1 /* $NetBSD: n_log.c,v 1.8 2014/10/10 20:58:09 martin Exp $ */
3 * Copyright (c) 1992, 1993
4 * The Regents of the University of California. All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. Neither the name of the University nor the names of its contributors
15 * may be used to endorse or promote products derived from this software
16 * without specific prior written permission.
18 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 static char sccsid
[] = "@(#)log.c 8.2 (Berkeley) 11/30/93";
37 #include "../src/namespace.h"
45 __weak_alias(log
, _log
);
46 __weak_alias(_logl
, _log
);
47 __weak_alias(logf
, _logf
);
50 /* Table-driven natural logarithm.
52 * This code was derived, with minor modifications, from:
53 * Peter Tang, "Table-Driven Implementation of the
54 * Logarithm in IEEE Floating-Point arithmetic." ACM Trans.
55 * Math Software, vol 16. no 4, pp 378-400, Dec 1990).
57 * Calculates log(2^m*F*(1+f/F)), |f/j| <= 1/256,
58 * where F = j/128 for j an integer in [0, 128].
60 * log(2^m) = log2_hi*m + log2_tail*m
61 * since m is an integer, the dominant term is exact.
62 * m has at most 10 digits (for subnormal numbers),
63 * and log2_hi has 11 trailing zero bits.
65 * log(F) = logF_hi[j] + logF_lo[j] is in tabular form in log_table.h
66 * logF_hi[] + 512 is exact.
68 * log(1+f/F) = 2*f/(2*F + f) + 1/12 * (2*f/(2*F + f))**3 + ...
69 * the leading term is calculated to extra precision in two
70 * parts, the larger of which adds exactly to the dominant
72 * There are two cases:
73 * 1. when m, j are non-zero (m | j), use absolute
74 * precision for the leading term.
75 * 2. when m = j = 0, |1-x| < 1/256, and log(x) ~= (x-1).
76 * In this case, use a relative precision of 24 bits.
77 * (This is done differently in the original paper)
80 * 0 return signalling -Inf
81 * neg return signalling NaN
85 #if defined(__vax__) || defined(tahoe)
87 #define TRUNC(x) x = (double) (float) (x)
90 #define endian (((*(int *) &one)) ? 1 : 0)
91 #define TRUNC(x) *(((int *) &x) + endian) &= 0xf8000000
97 /* Table of log(Fj) = logF_head[j] + logF_tail[j], for Fj = 1+j/128.
98 * Used for generation of extend precision logarithms.
99 * The constant 35184372088832 is 2^45, so the divide is exact.
100 * It ensures correct reading of logF_head, even for inaccurate
101 * decimal-to-binary conversion routines. (Everybody gets the
102 * right answer for integers less than 2^53.)
103 * Values for log(F) were generated using error < 10^-57 absolute
104 * with the bc -l package.
106 static const double A1
= .08333333333333178827;
107 static const double A2
= .01250000000377174923;
108 static const double A3
= .002232139987919447809;
109 static const double A4
= .0004348877777076145742;
111 static const double logF_head
[N
+1] = {
113 .007782140442060381246,
114 .015504186535963526694,
115 .023167059281547608406,
116 .030771658666765233647,
117 .038318864302141264488,
118 .045809536031242714670,
119 .053244514518837604555,
120 .060624621816486978786,
121 .067950661908525944454,
122 .075223421237524235039,
123 .082443669210988446138,
124 .089612158689760690322,
125 .096729626458454731618,
126 .103796793681567578460,
127 .110814366340264314203,
128 .117783035656430001836,
129 .124703478501032805070,
130 .131576357788617315236,
131 .138402322859292326029,
132 .145182009844575077295,
133 .151916042025732167530,
134 .158605030176659056451,
135 .165249572895390883786,
136 .171850256926518341060,
137 .178407657472689606947,
138 .184922338493834104156,
139 .191394852999565046047,
140 .197825743329758552135,
141 .204215541428766300668,
142 .210564769107350002741,
143 .216873938300523150246,
144 .223143551314024080056,
145 .229374101064877322642,
146 .235566071312860003672,
147 .241719936886966024758,
148 .247836163904594286577,
149 .253915209980732470285,
150 .259957524436686071567,
151 .265963548496984003577,
152 .271933715484010463114,
153 .277868451003087102435,
154 .283768173130738432519,
155 .289633292582948342896,
156 .295464212893421063199,
157 .301261330578199704177,
158 .307025035294827830512,
159 .312755710004239517729,
160 .318453731118097493890,
161 .324119468654316733591,
162 .329753286372579168528,
163 .335355541920762334484,
164 .340926586970454081892,
165 .346466767346100823488,
166 .351976423156884266063,
167 .357455888922231679316,
168 .362905493689140712376,
169 .368325561158599157352,
170 .373716409793814818840,
171 .379078352934811846353,
172 .384411698910298582632,
173 .389716751140440464951,
174 .394993808240542421117,
175 .400243164127459749579,
176 .405465108107819105498,
177 .410659924985338875558,
178 .415827895143593195825,
179 .420969294644237379543,
180 .426084395310681429691,
181 .431173464818130014464,
182 .436236766774527495726,
183 .441274560805140936281,
184 .446287102628048160113,
185 .451274644139630254358,
186 .456237433481874177232,
187 .461175715122408291790,
188 .466089729924533457960,
189 .470979715219073113985,
190 .475845904869856894947,
191 .480688529345570714212,
192 .485507815781602403149,
193 .490303988045525329653,
194 .495077266798034543171,
195 .499827869556611403822,
196 .504556010751912253908,
197 .509261901790523552335,
198 .513945751101346104405,
199 .518607764208354637958,
200 .523248143765158602036,
201 .527867089620485785417,
202 .532464798869114019908,
203 .537041465897345915436,
204 .541597282432121573947,
205 .546132437597407260909,
206 .550647117952394182793,
207 .555141507540611200965,
208 .559615787935399566777,
209 .564070138285387656651,
210 .568504735352689749561,
211 .572919753562018740922,
212 .577315365035246941260,
213 .581691739635061821900,
214 .586049045003164792433,
215 .590387446602107957005,
216 .594707107746216934174,
217 .599008189645246602594,
218 .603290851438941899687,
219 .607555250224322662688,
220 .611801541106615331955,
221 .616029877215623855590,
222 .620240409751204424537,
223 .624433288012369303032,
224 .628608659422752680256,
225 .632766669570628437213,
226 .636907462236194987781,
227 .641031179420679109171,
228 .645137961373620782978,
229 .649227946625615004450,
230 .653301272011958644725,
231 .657358072709030238911,
232 .661398482245203922502,
233 .665422632544505177065,
234 .669430653942981734871,
235 .673422675212350441142,
236 .677398823590920073911,
237 .681359224807238206267,
238 .685304003098281100392,
239 .689233281238557538017,
240 .693147180560117703862
243 static const double logF_tail
[N
+1] = {
245 -.00000000000000543229938420049,
246 .00000000000000172745674997061,
247 -.00000000000001323017818229233,
248 -.00000000000001154527628289872,
249 -.00000000000000466529469958300,
250 .00000000000005148849572685810,
251 -.00000000000002532168943117445,
252 -.00000000000005213620639136504,
253 -.00000000000001819506003016881,
254 .00000000000006329065958724544,
255 .00000000000008614512936087814,
256 -.00000000000007355770219435028,
257 .00000000000009638067658552277,
258 .00000000000007598636597194141,
259 .00000000000002579999128306990,
260 -.00000000000004654729747598444,
261 -.00000000000007556920687451336,
262 .00000000000010195735223708472,
263 -.00000000000017319034406422306,
264 -.00000000000007718001336828098,
265 .00000000000010980754099855238,
266 -.00000000000002047235780046195,
267 -.00000000000008372091099235912,
268 .00000000000014088127937111135,
269 .00000000000012869017157588257,
270 .00000000000017788850778198106,
271 .00000000000006440856150696891,
272 .00000000000016132822667240822,
273 -.00000000000007540916511956188,
274 -.00000000000000036507188831790,
275 .00000000000009120937249914984,
276 .00000000000018567570959796010,
277 -.00000000000003149265065191483,
278 -.00000000000009309459495196889,
279 .00000000000017914338601329117,
280 -.00000000000001302979717330866,
281 .00000000000023097385217586939,
282 .00000000000023999540484211737,
283 .00000000000015393776174455408,
284 -.00000000000036870428315837678,
285 .00000000000036920375082080089,
286 -.00000000000009383417223663699,
287 .00000000000009433398189512690,
288 .00000000000041481318704258568,
289 -.00000000000003792316480209314,
290 .00000000000008403156304792424,
291 -.00000000000034262934348285429,
292 .00000000000043712191957429145,
293 -.00000000000010475750058776541,
294 -.00000000000011118671389559323,
295 .00000000000037549577257259853,
296 .00000000000013912841212197565,
297 .00000000000010775743037572640,
298 .00000000000029391859187648000,
299 -.00000000000042790509060060774,
300 .00000000000022774076114039555,
301 .00000000000010849569622967912,
302 -.00000000000023073801945705758,
303 .00000000000015761203773969435,
304 .00000000000003345710269544082,
305 -.00000000000041525158063436123,
306 .00000000000032655698896907146,
307 -.00000000000044704265010452446,
308 .00000000000034527647952039772,
309 -.00000000000007048962392109746,
310 .00000000000011776978751369214,
311 -.00000000000010774341461609578,
312 .00000000000021863343293215910,
313 .00000000000024132639491333131,
314 .00000000000039057462209830700,
315 -.00000000000026570679203560751,
316 .00000000000037135141919592021,
317 -.00000000000017166921336082431,
318 -.00000000000028658285157914353,
319 -.00000000000023812542263446809,
320 .00000000000006576659768580062,
321 -.00000000000028210143846181267,
322 .00000000000010701931762114254,
323 .00000000000018119346366441110,
324 .00000000000009840465278232627,
325 -.00000000000033149150282752542,
326 -.00000000000018302857356041668,
327 -.00000000000016207400156744949,
328 .00000000000048303314949553201,
329 -.00000000000071560553172382115,
330 .00000000000088821239518571855,
331 -.00000000000030900580513238244,
332 -.00000000000061076551972851496,
333 .00000000000035659969663347830,
334 .00000000000035782396591276383,
335 -.00000000000046226087001544578,
336 .00000000000062279762917225156,
337 .00000000000072838947272065741,
338 .00000000000026809646615211673,
339 -.00000000000010960825046059278,
340 .00000000000002311949383800537,
341 -.00000000000058469058005299247,
342 -.00000000000002103748251144494,
343 -.00000000000023323182945587408,
344 -.00000000000042333694288141916,
345 -.00000000000043933937969737844,
346 .00000000000041341647073835565,
347 .00000000000006841763641591466,
348 .00000000000047585534004430641,
349 .00000000000083679678674757695,
350 -.00000000000085763734646658640,
351 .00000000000021913281229340092,
352 -.00000000000062242842536431148,
353 -.00000000000010983594325438430,
354 .00000000000065310431377633651,
355 -.00000000000047580199021710769,
356 -.00000000000037854251265457040,
357 .00000000000040939233218678664,
358 .00000000000087424383914858291,
359 .00000000000025218188456842882,
360 -.00000000000003608131360422557,
361 -.00000000000050518555924280902,
362 .00000000000078699403323355317,
363 -.00000000000067020876961949060,
364 .00000000000016108575753932458,
365 .00000000000058527188436251509,
366 -.00000000000035246757297904791,
367 -.00000000000018372084495629058,
368 .00000000000088606689813494916,
369 .00000000000066486268071468700,
370 .00000000000063831615170646519,
371 .00000000000025144230728376072,
372 -.00000000000017239444525614834
379 double F
, f
, g
, q
, u
, u2
, v
, zero
= 0.0, one
= 1.0;
382 /* Catch special cases */
384 if (_IEEE
&& x
== zero
) /* log(0) = -Inf */
386 else if (_IEEE
) /* log(neg) = NaN */
388 else if (x
== zero
) /* NOT REACHED IF _IEEE */
389 return (infnan(-ERANGE
));
391 return (infnan(EDOM
));
392 } else if (!finite(x
)) {
393 if (_IEEE
) /* x = NaN, Inf */
396 return (infnan(ERANGE
));
399 /* Argument reduction: 1 <= g < 2; x/2^m = g; */
400 /* y = F*(1 + f/F) for |f| <= 2^-8 */
404 if (_IEEE
&& m
== -1022) {
409 F
= (1.0/N
) * j
+ 1; /* F*128 is an integer in [128, 512] */
412 /* Approximate expansion for log(1+f/F) ~= u + q */
416 q
= u
*v
*(A1
+ v
*(A2
+ v
*(A3
+ v
*A4
)));
418 /* case 1: u1 = u rounded to 2^-43 absolute. Since u < 2^-8,
419 * u1 has at most 35 bits, and F*u1 is exact, as F has < 8 bits.
420 * It also adds exactly to |m*log2_hi + log_F_head[j] | < 750
423 u1
= u
+ 513, u1
-= 513;
425 /* case 2: |1-x| < 1/256. The m- and j- dependent terms are zero;
430 u2
= (2.0*(f
- F
*u1
) - u1
*f
) * g
;
431 /* u1 + u2 = 2f/(2F+f) to extra precision. */
433 /* log(x) = log(2^m*F*(1+f/F)) = */
434 /* (m*log2_hi+logF_head[j]+u1) + (m*log2_lo+logF_tail[j]+q); */
435 /* (exact) + (tiny) */
437 u1
+= m
*logF_head
[N
] + logF_head
[j
]; /* exact */
438 u2
= (u2
+ logF_tail
[j
]) + q
; /* tiny */
439 u2
+= logF_tail
[N
]*m
;
444 * Extra precision variant, returning struct {double a, b;};
445 * log(x) = a+b to 63 bits, with a is rounded to 26 bits.
451 double F
, f
, g
, q
, u
, v
, u2
;
455 /* Argument reduction: 1 <= g < 2; x/2^m = g; */
456 /* y = F*(1 + f/F) for |f| <= 2^-8 */
460 if (_IEEE
&& m
== -1022) {
471 q
= u
*v
*(A1
+ v
*(A2
+ v
*(A3
+ v
*A4
)));
473 u1
= u
+ 513, u1
-= 513;
476 u2
= (2.0*(f
- F
*u1
) - u1
*f
) * g
;
478 u1
+= m
*logF_head
[N
] + logF_head
[j
];
480 u2
+= logF_tail
[j
]; u2
+= q
;
481 u2
+= logF_tail
[N
]*m
;
482 r
.a
= u1
+ u2
; /* Only difference is here */
484 r
.b
= (u1
- r
.a
) + u2
;
491 return(log((double)x
));