1 ///////////////////////////////////////////////////////////////////////////////
4 /// \brief LZ out window
6 // Authors: Igor Pavlov
9 // This file has been put into the public domain.
10 // You can do whatever you want with this file.
12 ///////////////////////////////////////////////////////////////////////////////
14 // liblzma supports multiple LZ77-based filters. The LZ part is shared
15 // between these filters. The LZ code takes care of dictionary handling
16 // and passing the data between filters in the chain. The filter-specific
17 // part decodes from the input buffer to the dictionary.
20 #include "lz_decoder.h"
24 /// Dictionary (history buffer)
27 /// The actual LZ-based decoder e.g. LZMA
30 /// Next filter in the chain, if any. Note that LZMA and LZMA2 are
31 /// only allowed as the last filter, but the long-range filter in
32 /// future can be in the middle of the chain.
35 /// True if the next filter in the chain has returned LZMA_STREAM_END.
38 /// True if the LZ decoder (e.g. LZMA) has detected end of payload
39 /// marker. This may become true before next_finished becomes true.
42 /// Temporary buffer needed when the LZ-based filter is not the last
43 /// filter in the chain. The output of the next filter is first
44 /// decoded into buffer[], which is then used as input for the actual
49 uint8_t buffer
[LZMA_BUFFER_SIZE
];
55 lz_decoder_reset(lzma_coder
*coder
)
59 coder
->dict
.buf
[coder
->dict
.size
- 1] = '\0';
60 coder
->dict
.need_reset
= false;
66 decode_buffer(lzma_coder
*coder
,
67 const uint8_t *restrict in
, size_t *restrict in_pos
,
68 size_t in_size
, uint8_t *restrict out
,
69 size_t *restrict out_pos
, size_t out_size
)
72 // Wrap the dictionary if needed.
73 if (coder
->dict
.pos
== coder
->dict
.size
)
76 // Store the current dictionary position. It is needed to know
77 // where to start copying to the out[] buffer.
78 const size_t dict_start
= coder
->dict
.pos
;
80 // Calculate how much we allow coder->lz.code() to decode.
81 // It must not decode past the end of the dictionary
82 // buffer, and we don't want it to decode more than is
83 // actually needed to fill the out[] buffer.
84 coder
->dict
.limit
= coder
->dict
.pos
85 + my_min(out_size
- *out_pos
,
86 coder
->dict
.size
- coder
->dict
.pos
);
88 // Call the coder->lz.code() to do the actual decoding.
89 const lzma_ret ret
= coder
->lz
.code(
90 coder
->lz
.coder
, &coder
->dict
,
93 // Copy the decoded data from the dictionary to the out[]
95 const size_t copy_size
= coder
->dict
.pos
- dict_start
;
96 assert(copy_size
<= out_size
- *out_pos
);
97 memcpy(out
+ *out_pos
, coder
->dict
.buf
+ dict_start
,
99 *out_pos
+= copy_size
;
101 // Reset the dictionary if so requested by coder->lz.code().
102 if (coder
->dict
.need_reset
) {
103 lz_decoder_reset(coder
);
105 // Since we reset dictionary, we don't check if
106 // dictionary became full.
107 if (ret
!= LZMA_OK
|| *out_pos
== out_size
)
110 // Return if everything got decoded or an error
111 // occurred, or if there's no more data to decode.
113 // Note that detecting if there's something to decode
114 // is done by looking if dictionary become full
115 // instead of looking if *in_pos == in_size. This
116 // is because it is possible that all the input was
117 // consumed already but some data is pending to be
118 // written to the dictionary.
119 if (ret
!= LZMA_OK
|| *out_pos
== out_size
120 || coder
->dict
.pos
< coder
->dict
.size
)
128 lz_decode(lzma_coder
*coder
,
129 const lzma_allocator
*allocator
lzma_attribute((__unused__
)),
130 const uint8_t *restrict in
, size_t *restrict in_pos
,
131 size_t in_size
, uint8_t *restrict out
,
132 size_t *restrict out_pos
, size_t out_size
,
135 if (coder
->next
.code
== NULL
)
136 return decode_buffer(coder
, in
, in_pos
, in_size
,
137 out
, out_pos
, out_size
);
139 // We aren't the last coder in the chain, we need to decode
140 // our input to a temporary buffer.
141 while (*out_pos
< out_size
) {
142 // Fill the temporary buffer if it is empty.
143 if (!coder
->next_finished
144 && coder
->temp
.pos
== coder
->temp
.size
) {
146 coder
->temp
.size
= 0;
148 const lzma_ret ret
= coder
->next
.code(
150 allocator
, in
, in_pos
, in_size
,
151 coder
->temp
.buffer
, &coder
->temp
.size
,
152 LZMA_BUFFER_SIZE
, action
);
154 if (ret
== LZMA_STREAM_END
)
155 coder
->next_finished
= true;
156 else if (ret
!= LZMA_OK
|| coder
->temp
.size
== 0)
160 if (coder
->this_finished
) {
161 if (coder
->temp
.size
!= 0)
162 return LZMA_DATA_ERROR
;
164 if (coder
->next_finished
)
165 return LZMA_STREAM_END
;
170 const lzma_ret ret
= decode_buffer(coder
, coder
->temp
.buffer
,
171 &coder
->temp
.pos
, coder
->temp
.size
,
172 out
, out_pos
, out_size
);
174 if (ret
== LZMA_STREAM_END
)
175 coder
->this_finished
= true;
176 else if (ret
!= LZMA_OK
)
178 else if (coder
->next_finished
&& *out_pos
< out_size
)
179 return LZMA_DATA_ERROR
;
187 lz_decoder_end(lzma_coder
*coder
, const lzma_allocator
*allocator
)
189 lzma_next_end(&coder
->next
, allocator
);
190 lzma_free(coder
->dict
.buf
, allocator
);
192 if (coder
->lz
.end
!= NULL
)
193 coder
->lz
.end(coder
->lz
.coder
, allocator
);
195 lzma_free(coder
->lz
.coder
, allocator
);
197 lzma_free(coder
, allocator
);
203 lzma_lz_decoder_init(lzma_next_coder
*next
, const lzma_allocator
*allocator
,
204 const lzma_filter_info
*filters
,
205 lzma_ret (*lz_init
)(lzma_lz_decoder
*lz
,
206 const lzma_allocator
*allocator
, const void *options
,
207 lzma_lz_options
*lz_options
))
209 // Allocate the base structure if it isn't already allocated.
210 if (next
->coder
== NULL
) {
211 next
->coder
= lzma_alloc(sizeof(lzma_coder
), allocator
);
212 if (next
->coder
== NULL
)
213 return LZMA_MEM_ERROR
;
215 next
->code
= &lz_decode
;
216 next
->end
= &lz_decoder_end
;
218 next
->coder
->dict
.buf
= NULL
;
219 next
->coder
->dict
.size
= 0;
220 next
->coder
->lz
= LZMA_LZ_DECODER_INIT
;
221 next
->coder
->next
= LZMA_NEXT_CODER_INIT
;
224 // Allocate and initialize the LZ-based decoder. It will also give
225 // us the dictionary size.
226 lzma_lz_options lz_options
;
227 return_if_error(lz_init(&next
->coder
->lz
, allocator
,
228 filters
[0].options
, &lz_options
));
230 // If the dictionary size is very small, increase it to 4096 bytes.
231 // This is to prevent constant wrapping of the dictionary, which
232 // would slow things down. The downside is that since we don't check
233 // separately for the real dictionary size, we may happily accept
235 if (lz_options
.dict_size
< 4096)
236 lz_options
.dict_size
= 4096;
238 // Make dictionary size a multipe of 16. Some LZ-based decoders like
239 // LZMA use the lowest bits lzma_dict.pos to know the alignment of the
240 // data. Aligned buffer is also good when memcpying from the
241 // dictionary to the output buffer, since applications are
242 // recommended to give aligned buffers to liblzma.
244 // Avoid integer overflow.
245 if (lz_options
.dict_size
> SIZE_MAX
- 15)
246 return LZMA_MEM_ERROR
;
248 lz_options
.dict_size
= (lz_options
.dict_size
+ 15) & ~((size_t)(15));
250 // Allocate and initialize the dictionary.
251 if (next
->coder
->dict
.size
!= lz_options
.dict_size
) {
252 lzma_free(next
->coder
->dict
.buf
, allocator
);
253 next
->coder
->dict
.buf
254 = lzma_alloc(lz_options
.dict_size
, allocator
);
255 if (next
->coder
->dict
.buf
== NULL
)
256 return LZMA_MEM_ERROR
;
258 next
->coder
->dict
.size
= lz_options
.dict_size
;
261 lz_decoder_reset(next
->coder
);
263 // Use the preset dictionary if it was given to us.
264 if (lz_options
.preset_dict
!= NULL
265 && lz_options
.preset_dict_size
> 0) {
266 // If the preset dictionary is bigger than the actual
267 // dictionary, copy only the tail.
268 const size_t copy_size
= my_min(lz_options
.preset_dict_size
,
269 lz_options
.dict_size
);
270 const size_t offset
= lz_options
.preset_dict_size
- copy_size
;
271 memcpy(next
->coder
->dict
.buf
, lz_options
.preset_dict
+ offset
,
273 next
->coder
->dict
.pos
= copy_size
;
274 next
->coder
->dict
.full
= copy_size
;
277 // Miscellaneous initializations
278 next
->coder
->next_finished
= false;
279 next
->coder
->this_finished
= false;
280 next
->coder
->temp
.pos
= 0;
281 next
->coder
->temp
.size
= 0;
283 // Initialize the next filter in the chain, if any.
284 return lzma_next_filter_init(&next
->coder
->next
, allocator
,
290 lzma_lz_decoder_memusage(size_t dictionary_size
)
292 return sizeof(lzma_coder
) + (uint64_t)(dictionary_size
);
297 lzma_lz_decoder_uncompressed(lzma_coder
*coder
, lzma_vli uncompressed_size
)
299 coder
->lz
.set_uncompressed(coder
->lz
.coder
, uncompressed_size
);