1 ///////////////////////////////////////////////////////////////////////////////
4 /// \brief LZ in window
6 // Authors: Igor Pavlov
9 // This file has been put into the public domain.
10 // You can do whatever you want with this file.
12 ///////////////////////////////////////////////////////////////////////////////
14 #include "lz_encoder.h"
15 #include "lz_encoder_hash.h"
17 // See lz_encoder_hash.h. This is a bit hackish but avoids making
18 // endianness a conditional in makefiles.
19 #if defined(WORDS_BIGENDIAN) && !defined(HAVE_SMALL)
20 # include "lz_encoder_hash_table.h"
23 #include "memcmplen.h"
27 /// LZ-based encoder e.g. LZMA
30 /// History buffer and match finder
33 /// Next coder in the chain
38 /// \brief Moves the data in the input window to free space for new data
40 /// mf->buffer is a sliding input window, which keeps mf->keep_size_before
41 /// bytes of input history available all the time. Now and then we need to
42 /// "slide" the buffer to make space for the new data to the end of the
43 /// buffer. At the same time, data older than keep_size_before is dropped.
46 move_window(lzma_mf
*mf
)
48 // Align the move to a multiple of 16 bytes. Some LZ-based encoders
49 // like LZMA use the lowest bits of mf->read_pos to know the
50 // alignment of the uncompressed data. We also get better speed
51 // for memmove() with aligned buffers.
52 assert(mf
->read_pos
> mf
->keep_size_before
);
53 const uint32_t move_offset
54 = (mf
->read_pos
- mf
->keep_size_before
) & ~UINT32_C(15);
56 assert(mf
->write_pos
> move_offset
);
57 const size_t move_size
= mf
->write_pos
- move_offset
;
59 assert(move_offset
+ move_size
<= mf
->size
);
61 memmove(mf
->buffer
, mf
->buffer
+ move_offset
, move_size
);
63 mf
->offset
+= move_offset
;
64 mf
->read_pos
-= move_offset
;
65 mf
->read_limit
-= move_offset
;
66 mf
->write_pos
-= move_offset
;
72 /// \brief Tries to fill the input window (mf->buffer)
74 /// If we are the last encoder in the chain, our input data is in in[].
75 /// Otherwise we call the next filter in the chain to process in[] and
76 /// write its output to mf->buffer.
78 /// This function must not be called once it has returned LZMA_STREAM_END.
81 fill_window(lzma_coder
*coder
, const lzma_allocator
*allocator
,
82 const uint8_t *in
, size_t *in_pos
, size_t in_size
,
85 assert(coder
->mf
.read_pos
<= coder
->mf
.write_pos
);
87 // Move the sliding window if needed.
88 if (coder
->mf
.read_pos
>= coder
->mf
.size
- coder
->mf
.keep_size_after
)
89 move_window(&coder
->mf
);
91 // Maybe this is ugly, but lzma_mf uses uint32_t for most things
92 // (which I find cleanest), but we need size_t here when filling
93 // the history window.
94 size_t write_pos
= coder
->mf
.write_pos
;
96 if (coder
->next
.code
== NULL
) {
97 // Not using a filter, simply memcpy() as much as possible.
98 lzma_bufcpy(in
, in_pos
, in_size
, coder
->mf
.buffer
,
99 &write_pos
, coder
->mf
.size
);
101 ret
= action
!= LZMA_RUN
&& *in_pos
== in_size
102 ? LZMA_STREAM_END
: LZMA_OK
;
105 ret
= coder
->next
.code(coder
->next
.coder
, allocator
,
107 coder
->mf
.buffer
, &write_pos
,
108 coder
->mf
.size
, action
);
111 coder
->mf
.write_pos
= write_pos
;
113 // Silence Valgrind. lzma_memcmplen() can read extra bytes
114 // and Valgrind will give warnings if those bytes are uninitialized
115 // because Valgrind cannot see that the values of the uninitialized
116 // bytes are eventually ignored.
117 memzero(coder
->mf
.buffer
+ write_pos
, LZMA_MEMCMPLEN_EXTRA
);
119 // If end of stream has been reached or flushing completed, we allow
120 // the encoder to process all the input (that is, read_pos is allowed
121 // to reach write_pos). Otherwise we keep keep_size_after bytes
122 // available as prebuffer.
123 if (ret
== LZMA_STREAM_END
) {
124 assert(*in_pos
== in_size
);
126 coder
->mf
.action
= action
;
127 coder
->mf
.read_limit
= coder
->mf
.write_pos
;
129 } else if (coder
->mf
.write_pos
> coder
->mf
.keep_size_after
) {
130 // This needs to be done conditionally, because if we got
131 // only little new input, there may be too little input
132 // to do any encoding yet.
133 coder
->mf
.read_limit
= coder
->mf
.write_pos
134 - coder
->mf
.keep_size_after
;
137 // Restart the match finder after finished LZMA_SYNC_FLUSH.
138 if (coder
->mf
.pending
> 0
139 && coder
->mf
.read_pos
< coder
->mf
.read_limit
) {
140 // Match finder may update coder->pending and expects it to
141 // start from zero, so use a temporary variable.
142 const size_t pending
= coder
->mf
.pending
;
143 coder
->mf
.pending
= 0;
145 // Rewind read_pos so that the match finder can hash
146 // the pending bytes.
147 assert(coder
->mf
.read_pos
>= pending
);
148 coder
->mf
.read_pos
-= pending
;
150 // Call the skip function directly instead of using
151 // mf_skip(), since we don't want to touch mf->read_ahead.
152 coder
->mf
.skip(&coder
->mf
, pending
);
160 lz_encode(lzma_coder
*coder
, const lzma_allocator
*allocator
,
161 const uint8_t *restrict in
, size_t *restrict in_pos
,
163 uint8_t *restrict out
, size_t *restrict out_pos
,
164 size_t out_size
, lzma_action action
)
166 while (*out_pos
< out_size
167 && (*in_pos
< in_size
|| action
!= LZMA_RUN
)) {
168 // Read more data to coder->mf.buffer if needed.
169 if (coder
->mf
.action
== LZMA_RUN
&& coder
->mf
.read_pos
170 >= coder
->mf
.read_limit
)
171 return_if_error(fill_window(coder
, allocator
,
172 in
, in_pos
, in_size
, action
));
175 const lzma_ret ret
= coder
->lz
.code(coder
->lz
.coder
,
176 &coder
->mf
, out
, out_pos
, out_size
);
177 if (ret
!= LZMA_OK
) {
178 // Setting this to LZMA_RUN for cases when we are
179 // flushing. It doesn't matter when finishing or if
180 // an error occurred.
181 coder
->mf
.action
= LZMA_RUN
;
191 lz_encoder_prepare(lzma_mf
*mf
, const lzma_allocator
*allocator
,
192 const lzma_lz_options
*lz_options
)
194 // For now, the dictionary size is limited to 1.5 GiB. This may grow
195 // in the future if needed, but it needs a little more work than just
196 // changing this check.
197 if (lz_options
->dict_size
< LZMA_DICT_SIZE_MIN
198 || lz_options
->dict_size
199 > (UINT32_C(1) << 30) + (UINT32_C(1) << 29)
200 || lz_options
->nice_len
> lz_options
->match_len_max
)
203 mf
->keep_size_before
= lz_options
->before_size
+ lz_options
->dict_size
;
205 mf
->keep_size_after
= lz_options
->after_size
206 + lz_options
->match_len_max
;
208 // To avoid constant memmove()s, allocate some extra space. Since
209 // memmove()s become more expensive when the size of the buffer
210 // increases, we reserve more space when a large dictionary is
211 // used to make the memmove() calls rarer.
213 // This works with dictionaries up to about 3 GiB. If bigger
214 // dictionary is wanted, some extra work is needed:
215 // - Several variables in lzma_mf have to be changed from uint32_t
217 // - Memory usage calculation needs something too, e.g. use uint64_t
219 uint32_t reserve
= lz_options
->dict_size
/ 2;
220 if (reserve
> (UINT32_C(1) << 30))
223 reserve
+= (lz_options
->before_size
+ lz_options
->match_len_max
224 + lz_options
->after_size
) / 2 + (UINT32_C(1) << 19);
226 const uint32_t old_size
= mf
->size
;
227 mf
->size
= mf
->keep_size_before
+ reserve
+ mf
->keep_size_after
;
229 // Deallocate the old history buffer if it exists but has different
230 // size than what is needed now.
231 if (mf
->buffer
!= NULL
&& old_size
!= mf
->size
) {
232 lzma_free(mf
->buffer
, allocator
);
236 // Match finder options
237 mf
->match_len_max
= lz_options
->match_len_max
;
238 mf
->nice_len
= lz_options
->nice_len
;
240 // cyclic_size has to stay smaller than 2 Gi. Note that this doesn't
241 // mean limiting dictionary size to less than 2 GiB. With a match
242 // finder that uses multibyte resolution (hashes start at e.g. every
243 // fourth byte), cyclic_size would stay below 2 Gi even when
244 // dictionary size is greater than 2 GiB.
246 // It would be possible to allow cyclic_size >= 2 Gi, but then we
247 // would need to be careful to use 64-bit types in various places
248 // (size_t could do since we would need bigger than 32-bit address
249 // space anyway). It would also require either zeroing a multigigabyte
250 // buffer at initialization (waste of time and RAM) or allow
251 // normalization in lz_encoder_mf.c to access uninitialized
252 // memory to keep the code simpler. The current way is simple and
253 // still allows pretty big dictionaries, so I don't expect these
255 mf
->cyclic_size
= lz_options
->dict_size
+ 1;
257 // Validate the match finder ID and setup the function pointers.
258 switch (lz_options
->match_finder
) {
261 mf
->find
= &lzma_mf_hc3_find
;
262 mf
->skip
= &lzma_mf_hc3_skip
;
267 mf
->find
= &lzma_mf_hc4_find
;
268 mf
->skip
= &lzma_mf_hc4_skip
;
273 mf
->find
= &lzma_mf_bt2_find
;
274 mf
->skip
= &lzma_mf_bt2_skip
;
279 mf
->find
= &lzma_mf_bt3_find
;
280 mf
->skip
= &lzma_mf_bt3_skip
;
285 mf
->find
= &lzma_mf_bt4_find
;
286 mf
->skip
= &lzma_mf_bt4_skip
;
294 // Calculate the sizes of mf->hash and mf->son and check that
295 // nice_len is big enough for the selected match finder.
296 const uint32_t hash_bytes
= lz_options
->match_finder
& 0x0F;
297 if (hash_bytes
> mf
->nice_len
)
300 const bool is_bt
= (lz_options
->match_finder
& 0x10) != 0;
303 if (hash_bytes
== 2) {
306 // Round dictionary size up to the next 2^n - 1 so it can
307 // be used as a hash mask.
308 hs
= lz_options
->dict_size
- 1;
316 if (hs
> (UINT32_C(1) << 24)) {
318 hs
= (UINT32_C(1) << 24) - 1;
332 No match finder uses this at the moment.
333 if (mf->hash_bytes > 4)
337 const uint32_t old_hash_count
= mf
->hash_count
;
338 const uint32_t old_sons_count
= mf
->sons_count
;
340 mf
->sons_count
= mf
->cyclic_size
;
344 // Deallocate the old hash array if it exists and has different size
345 // than what is needed now.
346 if (old_hash_count
!= mf
->hash_count
347 || old_sons_count
!= mf
->sons_count
) {
348 lzma_free(mf
->hash
, allocator
);
351 lzma_free(mf
->son
, allocator
);
355 // Maximum number of match finder cycles
356 mf
->depth
= lz_options
->depth
;
357 if (mf
->depth
== 0) {
359 mf
->depth
= 16 + mf
->nice_len
/ 2;
361 mf
->depth
= 4 + mf
->nice_len
/ 4;
369 lz_encoder_init(lzma_mf
*mf
, const lzma_allocator
*allocator
,
370 const lzma_lz_options
*lz_options
)
372 // Allocate the history buffer.
373 if (mf
->buffer
== NULL
) {
374 // lzma_memcmplen() is used for the dictionary buffer
375 // so we need to allocate a few extra bytes to prevent
376 // it from reading past the end of the buffer.
377 mf
->buffer
= lzma_alloc(mf
->size
+ LZMA_MEMCMPLEN_EXTRA
,
379 if (mf
->buffer
== NULL
)
382 // Keep Valgrind happy with lzma_memcmplen() and initialize
383 // the extra bytes whose value may get read but which will
384 // effectively get ignored.
385 memzero(mf
->buffer
+ mf
->size
, LZMA_MEMCMPLEN_EXTRA
);
388 // Use cyclic_size as initial mf->offset. This allows
389 // avoiding a few branches in the match finders. The downside is
390 // that match finder needs to be normalized more often, which may
391 // hurt performance with huge dictionaries.
392 mf
->offset
= mf
->cyclic_size
;
399 #if UINT32_MAX >= SIZE_MAX / 4
400 // Check for integer overflow. (Huge dictionaries are not
401 // possible on 32-bit CPU.)
402 if (mf
->hash_count
> SIZE_MAX
/ sizeof(uint32_t)
403 || mf
->sons_count
> SIZE_MAX
/ sizeof(uint32_t))
407 // Allocate and initialize the hash table. Since EMPTY_HASH_VALUE
408 // is zero, we can use lzma_alloc_zero() or memzero() for mf->hash.
410 // We don't need to initialize mf->son, but not doing that may
411 // make Valgrind complain in normalization (see normalize() in
412 // lz_encoder_mf.c). Skipping the initialization is *very* good
413 // when big dictionary is used but only small amount of data gets
414 // actually compressed: most of the mf->son won't get actually
415 // allocated by the kernel, so we avoid wasting RAM and improve
416 // initialization speed a lot.
417 if (mf
->hash
== NULL
) {
418 mf
->hash
= lzma_alloc_zero(mf
->hash_count
* sizeof(uint32_t),
420 mf
->son
= lzma_alloc(mf
->sons_count
* sizeof(uint32_t),
423 if (mf
->hash
== NULL
|| mf
->son
== NULL
) {
424 lzma_free(mf
->hash
, allocator
);
427 lzma_free(mf
->son
, allocator
);
434 for (uint32_t i = 0; i < mf->hash_count; ++i)
435 mf->hash[i] = EMPTY_HASH_VALUE;
437 memzero(mf
->hash
, mf
->hash_count
* sizeof(uint32_t));
442 // Handle preset dictionary.
443 if (lz_options
->preset_dict
!= NULL
444 && lz_options
->preset_dict_size
> 0) {
445 // If the preset dictionary is bigger than the actual
446 // dictionary, use only the tail.
447 mf
->write_pos
= my_min(lz_options
->preset_dict_size
, mf
->size
);
448 memcpy(mf
->buffer
, lz_options
->preset_dict
449 + lz_options
->preset_dict_size
- mf
->write_pos
,
451 mf
->action
= LZMA_SYNC_FLUSH
;
452 mf
->skip(mf
, mf
->write_pos
);
455 mf
->action
= LZMA_RUN
;
462 lzma_lz_encoder_memusage(const lzma_lz_options
*lz_options
)
464 // Old buffers must not exist when calling lz_encoder_prepare().
473 // Setup the size information into mf.
474 if (lz_encoder_prepare(&mf
, NULL
, lz_options
))
477 // Calculate the memory usage.
478 return ((uint64_t)(mf
.hash_count
) + mf
.sons_count
) * sizeof(uint32_t)
479 + mf
.size
+ sizeof(lzma_coder
);
484 lz_encoder_end(lzma_coder
*coder
, const lzma_allocator
*allocator
)
486 lzma_next_end(&coder
->next
, allocator
);
488 lzma_free(coder
->mf
.son
, allocator
);
489 lzma_free(coder
->mf
.hash
, allocator
);
490 lzma_free(coder
->mf
.buffer
, allocator
);
492 if (coder
->lz
.end
!= NULL
)
493 coder
->lz
.end(coder
->lz
.coder
, allocator
);
495 lzma_free(coder
->lz
.coder
, allocator
);
497 lzma_free(coder
, allocator
);
503 lz_encoder_update(lzma_coder
*coder
, const lzma_allocator
*allocator
,
504 const lzma_filter
*filters_null
lzma_attribute((__unused__
)),
505 const lzma_filter
*reversed_filters
)
507 if (coder
->lz
.options_update
== NULL
)
508 return LZMA_PROG_ERROR
;
510 return_if_error(coder
->lz
.options_update(
511 coder
->lz
.coder
, reversed_filters
));
513 return lzma_next_filter_update(
514 &coder
->next
, allocator
, reversed_filters
+ 1);
519 lzma_lz_encoder_init(lzma_next_coder
*next
, const lzma_allocator
*allocator
,
520 const lzma_filter_info
*filters
,
521 lzma_ret (*lz_init
)(lzma_lz_encoder
*lz
,
522 const lzma_allocator
*allocator
, const void *options
,
523 lzma_lz_options
*lz_options
))
526 // We need that the CRC32 table has been initialized.
530 // Allocate and initialize the base data structure.
531 if (next
->coder
== NULL
) {
532 next
->coder
= lzma_alloc(sizeof(lzma_coder
), allocator
);
533 if (next
->coder
== NULL
)
534 return LZMA_MEM_ERROR
;
536 next
->code
= &lz_encode
;
537 next
->end
= &lz_encoder_end
;
538 next
->update
= &lz_encoder_update
;
540 next
->coder
->lz
.coder
= NULL
;
541 next
->coder
->lz
.code
= NULL
;
542 next
->coder
->lz
.end
= NULL
;
544 next
->coder
->mf
.buffer
= NULL
;
545 next
->coder
->mf
.hash
= NULL
;
546 next
->coder
->mf
.son
= NULL
;
547 next
->coder
->mf
.hash_count
= 0;
548 next
->coder
->mf
.sons_count
= 0;
550 next
->coder
->next
= LZMA_NEXT_CODER_INIT
;
553 // Initialize the LZ-based encoder.
554 lzma_lz_options lz_options
;
555 return_if_error(lz_init(&next
->coder
->lz
, allocator
,
556 filters
[0].options
, &lz_options
));
558 // Setup the size information into next->coder->mf and deallocate
559 // old buffers if they have wrong size.
560 if (lz_encoder_prepare(&next
->coder
->mf
, allocator
, &lz_options
))
561 return LZMA_OPTIONS_ERROR
;
563 // Allocate new buffers if needed, and do the rest of
564 // the initialization.
565 if (lz_encoder_init(&next
->coder
->mf
, allocator
, &lz_options
))
566 return LZMA_MEM_ERROR
;
568 // Initialize the next filter in the chain, if any.
569 return lzma_next_filter_init(&next
->coder
->next
, allocator
,
574 extern LZMA_API(lzma_bool
)
575 lzma_mf_is_supported(lzma_match_finder mf
)
580 if (mf
== LZMA_MF_HC3
)
585 if (mf
== LZMA_MF_HC4
)
590 if (mf
== LZMA_MF_BT2
)
595 if (mf
== LZMA_MF_BT3
)
600 if (mf
== LZMA_MF_BT4
)