Remove building with NOCRYPTO option
[minix3.git] / lib / libc / gen / arc4random.c
blobadead46f713647d6b9a0e1a13a4bde39f4e40241
1 /* $NetBSD: arc4random.c,v 1.30 2015/05/13 23:15:57 justin Exp $ */
3 /*-
4 * Copyright (c) 2014 The NetBSD Foundation, Inc.
5 * All rights reserved.
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Taylor R. Campbell.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
33 * Legacy arc4random(3) API from OpenBSD reimplemented using the
34 * ChaCha20 PRF, with per-thread state.
36 * Security model:
37 * - An attacker who sees some outputs cannot predict past or future
38 * outputs.
39 * - An attacker who sees the PRNG state cannot predict past outputs.
40 * - An attacker who sees a child's PRNG state cannot predict past or
41 * future outputs in the parent, or in other children.
43 * The arc4random(3) API may abort the process if:
45 * (a) the crypto self-test fails,
46 * (b) pthread_atfork or thr_keycreate fail, or
47 * (c) sysctl(KERN_ARND) fails when reseeding the PRNG.
49 * The crypto self-test, pthread_atfork, and thr_keycreate occur only
50 * once, on the first use of any of the arc4random(3) API. KERN_ARND
51 * is unlikely to fail later unless the kernel is seriously broken.
54 #include <sys/cdefs.h>
55 __RCSID("$NetBSD: arc4random.c,v 1.30 2015/05/13 23:15:57 justin Exp $");
57 #include "namespace.h"
58 #include "reentrant.h"
60 #include <sys/bitops.h>
61 #include <sys/endian.h>
62 #include <sys/errno.h>
63 #if defined(__minix)
64 #include <sys/fcntl.h>
65 #endif
66 #include <sys/mman.h>
67 #include <sys/sysctl.h>
69 #include <assert.h>
70 #include <sha2.h>
71 #include <stdbool.h>
72 #include <stdint.h>
73 #include <stdlib.h>
74 #include <string.h>
75 #include <unistd.h>
77 #ifdef __weak_alias
78 __weak_alias(arc4random,_arc4random)
79 __weak_alias(arc4random_addrandom,_arc4random_addrandom)
80 __weak_alias(arc4random_buf,_arc4random_buf)
81 __weak_alias(arc4random_stir,_arc4random_stir)
82 __weak_alias(arc4random_uniform,_arc4random_uniform)
83 #endif
86 * For standard ChaCha, use le32dec/le32enc. We don't need that for
87 * the purposes of a nondeterministic random number generator -- we
88 * don't need to be bit-for-bit compatible over any wire.
91 static inline uint32_t
92 crypto_le32dec(const void *p)
94 uint32_t v;
96 (void)memcpy(&v, p, sizeof v);
98 return v;
101 static inline void
102 crypto_le32enc(void *p, uint32_t v)
105 (void)memcpy(p, &v, sizeof v);
108 /* ChaCha core */
110 #define crypto_core_OUTPUTBYTES 64
111 #define crypto_core_INPUTBYTES 16
112 #define crypto_core_KEYBYTES 32
113 #define crypto_core_CONSTBYTES 16
115 #define crypto_core_ROUNDS 20
117 static uint32_t
118 rotate(uint32_t u, unsigned c)
121 return (u << c) | (u >> (32 - c));
124 #define QUARTERROUND(a, b, c, d) do { \
125 (a) += (b); (d) ^= (a); (d) = rotate((d), 16); \
126 (c) += (d); (b) ^= (c); (b) = rotate((b), 12); \
127 (a) += (b); (d) ^= (a); (d) = rotate((d), 8); \
128 (c) += (d); (b) ^= (c); (b) = rotate((b), 7); \
129 } while (/*CONSTCOND*/0)
131 const uint8_t crypto_core_constant32[16] = "expand 32-byte k";
133 static void
134 crypto_core(uint8_t *out, const uint8_t *in, const uint8_t *k,
135 const uint8_t *c)
137 uint32_t x0,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15;
138 uint32_t j0,j1,j2,j3,j4,j5,j6,j7,j8,j9,j10,j11,j12,j13,j14,j15;
139 int i;
141 j0 = x0 = crypto_le32dec(c + 0);
142 j1 = x1 = crypto_le32dec(c + 4);
143 j2 = x2 = crypto_le32dec(c + 8);
144 j3 = x3 = crypto_le32dec(c + 12);
145 j4 = x4 = crypto_le32dec(k + 0);
146 j5 = x5 = crypto_le32dec(k + 4);
147 j6 = x6 = crypto_le32dec(k + 8);
148 j7 = x7 = crypto_le32dec(k + 12);
149 j8 = x8 = crypto_le32dec(k + 16);
150 j9 = x9 = crypto_le32dec(k + 20);
151 j10 = x10 = crypto_le32dec(k + 24);
152 j11 = x11 = crypto_le32dec(k + 28);
153 j12 = x12 = crypto_le32dec(in + 0);
154 j13 = x13 = crypto_le32dec(in + 4);
155 j14 = x14 = crypto_le32dec(in + 8);
156 j15 = x15 = crypto_le32dec(in + 12);
158 for (i = crypto_core_ROUNDS; i > 0; i -= 2) {
159 QUARTERROUND( x0, x4, x8,x12);
160 QUARTERROUND( x1, x5, x9,x13);
161 QUARTERROUND( x2, x6,x10,x14);
162 QUARTERROUND( x3, x7,x11,x15);
163 QUARTERROUND( x0, x5,x10,x15);
164 QUARTERROUND( x1, x6,x11,x12);
165 QUARTERROUND( x2, x7, x8,x13);
166 QUARTERROUND( x3, x4, x9,x14);
169 crypto_le32enc(out + 0, x0 + j0);
170 crypto_le32enc(out + 4, x1 + j1);
171 crypto_le32enc(out + 8, x2 + j2);
172 crypto_le32enc(out + 12, x3 + j3);
173 crypto_le32enc(out + 16, x4 + j4);
174 crypto_le32enc(out + 20, x5 + j5);
175 crypto_le32enc(out + 24, x6 + j6);
176 crypto_le32enc(out + 28, x7 + j7);
177 crypto_le32enc(out + 32, x8 + j8);
178 crypto_le32enc(out + 36, x9 + j9);
179 crypto_le32enc(out + 40, x10 + j10);
180 crypto_le32enc(out + 44, x11 + j11);
181 crypto_le32enc(out + 48, x12 + j12);
182 crypto_le32enc(out + 52, x13 + j13);
183 crypto_le32enc(out + 56, x14 + j14);
184 crypto_le32enc(out + 60, x15 + j15);
187 /* ChaCha self-test */
189 #ifdef _DIAGNOSTIC
192 * Test vector for ChaCha20 from
193 * <http://tools.ietf.org/html/draft-strombergson-chacha-test-vectors-00>,
194 * test vectors for ChaCha12 and ChaCha8 and for big-endian machines
195 * generated by the same crypto_core code with crypto_core_ROUNDS and
196 * crypto_le32enc/dec varied.
199 static const uint8_t crypto_core_selftest_vector[64] = {
200 #if _BYTE_ORDER == _LITTLE_ENDIAN
201 # if crypto_core_ROUNDS == 8
202 0x3e,0x00,0xef,0x2f,0x89,0x5f,0x40,0xd6,
203 0x7f,0x5b,0xb8,0xe8,0x1f,0x09,0xa5,0xa1,
204 0x2c,0x84,0x0e,0xc3,0xce,0x9a,0x7f,0x3b,
205 0x18,0x1b,0xe1,0x88,0xef,0x71,0x1a,0x1e,
206 0x98,0x4c,0xe1,0x72,0xb9,0x21,0x6f,0x41,
207 0x9f,0x44,0x53,0x67,0x45,0x6d,0x56,0x19,
208 0x31,0x4a,0x42,0xa3,0xda,0x86,0xb0,0x01,
209 0x38,0x7b,0xfd,0xb8,0x0e,0x0c,0xfe,0x42,
210 # elif crypto_core_ROUNDS == 12
211 0x9b,0xf4,0x9a,0x6a,0x07,0x55,0xf9,0x53,
212 0x81,0x1f,0xce,0x12,0x5f,0x26,0x83,0xd5,
213 0x04,0x29,0xc3,0xbb,0x49,0xe0,0x74,0x14,
214 0x7e,0x00,0x89,0xa5,0x2e,0xae,0x15,0x5f,
215 0x05,0x64,0xf8,0x79,0xd2,0x7a,0xe3,0xc0,
216 0x2c,0xe8,0x28,0x34,0xac,0xfa,0x8c,0x79,
217 0x3a,0x62,0x9f,0x2c,0xa0,0xde,0x69,0x19,
218 0x61,0x0b,0xe8,0x2f,0x41,0x13,0x26,0xbe,
219 # elif crypto_core_ROUNDS == 20
220 0x76,0xb8,0xe0,0xad,0xa0,0xf1,0x3d,0x90,
221 0x40,0x5d,0x6a,0xe5,0x53,0x86,0xbd,0x28,
222 0xbd,0xd2,0x19,0xb8,0xa0,0x8d,0xed,0x1a,
223 0xa8,0x36,0xef,0xcc,0x8b,0x77,0x0d,0xc7,
224 0xda,0x41,0x59,0x7c,0x51,0x57,0x48,0x8d,
225 0x77,0x24,0xe0,0x3f,0xb8,0xd8,0x4a,0x37,
226 0x6a,0x43,0xb8,0xf4,0x15,0x18,0xa1,0x1c,
227 0xc3,0x87,0xb6,0x69,0xb2,0xee,0x65,0x86,
228 # else
229 # error crypto_core_ROUNDS must be 8, 12, or 20.
230 # endif
231 #elif _BYTE_ORDER == _BIG_ENDIAN
232 # if crypto_core_ROUNDS == 8
233 0x9a,0x13,0x07,0xe3,0x38,0x18,0x9e,0x99,
234 0x15,0x37,0x16,0x4d,0x04,0xe6,0x48,0x9a,
235 0x07,0xd6,0xe8,0x7a,0x02,0xf9,0xf5,0xc7,
236 0x3f,0xa9,0xc2,0x0a,0xe1,0xc6,0x62,0xea,
237 0x80,0xaf,0xb6,0x51,0xca,0x52,0x43,0x87,
238 0xe3,0xa6,0xa6,0x61,0x11,0xf5,0xe6,0xcf,
239 0x09,0x0f,0xdc,0x9d,0xc3,0xc3,0xbb,0x43,
240 0xd7,0xfa,0x70,0x42,0xbf,0xa5,0xee,0xa2,
241 # elif crypto_core_ROUNDS == 12
242 0xcf,0x6c,0x16,0x48,0xbf,0xf4,0xba,0x85,
243 0x32,0x69,0xd3,0x98,0xc8,0x7d,0xcd,0x3f,
244 0xdc,0x76,0x6b,0xa2,0x7b,0xcb,0x17,0x4d,
245 0x05,0xda,0xdd,0xd8,0x62,0x54,0xbf,0xe0,
246 0x65,0xed,0x0e,0xf4,0x01,0x7e,0x3c,0x05,
247 0x35,0xb2,0x7a,0x60,0xf3,0x8f,0x12,0x33,
248 0x24,0x60,0xcd,0x85,0xfe,0x4c,0xf3,0x39,
249 0xb1,0x0e,0x3e,0xe0,0xba,0xa6,0x2f,0xa9,
250 # elif crypto_core_ROUNDS == 20
251 0x83,0x8b,0xf8,0x75,0xf7,0xde,0x9d,0x8c,
252 0x33,0x14,0x72,0x28,0xd1,0xbe,0x88,0xe5,
253 0x94,0xb5,0xed,0xb8,0x56,0xb5,0x9e,0x0c,
254 0x64,0x6a,0xaf,0xd9,0xa7,0x49,0x10,0x59,
255 0xba,0x3a,0x82,0xf8,0x4a,0x70,0x9c,0x00,
256 0x82,0x2c,0xae,0xc6,0xd7,0x1c,0x2e,0xda,
257 0x2a,0xfb,0x61,0x70,0x2b,0xd1,0xbf,0x8b,
258 0x95,0xbc,0x23,0xb6,0x4b,0x60,0x02,0xec,
259 # else
260 # error crypto_core_ROUNDS must be 8, 12, or 20.
261 # endif
262 #else
263 # error Byte order must be little-endian or big-endian.
264 #endif
267 static int
268 crypto_core_selftest(void)
270 const uint8_t nonce[crypto_core_INPUTBYTES] = {0};
271 const uint8_t key[crypto_core_KEYBYTES] = {0};
272 uint8_t block[64];
273 unsigned i;
275 crypto_core(block, nonce, key, crypto_core_constant32);
276 for (i = 0; i < 64; i++) {
277 if (block[i] != crypto_core_selftest_vector[i])
278 return EIO;
281 return 0;
284 #else /* !_DIAGNOSTIC */
286 static int
287 crypto_core_selftest(void)
290 return 0;
293 #endif
295 /* PRNG */
298 * For a state s, rather than use ChaCha20 as a stream cipher to
299 * generate the concatenation ChaCha20_s(0) || ChaCha20_s(1) || ..., we
300 * split ChaCha20_s(0) into s' || x and yield x for the first request,
301 * split ChaCha20_s'(0) into s'' || y and yield y for the second
302 * request, &c. This provides backtracking resistance: an attacker who
303 * finds s'' can't recover s' or x.
306 #define crypto_prng_SEEDBYTES crypto_core_KEYBYTES
307 #define crypto_prng_MAXOUTPUTBYTES \
308 (crypto_core_OUTPUTBYTES - crypto_prng_SEEDBYTES)
310 struct crypto_prng {
311 uint8_t state[crypto_prng_SEEDBYTES];
314 static void
315 crypto_prng_seed(struct crypto_prng *prng, const void *seed)
318 (void)memcpy(prng->state, seed, crypto_prng_SEEDBYTES);
321 static void
322 crypto_prng_buf(struct crypto_prng *prng, void *buf, size_t n)
324 const uint8_t nonce[crypto_core_INPUTBYTES] = {0};
325 uint8_t output[crypto_core_OUTPUTBYTES];
327 _DIAGASSERT(n <= crypto_prng_MAXOUTPUTBYTES);
328 __CTASSERT(sizeof prng->state + crypto_prng_MAXOUTPUTBYTES
329 <= sizeof output);
331 crypto_core(output, nonce, prng->state, crypto_core_constant32);
332 (void)memcpy(prng->state, output, sizeof prng->state);
333 (void)memcpy(buf, output + sizeof prng->state, n);
334 (void)explicit_memset(output, 0, sizeof output);
337 /* One-time stream: expand short single-use secret into long secret */
339 #define crypto_onetimestream_SEEDBYTES crypto_core_KEYBYTES
341 static void
342 crypto_onetimestream(const void *seed, void *buf, size_t n)
344 uint32_t nonce[crypto_core_INPUTBYTES / sizeof(uint32_t)] = {0};
345 uint8_t block[crypto_core_OUTPUTBYTES];
346 uint8_t *p8, *p32;
347 const uint8_t *nonce8 = (const uint8_t *)(void *)nonce;
348 size_t ni, nb, nf;
351 * Guarantee we can generate up to n bytes. We have
352 * 2^(8*INPUTBYTES) possible inputs yielding output of
353 * OUTPUTBYTES*2^(8*INPUTBYTES) bytes. It suffices to require
354 * that sizeof n > (1/CHAR_BIT) log_2 n be less than
355 * (1/CHAR_BIT) log_2 of the total output stream length. We
356 * have
358 * log_2 (o 2^(8 i)) = log_2 o + log_2 2^(8 i)
359 * = log_2 o + 8 i.
361 __CTASSERT(CHAR_BIT * sizeof n <=
362 (/*LINTED*/ilog2(crypto_core_OUTPUTBYTES) + 8 * crypto_core_INPUTBYTES));
364 p8 = buf;
365 p32 = (uint8_t *)roundup2((uintptr_t)p8, 4);
366 ni = p32 - p8;
367 if (n < ni)
368 ni = n;
369 nb = (n - ni) / sizeof block;
370 nf = (n - ni) % sizeof block;
372 _DIAGASSERT(((uintptr_t)p32 & 3) == 0);
373 _DIAGASSERT(ni <= n);
374 _DIAGASSERT(nb <= (n / sizeof block));
375 _DIAGASSERT(nf <= n);
376 _DIAGASSERT(n == (ni + (nb * sizeof block) + nf));
377 _DIAGASSERT(ni < 4);
378 _DIAGASSERT(nf < sizeof block);
380 if (ni) {
381 crypto_core(block, nonce8, seed, crypto_core_constant32);
382 nonce[0]++;
383 (void)memcpy(p8, block, ni);
385 while (nb--) {
386 crypto_core(p32, nonce8, seed, crypto_core_constant32);
387 if (++nonce[0] == 0)
388 nonce[1]++;
389 p32 += crypto_core_OUTPUTBYTES;
391 if (nf) {
392 crypto_core(block, nonce8, seed, crypto_core_constant32);
393 if (++nonce[0] == 0)
394 nonce[1]++;
395 (void)memcpy(p32, block, nf);
398 if (ni | nf)
399 (void)explicit_memset(block, 0, sizeof block);
402 /* arc4random state: per-thread, per-process (zeroed in child on fork) */
404 struct arc4random_prng {
405 struct crypto_prng arc4_prng;
406 bool arc4_seeded;
409 static void
410 arc4random_prng_addrandom(struct arc4random_prng *prng, const void *data,
411 size_t datalen)
413 #if !defined(__minix)
414 const int mib[] = { CTL_KERN, KERN_ARND };
415 #endif /* !defined(__minix) */
416 SHA256_CTX ctx;
417 uint8_t buf[crypto_prng_SEEDBYTES];
418 size_t buflen = sizeof buf;
420 __CTASSERT(sizeof buf == SHA256_DIGEST_LENGTH);
422 SHA256_Init(&ctx);
424 crypto_prng_buf(&prng->arc4_prng, buf, sizeof buf);
425 SHA256_Update(&ctx, buf, sizeof buf);
427 #if defined(__minix)
428 /* LSC: We do not have a compatibility layer for the
429 * KERN_ARND call, so do it the old way... */
430 int fd;
432 fd = open("/dev/urandom", O_RDONLY);
433 if (fd != -1) {
434 (void)read(fd, buf, buflen);
435 close(fd);
438 /* fd < 0 or failed sysctl ? Ah, what the heck. We'll just take
439 * whatever was on the stack... */
440 #else
441 if (sysctl(mib, (u_int)__arraycount(mib), buf, &buflen, NULL, 0) == -1)
442 abort();
443 #endif /* !defined(__minix) */
444 if (buflen != sizeof buf)
445 abort();
446 SHA256_Update(&ctx, buf, sizeof buf);
448 if (data != NULL)
449 SHA256_Update(&ctx, data, datalen);
451 SHA256_Final(buf, &ctx);
452 (void)explicit_memset(&ctx, 0, sizeof ctx);
454 /* reseed(SHA256(prng() || sysctl(KERN_ARND) || data)) */
455 crypto_prng_seed(&prng->arc4_prng, buf);
456 (void)explicit_memset(buf, 0, sizeof buf);
457 prng->arc4_seeded = true;
460 #ifdef _REENTRANT
461 static struct arc4random_prng *
462 arc4random_prng_create(void)
464 struct arc4random_prng *prng;
465 const size_t size = roundup(sizeof(*prng), sysconf(_SC_PAGESIZE));
467 prng = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANON, -1, 0);
468 if (prng == MAP_FAILED)
469 goto fail0;
470 if (minherit(prng, size, MAP_INHERIT_ZERO) == -1)
471 goto fail1;
473 return prng;
475 fail1: (void)munmap(prng, size);
476 fail0: return NULL;
478 #endif
480 #ifdef _REENTRANT
481 static void
482 arc4random_prng_destroy(struct arc4random_prng *prng)
484 const size_t size = roundup(sizeof(*prng), sysconf(_SC_PAGESIZE));
486 (void)explicit_memset(prng, 0, sizeof(*prng));
487 (void)munmap(prng, size);
489 #endif
491 /* Library state */
493 static struct arc4random_global {
494 #ifdef _REENTRANT
495 mutex_t lock;
496 thread_key_t thread_key;
497 #endif
498 struct arc4random_prng prng;
499 bool initialized;
500 } arc4random_global = {
501 #ifdef _REENTRANT
502 .lock = MUTEX_INITIALIZER,
503 #endif
504 .initialized = false,
507 static void
508 arc4random_atfork_prepare(void)
511 mutex_lock(&arc4random_global.lock);
512 (void)explicit_memset(&arc4random_global.prng, 0,
513 sizeof arc4random_global.prng);
516 static void
517 arc4random_atfork_parent(void)
520 mutex_unlock(&arc4random_global.lock);
523 static void
524 arc4random_atfork_child(void)
527 mutex_unlock(&arc4random_global.lock);
530 #ifdef _REENTRANT
531 static void
532 arc4random_tsd_destructor(void *p)
534 struct arc4random_prng *const prng = p;
536 arc4random_prng_destroy(prng);
538 #endif
540 static void
541 arc4random_initialize(void)
544 mutex_lock(&arc4random_global.lock);
545 if (!arc4random_global.initialized) {
546 if (crypto_core_selftest() != 0)
547 abort();
548 #if !defined(__minix)
549 if (pthread_atfork(&arc4random_atfork_prepare,
550 &arc4random_atfork_parent, &arc4random_atfork_child)
551 != 0)
552 abort();
553 #endif /* !defined(__minix) */
554 #ifdef _REENTRANT
555 if (thr_keycreate(&arc4random_global.thread_key,
556 &arc4random_tsd_destructor) != 0)
557 abort();
558 #endif
559 arc4random_global.initialized = true;
561 mutex_unlock(&arc4random_global.lock);
564 static struct arc4random_prng *
565 arc4random_prng_get(void)
567 struct arc4random_prng *prng = NULL;
569 /* Make sure the library is initialized. */
570 if (__predict_false(!arc4random_global.initialized))
571 arc4random_initialize();
573 #ifdef _REENTRANT
574 /* Get or create the per-thread PRNG state. */
575 prng = thr_getspecific(arc4random_global.thread_key);
576 if (__predict_false(prng == NULL)) {
577 prng = arc4random_prng_create();
578 thr_setspecific(arc4random_global.thread_key, prng);
580 #endif
582 /* If we can't create it, fall back to the global PRNG. */
583 if (__predict_false(prng == NULL)) {
584 mutex_lock(&arc4random_global.lock);
585 prng = &arc4random_global.prng;
588 /* Guarantee the PRNG is seeded. */
589 if (__predict_false(!prng->arc4_seeded))
590 arc4random_prng_addrandom(prng, NULL, 0);
592 return prng;
595 static void
596 arc4random_prng_put(struct arc4random_prng *prng)
599 /* If we had fallen back to the global PRNG, unlock it. */
600 if (__predict_false(prng == &arc4random_global.prng))
601 mutex_unlock(&arc4random_global.lock);
604 /* Public API */
606 uint32_t
607 arc4random(void)
609 struct arc4random_prng *prng;
610 uint32_t v;
612 prng = arc4random_prng_get();
613 crypto_prng_buf(&prng->arc4_prng, &v, sizeof v);
614 arc4random_prng_put(prng);
616 return v;
619 void
620 arc4random_buf(void *buf, size_t len)
622 struct arc4random_prng *prng;
624 if (len <= crypto_prng_MAXOUTPUTBYTES) {
625 prng = arc4random_prng_get();
626 crypto_prng_buf(&prng->arc4_prng, buf, len);
627 arc4random_prng_put(prng);
628 } else {
629 uint8_t seed[crypto_onetimestream_SEEDBYTES];
631 prng = arc4random_prng_get();
632 crypto_prng_buf(&prng->arc4_prng, seed, sizeof seed);
633 arc4random_prng_put(prng);
635 crypto_onetimestream(seed, buf, len);
636 (void)explicit_memset(seed, 0, sizeof seed);
640 uint32_t
641 arc4random_uniform(uint32_t bound)
643 struct arc4random_prng *prng;
644 uint32_t minimum, r;
647 * We want a uniform random choice in [0, n), and arc4random()
648 * makes a uniform random choice in [0, 2^32). If we reduce
649 * that modulo n, values in [0, 2^32 mod n) will be represented
650 * slightly more than values in [2^32 mod n, n). Instead we
651 * choose only from [2^32 mod n, 2^32) by rejecting samples in
652 * [0, 2^32 mod n), to avoid counting the extra representative
653 * of [0, 2^32 mod n). To compute 2^32 mod n, note that
655 * 2^32 mod n = 2^32 mod n - 0
656 * = 2^32 mod n - n mod n
657 * = (2^32 - n) mod n,
659 * the last of which is what we compute in 32-bit arithmetic.
661 minimum = (-bound % bound);
663 prng = arc4random_prng_get();
664 do crypto_prng_buf(&prng->arc4_prng, &r, sizeof r);
665 while (__predict_false(r < minimum));
666 arc4random_prng_put(prng);
668 return (r % bound);
671 void
672 arc4random_stir(void)
674 struct arc4random_prng *prng;
676 prng = arc4random_prng_get();
677 arc4random_prng_addrandom(prng, NULL, 0);
678 arc4random_prng_put(prng);
682 * Silly signature here is for hysterical raisins. Should instead be
683 * const void *data and size_t datalen.
685 void
686 arc4random_addrandom(u_char *data, int datalen)
688 struct arc4random_prng *prng;
690 _DIAGASSERT(0 <= datalen);
692 prng = arc4random_prng_get();
693 arc4random_prng_addrandom(prng, data, datalen);
694 arc4random_prng_put(prng);
697 #ifdef _ARC4RANDOM_TEST
699 #include <sys/wait.h>
701 #include <err.h>
702 #include <stdio.h>
705 main(int argc __unused, char **argv __unused)
707 unsigned char gubbish[] = "random gubbish";
708 const uint8_t zero64[64] = {0};
709 uint8_t buf[2048];
710 unsigned i, a, n;
712 /* Test arc4random: should not be deterministic. */
713 if (printf("arc4random: %08"PRIx32"\n", arc4random()) < 0)
714 err(1, "printf");
716 /* Test stirring: should definitely not be deterministic. */
717 arc4random_stir();
719 /* Test small buffer. */
720 arc4random_buf(buf, 8);
721 if (printf("arc4randombuf small:") < 0)
722 err(1, "printf");
723 for (i = 0; i < 8; i++)
724 if (printf(" %02x", buf[i]) < 0)
725 err(1, "printf");
726 if (printf("\n") < 0)
727 err(1, "printf");
729 /* Test addrandom: should not make the rest deterministic. */
730 arc4random_addrandom(gubbish, sizeof gubbish);
732 /* Test large buffer. */
733 arc4random_buf(buf, sizeof buf);
734 if (printf("arc4randombuf_large:") < 0)
735 err(1, "printf");
736 for (i = 0; i < sizeof buf; i++)
737 if (printf(" %02x", buf[i]) < 0)
738 err(1, "printf");
739 if (printf("\n") < 0)
740 err(1, "printf");
742 /* Test misaligned small and large. */
743 for (a = 0; a < 64; a++) {
744 for (n = a; n < sizeof buf; n++) {
745 (void)memset(buf, 0, sizeof buf);
746 arc4random_buf(buf, n - a);
747 if (memcmp(buf + n - a, zero64, a) != 0)
748 errx(1, "arc4random buffer overflow 0");
750 (void)memset(buf, 0, sizeof buf);
751 arc4random_buf(buf + a, n - a);
752 if (memcmp(buf, zero64, a) != 0)
753 errx(1, "arc4random buffer overflow 1");
755 if ((2*a) <= n) {
756 (void)memset(buf, 0, sizeof buf);
757 arc4random_buf(buf + a, n - a - a);
758 if (memcmp(buf + n - a, zero64, a) != 0)
759 errx(1,
760 "arc4random buffer overflow 2");
765 /* Test fork-safety. */
767 pid_t pid, rpid;
768 int status;
770 pid = fork();
771 switch (pid) {
772 case -1:
773 err(1, "fork");
774 case 0:
775 _exit(arc4random_prng_get()->arc4_seeded);
776 default:
777 rpid = waitpid(pid, &status, 0);
778 if (rpid == -1)
779 err(1, "waitpid");
780 if (rpid != pid)
781 errx(1, "waitpid returned wrong pid"
782 ": %"PRIdMAX" != %"PRIdMAX,
783 (intmax_t)rpid,
784 (intmax_t)pid);
785 if (WIFEXITED(status)) {
786 if (WEXITSTATUS(status) != 0)
787 errx(1, "child exited with %d",
788 WEXITSTATUS(status));
789 } else if (WIFSIGNALED(status)) {
790 errx(1, "child terminated on signal %d",
791 WTERMSIG(status));
792 } else {
793 errx(1, "child died mysteriously: %d", status);
798 /* XXX Test multithreaded fork safety...? */
800 return 0;
802 #endif