Remove building with NOCRYPTO option
[minix3.git] / lib / libkvm / kvm_proc.c
blob4b7c8c4d1dc90a14b414c5f2421ef3b48a3d9030
1 /* $NetBSD: kvm_proc.c,v 1.90 2014/02/19 20:21:22 dsl Exp $ */
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Charles M. Hannum.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
32 /*-
33 * Copyright (c) 1989, 1992, 1993
34 * The Regents of the University of California. All rights reserved.
36 * This code is derived from software developed by the Computer Systems
37 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
38 * BG 91-66 and contributed to Berkeley.
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. Neither the name of the University nor the names of its contributors
49 * may be used to endorse or promote products derived from this software
50 * without specific prior written permission.
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
65 #include <sys/cdefs.h>
66 #if defined(LIBC_SCCS) && !defined(lint)
67 #if 0
68 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
69 #else
70 __RCSID("$NetBSD: kvm_proc.c,v 1.90 2014/02/19 20:21:22 dsl Exp $");
71 #endif
72 #endif /* LIBC_SCCS and not lint */
75 * Proc traversal interface for kvm. ps and w are (probably) the exclusive
76 * users of this code, so we've factored it out into a separate module.
77 * Thus, we keep this grunge out of the other kvm applications (i.e.,
78 * most other applications are interested only in open/close/read/nlist).
81 #include <sys/param.h>
82 #include <sys/lwp.h>
83 #include <sys/proc.h>
84 #include <sys/exec.h>
85 #include <sys/stat.h>
86 #include <sys/ioctl.h>
87 #include <sys/tty.h>
88 #include <sys/resourcevar.h>
89 #include <sys/mutex.h>
90 #include <sys/specificdata.h>
91 #include <sys/types.h>
93 #include <errno.h>
94 #include <stdlib.h>
95 #include <stddef.h>
96 #include <string.h>
97 #include <unistd.h>
98 #include <nlist.h>
99 #include <kvm.h>
101 #include <uvm/uvm_extern.h>
102 #include <uvm/uvm_param.h>
103 #include <uvm/uvm_amap.h>
104 #include <uvm/uvm_page.h>
106 #include <sys/sysctl.h>
108 #include <limits.h>
109 #include <db.h>
110 #include <paths.h>
112 #include "kvm_private.h"
115 * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
117 struct miniproc {
118 struct vmspace *p_vmspace;
119 char p_stat;
120 struct proc *p_paddr;
121 pid_t p_pid;
125 * Convert from struct proc and kinfo_proc{,2} to miniproc.
127 #define PTOMINI(kp, p) \
128 do { \
129 (p)->p_stat = (kp)->p_stat; \
130 (p)->p_pid = (kp)->p_pid; \
131 (p)->p_paddr = NULL; \
132 (p)->p_vmspace = (kp)->p_vmspace; \
133 } while (/*CONSTCOND*/0);
135 #define KPTOMINI(kp, p) \
136 do { \
137 (p)->p_stat = (kp)->kp_proc.p_stat; \
138 (p)->p_pid = (kp)->kp_proc.p_pid; \
139 (p)->p_paddr = (kp)->kp_eproc.e_paddr; \
140 (p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
141 } while (/*CONSTCOND*/0);
143 #define KP2TOMINI(kp, p) \
144 do { \
145 (p)->p_stat = (kp)->p_stat; \
146 (p)->p_pid = (kp)->p_pid; \
147 (p)->p_paddr = (void *)(long)(kp)->p_paddr; \
148 (p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
149 } while (/*CONSTCOND*/0);
152 * NetBSD uses kauth(9) to manage credentials, which are stored in kauth_cred_t,
153 * a kernel-only opaque type. This is an embedded version which is *INTERNAL* to
154 * kvm(3) so dumps can be read properly.
156 * Whenever NetBSD starts exporting credentials to userland consistently (using
157 * 'struct uucred', or something) this will have to be updated again.
159 struct kvm_kauth_cred {
160 u_int cr_refcnt; /* reference count */
161 uint8_t cr_pad[CACHE_LINE_SIZE - sizeof(u_int)];
162 uid_t cr_uid; /* user id */
163 uid_t cr_euid; /* effective user id */
164 uid_t cr_svuid; /* saved effective user id */
165 gid_t cr_gid; /* group id */
166 gid_t cr_egid; /* effective group id */
167 gid_t cr_svgid; /* saved effective group id */
168 u_int cr_ngroups; /* number of groups */
169 gid_t cr_groups[NGROUPS]; /* group memberships */
170 specificdata_reference cr_sd; /* specific data */
173 /* XXX: What uses these two functions? */
174 char *_kvm_uread(kvm_t *, const struct proc *, u_long, u_long *);
175 ssize_t kvm_uread(kvm_t *, const struct proc *, u_long, char *,
176 size_t);
178 static char *_kvm_ureadm(kvm_t *, const struct miniproc *, u_long,
179 u_long *);
180 static ssize_t kvm_ureadm(kvm_t *, const struct miniproc *, u_long,
181 char *, size_t);
183 static char **kvm_argv(kvm_t *, const struct miniproc *, u_long, int, int);
184 static int kvm_deadprocs(kvm_t *, int, int, u_long, u_long, int);
185 static char **kvm_doargv(kvm_t *, const struct miniproc *, int,
186 void (*)(struct ps_strings *, u_long *, int *));
187 static char **kvm_doargv2(kvm_t *, pid_t, int, int);
188 static int kvm_proclist(kvm_t *, int, int, struct proc *,
189 struct kinfo_proc *, int);
190 static int proc_verify(kvm_t *, u_long, const struct miniproc *);
191 static void ps_str_a(struct ps_strings *, u_long *, int *);
192 static void ps_str_e(struct ps_strings *, u_long *, int *);
195 static char *
196 _kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long va, u_long *cnt)
198 u_long addr, head;
199 u_long offset;
200 struct vm_map_entry vme;
201 struct vm_amap amap;
202 struct vm_anon *anonp, anon;
203 struct vm_page pg;
204 u_long slot;
206 if (kd->swapspc == NULL) {
207 kd->swapspc = _kvm_malloc(kd, (size_t)kd->nbpg);
208 if (kd->swapspc == NULL)
209 return (NULL);
213 * Look through the address map for the memory object
214 * that corresponds to the given virtual address.
215 * The header just has the entire valid range.
217 head = (u_long)&p->p_vmspace->vm_map.header;
218 addr = head;
219 for (;;) {
220 if (KREAD(kd, addr, &vme))
221 return (NULL);
223 if (va >= vme.start && va < vme.end &&
224 vme.aref.ar_amap != NULL)
225 break;
227 addr = (u_long)vme.next;
228 if (addr == head)
229 return (NULL);
233 * we found the map entry, now to find the object...
235 if (vme.aref.ar_amap == NULL)
236 return (NULL);
238 addr = (u_long)vme.aref.ar_amap;
239 if (KREAD(kd, addr, &amap))
240 return (NULL);
242 offset = va - vme.start;
243 slot = offset / kd->nbpg + vme.aref.ar_pageoff;
244 /* sanity-check slot number */
245 if (slot > amap.am_nslot)
246 return (NULL);
248 addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
249 if (KREAD(kd, addr, &anonp))
250 return (NULL);
252 addr = (u_long)anonp;
253 if (KREAD(kd, addr, &anon))
254 return (NULL);
256 addr = (u_long)anon.an_page;
257 if (addr) {
258 if (KREAD(kd, addr, &pg))
259 return (NULL);
261 if (_kvm_pread(kd, kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
262 (off_t)pg.phys_addr) != kd->nbpg)
263 return (NULL);
264 } else {
265 if (kd->swfd < 0 ||
266 _kvm_pread(kd, kd->swfd, kd->swapspc, (size_t)kd->nbpg,
267 (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
268 return (NULL);
271 /* Found the page. */
272 offset %= kd->nbpg;
273 *cnt = kd->nbpg - offset;
274 return (&kd->swapspc[(size_t)offset]);
277 char *
278 _kvm_uread(kvm_t *kd, const struct proc *p, u_long va, u_long *cnt)
280 struct miniproc mp;
282 PTOMINI(p, &mp);
283 return (_kvm_ureadm(kd, &mp, va, cnt));
287 * Convert credentials located in kernel space address 'cred' and store
288 * them in the appropriate members of 'eproc'.
290 static int
291 _kvm_convertcred(kvm_t *kd, u_long cred, struct eproc *eproc)
293 struct kvm_kauth_cred kauthcred;
294 struct ki_pcred *pc = &eproc->e_pcred;
295 struct ki_ucred *uc = &eproc->e_ucred;
297 if (KREAD(kd, cred, &kauthcred) != 0)
298 return (-1);
300 /* inlined version of kauth_cred_to_pcred, see kauth(9). */
301 pc->p_ruid = kauthcred.cr_uid;
302 pc->p_svuid = kauthcred.cr_svuid;
303 pc->p_rgid = kauthcred.cr_gid;
304 pc->p_svgid = kauthcred.cr_svgid;
305 pc->p_refcnt = kauthcred.cr_refcnt;
306 pc->p_pad = NULL;
308 /* inlined version of kauth_cred_to_ucred(), see kauth(9). */
309 uc->cr_ref = kauthcred.cr_refcnt;
310 uc->cr_uid = kauthcred.cr_euid;
311 uc->cr_gid = kauthcred.cr_egid;
312 uc->cr_ngroups = (uint32_t)MIN(kauthcred.cr_ngroups,
313 sizeof(uc->cr_groups) / sizeof(uc->cr_groups[0]));
314 memcpy(uc->cr_groups, kauthcred.cr_groups,
315 uc->cr_ngroups * sizeof(uc->cr_groups[0]));
317 return (0);
321 * Read proc's from memory file into buffer bp, which has space to hold
322 * at most maxcnt procs.
324 static int
325 kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p,
326 struct kinfo_proc *bp, int maxcnt)
328 int cnt = 0;
329 int nlwps;
330 struct kinfo_lwp *kl;
331 struct eproc eproc;
332 struct pgrp pgrp;
333 struct session sess;
334 struct tty tty;
335 struct proc proc;
337 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
338 if (KREAD(kd, (u_long)p, &proc)) {
339 _kvm_err(kd, kd->program, "can't read proc at %p", p);
340 return (-1);
342 if (_kvm_convertcred(kd, (u_long)proc.p_cred, &eproc) != 0) {
343 _kvm_err(kd, kd->program,
344 "can't read proc credentials at %p", p);
345 return (-1);
348 switch (what) {
350 case KERN_PROC_PID:
351 if (proc.p_pid != (pid_t)arg)
352 continue;
353 break;
355 case KERN_PROC_UID:
356 if (eproc.e_ucred.cr_uid != (uid_t)arg)
357 continue;
358 break;
360 case KERN_PROC_RUID:
361 if (eproc.e_pcred.p_ruid != (uid_t)arg)
362 continue;
363 break;
366 * We're going to add another proc to the set. If this
367 * will overflow the buffer, assume the reason is because
368 * nprocs (or the proc list) is corrupt and declare an error.
370 if (cnt >= maxcnt) {
371 _kvm_err(kd, kd->program, "nprocs corrupt");
372 return (-1);
375 * gather eproc
377 eproc.e_paddr = p;
378 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
379 _kvm_err(kd, kd->program, "can't read pgrp at %p",
380 proc.p_pgrp);
381 return (-1);
383 eproc.e_sess = pgrp.pg_session;
384 eproc.e_pgid = pgrp.pg_id;
385 eproc.e_jobc = pgrp.pg_jobc;
386 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
387 _kvm_err(kd, kd->program, "can't read session at %p",
388 pgrp.pg_session);
389 return (-1);
391 if ((proc.p_lflag & PL_CONTROLT) && sess.s_ttyp != NULL) {
392 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
393 _kvm_err(kd, kd->program,
394 "can't read tty at %p", sess.s_ttyp);
395 return (-1);
397 eproc.e_tdev = (uint32_t)tty.t_dev;
398 eproc.e_tsess = tty.t_session;
399 if (tty.t_pgrp != NULL) {
400 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
401 _kvm_err(kd, kd->program,
402 "can't read tpgrp at %p",
403 tty.t_pgrp);
404 return (-1);
406 eproc.e_tpgid = pgrp.pg_id;
407 } else
408 eproc.e_tpgid = -1;
409 } else
410 eproc.e_tdev = (uint32_t)NODEV;
411 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
412 eproc.e_sid = sess.s_sid;
413 if (sess.s_leader == p)
414 eproc.e_flag |= EPROC_SLEADER;
416 * Fill in the old-style proc.p_wmesg by copying the wmesg
417 * from the first available LWP.
419 kl = kvm_getlwps(kd, proc.p_pid,
420 (u_long)PTRTOUINT64(eproc.e_paddr),
421 sizeof(struct kinfo_lwp), &nlwps);
422 if (kl) {
423 if (nlwps > 0) {
424 strcpy(eproc.e_wmesg, kl[0].l_wmesg);
427 (void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
428 sizeof(eproc.e_vm));
430 eproc.e_xsize = eproc.e_xrssize = 0;
431 eproc.e_xccount = eproc.e_xswrss = 0;
433 switch (what) {
435 case KERN_PROC_PGRP:
436 if (eproc.e_pgid != (pid_t)arg)
437 continue;
438 break;
440 case KERN_PROC_TTY:
441 if ((proc.p_lflag & PL_CONTROLT) == 0 ||
442 eproc.e_tdev != (dev_t)arg)
443 continue;
444 break;
446 memcpy(&bp->kp_proc, &proc, sizeof(proc));
447 memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
448 ++bp;
449 ++cnt;
451 return (cnt);
455 * Build proc info array by reading in proc list from a crash dump.
456 * Return number of procs read. maxcnt is the max we will read.
458 static int
459 kvm_deadprocs(kvm_t *kd, int what, int arg, u_long a_allproc,
460 u_long a_zombproc, int maxcnt)
462 struct kinfo_proc *bp = kd->procbase;
463 int acnt, zcnt;
464 struct proc *p;
466 if (KREAD(kd, a_allproc, &p)) {
467 _kvm_err(kd, kd->program, "cannot read allproc");
468 return (-1);
470 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
471 if (acnt < 0)
472 return (acnt);
474 if (KREAD(kd, a_zombproc, &p)) {
475 _kvm_err(kd, kd->program, "cannot read zombproc");
476 return (-1);
478 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
479 maxcnt - acnt);
480 if (zcnt < 0)
481 zcnt = 0;
483 return (acnt + zcnt);
486 struct kinfo_proc2 *
487 kvm_getproc2(kvm_t *kd, int op, int arg, size_t esize, int *cnt)
489 size_t size;
490 int mib[6], st, nprocs;
491 struct pstats pstats;
493 if (ISSYSCTL(kd)) {
494 size = 0;
495 mib[0] = CTL_KERN;
496 mib[1] = KERN_PROC2;
497 mib[2] = op;
498 mib[3] = arg;
499 mib[4] = (int)esize;
500 again:
501 mib[5] = 0;
502 st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0);
503 if (st == -1) {
504 _kvm_syserr(kd, kd->program, "kvm_getproc2");
505 return (NULL);
508 mib[5] = (int) (size / esize);
509 KVM_ALLOC(kd, procbase2, size);
510 st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0);
511 if (st == -1) {
512 if (errno == ENOMEM) {
513 goto again;
515 _kvm_syserr(kd, kd->program, "kvm_getproc2");
516 return (NULL);
518 nprocs = (int) (size / esize);
519 } else {
520 char *kp2c;
521 struct kinfo_proc *kp;
522 struct kinfo_proc2 kp2, *kp2p;
523 struct kinfo_lwp *kl;
524 int i, nlwps;
526 kp = kvm_getprocs(kd, op, arg, &nprocs);
527 if (kp == NULL)
528 return (NULL);
530 size = nprocs * esize;
531 KVM_ALLOC(kd, procbase2, size);
532 kp2c = (char *)(void *)kd->procbase2;
533 kp2p = &kp2;
534 for (i = 0; i < nprocs; i++, kp++) {
535 struct timeval tv;
537 kl = kvm_getlwps(kd, kp->kp_proc.p_pid,
538 (u_long)PTRTOUINT64(kp->kp_eproc.e_paddr),
539 sizeof(struct kinfo_lwp), &nlwps);
541 if (kl == NULL) {
542 _kvm_syserr(kd, NULL,
543 "kvm_getlwps() failed on process %u\n",
544 kp->kp_proc.p_pid);
545 if (nlwps == 0)
546 return NULL;
547 else
548 continue;
551 /* We use kl[0] as the "representative" LWP */
552 memset(kp2p, 0, sizeof(kp2));
553 kp2p->p_forw = kl[0].l_forw;
554 kp2p->p_back = kl[0].l_back;
555 kp2p->p_paddr = PTRTOUINT64(kp->kp_eproc.e_paddr);
556 kp2p->p_addr = kl[0].l_addr;
557 kp2p->p_fd = PTRTOUINT64(kp->kp_proc.p_fd);
558 kp2p->p_cwdi = PTRTOUINT64(kp->kp_proc.p_cwdi);
559 kp2p->p_stats = PTRTOUINT64(kp->kp_proc.p_stats);
560 kp2p->p_limit = PTRTOUINT64(kp->kp_proc.p_limit);
561 kp2p->p_vmspace = PTRTOUINT64(kp->kp_proc.p_vmspace);
562 kp2p->p_sigacts = PTRTOUINT64(kp->kp_proc.p_sigacts);
563 kp2p->p_sess = PTRTOUINT64(kp->kp_eproc.e_sess);
564 kp2p->p_tsess = 0;
565 #if 1 /* XXX: dsl - p_ru was only ever non-zero for zombies */
566 kp2p->p_ru = 0;
567 #else
568 kp2p->p_ru = PTRTOUINT64(pstats.p_ru);
569 #endif
571 kp2p->p_eflag = 0;
572 kp2p->p_exitsig = kp->kp_proc.p_exitsig;
573 kp2p->p_flag = kp->kp_proc.p_flag;
575 kp2p->p_pid = kp->kp_proc.p_pid;
577 kp2p->p_ppid = kp->kp_eproc.e_ppid;
578 kp2p->p_sid = kp->kp_eproc.e_sid;
579 kp2p->p__pgid = kp->kp_eproc.e_pgid;
581 kp2p->p_tpgid = -1 /* XXX NO_PGID! */;
583 kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
584 kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
585 kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid;
586 kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
587 kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
588 kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid;
590 /*CONSTCOND*/
591 memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
592 MIN(sizeof(kp2p->p_groups),
593 sizeof(kp->kp_eproc.e_ucred.cr_groups)));
594 kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
596 kp2p->p_jobc = kp->kp_eproc.e_jobc;
597 kp2p->p_tdev = kp->kp_eproc.e_tdev;
598 kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
599 kp2p->p_tsess = PTRTOUINT64(kp->kp_eproc.e_tsess);
601 kp2p->p_estcpu = 0;
602 bintime2timeval(&kp->kp_proc.p_rtime, &tv);
603 kp2p->p_rtime_sec = (uint32_t)tv.tv_sec;
604 kp2p->p_rtime_usec = (uint32_t)tv.tv_usec;
605 kp2p->p_cpticks = kl[0].l_cpticks;
606 kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
607 kp2p->p_swtime = kl[0].l_swtime;
608 kp2p->p_slptime = kl[0].l_slptime;
609 #if 0 /* XXX thorpej */
610 kp2p->p_schedflags = kp->kp_proc.p_schedflags;
611 #else
612 kp2p->p_schedflags = 0;
613 #endif
615 kp2p->p_uticks = kp->kp_proc.p_uticks;
616 kp2p->p_sticks = kp->kp_proc.p_sticks;
617 kp2p->p_iticks = kp->kp_proc.p_iticks;
619 kp2p->p_tracep = PTRTOUINT64(kp->kp_proc.p_tracep);
620 kp2p->p_traceflag = kp->kp_proc.p_traceflag;
622 kp2p->p_holdcnt = kl[0].l_holdcnt;
624 memcpy(&kp2p->p_siglist,
625 &kp->kp_proc.p_sigpend.sp_set,
626 sizeof(ki_sigset_t));
627 memset(&kp2p->p_sigmask, 0,
628 sizeof(ki_sigset_t));
629 memcpy(&kp2p->p_sigignore,
630 &kp->kp_proc.p_sigctx.ps_sigignore,
631 sizeof(ki_sigset_t));
632 memcpy(&kp2p->p_sigcatch,
633 &kp->kp_proc.p_sigctx.ps_sigcatch,
634 sizeof(ki_sigset_t));
636 kp2p->p_stat = kl[0].l_stat;
637 kp2p->p_priority = kl[0].l_priority;
638 kp2p->p_usrpri = kl[0].l_priority;
639 kp2p->p_nice = kp->kp_proc.p_nice;
641 kp2p->p_xstat = kp->kp_proc.p_xstat;
642 kp2p->p_acflag = kp->kp_proc.p_acflag;
644 /*CONSTCOND*/
645 strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
646 MIN(sizeof(kp2p->p_comm),
647 sizeof(kp->kp_proc.p_comm)));
649 strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg,
650 sizeof(kp2p->p_wmesg));
651 kp2p->p_wchan = kl[0].l_wchan;
652 strncpy(kp2p->p_login, kp->kp_eproc.e_login,
653 sizeof(kp2p->p_login));
655 kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
656 kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
657 kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
658 kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
659 kp2p->p_vm_vsize = kp->kp_eproc.e_vm.vm_map.size
660 / kd->nbpg;
661 /* Adjust mapped size */
662 kp2p->p_vm_msize =
663 (kp->kp_eproc.e_vm.vm_map.size / kd->nbpg) -
664 kp->kp_eproc.e_vm.vm_issize +
665 kp->kp_eproc.e_vm.vm_ssize;
667 kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag;
669 kp2p->p_realflag = kp->kp_proc.p_flag;
670 kp2p->p_nlwps = kp->kp_proc.p_nlwps;
671 kp2p->p_nrlwps = kp->kp_proc.p_nrlwps;
672 kp2p->p_realstat = kp->kp_proc.p_stat;
674 if (P_ZOMBIE(&kp->kp_proc) ||
675 kp->kp_proc.p_stats == NULL ||
676 KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) {
677 kp2p->p_uvalid = 0;
678 } else {
679 kp2p->p_uvalid = 1;
681 kp2p->p_ustart_sec = (u_int32_t)
682 pstats.p_start.tv_sec;
683 kp2p->p_ustart_usec = (u_int32_t)
684 pstats.p_start.tv_usec;
686 kp2p->p_uutime_sec = (u_int32_t)
687 pstats.p_ru.ru_utime.tv_sec;
688 kp2p->p_uutime_usec = (u_int32_t)
689 pstats.p_ru.ru_utime.tv_usec;
690 kp2p->p_ustime_sec = (u_int32_t)
691 pstats.p_ru.ru_stime.tv_sec;
692 kp2p->p_ustime_usec = (u_int32_t)
693 pstats.p_ru.ru_stime.tv_usec;
695 kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss;
696 kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss;
697 kp2p->p_uru_idrss = pstats.p_ru.ru_idrss;
698 kp2p->p_uru_isrss = pstats.p_ru.ru_isrss;
699 kp2p->p_uru_minflt = pstats.p_ru.ru_minflt;
700 kp2p->p_uru_majflt = pstats.p_ru.ru_majflt;
701 kp2p->p_uru_nswap = pstats.p_ru.ru_nswap;
702 kp2p->p_uru_inblock = pstats.p_ru.ru_inblock;
703 kp2p->p_uru_oublock = pstats.p_ru.ru_oublock;
704 kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd;
705 kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv;
706 kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals;
707 kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw;
708 kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw;
710 kp2p->p_uctime_sec = (u_int32_t)
711 (pstats.p_cru.ru_utime.tv_sec +
712 pstats.p_cru.ru_stime.tv_sec);
713 kp2p->p_uctime_usec = (u_int32_t)
714 (pstats.p_cru.ru_utime.tv_usec +
715 pstats.p_cru.ru_stime.tv_usec);
718 memcpy(kp2c, &kp2, esize);
719 kp2c += esize;
722 *cnt = nprocs;
723 return (kd->procbase2);
726 struct kinfo_lwp *
727 kvm_getlwps(kvm_t *kd, int pid, u_long paddr, size_t esize, int *cnt)
729 size_t size;
730 int mib[5], nlwps;
731 ssize_t st;
732 struct kinfo_lwp *kl;
734 if (ISSYSCTL(kd)) {
735 size = 0;
736 mib[0] = CTL_KERN;
737 mib[1] = KERN_LWP;
738 mib[2] = pid;
739 mib[3] = (int)esize;
740 mib[4] = 0;
741 again:
742 st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0);
743 if (st == -1) {
744 switch (errno) {
745 case ESRCH: /* Treat this as a soft error; see kvm.c */
746 _kvm_syserr(kd, NULL, "kvm_getlwps");
747 return NULL;
748 default:
749 _kvm_syserr(kd, kd->program, "kvm_getlwps");
750 return NULL;
753 mib[4] = (int) (size / esize);
754 KVM_ALLOC(kd, lwpbase, size);
755 st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0);
756 if (st == -1) {
757 switch (errno) {
758 case ESRCH: /* Treat this as a soft error; see kvm.c */
759 _kvm_syserr(kd, NULL, "kvm_getlwps");
760 return NULL;
761 case ENOMEM:
762 goto again;
763 default:
764 _kvm_syserr(kd, kd->program, "kvm_getlwps");
765 return NULL;
768 nlwps = (int) (size / esize);
769 } else {
770 /* grovel through the memory image */
771 struct proc p;
772 struct lwp l;
773 u_long laddr;
774 void *back;
775 int i;
777 st = kvm_read(kd, paddr, &p, sizeof(p));
778 if (st == -1) {
779 _kvm_syserr(kd, kd->program, "kvm_getlwps");
780 return (NULL);
783 nlwps = p.p_nlwps;
784 size = nlwps * sizeof(*kd->lwpbase);
785 KVM_ALLOC(kd, lwpbase, size);
786 laddr = (u_long)PTRTOUINT64(p.p_lwps.lh_first);
787 for (i = 0; (i < nlwps) && (laddr != 0); i++) {
788 st = kvm_read(kd, laddr, &l, sizeof(l));
789 if (st == -1) {
790 _kvm_syserr(kd, kd->program, "kvm_getlwps");
791 return (NULL);
793 kl = &kd->lwpbase[i];
794 kl->l_laddr = laddr;
795 kl->l_forw = PTRTOUINT64(l.l_runq.tqe_next);
796 laddr = (u_long)PTRTOUINT64(l.l_runq.tqe_prev);
797 st = kvm_read(kd, laddr, &back, sizeof(back));
798 if (st == -1) {
799 _kvm_syserr(kd, kd->program, "kvm_getlwps");
800 return (NULL);
802 kl->l_back = PTRTOUINT64(back);
803 kl->l_addr = PTRTOUINT64(l.l_addr);
804 kl->l_lid = l.l_lid;
805 kl->l_flag = l.l_flag;
806 kl->l_swtime = l.l_swtime;
807 kl->l_slptime = l.l_slptime;
808 kl->l_schedflags = 0; /* XXX */
809 kl->l_holdcnt = 0;
810 kl->l_priority = l.l_priority;
811 kl->l_usrpri = l.l_priority;
812 kl->l_stat = l.l_stat;
813 kl->l_wchan = PTRTOUINT64(l.l_wchan);
814 if (l.l_wmesg)
815 (void)kvm_read(kd, (u_long)l.l_wmesg,
816 kl->l_wmesg, (size_t)WMESGLEN);
817 kl->l_cpuid = KI_NOCPU;
818 laddr = (u_long)PTRTOUINT64(l.l_sibling.le_next);
822 *cnt = nlwps;
823 return (kd->lwpbase);
826 struct kinfo_proc *
827 kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt)
829 size_t size;
830 int mib[4], st, nprocs;
832 if (ISALIVE(kd)) {
833 size = 0;
834 mib[0] = CTL_KERN;
835 mib[1] = KERN_PROC;
836 mib[2] = op;
837 mib[3] = arg;
838 st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0);
839 if (st == -1) {
840 _kvm_syserr(kd, kd->program, "kvm_getprocs");
841 return (NULL);
843 KVM_ALLOC(kd, procbase, size);
844 st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0);
845 if (st == -1) {
846 _kvm_syserr(kd, kd->program, "kvm_getprocs");
847 return (NULL);
849 if (size % sizeof(struct kinfo_proc) != 0) {
850 _kvm_err(kd, kd->program,
851 "proc size mismatch (%lu total, %lu chunks)",
852 (u_long)size, (u_long)sizeof(struct kinfo_proc));
853 return (NULL);
855 nprocs = (int) (size / sizeof(struct kinfo_proc));
856 } else {
857 struct nlist nl[4], *p;
859 (void)memset(nl, 0, sizeof(nl));
860 nl[0].n_name = "_nprocs";
861 nl[1].n_name = "_allproc";
862 nl[2].n_name = "_zombproc";
863 nl[3].n_name = NULL;
865 if (kvm_nlist(kd, nl) != 0) {
866 for (p = nl; p->n_type != 0; ++p)
867 continue;
868 _kvm_err(kd, kd->program,
869 "%s: no such symbol", p->n_name);
870 return (NULL);
872 if (KREAD(kd, nl[0].n_value, &nprocs)) {
873 _kvm_err(kd, kd->program, "can't read nprocs");
874 return (NULL);
876 size = nprocs * sizeof(*kd->procbase);
877 KVM_ALLOC(kd, procbase, size);
878 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
879 nl[2].n_value, nprocs);
880 if (nprocs < 0)
881 return (NULL);
882 #ifdef notdef
883 size = nprocs * sizeof(struct kinfo_proc);
884 (void)realloc(kd->procbase, size);
885 #endif
887 *cnt = nprocs;
888 return (kd->procbase);
891 void *
892 _kvm_realloc(kvm_t *kd, void *p, size_t n)
894 void *np = realloc(p, n);
896 if (np == NULL)
897 _kvm_err(kd, kd->program, "out of memory");
898 return (np);
902 * Read in an argument vector from the user address space of process p.
903 * addr if the user-space base address of narg null-terminated contiguous
904 * strings. This is used to read in both the command arguments and
905 * environment strings. Read at most maxcnt characters of strings.
907 static char **
908 kvm_argv(kvm_t *kd, const struct miniproc *p, u_long addr, int narg,
909 int maxcnt)
911 char *np, *cp, *ep, *ap;
912 u_long oaddr = (u_long)~0L;
913 u_long len;
914 size_t cc;
915 char **argv;
918 * Check that there aren't an unreasonable number of arguments,
919 * and that the address is in user space.
921 if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
922 return (NULL);
924 if (kd->argv == NULL) {
926 * Try to avoid reallocs.
928 kd->argc = MAX(narg + 1, 32);
929 kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
930 if (kd->argv == NULL)
931 return (NULL);
932 } else if (narg + 1 > kd->argc) {
933 kd->argc = MAX(2 * kd->argc, narg + 1);
934 kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
935 sizeof(*kd->argv));
936 if (kd->argv == NULL)
937 return (NULL);
939 if (kd->argspc == NULL) {
940 kd->argspc = _kvm_malloc(kd, (size_t)kd->nbpg);
941 if (kd->argspc == NULL)
942 return (NULL);
943 kd->argspc_len = kd->nbpg;
945 if (kd->argbuf == NULL) {
946 kd->argbuf = _kvm_malloc(kd, (size_t)kd->nbpg);
947 if (kd->argbuf == NULL)
948 return (NULL);
950 cc = sizeof(char *) * narg;
951 if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
952 return (NULL);
953 ap = np = kd->argspc;
954 argv = kd->argv;
955 len = 0;
957 * Loop over pages, filling in the argument vector.
959 while (argv < kd->argv + narg && *argv != NULL) {
960 addr = (u_long)*argv & ~(kd->nbpg - 1);
961 if (addr != oaddr) {
962 if (kvm_ureadm(kd, p, addr, kd->argbuf,
963 (size_t)kd->nbpg) != kd->nbpg)
964 return (NULL);
965 oaddr = addr;
967 addr = (u_long)*argv & (kd->nbpg - 1);
968 cp = kd->argbuf + (size_t)addr;
969 cc = kd->nbpg - (size_t)addr;
970 if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
971 cc = (size_t)(maxcnt - len);
972 ep = memchr(cp, '\0', cc);
973 if (ep != NULL)
974 cc = ep - cp + 1;
975 if (len + cc > kd->argspc_len) {
976 ptrdiff_t off;
977 char **pp;
978 char *op = kd->argspc;
980 kd->argspc_len *= 2;
981 kd->argspc = _kvm_realloc(kd, kd->argspc,
982 kd->argspc_len);
983 if (kd->argspc == NULL)
984 return (NULL);
986 * Adjust argv pointers in case realloc moved
987 * the string space.
989 off = kd->argspc - op;
990 for (pp = kd->argv; pp < argv; pp++)
991 *pp += off;
992 ap += off;
993 np += off;
995 memcpy(np, cp, cc);
996 np += cc;
997 len += cc;
998 if (ep != NULL) {
999 *argv++ = ap;
1000 ap = np;
1001 } else
1002 *argv += cc;
1003 if (maxcnt > 0 && len >= maxcnt) {
1005 * We're stopping prematurely. Terminate the
1006 * current string.
1008 if (ep == NULL) {
1009 *np = '\0';
1010 *argv++ = ap;
1012 break;
1015 /* Make sure argv is terminated. */
1016 *argv = NULL;
1017 return (kd->argv);
1020 static void
1021 ps_str_a(struct ps_strings *p, u_long *addr, int *n)
1024 *addr = (u_long)p->ps_argvstr;
1025 *n = p->ps_nargvstr;
1028 static void
1029 ps_str_e(struct ps_strings *p, u_long *addr, int *n)
1032 *addr = (u_long)p->ps_envstr;
1033 *n = p->ps_nenvstr;
1037 * Determine if the proc indicated by p is still active.
1038 * This test is not 100% foolproof in theory, but chances of
1039 * being wrong are very low.
1041 static int
1042 proc_verify(kvm_t *kd, u_long kernp, const struct miniproc *p)
1044 struct proc kernproc;
1047 * Just read in the whole proc. It's not that big relative
1048 * to the cost of the read system call.
1050 if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
1051 sizeof(kernproc))
1052 return (0);
1053 return (p->p_pid == kernproc.p_pid &&
1054 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
1057 static char **
1058 kvm_doargv(kvm_t *kd, const struct miniproc *p, int nchr,
1059 void (*info)(struct ps_strings *, u_long *, int *))
1061 char **ap;
1062 u_long addr;
1063 int cnt;
1064 struct ps_strings arginfo;
1067 * Pointers are stored at the top of the user stack.
1069 if (p->p_stat == SZOMB)
1070 return (NULL);
1071 cnt = (int)kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo),
1072 (void *)&arginfo, sizeof(arginfo));
1073 if (cnt != sizeof(arginfo))
1074 return (NULL);
1076 (*info)(&arginfo, &addr, &cnt);
1077 if (cnt == 0)
1078 return (NULL);
1079 ap = kvm_argv(kd, p, addr, cnt, nchr);
1081 * For live kernels, make sure this process didn't go away.
1083 if (ap != NULL && ISALIVE(kd) &&
1084 !proc_verify(kd, (u_long)p->p_paddr, p))
1085 ap = NULL;
1086 return (ap);
1090 * Get the command args. This code is now machine independent.
1092 char **
1093 kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
1095 struct miniproc p;
1097 KPTOMINI(kp, &p);
1098 return (kvm_doargv(kd, &p, nchr, ps_str_a));
1101 char **
1102 kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
1104 struct miniproc p;
1106 KPTOMINI(kp, &p);
1107 return (kvm_doargv(kd, &p, nchr, ps_str_e));
1110 static char **
1111 kvm_doargv2(kvm_t *kd, pid_t pid, int type, int nchr)
1113 size_t bufs;
1114 int narg, mib[4];
1115 size_t newargspc_len;
1116 char **ap, *bp, *endp;
1119 * Check that there aren't an unreasonable number of arguments.
1121 if (nchr > ARG_MAX)
1122 return (NULL);
1124 if (nchr == 0)
1125 nchr = ARG_MAX;
1127 /* Get number of strings in argv */
1128 mib[0] = CTL_KERN;
1129 mib[1] = KERN_PROC_ARGS;
1130 mib[2] = pid;
1131 mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
1132 bufs = sizeof(narg);
1133 if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1)
1134 return (NULL);
1136 if (kd->argv == NULL) {
1138 * Try to avoid reallocs.
1140 kd->argc = MAX(narg + 1, 32);
1141 kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
1142 if (kd->argv == NULL)
1143 return (NULL);
1144 } else if (narg + 1 > kd->argc) {
1145 kd->argc = MAX(2 * kd->argc, narg + 1);
1146 kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
1147 sizeof(*kd->argv));
1148 if (kd->argv == NULL)
1149 return (NULL);
1152 newargspc_len = MIN(nchr, ARG_MAX);
1153 KVM_ALLOC(kd, argspc, newargspc_len);
1154 memset(kd->argspc, 0, (size_t)kd->argspc_len); /* XXX necessary? */
1156 mib[0] = CTL_KERN;
1157 mib[1] = KERN_PROC_ARGS;
1158 mib[2] = pid;
1159 mib[3] = type;
1160 bufs = kd->argspc_len;
1161 if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1)
1162 return (NULL);
1164 bp = kd->argspc;
1165 bp[kd->argspc_len-1] = '\0'; /* make sure the string ends with nul */
1166 ap = kd->argv;
1167 endp = bp + MIN(nchr, bufs);
1169 while (bp < endp) {
1170 *ap++ = bp;
1172 * XXX: don't need following anymore, or stick check
1173 * for max argc in above while loop?
1175 if (ap >= kd->argv + kd->argc) {
1176 kd->argc *= 2;
1177 kd->argv = _kvm_realloc(kd, kd->argv,
1178 kd->argc * sizeof(*kd->argv));
1179 ap = kd->argv;
1181 bp += strlen(bp) + 1;
1183 *ap = NULL;
1185 return (kd->argv);
1188 char **
1189 kvm_getargv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr)
1192 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
1195 char **
1196 kvm_getenvv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr)
1199 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
1203 * Read from user space. The user context is given by p.
1205 static ssize_t
1206 kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long uva,
1207 char *buf, size_t len)
1209 char *cp;
1211 cp = buf;
1212 while (len > 0) {
1213 size_t cc;
1214 char *dp;
1215 u_long cnt;
1217 dp = _kvm_ureadm(kd, p, uva, &cnt);
1218 if (dp == NULL) {
1219 _kvm_err(kd, 0, "invalid address (%lx)", uva);
1220 return (0);
1222 cc = (size_t)MIN(cnt, len);
1223 memcpy(cp, dp, cc);
1224 cp += cc;
1225 uva += cc;
1226 len -= cc;
1228 return (ssize_t)(cp - buf);
1231 ssize_t
1232 kvm_uread(kvm_t *kd, const struct proc *p, u_long uva, char *buf, size_t len)
1234 struct miniproc mp;
1236 PTOMINI(p, &mp);
1237 return (kvm_ureadm(kd, &mp, uva, buf, len));