOR_SIZE;
1315 result = f_transfer(SELF, DEV_GATHER_S, cvul64(position), &iovec1, 1, 0);
1317 if (iovec1.iov_size != 0) return(EIO);
1319 partition(&f_dtab, f_drive, P_FLOPPY, 0);
1320 return(OK);
1323 /*===========================================================================*
1324 * f_geometry *
1325 *===========================================================================*/
1326 PRIVATE void f_geometry(entry)
1327 struct partition *entry;
1329 entry->cylinders = f_dp->cyls;
1330 entry->heads = NR_HEADS;
1331 entry->sectors = f_sectors;