Remove building with NOCRYPTO option
[minix3.git] / external / mit / lua / dist / src / lopcodes.h
blobe5e633b2d8cb25b4025e20267ba0ed0fe88dd516
1 /* $NetBSD: lopcodes.h,v 1.3 2015/02/02 14:03:05 lneto Exp $ */
3 /*
4 ** Id: lopcodes.h,v 1.148 2014/10/25 11:50:46 roberto Exp
5 ** Opcodes for Lua virtual machine
6 ** See Copyright Notice in lua.h
7 */
9 #ifndef lopcodes_h
10 #define lopcodes_h
12 #include "llimits.h"
15 /*===========================================================================
16 We assume that instructions are unsigned numbers.
17 All instructions have an opcode in the first 6 bits.
18 Instructions can have the following fields:
19 'A' : 8 bits
20 'B' : 9 bits
21 'C' : 9 bits
22 'Ax' : 26 bits ('A', 'B', and 'C' together)
23 'Bx' : 18 bits ('B' and 'C' together)
24 'sBx' : signed Bx
26 A signed argument is represented in excess K; that is, the number
27 value is the unsigned value minus K. K is exactly the maximum value
28 for that argument (so that -max is represented by 0, and +max is
29 represented by 2*max), which is half the maximum for the corresponding
30 unsigned argument.
31 ===========================================================================*/
34 enum OpMode {iABC, iABx, iAsBx, iAx}; /* basic instruction format */
38 ** size and position of opcode arguments.
40 #define SIZE_C 9
41 #define SIZE_B 9
42 #define SIZE_Bx (SIZE_C + SIZE_B)
43 #define SIZE_A 8
44 #define SIZE_Ax (SIZE_C + SIZE_B + SIZE_A)
46 #define SIZE_OP 6
48 #define POS_OP 0
49 #define POS_A (POS_OP + SIZE_OP)
50 #define POS_C (POS_A + SIZE_A)
51 #define POS_B (POS_C + SIZE_C)
52 #define POS_Bx POS_C
53 #define POS_Ax POS_A
57 ** limits for opcode arguments.
58 ** we use (signed) int to manipulate most arguments,
59 ** so they must fit in LUAI_BITSINT-1 bits (-1 for sign)
61 #if SIZE_Bx < LUAI_BITSINT-1
62 #define MAXARG_Bx ((1<<SIZE_Bx)-1)
63 #define MAXARG_sBx (MAXARG_Bx>>1) /* 'sBx' is signed */
64 #else
65 #define MAXARG_Bx MAX_INT
66 #define MAXARG_sBx MAX_INT
67 #endif
69 #if SIZE_Ax < LUAI_BITSINT-1
70 #define MAXARG_Ax ((1<<SIZE_Ax)-1)
71 #else
72 #define MAXARG_Ax MAX_INT
73 #endif
76 #define MAXARG_A ((1<<SIZE_A)-1)
77 #define MAXARG_B ((1<<SIZE_B)-1)
78 #define MAXARG_C ((1<<SIZE_C)-1)
81 /* creates a mask with 'n' 1 bits at position 'p' */
82 #define MASK1(n,p) ((~((~(Instruction)0)<<(n)))<<(p))
84 /* creates a mask with 'n' 0 bits at position 'p' */
85 #define MASK0(n,p) (~MASK1(n,p))
88 ** the following macros help to manipulate instructions
91 #define GET_OPCODE(i) (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0)))
92 #define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \
93 ((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP))))
95 #define getarg(i,pos,size) (cast(int, ((i)>>pos) & MASK1(size,0)))
96 #define setarg(i,v,pos,size) ((i) = (((i)&MASK0(size,pos)) | \
97 ((cast(Instruction, v)<<pos)&MASK1(size,pos))))
99 #define GETARG_A(i) getarg(i, POS_A, SIZE_A)
100 #define SETARG_A(i,v) setarg(i, v, POS_A, SIZE_A)
102 #define GETARG_B(i) getarg(i, POS_B, SIZE_B)
103 #define SETARG_B(i,v) setarg(i, v, POS_B, SIZE_B)
105 #define GETARG_C(i) getarg(i, POS_C, SIZE_C)
106 #define SETARG_C(i,v) setarg(i, v, POS_C, SIZE_C)
108 #define GETARG_Bx(i) getarg(i, POS_Bx, SIZE_Bx)
109 #define SETARG_Bx(i,v) setarg(i, v, POS_Bx, SIZE_Bx)
111 #define GETARG_Ax(i) getarg(i, POS_Ax, SIZE_Ax)
112 #define SETARG_Ax(i,v) setarg(i, v, POS_Ax, SIZE_Ax)
114 #define GETARG_sBx(i) (GETARG_Bx(i)-MAXARG_sBx)
115 #define SETARG_sBx(i,b) SETARG_Bx((i),cast(unsigned int, (b)+MAXARG_sBx))
118 #define CREATE_ABC(o,a,b,c) ((cast(Instruction, o)<<POS_OP) \
119 | (cast(Instruction, a)<<POS_A) \
120 | (cast(Instruction, b)<<POS_B) \
121 | (cast(Instruction, c)<<POS_C))
123 #define CREATE_ABx(o,a,bc) ((cast(Instruction, o)<<POS_OP) \
124 | (cast(Instruction, a)<<POS_A) \
125 | (cast(Instruction, bc)<<POS_Bx))
127 #define CREATE_Ax(o,a) ((cast(Instruction, o)<<POS_OP) \
128 | (cast(Instruction, a)<<POS_Ax))
132 ** Macros to operate RK indices
135 /* this bit 1 means constant (0 means register) */
136 #define BITRK (1 << (SIZE_B - 1))
138 /* test whether value is a constant */
139 #define ISK(x) ((x) & BITRK)
141 /* gets the index of the constant */
142 #define INDEXK(r) ((int)(r) & ~BITRK)
144 #define MAXINDEXRK (BITRK - 1)
146 /* code a constant index as a RK value */
147 #define RKASK(x) ((x) | BITRK)
151 ** invalid register that fits in 8 bits
153 #define NO_REG MAXARG_A
157 ** R(x) - register
158 ** Kst(x) - constant (in constant table)
159 ** RK(x) == if ISK(x) then Kst(INDEXK(x)) else R(x)
164 ** grep "ORDER OP" if you change these enums
167 typedef enum {
168 /*----------------------------------------------------------------------
169 name args description
170 ------------------------------------------------------------------------*/
171 OP_MOVE,/* A B R(A) := R(B) */
172 OP_LOADK,/* A Bx R(A) := Kst(Bx) */
173 OP_LOADKX,/* A R(A) := Kst(extra arg) */
174 OP_LOADBOOL,/* A B C R(A) := (Bool)B; if (C) pc++ */
175 OP_LOADNIL,/* A B R(A), R(A+1), ..., R(A+B) := nil */
176 OP_GETUPVAL,/* A B R(A) := UpValue[B] */
178 OP_GETTABUP,/* A B C R(A) := UpValue[B][RK(C)] */
179 OP_GETTABLE,/* A B C R(A) := R(B)[RK(C)] */
181 OP_SETTABUP,/* A B C UpValue[A][RK(B)] := RK(C) */
182 OP_SETUPVAL,/* A B UpValue[B] := R(A) */
183 OP_SETTABLE,/* A B C R(A)[RK(B)] := RK(C) */
185 OP_NEWTABLE,/* A B C R(A) := {} (size = B,C) */
187 OP_SELF,/* A B C R(A+1) := R(B); R(A) := R(B)[RK(C)] */
189 OP_ADD,/* A B C R(A) := RK(B) + RK(C) */
190 OP_SUB,/* A B C R(A) := RK(B) - RK(C) */
191 OP_MUL,/* A B C R(A) := RK(B) * RK(C) */
192 OP_MOD,/* A B C R(A) := RK(B) % RK(C) */
193 #ifndef _KERNEL
194 OP_POW,/* A B C R(A) := RK(B) ^ RK(C) */
195 OP_DIV,/* A B C R(A) := RK(B) / RK(C) */
196 #endif
197 OP_IDIV,/* A B C R(A) := RK(B) // RK(C) */
198 OP_BAND,/* A B C R(A) := RK(B) & RK(C) */
199 OP_BOR,/* A B C R(A) := RK(B) | RK(C) */
200 OP_BXOR,/* A B C R(A) := RK(B) ~ RK(C) */
201 OP_SHL,/* A B C R(A) := RK(B) << RK(C) */
202 OP_SHR,/* A B C R(A) := RK(B) >> RK(C) */
203 OP_UNM,/* A B R(A) := -R(B) */
204 OP_BNOT,/* A B R(A) := ~R(B) */
205 OP_NOT,/* A B R(A) := not R(B) */
206 OP_LEN,/* A B R(A) := length of R(B) */
208 OP_CONCAT,/* A B C R(A) := R(B).. ... ..R(C) */
210 OP_JMP,/* A sBx pc+=sBx; if (A) close all upvalues >= R(A - 1) */
211 OP_EQ,/* A B C if ((RK(B) == RK(C)) ~= A) then pc++ */
212 OP_LT,/* A B C if ((RK(B) < RK(C)) ~= A) then pc++ */
213 OP_LE,/* A B C if ((RK(B) <= RK(C)) ~= A) then pc++ */
215 OP_TEST,/* A C if not (R(A) <=> C) then pc++ */
216 OP_TESTSET,/* A B C if (R(B) <=> C) then R(A) := R(B) else pc++ */
218 OP_CALL,/* A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */
219 OP_TAILCALL,/* A B C return R(A)(R(A+1), ... ,R(A+B-1)) */
220 OP_RETURN,/* A B return R(A), ... ,R(A+B-2) (see note) */
222 OP_FORLOOP,/* A sBx R(A)+=R(A+2);
223 if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/
224 OP_FORPREP,/* A sBx R(A)-=R(A+2); pc+=sBx */
226 OP_TFORCALL,/* A C R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2)); */
227 OP_TFORLOOP,/* A sBx if R(A+1) ~= nil then { R(A)=R(A+1); pc += sBx }*/
229 OP_SETLIST,/* A B C R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B */
231 OP_CLOSURE,/* A Bx R(A) := closure(KPROTO[Bx]) */
233 OP_VARARG,/* A B R(A), R(A+1), ..., R(A+B-2) = vararg */
235 OP_EXTRAARG/* Ax extra (larger) argument for previous opcode */
236 } OpCode;
239 #define NUM_OPCODES (cast(int, OP_EXTRAARG) + 1)
243 /*===========================================================================
244 Notes:
245 (*) In OP_CALL, if (B == 0) then B = top. If (C == 0), then 'top' is
246 set to last_result+1, so next open instruction (OP_CALL, OP_RETURN,
247 OP_SETLIST) may use 'top'.
249 (*) In OP_VARARG, if (B == 0) then use actual number of varargs and
250 set top (like in OP_CALL with C == 0).
252 (*) In OP_RETURN, if (B == 0) then return up to 'top'.
254 (*) In OP_SETLIST, if (B == 0) then B = 'top'; if (C == 0) then next
255 'instruction' is EXTRAARG(real C).
257 (*) In OP_LOADKX, the next 'instruction' is always EXTRAARG.
259 (*) For comparisons, A specifies what condition the test should accept
260 (true or false).
262 (*) All 'skips' (pc++) assume that next instruction is a jump.
264 ===========================================================================*/
268 ** masks for instruction properties. The format is:
269 ** bits 0-1: op mode
270 ** bits 2-3: C arg mode
271 ** bits 4-5: B arg mode
272 ** bit 6: instruction set register A
273 ** bit 7: operator is a test (next instruction must be a jump)
276 enum OpArgMask {
277 OpArgN, /* argument is not used */
278 OpArgU, /* argument is used */
279 OpArgR, /* argument is a register or a jump offset */
280 OpArgK /* argument is a constant or register/constant */
283 LUAI_DDEC const lu_byte luaP_opmodes[NUM_OPCODES];
285 #define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 3))
286 #define getBMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 4) & 3))
287 #define getCMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 2) & 3))
288 #define testAMode(m) (luaP_opmodes[m] & (1 << 6))
289 #define testTMode(m) (luaP_opmodes[m] & (1 << 7))
292 LUAI_DDEC const char *const luaP_opnames[NUM_OPCODES+1]; /* opcode names */
295 /* number of list items to accumulate before a SETLIST instruction */
296 #define LFIELDS_PER_FLUSH 50
299 #endif