1 /* $NetBSD: b_tgamma.c,v 1.1 2012/05/05 17:54:14 christos Exp $ */
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 /* @(#)gamma.c 8.1 (Berkeley) 6/4/93 */
37 #include <sys/cdefs.h>
39 __FBSDID("$FreeBSD: release/9.0.0/lib/msun/bsdsrc/b_tgamma.c 176449 2008-02-22 02:26:51Z das $");
41 __RCSID("$NetBSD: b_tgamma.c,v 1.1 2012/05/05 17:54:14 christos Exp $");
45 * This code by P. McIlroy, Oct 1992;
47 * The financial support of UUNET Communications Services is greatfully
52 #include "math_private.h"
55 * x < 0: Use reflection formula, G(x) = pi/(sin(pi*x)*x*G(x))
56 * At negative integers, return NaN and raise invalid.
59 * Use argument reduction G(x+1) = xG(x) to reach the
60 * range [1.066124,2.066124]. Use a rational
61 * approximation centered at the minimum (x0+1) to
62 * ensure monotonicity.
64 * x >= 6.5: Use the asymptotic approximation (Stirling's formula)
65 * adjusted for equal-ripples:
67 * log(G(x)) ~= (x-.5)*(log(x)-1) + .5(log(2*pi)-1) + 1/x*P(1/(x*x))
69 * Keep extra precision in multiplying (x-.5)(log(x)-1), to
70 * avoid premature round-off.
73 * -Inf: return NaN and raise invalid;
74 * negative integer: return NaN and raise invalid;
75 * other x ~< 177.79: return +-0 and raise underflow;
76 * +-0: return +-Inf and raise divide-by-zero;
77 * finite x ~> 171.63: return +Inf and raise overflow;
81 * Accuracy: tgamma(x) is accurate to within
82 * x > 0: error provably < 0.9ulp.
83 * Maximum observed in 1,000,000 trials was .87ulp.
85 * Maximum observed error < 4ulp in 1,000,000 trials.
88 static double neg_gam(double);
89 static double small_gam(double);
90 static double smaller_gam(double);
91 static struct Double
large_gam(double);
92 static struct Double
ratfun_gam(double, double);
95 * Rational approximation, A0 + x*x*P(x)/Q(x), on the interval
96 * [1.066.., 2.066..] accurate to 4.25e-19.
98 #define LEFT -.3955078125 /* left boundary for rat. approx */
99 #define x0 .461632144968362356785 /* xmin - 1 */
101 #define a0_hi 0.88560319441088874992
102 #define a0_lo -.00000000000000004996427036469019695
103 #define P0 6.21389571821820863029017800727e-01
104 #define P1 2.65757198651533466104979197553e-01
105 #define P2 5.53859446429917461063308081748e-03
106 #define P3 1.38456698304096573887145282811e-03
107 #define P4 2.40659950032711365819348969808e-03
108 #define Q0 1.45019531250000000000000000000e+00
109 #define Q1 1.06258521948016171343454061571e+00
110 #define Q2 -2.07474561943859936441469926649e-01
111 #define Q3 -1.46734131782005422506287573015e-01
112 #define Q4 3.07878176156175520361557573779e-02
113 #define Q5 5.12449347980666221336054633184e-03
114 #define Q6 -1.76012741431666995019222898833e-03
115 #define Q7 9.35021023573788935372153030556e-05
116 #define Q8 6.13275507472443958924745652239e-06
118 * Constants for large x approximation (x in [6, Inf])
119 * (Accurate to 2.8*10^-19 absolute)
121 #define lns2pi_hi 0.418945312500000
122 #define lns2pi_lo -.000006779295327258219670263595
123 #define Pa0 8.33333333333333148296162562474e-02
124 #define Pa1 -2.77777777774548123579378966497e-03
125 #define Pa2 7.93650778754435631476282786423e-04
126 #define Pa3 -5.95235082566672847950717262222e-04
127 #define Pa4 8.41428560346653702135821806252e-04
128 #define Pa5 -1.89773526463879200348872089421e-03
129 #define Pa6 5.69394463439411649408050664078e-03
130 #define Pa7 -1.44705562421428915453880392761e-02
132 static const double zero
= 0., one
= 1.0, tiny
= 1e-300;
143 return(__exp__D(u
.a
, u
.b
));
144 } else if (x
>= 1.0 + LEFT
+ x0
)
145 return (small_gam(x
));
147 return (smaller_gam(x
));
148 else if (x
> -1.e
-17) {
150 u
.a
= one
- tiny
; /* raise inexact */
152 } else if (!finite(x
))
153 return (x
- x
); /* x is NaN or -Inf */
158 * Accurate to max(ulp(1/128) absolute, 2^-66 relative) error.
164 struct Double t
, u
, v
;
167 p
= Pa0
+z
*(Pa1
+z
*(Pa2
+z
*(Pa3
+z
*(Pa4
+z
*(Pa5
+z
*(Pa6
+z
*Pa7
))))));
175 t
.a
= v
.a
*u
.a
; /* t = (x-.5)*(log(x)-1) */
176 t
.b
= v
.b
*u
.a
+ x
*u
.b
;
177 /* return t.a + t.b + lns2pi_hi + lns2pi_lo + p */
178 t
.b
+= lns2pi_lo
; t
.b
+= p
;
179 u
.a
= lns2pi_hi
+ t
.b
; u
.a
+= t
.a
;
181 u
.b
+= lns2pi_hi
; u
.b
+= t
.b
;
185 * Good to < 1 ulp. (provably .90 ulp; .87 ulp on 1,000,000 runs.)
186 * It also has correct monotonicity.
195 if (y
<= 1.0 + (LEFT
+ x0
)) {
196 yy
= ratfun_gam(y
- x0
, 0);
197 return (yy
.a
+ yy
.b
);
203 yy
.b
= r
.b
= y
- yy
.a
;
204 /* Argument reduction: G(x+1) = x*G(x) */
205 for (ym1
= y
-one
; ym1
> LEFT
+ x0
; y
= ym1
--, yy
.a
--) {
207 r
.b
= r
.a
*yy
.b
+ y
*r
.b
;
212 /* Return r*tgamma(y). */
213 yy
= ratfun_gam(y
- x0
, 0);
214 y
= r
.b
*(yy
.a
+ yy
.b
) + r
.a
*yy
.b
;
219 * Good on (0, 1+x0+LEFT]. Accurate to 1ulp.
222 smaller_gam(double x
)
230 xx
.a
= (t
+ x
), TRUNC(xx
.a
);
231 xx
.b
= x
- xx
.a
; xx
.b
+= t
; xx
.b
+= d
;
232 t
= (one
-x0
); t
+= x
;
233 d
= (one
-x0
); d
-= t
; d
+= x
;
236 xx
.a
= x
, TRUNC(xx
.a
);
239 d
= (-x0
-t
); d
+= x
;
241 r
= ratfun_gam(t
, d
);
243 r
.a
-= d
*xx
.a
; r
.a
-= d
*xx
.b
; r
.a
+= r
.b
;
247 * returns (z+c)^2 * P(z)/Q(z) + a0
250 ratfun_gam(double z
, double c
)
255 q
= Q0
+z
*(Q1
+z
*(Q2
+z
*(Q3
+z
*(Q4
+z
*(Q5
+z
*(Q6
+z
*(Q7
+z
*Q8
)))))));
256 p
= P0
+ z
*(P1
+ z
*(P2
+ z
*(P3
+ z
*P4
)));
258 /* return r.a + r.b = a0 + (z+c)^2*p/q, with r.a truncated to 26 bits. */
260 t
.a
= z
, TRUNC(t
.a
); /* t ~= z + c */
263 q
= (t
.a
*= t
.a
); /* t = (z+c)^2 */
266 r
.a
= p
, TRUNC(r
.a
); /* r = P/Q */
268 t
.b
= t
.b
*p
+ t
.a
*r
.b
+ a0_lo
;
269 t
.a
*= r
.a
; /* t = (z+c)^2*(P/Q) */
270 r
.a
= t
.a
+ a0_hi
, TRUNC(r
.a
);
271 r
.b
= ((a0_hi
-r
.a
) + t
.a
) + t
.b
;
272 return (r
); /* r = a0 + t */
279 struct Double lg
, lsine
;
283 if (y
== x
) /* Negative integer. */
284 return ((x
- x
) / zero
);
294 z
= cos(M_PI
*(0.5-z
));
295 /* Special case: G(1-x) = Inf; G(x) may be nonzero. */
298 return ((double)sgn
*tiny
*tiny
);
299 y
= one
- x
; /* exact: 128 < |x| < 255 */
301 lsine
= __log__D(M_PI
/z
); /* = TRUNC(log(u)) + small */
302 lg
.a
-= lsine
.a
; /* exact (opposite signs) */
305 z
= (y
+ lg
.a
) + lg
.b
;
313 else /* 1-x is inexact */
316 return (M_PI
/ (y
*z
));