1 /* This file contains the device dependent part of the driver for the Floppy
2 * Disk Controller (FDC) using the NEC PD765 chip.
4 * The file contains two entry points:
6 * floppy_task: main entry when system is brought up
9 * Sep 11, 2005 code cleanup (Andy Tanenbaum)
10 * Dec 01, 2004 floppy driver moved to user-space (Jorrit N. Herder)
11 * Sep 15, 2004 sync alarms/ local timer management (Jorrit N. Herder)
12 * Aug 12, 2003 null seek no interrupt fix (Mike Haertel)
13 * May 14, 2000 d-d/i rewrite (Kees J. Bot)
14 * Apr 04, 1992 device dependent/independent split (Kees J. Bot)
15 * Mar 27, 1992 last details on density checking (Kees J. Bot)
16 * Feb 14, 1992 check drive density on opens only (Andy Tanenbaum)
17 * 1991 len[] / motors / reset / step rate / ... (Bruce Evans)
18 * May 13, 1991 renovated the errors loop (Don Chapman)
19 * 1989 I/O vector to keep up with 1-1 interleave (Bruce Evans)
20 * Jan 06, 1988 allow 1.44 MB diskettes (Al Crew)
21 * Nov 28, 1986 better resetting for 386 (Peter Kay)
22 * Oct 27, 1986 fdc_results fixed for 8 MHz (Jakob Schripsema)
26 #include <minix/timers.h>
27 #include <machine/diskparm.h>
28 #include <minix/sysutil.h>
29 #include <minix/syslib.h>
30 #include <minix/endpoint.h>
33 /* I/O Ports used by floppy disk task. */
34 #define DOR 0x3F2 /* motor drive control bits */
35 #define FDC_STATUS 0x3F4 /* floppy disk controller status register */
36 #define FDC_DATA 0x3F5 /* floppy disk controller data register */
37 #define FDC_RATE 0x3F7 /* transfer rate register */
38 #define DMA_ADDR 0x004 /* port for low 16 bits of DMA address */
39 #define DMA_TOP 0x081 /* port for top 8 bits of 24-bit DMA addr */
40 #define DMA_COUNT 0x005 /* port for DMA count (count = bytes - 1) */
41 #define DMA_FLIPFLOP 0x00C /* DMA byte pointer flip-flop */
42 #define DMA_MODE 0x00B /* DMA mode port */
43 #define DMA_INIT 0x00A /* DMA init port */
44 #define DMA_RESET_VAL 0x006
46 #define DMA_ADDR_MASK 0xFFFFFF /* mask to verify DMA address is 24-bit */
48 /* Status registers returned as result of operation. */
49 #define ST0 0x00 /* status register 0 */
50 #define ST1 0x01 /* status register 1 */
51 #define ST2 0x02 /* status register 2 */
52 #define ST3 0x00 /* status register 3 (return by DRIVE_SENSE) */
53 #define ST_CYL 0x03 /* slot where controller reports cylinder */
54 #define ST_HEAD 0x04 /* slot where controller reports head */
55 #define ST_SEC 0x05 /* slot where controller reports sector */
56 #define ST_PCN 0x01 /* slot where controller reports present cyl */
58 /* Fields within the I/O ports. */
59 /* Main status register. */
60 #define CTL_BUSY 0x10 /* bit is set when read or write in progress */
61 #define DIRECTION 0x40 /* bit is set when reading data reg is valid */
62 #define MASTER 0x80 /* bit is set when data reg can be accessed */
64 /* Digital output port (DOR). */
65 #define MOTOR_SHIFT 4 /* high 4 bits control the motors in DOR */
66 #define ENABLE_INT 0x0C /* used for setting DOR port */
69 #define ST0_BITS_TRANS 0xD8 /* check 4 bits of status */
70 #define TRANS_ST0 0x00 /* 4 bits of ST0 for READ/WRITE */
71 #define ST0_BITS_SEEK 0xF8 /* check top 5 bits of seek status */
72 #define SEEK_ST0 0x20 /* top 5 bits of ST0 for SEEK */
75 #define BAD_SECTOR 0x05 /* if these bits are set in ST1, recalibrate */
76 #define WRITE_PROTECT 0x02 /* bit is set if diskette is write protected */
79 #define BAD_CYL 0x1F /* if any of these bits are set, recalibrate */
82 #define ST3_FAULT 0x80 /* if this bit is set, drive is sick */
83 #define ST3_WR_PROTECT 0x40 /* set when diskette is write protected */
84 #define ST3_READY 0x20 /* set when drive is ready */
86 /* Floppy disk controller command bytes. */
87 #define FDC_SEEK 0x0F /* command the drive to seek */
88 #define FDC_READ 0xE6 /* command the drive to read */
89 #define FDC_WRITE 0xC5 /* command the drive to write */
90 #define FDC_SENSE 0x08 /* command the controller to tell its status */
91 #define FDC_RECALIBRATE 0x07 /* command the drive to go to cyl 0 */
92 #define FDC_SPECIFY 0x03 /* command the drive to accept params */
93 #define FDC_READ_ID 0x4A /* command the drive to read sector identity */
94 #define FDC_FORMAT 0x4D /* command the drive to format a track */
96 /* DMA channel commands. */
97 #define DMA_READ 0x46 /* DMA read opcode */
98 #define DMA_WRITE 0x4A /* DMA write opcode */
100 /* Parameters for the disk drive. */
101 #define HC_SIZE 2880 /* # sectors on largest legal disk (1.44MB) */
102 #define NR_HEADS 0x02 /* two heads (i.e., two tracks/cylinder) */
103 #define MAX_SECTORS 18 /* largest # sectors per track */
104 #define DTL 0xFF /* determines data length (sector size) */
105 #define SPEC2 0x02 /* second parameter to SPECIFY */
106 #define MOTOR_OFF (3*system_hz) /* how long to wait before stopping motor */
107 #define WAKEUP (2*system_hz) /* timeout on I/O, FDC won't quit. */
110 #define ERR_SEEK (-1) /* bad seek */
111 #define ERR_TRANSFER (-2) /* bad transfer */
112 #define ERR_STATUS (-3) /* something wrong when getting status */
113 #define ERR_READ_ID (-4) /* bad read id */
114 #define ERR_RECALIBRATE (-5) /* recalibrate didn't work properly */
115 #define ERR_DRIVE (-6) /* something wrong with a drive */
116 #define ERR_WR_PROTECT (-7) /* diskette is write protected */
117 #define ERR_TIMEOUT (-8) /* interrupt timeout */
119 /* No retries on some errors. */
120 #define err_no_retry(err) ((err) <= ERR_WR_PROTECT)
122 /* Encoding of drive type in minor device number. */
123 #define DEV_TYPE_BITS 0x7C /* drive type + 1, if nonzero */
124 #define DEV_TYPE_SHIFT 2 /* right shift to normalize type bits */
125 #define FORMAT_DEV_BIT 0x80 /* bit in minor to turn write into format */
128 #define MAX_ERRORS 6 /* how often to try rd/wt before quitting */
129 #define MAX_RESULTS 7 /* max number of bytes controller returns */
130 #define NR_DRIVES 2 /* maximum number of drives */
131 #define DIVISOR 128 /* used for sector size encoding */
132 #define SECTOR_SIZE_CODE 2 /* code to say "512" to the controller */
133 #define TIMEOUT_MICROS 5000000L /* microseconds waiting for FDC */
134 #define NT 7 /* number of diskette/drive combinations */
135 #define UNCALIBRATED 0 /* drive needs to be calibrated at next use */
136 #define CALIBRATED 1 /* no calibration needed */
137 #define BASE_SECTOR 1 /* sectors are numbered starting at 1 */
138 #define NO_SECTOR ((unsigned) -1) /* current sector unknown */
139 #define NO_CYL (-1) /* current cylinder unknown, must seek */
140 #define NO_DENS 100 /* current media unknown */
141 #define BSY_IDLE 0 /* busy doing nothing */
142 #define BSY_IO 1 /* busy doing I/O */
143 #define BSY_WAKEN 2 /* got a wakeup call */
145 /* Seven combinations of diskette/drive are supported.
147 * # Diskette Drive Sectors Tracks Rotation Data-rate Comment
148 * 0 360K 360K 9 40 300 RPM 250 kbps Standard PC DSDD
149 * 1 1.2M 1.2M 15 80 360 RPM 500 kbps AT disk in AT drive
150 * 2 360K 720K 9 40 300 RPM 250 kbps Quad density PC
151 * 3 720K 720K 9 80 300 RPM 250 kbps Toshiba, et al.
152 * 4 360K 1.2M 9 40 360 RPM 300 kbps PC disk in AT drive
153 * 5 720K 1.2M 9 80 360 RPM 300 kbps Toshiba in AT drive
154 * 6 1.44M 1.44M 18 80 300 RPM 500 kbps PS/2, et al.
156 * In addition, 720K diskettes can be read in 1.44MB drives, but that does
157 * not need a different set of parameters. This combination uses
159 * 3 720K 1.44M 9 80 300 RPM 250 kbps PS/2, et al.
161 static struct density
{
162 u8_t secpt
; /* sectors per track */
163 u8_t cyls
; /* tracks per side */
164 u8_t steps
; /* steps per cylinder (2 = double step) */
165 u8_t test
; /* sector to try for density test */
166 u8_t rate
; /* data rate (2=250, 1=300, 0=500 kbps) */
167 clock_t start_ms
; /* motor start (milliseconds) */
168 u8_t gap
; /* gap size */
169 u8_t spec1
; /* first specify byte (SRT/HUT) */
171 { 9, 40, 1, 4*9, 2, 500, 0x2A, 0xDF }, /* 360K / 360K */
172 { 15, 80, 1, 14, 0, 500, 0x1B, 0xDF }, /* 1.2M / 1.2M */
173 { 9, 40, 2, 2*9, 2, 500, 0x2A, 0xDF }, /* 360K / 720K */
174 { 9, 80, 1, 4*9, 2, 750, 0x2A, 0xDF }, /* 720K / 720K */
175 { 9, 40, 2, 2*9, 1, 500, 0x23, 0xDF }, /* 360K / 1.2M */
176 { 9, 80, 1, 4*9, 1, 500, 0x23, 0xDF }, /* 720K / 1.2M */
177 { 18, 80, 1, 17, 0, 750, 0x1B, 0xCF }, /* 1.44M / 1.44M */
180 /* The following table is used with the test_sector array to recognize a
181 * drive/floppy combination. The sector to test has been determined by
182 * looking at the differences in gap size, sectors/track, and double stepping.
183 * This means that types 0 and 3 can't be told apart, only the motor start
184 * time differs. If a read test succeeds then the drive is limited to the
185 * set of densities it can support to avoid unnecessary tests in the future.
188 #define b(d) (1 << (d)) /* bit for density d. */
190 static struct test_order
{
191 u8_t t_density
; /* floppy/drive type */
192 u8_t t_class
; /* limit drive to this class of densities */
193 } test_order
[NT
-1] = {
194 { 6, b(3) | b(6) }, /* 1.44M {720K, 1.44M} */
195 { 1, b(1) | b(4) | b(5) }, /* 1.2M {1.2M, 360K, 720K} */
196 { 3, b(2) | b(3) | b(6) }, /* 720K {360K, 720K, 1.44M} */
197 { 4, b(1) | b(4) | b(5) }, /* 360K {1.2M, 360K, 720K} */
198 { 5, b(1) | b(4) | b(5) }, /* 720K {1.2M, 360K, 720K} */
199 { 2, b(2) | b(3) }, /* 360K {360K, 720K} */
200 /* Note that type 0 is missing, type 3 can read/write it too, which is
201 * why the type 3 parameters have been pessimized to be like type 0.
206 static struct floppy
{ /* main drive struct, one entry per drive */
207 unsigned fl_curcyl
; /* current cylinder */
208 unsigned fl_hardcyl
; /* hardware cylinder, as opposed to: */
209 unsigned fl_cylinder
; /* cylinder number addressed */
210 unsigned fl_sector
; /* sector addressed */
211 unsigned fl_head
; /* head number addressed */
212 char fl_calibration
; /* CALIBRATED or UNCALIBRATED */
213 u8_t fl_density
; /* NO_DENS = ?, 0 = 360K; 1 = 360K/1.2M; etc.*/
214 u8_t fl_class
; /* bitmap for possible densities */
215 minix_timer_t fl_tmr_stop
; /* timer to stop motor */
216 struct device fl_geom
; /* Geometry of the drive */
217 struct device fl_part
[NR_PARTITIONS
]; /* partition's base & size */
220 static int irq_hook_id
; /* id of irq hook at the kernel */
221 int motor_status
; /* bitmap of current motor status */
222 static int need_reset
; /* set to 1 when controller must be reset */
223 unsigned f_drive
; /* selected drive */
224 static unsigned f_device
; /* selected minor device */
225 static struct floppy
*f_fp
; /* current drive */
226 static struct density
*f_dp
; /* current density parameters */
227 static struct density
*prev_dp
;/* previous density parameters */
228 static unsigned f_sectors
; /* equal to f_dp->secpt (needed a lot) */
229 u16_t f_busy
; /* BSY_IDLE, BSY_IO, BSY_WAKEN */
230 static struct device
*f_dv
; /* device's base and size */
231 static struct disk_parameter_s fmt_param
; /* parameters for format */
232 static u8_t f_results
[MAX_RESULTS
];/* the controller can give lots of output */
234 /* The floppy uses various timers. These are managed by the floppy driver
235 * itself, because only a single synchronous alarm is available per process.
236 * Besides the 'f_tmr_timeout' timer below, the floppy structure for each
237 * floppy disk drive contains a 'fl_tmr_stop' timer.
239 static minix_timer_t f_tmr_timeout
; /* timer for various timeouts */
240 static u32_t system_hz
; /* system clock frequency */
241 static void f_expire_tmrs(clock_t stamp
);
242 static void stop_motor(minix_timer_t
*tp
);
243 static void f_timeout(minix_timer_t
*tp
);
245 static struct device
*f_prepare(devminor_t device
);
246 static struct device
*f_part(devminor_t minor
);
247 static void f_cleanup(void);
248 static ssize_t
f_transfer(devminor_t minor
, int do_write
, u64_t position
,
249 endpoint_t proc_nr
, iovec_t
*iov
, unsigned int nr_req
, int flags
);
250 static int dma_setup(int do_write
);
251 static void start_motor(void);
252 static int seek(void);
253 static int fdc_transfer(int do_write
);
254 static int fdc_results(void);
255 static int fdc_command(const u8_t
*cmd
, int len
);
256 static void fdc_out(int val
);
257 static int recalibrate(void);
258 static void f_reset(void);
259 static int f_intr_wait(void);
260 static int read_id(void);
261 static int f_do_open(devminor_t minor
, int access
);
262 static int f_do_close(devminor_t minor
);
263 static int test_read(int density
);
264 static void f_geometry(devminor_t minor
, struct part_geom
*entry
);
266 /* Entry points to this driver. */
267 static struct blockdriver f_dtab
= {
268 .bdr_type
= BLOCKDRIVER_TYPE_DISK
, /* handle partition requests */
269 .bdr_open
= f_do_open
, /* open request, sense type of diskette */
270 .bdr_close
= f_do_close
, /* nothing on a close */
271 .bdr_transfer
= f_transfer
, /* do the I/O */
272 .bdr_cleanup
= f_cleanup
, /* cleanup before sending reply to caller */
273 .bdr_part
= f_part
, /* return partition information structure */
274 .bdr_geometry
= f_geometry
, /* tell the geometry of the diskette */
275 .bdr_alarm
= f_expire_tmrs
/* expire all alarm timers */
278 static char *floppy_buf
;
279 static phys_bytes floppy_buf_phys
;
281 /* SEF functions and variables. */
282 static void sef_local_startup(void);
283 static int sef_cb_init_fresh(int type
, sef_init_info_t
*info
);
284 static void sef_cb_signal_handler(int signo
);
285 EXTERN
int sef_cb_lu_prepare(int state
);
286 EXTERN
int sef_cb_lu_state_isvalid(int state
);
287 EXTERN
void sef_cb_lu_state_dump(int state
);
290 /*===========================================================================*
292 *===========================================================================*/
295 /* SEF local startup. */
298 /* Call the generic receive loop. */
299 blockdriver_task(&f_dtab
);
304 /*===========================================================================*
305 * sef_local_startup *
306 *===========================================================================*/
307 static void sef_local_startup(void)
309 /* Register init callbacks. */
310 sef_setcb_init_fresh(sef_cb_init_fresh
);
311 sef_setcb_init_lu(sef_cb_init_fresh
);
313 /* Register live update callbacks. */
314 sef_setcb_lu_prepare(sef_cb_lu_prepare
);
315 sef_setcb_lu_state_isvalid(sef_cb_lu_state_isvalid
);
316 sef_setcb_lu_state_dump(sef_cb_lu_state_dump
);
318 /* Register signal callbacks. */
319 sef_setcb_signal_handler(sef_cb_signal_handler
);
321 /* Let SEF perform startup. */
325 /*===========================================================================*
326 * sef_cb_init_fresh *
327 *===========================================================================*/
328 static int sef_cb_init_fresh(int type
, sef_init_info_t
*UNUSED(info
))
330 /* Initialize the floppy driver. */
334 /* Initialize the floppy structure and the timers. */
335 system_hz
= sys_hz();
337 if(!(floppy_buf
= alloc_contig(2*DMA_BUF_SIZE
,
338 AC_LOWER16M
| AC_ALIGN4K
, &floppy_buf_phys
)))
339 panic("couldn't allocate dma buffer");
341 init_timer(&f_tmr_timeout
);
343 for (fp
= &floppy
[0]; fp
< &floppy
[NR_DRIVES
]; fp
++) {
344 fp
->fl_curcyl
= NO_CYL
;
345 fp
->fl_density
= NO_DENS
;
347 init_timer(&fp
->fl_tmr_stop
);
350 /* Set IRQ policy, only request notifications, do not automatically
351 * reenable interrupts. ID return on interrupt is the IRQ line number.
353 irq_hook_id
= FLOPPY_IRQ
;
354 if ((s
=sys_irqsetpolicy(FLOPPY_IRQ
, 0, &irq_hook_id
)) != OK
)
355 panic("Couldn't set IRQ policy: %d", s
);
356 if ((s
=sys_irqenable(&irq_hook_id
)) != OK
)
357 panic("Couldn't enable IRQs: %d", s
);
359 /* Announce we are up! */
360 blockdriver_announce(type
);
365 /*===========================================================================*
366 * sef_cb_signal_handler *
367 *===========================================================================*/
368 static void sef_cb_signal_handler(int signo
)
372 /* Only check for termination signal, ignore anything else. */
373 if (signo
!= SIGTERM
) return;
375 /* Stop all activity and cleanly exit with the system. */
376 if ((s
=sys_outb(DOR
, ENABLE_INT
)) != OK
)
377 panic("Sys_outb failed: %d", s
);
381 /*===========================================================================*
383 *===========================================================================*/
384 static void f_expire_tmrs(clock_t stamp
)
386 /* A synchronous alarm message was received. Call the watchdog function for
387 * each expired timer, if any.
390 expire_timers(stamp
);
393 /*===========================================================================*
395 *===========================================================================*/
396 static struct device
*f_prepare(devminor_t device
)
398 /* Prepare for I/O on a device. */
401 f_drive
= device
& ~(DEV_TYPE_BITS
| FORMAT_DEV_BIT
);
402 if (device
< 0 || f_drive
>= NR_DRIVES
) return(NULL
);
404 f_fp
= &floppy
[f_drive
];
405 f_dv
= &f_fp
->fl_geom
;
406 if (f_fp
->fl_density
< NT
) {
407 f_dp
= &fdensity
[f_fp
->fl_density
];
408 f_sectors
= f_dp
->secpt
;
409 f_fp
->fl_geom
.dv_size
= (u64_t
)(NR_HEADS
* f_sectors
* f_dp
->cyls
) *
414 if ((device
&= DEV_TYPE_BITS
) >= MINOR_fd0p0
)
415 f_dv
= &f_fp
->fl_part
[(device
- MINOR_fd0p0
) >> DEV_TYPE_SHIFT
];
420 /*===========================================================================*
422 *===========================================================================*/
423 static struct device
*f_part(devminor_t minor
)
425 /* Return a pointer to the partition information of the given minor device. */
427 return f_prepare(minor
);
430 /*===========================================================================*
432 *===========================================================================*/
433 static void f_cleanup(void)
435 /* Start a timer to turn the motor off in a few seconds. */
436 set_timer(&f_fp
->fl_tmr_stop
, MOTOR_OFF
, stop_motor
, f_drive
);
438 /* Exiting the floppy driver, so forget where we are. */
439 f_fp
->fl_sector
= NO_SECTOR
;
442 /*===========================================================================*
444 *===========================================================================*/
445 static ssize_t
f_transfer(
446 devminor_t minor
, /* minor device number */
447 int do_write
, /* read or write? */
448 u64_t pos64
, /* offset on device to read or write */
449 endpoint_t proc_nr
, /* process doing the request */
450 iovec_t
*iov
, /* pointer to read or write request vector */
451 unsigned int nr_req
, /* length of request vector */
452 int UNUSED(flags
) /* transfer flags */
457 iovec_t
*iop
, *iov_end
= iov
+ nr_req
;
458 int s
, r
, errors
, nr
;
459 unsigned block
, nbytes
, count
, chunk
, sector
;
461 vir_bytes user_offset
, iov_offset
= 0, iop_offset
;
462 unsigned long position
;
463 signed long uoffsets
[MAX_SECTORS
], *up
;
464 cp_grant_id_t ugrants
[MAX_SECTORS
], *ug
= NULL
;
468 if (f_prepare(minor
) == NULL
) return(ENXIO
);
471 dv_size
= f_dv
->dv_size
;
473 if (ex64hi(pos64
) != 0)
474 return OK
; /* Way beyond EOF */
478 /* Record the direction of the last transfer performed. */
479 last_was_write
= do_write
;
481 /* Check disk address. */
482 if ((position
& SECTOR_MASK
) != 0) return(EINVAL
);
484 #if 0 /* XXX hack to create a disk driver that crashes */
485 { static int count
= 0; if (++count
> 10) {
486 printf("floppy: time to die\n"); *(int *)-1= 42;
492 /* How many bytes to transfer? */
494 for (iop
= iov
; iop
< iov_end
; iop
++) nbytes
+= iop
->iov_size
;
496 /* Which block on disk and how close to EOF? */
497 if (position
>= dv_size
) return(total
); /* At EOF */
498 if (position
+ nbytes
> dv_size
) nbytes
= dv_size
- position
;
499 block
= (unsigned long)((f_dv
->dv_base
+ position
) / SECTOR_SIZE
);
501 if ((nbytes
& SECTOR_MASK
) != 0) return(EINVAL
);
503 /* Using a formatting device? */
504 if (f_device
& FORMAT_DEV_BIT
) {
505 if (!do_write
) return(EIO
);
506 if (iov
->iov_size
< SECTOR_SIZE
+ sizeof(fmt_param
))
509 if(proc_nr
!= SELF
) {
510 s
=sys_safecopyfrom(proc_nr
, iov
->iov_addr
,
511 SECTOR_SIZE
+ iov_offset
, (vir_bytes
) &fmt_param
,
512 (phys_bytes
) sizeof(fmt_param
));
514 panic("sys_safecopyfrom failed: %d", s
);
516 memcpy(&fmt_param
, (void *) (iov
->iov_addr
+
517 SECTOR_SIZE
+ iov_offset
),
518 (phys_bytes
) sizeof(fmt_param
));
521 /* Check that the number of sectors in the data is reasonable,
522 * to avoid division by 0. Leave checking of other data to
525 if (fmt_param
.sectors_per_cylinder
== 0) return(EIO
);
527 /* Only the first sector of the parameters now needed. */
528 iov
->iov_size
= nbytes
= SECTOR_SIZE
;
531 /* Only try one sector if there were errors. */
532 if (errors
> 0) nbytes
= SECTOR_SIZE
;
534 /* Compute cylinder and head of the track to access. */
535 fp
->fl_cylinder
= block
/ (NR_HEADS
* f_sectors
);
536 fp
->fl_hardcyl
= fp
->fl_cylinder
* f_dp
->steps
;
537 fp
->fl_head
= (block
% (NR_HEADS
* f_sectors
)) / f_sectors
;
539 /* For each sector on this track compute the user address it is to
540 * go or to come from.
542 for (up
= uoffsets
; up
< uoffsets
+ MAX_SECTORS
; up
++) *up
= NO_OFFSET
;
545 sector
= block
% f_sectors
;
547 iop_offset
= iov_offset
;
550 user_offset
= iop_offset
;
551 chunk
= iop
->iov_size
;
552 if ((chunk
& SECTOR_MASK
) != 0) return(EINVAL
);
555 ugrants
[sector
] = iop
->iov_addr
;
556 uoffsets
[sector
++] = user_offset
;
557 chunk
-= SECTOR_SIZE
;
558 user_offset
+= SECTOR_SIZE
;
559 count
+= SECTOR_SIZE
;
560 if (sector
== f_sectors
|| count
== nbytes
)
568 /* First check to see if a reset is needed. */
569 if (need_reset
) f_reset();
571 /* See if motor is running; if not, turn it on and wait. */
574 /* Set the stepping rate and data rate */
575 if (f_dp
!= prev_dp
) {
576 cmd
[0] = FDC_SPECIFY
;
577 cmd
[1] = f_dp
->spec1
;
579 (void) fdc_command(cmd
, 3);
580 if ((s
=sys_outb(FDC_RATE
, f_dp
->rate
)) != OK
)
581 panic("Sys_outb failed: %d", s
);
585 /* If we are going to a new cylinder, perform a seek. */
588 /* Avoid read_id() if we don't plan to read much. */
589 if (fp
->fl_sector
== NO_SECTOR
&& count
< (6 * SECTOR_SIZE
))
592 for (nbytes
= 0; nbytes
< count
; nbytes
+= SECTOR_SIZE
) {
593 if (fp
->fl_sector
== NO_SECTOR
) {
594 /* Find out what the current sector is. This often
595 * fails right after a seek, so try it twice.
597 if (r
== OK
&& read_id() != OK
) r
= read_id();
600 /* Look for the next job in uoffsets[] */
603 if (fp
->fl_sector
>= f_sectors
)
606 up
= &uoffsets
[fp
->fl_sector
];
607 ug
= &ugrants
[fp
->fl_sector
];
608 if (*up
!= NO_OFFSET
) break;
613 /* Copy the user bytes to the DMA buffer. */
614 if(proc_nr
!= SELF
) {
615 s
=sys_safecopyfrom(proc_nr
, *ug
, *up
,
616 (vir_bytes
) floppy_buf
,
617 (phys_bytes
) SECTOR_SIZE
);
619 panic("sys_safecopyfrom failed: %d", s
);
621 memcpy(floppy_buf
, (void *) (*ug
+ *up
), SECTOR_SIZE
);
626 /* Set up the DMA chip and perform the transfer. */
628 if (dma_setup(do_write
) != OK
) {
629 /* This can only fail for addresses above 16MB
630 * that cannot be handled by the controller,
631 * because it uses 24-bit addressing.
635 r
= fdc_transfer(do_write
);
638 if (r
== OK
&& !do_write
) {
639 /* Copy the DMA buffer to user space. */
640 if(proc_nr
!= SELF
) {
641 s
=sys_safecopyto(proc_nr
, *ug
, *up
,
642 (vir_bytes
) floppy_buf
,
643 (phys_bytes
) SECTOR_SIZE
);
645 panic("sys_safecopyto failed: %d", s
);
647 memcpy((void *) (*ug
+ *up
), floppy_buf
, SECTOR_SIZE
);
652 /* Don't retry if write protected or too many errors. */
653 if (err_no_retry(r
) || ++errors
== MAX_ERRORS
) {
657 /* Recalibrate if halfway. */
658 if (errors
== MAX_ERRORS
/ 2)
659 fp
->fl_calibration
= UNCALIBRATED
;
666 /* Book the bytes successfully transferred. */
670 if (nbytes
< iov
->iov_size
) {
671 /* Not done with this one yet. */
672 iov_offset
+= nbytes
;
673 iov
->iov_size
-= nbytes
;
677 nbytes
-= iov
->iov_size
;
686 /*===========================================================================*
688 *===========================================================================*/
689 static int dma_setup(int do_write
)
691 /* The IBM PC can perform DMA operations by using the DMA chip. To use it,
692 * the DMA (Direct Memory Access) chip is loaded with the 20-bit memory address
693 * to be read from or written to, the byte count minus 1, and a read or write
694 * opcode. This routine sets up the DMA chip. Note that the chip is not
695 * capable of doing a DMA across a 64K boundary (e.g., you can't read a
696 * 512-byte block starting at physical address 65520).
698 * Warning! Also note that it's not possible to do DMA above 16 MB because
699 * the ISA bus uses 24-bit addresses. Addresses above 16 MB therefore will
700 * be interpreted modulo 16 MB, dangerously overwriting arbitrary memory.
701 * A check here denies the I/O if the address is out of range.
703 pvb_pair_t byte_out
[9];
706 /* First check the DMA memory address not to exceed maximum. */
707 if (floppy_buf_phys
!= (floppy_buf_phys
& DMA_ADDR_MASK
)) {
708 printf("floppy: DMA denied because address out of range\n");
712 /* Set up the DMA registers. (The comment on the reset is a bit strong,
713 * it probably only resets the floppy channel.)
715 pv_set(byte_out
[0], DMA_INIT
, DMA_RESET_VAL
); /* reset the dma controller */
716 pv_set(byte_out
[1], DMA_FLIPFLOP
, 0); /* write anything to reset it */
717 pv_set(byte_out
[2], DMA_MODE
, do_write
? DMA_WRITE
: DMA_READ
);
718 pv_set(byte_out
[3], DMA_ADDR
, (unsigned) (floppy_buf_phys
>> 0) & 0xff);
719 pv_set(byte_out
[4], DMA_ADDR
, (unsigned) (floppy_buf_phys
>> 8) & 0xff);
720 pv_set(byte_out
[5], DMA_TOP
, (unsigned) (floppy_buf_phys
>> 16) & 0xff);
721 pv_set(byte_out
[6], DMA_COUNT
, (((SECTOR_SIZE
- 1) >> 0)) & 0xff);
722 pv_set(byte_out
[7], DMA_COUNT
, (SECTOR_SIZE
- 1) >> 8);
723 pv_set(byte_out
[8], DMA_INIT
, 2); /* some sort of enable */
725 if ((s
=sys_voutb(byte_out
, 9)) != OK
)
726 panic("Sys_voutb in dma_setup() failed: %d", s
);
730 /*===========================================================================*
732 *===========================================================================*/
733 static void start_motor(void)
735 /* Control of the floppy disk motors is a big pain. If a motor is off, you
736 * have to turn it on first, which takes 1/2 second. You can't leave it on
737 * all the time, since that would wear out the diskette. However, if you turn
738 * the motor off after each operation, the system performance will be awful.
739 * The compromise used here is to leave it on for a few seconds after each
740 * operation. If a new operation is started in that interval, it need not be
741 * turned on again. If no new operation is started, a timer goes off and the
742 * motor is turned off. I/O port DOR has bits to control each of 4 drives.
745 int s
, motor_bit
, running
;
749 motor_bit
= 1 << f_drive
; /* bit mask for this drive */
750 running
= motor_status
& motor_bit
; /* nonzero if this motor is running */
751 motor_status
|= motor_bit
; /* want this drive running too */
754 (motor_status
<< MOTOR_SHIFT
) | ENABLE_INT
| f_drive
)) != OK
)
755 panic("Sys_outb in start_motor() failed: %d", s
);
757 /* If the motor was already running, we don't have to wait for it. */
758 if (running
) return; /* motor was already running */
760 /* Set an alarm timer to force a timeout if the hardware does not interrupt
761 * in time. Expect an interrupt, but check for a timeout.
763 set_timer(&f_tmr_timeout
, f_dp
->start_ms
* system_hz
/ 1000, f_timeout
, 0);
766 if ((s
= driver_receive(ANY
, &mess
, &ipc_status
)) != OK
)
767 panic("Couldn't receive message: %d", s
);
769 if (is_ipc_notify(ipc_status
)) {
770 switch (_ENDPOINT_P(mess
.m_source
)) {
772 f_expire_tmrs(mess
.m_notify
.timestamp
);
781 } while (f_busy
== BSY_IO
);
782 f_fp
->fl_sector
= NO_SECTOR
;
785 /*===========================================================================*
787 *===========================================================================*/
788 static void stop_motor(minix_timer_t
*tp
)
790 /* This routine is called from an alarm timer after several seconds have
791 * elapsed with no floppy disk activity. It turns the drive motor off.
794 motor_status
&= ~(1 << tmr_arg(tp
)->ta_int
);
795 if ((s
=sys_outb(DOR
, (motor_status
<< MOTOR_SHIFT
) | ENABLE_INT
)) != OK
)
796 panic("Sys_outb in stop_motor() failed: %d", s
);
799 /*===========================================================================*
801 *===========================================================================*/
802 static int seek(void)
804 /* Issue a SEEK command on the indicated drive unless the arm is already
805 * positioned on the correct cylinder.
808 struct floppy
*fp
= f_fp
;
814 /* Are we already on the correct cylinder? */
815 if (fp
->fl_calibration
== UNCALIBRATED
)
816 if (recalibrate() != OK
) return(ERR_SEEK
);
817 if (fp
->fl_curcyl
== fp
->fl_hardcyl
) return(OK
);
819 /* No. Wrong cylinder. Issue a SEEK and wait for interrupt. */
821 cmd
[1] = (fp
->fl_head
<< 2) | f_drive
;
822 cmd
[2] = fp
->fl_hardcyl
;
823 if (fdc_command(cmd
, 3) != OK
) return(ERR_SEEK
);
824 if (f_intr_wait() != OK
) return(ERR_TIMEOUT
);
826 /* Interrupt has been received. Check drive status. */
827 fdc_out(FDC_SENSE
); /* probe FDC to make it return status */
828 r
= fdc_results(); /* get controller status bytes */
829 if (r
!= OK
|| (f_results
[ST0
] & ST0_BITS_SEEK
) != SEEK_ST0
830 || f_results
[ST1
] != fp
->fl_hardcyl
) {
831 /* seek failed, may need a recalibrate */
834 /* Give head time to settle on a format, no retrying here! */
835 if (f_device
& FORMAT_DEV_BIT
) {
836 /* Set a synchronous alarm to force a timeout if the hardware does
839 set_timer(&f_tmr_timeout
, system_hz
/30, f_timeout
, 0);
842 if ((r
= driver_receive(ANY
, &mess
, &ipc_status
)) != OK
)
843 panic("Couldn't receive message: %d", r
);
845 if (is_ipc_notify(ipc_status
)) {
846 switch (_ENDPOINT_P(mess
.m_source
)) {
848 f_expire_tmrs(mess
.m_notify
.timestamp
);
857 } while (f_busy
== BSY_IO
);
859 fp
->fl_curcyl
= fp
->fl_hardcyl
;
860 fp
->fl_sector
= NO_SECTOR
;
864 /*===========================================================================*
866 *===========================================================================*/
867 static int fdc_transfer(int do_write
)
869 /* The drive is now on the proper cylinder. Read, write or format 1 block. */
871 struct floppy
*fp
= f_fp
;
875 /* Never attempt a transfer if the drive is uncalibrated or motor is off. */
876 if (fp
->fl_calibration
== UNCALIBRATED
) return(ERR_TRANSFER
);
877 if ((motor_status
& (1 << f_drive
)) == 0) return(ERR_TRANSFER
);
879 /* The command is issued by outputting several bytes to the controller chip.
881 if (f_device
& FORMAT_DEV_BIT
) {
883 cmd
[1] = (fp
->fl_head
<< 2) | f_drive
;
884 cmd
[2] = fmt_param
.sector_size_code
;
885 cmd
[3] = fmt_param
.sectors_per_cylinder
;
886 cmd
[4] = fmt_param
.gap_length_for_format
;
887 cmd
[5] = fmt_param
.fill_byte_for_format
;
888 if (fdc_command(cmd
, 6) != OK
) return(ERR_TRANSFER
);
890 cmd
[0] = do_write
? FDC_WRITE
: FDC_READ
;
891 cmd
[1] = (fp
->fl_head
<< 2) | f_drive
;
892 cmd
[2] = fp
->fl_cylinder
;
893 cmd
[3] = fp
->fl_head
;
894 cmd
[4] = BASE_SECTOR
+ fp
->fl_sector
;
895 cmd
[5] = SECTOR_SIZE_CODE
;
897 cmd
[7] = f_dp
->gap
; /* sector gap */
898 cmd
[8] = DTL
; /* data length */
899 if (fdc_command(cmd
, 9) != OK
) return(ERR_TRANSFER
);
902 /* Block, waiting for disk interrupt. */
903 if (f_intr_wait() != OK
) {
904 printf("fd%u: disk interrupt timed out.\n", f_drive
);
908 /* Get controller status and check for errors. */
910 if (r
!= OK
) return(r
);
912 if (f_results
[ST1
] & WRITE_PROTECT
) {
913 printf("fd%u: diskette is write protected.\n", f_drive
);
914 return(ERR_WR_PROTECT
);
917 if ((f_results
[ST0
] & ST0_BITS_TRANS
) != TRANS_ST0
) return(ERR_TRANSFER
);
918 if (f_results
[ST1
] | f_results
[ST2
]) return(ERR_TRANSFER
);
920 if (f_device
& FORMAT_DEV_BIT
) return(OK
);
922 /* Compare actual numbers of sectors transferred with expected number. */
923 s
= (f_results
[ST_CYL
] - fp
->fl_cylinder
) * NR_HEADS
* f_sectors
;
924 s
+= (f_results
[ST_HEAD
] - fp
->fl_head
) * f_sectors
;
925 s
+= (f_results
[ST_SEC
] - BASE_SECTOR
- fp
->fl_sector
);
926 if (s
!= 1) return(ERR_TRANSFER
);
928 /* This sector is next for I/O: */
929 fp
->fl_sector
= f_results
[ST_SEC
] - BASE_SECTOR
;
931 if (processor
< 386) fp
->fl_sector
++; /* Old CPU can't keep up. */
936 /*===========================================================================*
938 *===========================================================================*/
939 static int fdc_results(void)
941 /* Extract results from the controller after an operation, then allow floppy
949 /* Extract bytes from FDC until it says it has no more. The loop is
950 * really an outer loop on result_nr and an inner loop on status.
951 * A timeout flag alarm is set.
954 SPIN_FOR(&spin
, TIMEOUT_MICROS
) {
955 /* Reading one byte is almost a mirror of fdc_out() - the DIRECTION
956 * bit must be set instead of clear, but the CTL_BUSY bit destroys
957 * the perfection of the mirror.
959 if ((s
=sys_inb(FDC_STATUS
, &status
)) != OK
)
960 panic("Sys_inb in fdc_results() failed: %d", s
);
961 status
&= (MASTER
| DIRECTION
| CTL_BUSY
);
962 if (status
== (MASTER
| DIRECTION
| CTL_BUSY
)) {
964 if (result_nr
>= MAX_RESULTS
) break; /* too many results */
965 if ((s
=sys_inb(FDC_DATA
, &tmp_r
)) != OK
)
966 panic("Sys_inb in fdc_results() failed: %d", s
);
967 f_results
[result_nr
] = tmp_r
;
971 if (status
== MASTER
) { /* all read */
972 if ((s
=sys_irqenable(&irq_hook_id
)) != OK
)
973 panic("Couldn't enable IRQs: %d", s
);
975 return(OK
); /* only good exit */
978 need_reset
= TRUE
; /* controller chip must be reset */
980 if ((s
=sys_irqenable(&irq_hook_id
)) != OK
)
981 panic("Couldn't enable IRQs: %d", s
);
985 /*===========================================================================*
987 *===========================================================================*/
988 static int fdc_command(
989 const u8_t
*cmd
, /* command bytes */
990 int len
/* command length */
993 /* Output a command to the controller. */
995 /* Set a synchronous alarm to force a timeout if the hardware does
997 * Note that the actual check is done by the code that issued the
998 * fdc_command() call.
1000 set_timer(&f_tmr_timeout
, WAKEUP
, f_timeout
, 0);
1007 return(need_reset
? ERR_DRIVE
: OK
);
1010 /*===========================================================================*
1012 *===========================================================================*/
1013 static void fdc_out(
1014 int val
/* write this byte to floppy disk controller */
1017 /* Output a byte to the controller. This is not entirely trivial, since you
1018 * can only write to it when it is listening, and it decides when to listen.
1019 * If the controller refuses to listen, the FDC chip is given a hard reset.
1025 if (need_reset
) return; /* if controller is not listening, return */
1027 /* It may take several tries to get the FDC to accept a command. */
1028 SPIN_FOR(&spin
, TIMEOUT_MICROS
) {
1029 if ((s
=sys_inb(FDC_STATUS
, &status
)) != OK
)
1030 panic("Sys_inb in fdc_out() failed: %d", s
);
1032 if ((status
& (MASTER
| DIRECTION
)) == (MASTER
| 0)) {
1033 if ((s
=sys_outb(FDC_DATA
, val
)) != OK
)
1034 panic("Sys_outb in fdc_out() failed: %d", s
);
1040 need_reset
= TRUE
; /* hit it over the head */
1043 /*===========================================================================*
1045 *===========================================================================*/
1046 static int recalibrate(void)
1048 /* The floppy disk controller has no way of determining its absolute arm
1049 * position (cylinder). Instead, it steps the arm a cylinder at a time and
1050 * keeps track of where it thinks it is (in software). However, after a
1051 * SEEK, the hardware reads information from the diskette telling where the
1052 * arm actually is. If the arm is in the wrong place, a recalibration is done,
1053 * which forces the arm to cylinder 0. This way the controller can get back
1054 * into sync with reality.
1057 struct floppy
*fp
= f_fp
;
1061 /* Issue the RECALIBRATE command and wait for the interrupt. */
1062 cmd
[0] = FDC_RECALIBRATE
; /* tell drive to recalibrate itself */
1063 cmd
[1] = f_drive
; /* specify drive */
1064 if (fdc_command(cmd
, 2) != OK
) return(ERR_SEEK
);
1065 if (f_intr_wait() != OK
) return(ERR_TIMEOUT
);
1067 /* Determine if the recalibration succeeded. */
1068 fdc_out(FDC_SENSE
); /* issue SENSE command to request results */
1069 r
= fdc_results(); /* get results of the FDC_RECALIBRATE command*/
1070 fp
->fl_curcyl
= NO_CYL
; /* force a SEEK next time */
1071 fp
->fl_sector
= NO_SECTOR
;
1072 if (r
!= OK
|| /* controller would not respond */
1073 (f_results
[ST0
] & ST0_BITS_SEEK
) != SEEK_ST0
|| f_results
[ST_PCN
] != 0) {
1074 /* Recalibration failed. FDC must be reset. */
1076 return(ERR_RECALIBRATE
);
1078 /* Recalibration succeeded. */
1079 fp
->fl_calibration
= CALIBRATED
;
1080 fp
->fl_curcyl
= f_results
[ST_PCN
];
1085 /*===========================================================================*
1087 *===========================================================================*/
1088 static void f_reset(void)
1090 /* Issue a reset to the controller. This is done after any catastrophe,
1091 * like the controller refusing to respond.
1093 pvb_pair_t byte_out
[2];
1098 /* Disable interrupts and strobe reset bit low. */
1101 /* It is not clear why the next lock is needed. Writing 0 to DOR causes
1102 * interrupt, while the PC documentation says turning bit 8 off disables
1103 * interrupts. Without the lock:
1104 * 1) the interrupt handler sets the floppy mask bit in the 8259.
1105 * 2) writing ENABLE_INT to DOR causes the FDC to assert the interrupt
1106 * line again, but the mask stops the cpu being interrupted.
1107 * 3) the sense interrupt clears the interrupt (not clear which one).
1108 * and for some reason the reset does not work.
1110 (void) fdc_command((u8_t
*) 0, 0); /* need only the timer */
1112 pv_set(byte_out
[0], DOR
, 0); /* strobe reset bit low */
1113 pv_set(byte_out
[1], DOR
, ENABLE_INT
); /* strobe it high again */
1114 if ((s
=sys_voutb(byte_out
, 2)) != OK
)
1115 panic("Sys_voutb in f_reset() failed: %d", s
);
1117 /* A synchronous alarm timer was set in fdc_command. Expect an interrupt,
1118 * but be prepared to handle a timeout.
1121 if ((s
= driver_receive(ANY
, &mess
, &ipc_status
)) != OK
)
1122 panic("Couldn't receive message: %d", s
);
1123 if (is_ipc_notify(ipc_status
)) {
1124 switch (_ENDPOINT_P(mess
.m_source
)) {
1126 f_expire_tmrs(mess
.m_notify
.timestamp
);
1132 } else { /* expect hw interrupt */
1135 } while (f_busy
== BSY_IO
);
1137 /* The controller supports 4 drives and returns a result for each of them.
1138 * Collect all the results now. The old version only collected the first
1139 * result. This happens to work for 2 drives, but it doesn't work for 3
1140 * or more drives, at least with only drives 0 and 2 actually connected
1141 * (the controller generates an extra interrupt for the middle drive when
1142 * drive 2 is accessed and the driver panics).
1144 * It would be better to keep collecting results until there are no more.
1145 * For this, fdc_results needs to return the number of results (instead
1146 * of OK) when it succeeds.
1148 for (i
= 0; i
< 4; i
++) {
1149 fdc_out(FDC_SENSE
); /* probe FDC to make it return status */
1150 (void) fdc_results(); /* flush controller */
1152 for (i
= 0; i
< NR_DRIVES
; i
++) /* clear each drive */
1153 floppy
[i
].fl_calibration
= UNCALIBRATED
;
1155 /* The current timing parameters must be specified again. */
1159 /*===========================================================================*
1161 *===========================================================================*/
1162 static int f_intr_wait(void)
1164 /* Wait for an interrupt, but not forever. The FDC may have all the time of
1165 * the world, but we humans do not.
1170 /* We expect an interrupt, but if a timeout, occurs, report an error. */
1172 if ((r
= driver_receive(ANY
, &mess
, &ipc_status
)) != OK
)
1173 panic("Couldn't receive message: %d", r
);
1174 if (is_ipc_notify(ipc_status
)) {
1175 switch (_ENDPOINT_P(mess
.m_source
)) {
1177 f_expire_tmrs(mess
.m_notify
.timestamp
);
1186 } while (f_busy
== BSY_IO
);
1188 if (f_busy
== BSY_WAKEN
) {
1190 /* No interrupt from the FDC, this means that there is probably no
1191 * floppy in the drive. Get the FDC down to earth and return error.
1194 return(ERR_TIMEOUT
);
1199 /*===========================================================================*
1201 *===========================================================================*/
1202 static void f_timeout(minix_timer_t
*UNUSED(tp
))
1204 /* This routine is called when a timer expires. Usually to tell that a
1205 * motor has spun up, but also to forge an interrupt when it takes too long
1206 * for the FDC to interrupt (no floppy in the drive). It sets a flag to tell
1207 * what has happened.
1209 if (f_busy
== BSY_IO
) {
1214 /*===========================================================================*
1216 *===========================================================================*/
1217 static int read_id(void)
1219 /* Determine current cylinder and sector. */
1221 struct floppy
*fp
= f_fp
;
1225 /* Never attempt a read id if the drive is uncalibrated or motor is off. */
1226 if (fp
->fl_calibration
== UNCALIBRATED
) return(ERR_READ_ID
);
1227 if ((motor_status
& (1 << f_drive
)) == 0) return(ERR_READ_ID
);
1229 /* The command is issued by outputting 2 bytes to the controller chip. */
1230 cmd
[0] = FDC_READ_ID
; /* issue the read id command */
1231 cmd
[1] = (fp
->fl_head
<< 2) | f_drive
;
1232 if (fdc_command(cmd
, 2) != OK
) return(ERR_READ_ID
);
1233 if (f_intr_wait() != OK
) return(ERR_TIMEOUT
);
1235 /* Get controller status and check for errors. */
1236 result
= fdc_results();
1237 if (result
!= OK
) return(result
);
1239 if ((f_results
[ST0
] & ST0_BITS_TRANS
) != TRANS_ST0
) return(ERR_READ_ID
);
1240 if (f_results
[ST1
] | f_results
[ST2
]) return(ERR_READ_ID
);
1242 /* The next sector is next for I/O: */
1243 fp
->fl_sector
= f_results
[ST_SEC
] - BASE_SECTOR
+ 1;
1247 /*===========================================================================*
1249 *===========================================================================*/
1250 static int f_do_open(devminor_t minor
, int UNUSED(access
))
1252 /* Handle an open on a floppy. Determine diskette type if need be. */
1255 struct test_order
*top
;
1257 /* Decode the message parameters. */
1258 if (f_prepare(minor
) == NULL
) return(ENXIO
);
1260 dtype
= f_device
& DEV_TYPE_BITS
; /* get density from minor dev */
1261 if (dtype
>= MINOR_fd0p0
) dtype
= 0;
1264 /* All types except 0 indicate a specific drive/medium combination.*/
1265 dtype
= (dtype
>> DEV_TYPE_SHIFT
) - 1;
1266 if (dtype
>= NT
) return(ENXIO
);
1267 f_fp
->fl_density
= dtype
;
1268 (void) f_prepare(f_device
); /* Recompute parameters. */
1271 if (f_device
& FORMAT_DEV_BIT
) return(EIO
); /* Can't format /dev/fdN */
1273 /* The device opened is /dev/fdN. Experimentally determine drive/medium.
1274 * First check fl_density. If it is not NO_DENS, the drive has been used
1275 * before and the value of fl_density tells what was found last time. Try
1276 * that first. If the motor is still running then assume nothing changed.
1278 if (f_fp
->fl_density
!= NO_DENS
) {
1279 if (motor_status
& (1 << f_drive
)) return(OK
);
1280 if (test_read(f_fp
->fl_density
) == OK
) return(OK
);
1283 /* Either drive type is unknown or a different diskette is now present.
1284 * Use test_order to try them one by one.
1286 for (top
= &test_order
[0]; top
< &test_order
[NT
-1]; top
++) {
1287 dtype
= top
->t_density
;
1289 /* Skip densities that have been proven to be impossible */
1290 if (!(f_fp
->fl_class
& (1 << dtype
))) continue;
1292 if (test_read(dtype
) == OK
) {
1293 /* The test succeeded, use this knowledge to limit the
1294 * drive class to match the density just read.
1296 f_fp
->fl_class
&= top
->t_class
;
1299 /* Test failed, wrong density or did it time out? */
1300 if (f_busy
== BSY_WAKEN
) break;
1302 f_fp
->fl_density
= NO_DENS
;
1303 return(EIO
); /* nothing worked */
1306 /*===========================================================================*
1308 *===========================================================================*/
1309 static int f_do_close(devminor_t
UNUSED(minor
))
1311 /* Handle a close on a floppy. Nothing to do here. */
1316 /*===========================================================================*
1318 *===========================================================================*/
1319 static int test_read(int density
)
1321 /* Try to read the highest numbered sector on cylinder 2. Not all floppy
1322 * types have as many sectors per track, and trying cylinder 2 finds the
1323 * ones that need double stepping.
1330 f_fp
->fl_density
= density
;
1331 device
= ((density
+ 1) << DEV_TYPE_SHIFT
) + f_drive
;
1333 (void) f_prepare(device
);
1334 position
= (off_t
) f_dp
->test
<< SECTOR_SHIFT
;
1335 iovec1
.iov_addr
= (vir_bytes
) floppy_buf
;
1336 iovec1
.iov_size
= SECTOR_SIZE
;
1337 result
= f_transfer(device
, FALSE
/*do_write*/, position
, SELF
,
1338 &iovec1
, 1, BDEV_NOFLAGS
);
1340 if (result
!= SECTOR_SIZE
) return(EIO
);
1342 partition(&f_dtab
, f_drive
, P_FLOPPY
, 0);
1346 /*===========================================================================*
1348 *===========================================================================*/
1349 static void f_geometry(devminor_t minor
, struct part_geom
*entry
)
1351 if (f_prepare(minor
) == NULL
) return;
1353 entry
->cylinders
= f_dp
->cyls
;
1354 entry
->heads
= NR_HEADS
;
1355 entry
->sectors
= f_sectors
;