Remove building with NOCRYPTO option
[minix3.git] / minix / kernel / arch / i386 / memory.c
blob8450aa344f23ee1495802767decc0720ad99b3a6
2 #include "kernel/kernel.h"
3 #include "kernel/vm.h"
5 #include <machine/vm.h>
7 #include <minix/syslib.h>
8 #include <minix/cpufeature.h>
9 #include <string.h>
10 #include <assert.h>
11 #include <signal.h>
12 #include <stdlib.h>
14 #include <machine/vm.h>
16 #include "oxpcie.h"
17 #include "arch_proto.h"
19 #ifdef USE_APIC
20 #include "apic.h"
21 #ifdef USE_WATCHDOG
22 #include "kernel/watchdog.h"
23 #endif
24 #endif
26 phys_bytes video_mem_vaddr = 0;
28 #define HASPT(procptr) ((procptr)->p_seg.p_cr3 != 0)
29 static int nfreepdes = 0;
30 #define MAXFREEPDES 2
31 static int freepdes[MAXFREEPDES];
33 static u32_t phys_get32(phys_bytes v);
35 void mem_clear_mapcache(void)
37 int i;
38 for(i = 0; i < nfreepdes; i++) {
39 struct proc *ptproc = get_cpulocal_var(ptproc);
40 int pde = freepdes[i];
41 u32_t *ptv;
42 assert(ptproc);
43 ptv = ptproc->p_seg.p_cr3_v;
44 assert(ptv);
45 ptv[pde] = 0;
49 /* This function sets up a mapping from within the kernel's address
50 * space to any other area of memory, either straight physical
51 * memory (pr == NULL) or a process view of memory, in 4MB windows.
52 * I.e., it maps in 4MB chunks of virtual (or physical) address space
53 * to 4MB chunks of kernel virtual address space.
55 * It recognizes pr already being in memory as a special case (no
56 * mapping required).
58 * The target (i.e. in-kernel) mapping area is one of the freepdes[]
59 * VM has earlier already told the kernel about that is available. It is
60 * identified as the 'pde' parameter. This value can be chosen freely
61 * by the caller, as long as it is in range (i.e. 0 or higher and corresponds
62 * to a known freepde slot). It is up to the caller to keep track of which
63 * freepde's are in use, and to determine which ones are free to use.
65 * The logical number supplied by the caller is translated into an actual
66 * pde number to be used, and a pointer to it (linear address) is returned
67 * for actual use by phys_copy or memset.
69 static phys_bytes createpde(
70 const struct proc *pr, /* Requested process, NULL for physical. */
71 const phys_bytes linaddr,/* Address after segment translation. */
72 phys_bytes *bytes, /* Size of chunk, function may truncate it. */
73 int free_pde_idx, /* index of the free slot to use */
74 int *changed /* If mapping is made, this is set to 1. */
77 u32_t pdeval;
78 phys_bytes offset;
79 int pde;
81 assert(free_pde_idx >= 0 && free_pde_idx < nfreepdes);
82 pde = freepdes[free_pde_idx];
83 assert(pde >= 0 && pde < 1024);
85 if(pr && ((pr == get_cpulocal_var(ptproc)) || iskernelp(pr))) {
86 /* Process memory is requested, and
87 * it's a process that is already in current page table, or
88 * the kernel, which is always there.
89 * Therefore linaddr is valid directly, with the requested
90 * size.
92 return linaddr;
95 if(pr) {
96 /* Requested address is in a process that is not currently
97 * accessible directly. Grab the PDE entry of that process'
98 * page table that corresponds to the requested address.
100 assert(pr->p_seg.p_cr3_v);
101 pdeval = pr->p_seg.p_cr3_v[I386_VM_PDE(linaddr)];
102 } else {
103 /* Requested address is physical. Make up the PDE entry. */
104 pdeval = (linaddr & I386_VM_ADDR_MASK_4MB) |
105 I386_VM_BIGPAGE | I386_VM_PRESENT |
106 I386_VM_WRITE | I386_VM_USER;
109 /* Write the pde value that we need into a pde that the kernel
110 * can access, into the currently loaded page table so it becomes
111 * visible.
113 assert(get_cpulocal_var(ptproc)->p_seg.p_cr3_v);
114 if(get_cpulocal_var(ptproc)->p_seg.p_cr3_v[pde] != pdeval) {
115 get_cpulocal_var(ptproc)->p_seg.p_cr3_v[pde] = pdeval;
116 *changed = 1;
119 /* Memory is now available, but only the 4MB window of virtual
120 * address space that we have mapped; calculate how much of
121 * the requested range is visible and return that in *bytes,
122 * if that is less than the requested range.
124 offset = linaddr & I386_VM_OFFSET_MASK_4MB; /* Offset in 4MB window. */
125 *bytes = MIN(*bytes, I386_BIG_PAGE_SIZE - offset);
127 /* Return the linear address of the start of the new mapping. */
128 return I386_BIG_PAGE_SIZE*pde + offset;
132 /*===========================================================================*
133 * check_resumed_caller *
134 *===========================================================================*/
135 static int check_resumed_caller(struct proc *caller)
137 /* Returns the result from VM if caller was resumed, otherwise OK. */
138 if (caller && (caller->p_misc_flags & MF_KCALL_RESUME)) {
139 assert(caller->p_vmrequest.vmresult != VMSUSPEND);
140 return caller->p_vmrequest.vmresult;
143 return OK;
146 /*===========================================================================*
147 * lin_lin_copy *
148 *===========================================================================*/
149 static int lin_lin_copy(struct proc *srcproc, vir_bytes srclinaddr,
150 struct proc *dstproc, vir_bytes dstlinaddr, vir_bytes bytes)
152 u32_t addr;
153 proc_nr_t procslot;
155 assert(get_cpulocal_var(ptproc));
156 assert(get_cpulocal_var(proc_ptr));
157 assert(read_cr3() == get_cpulocal_var(ptproc)->p_seg.p_cr3);
159 procslot = get_cpulocal_var(ptproc)->p_nr;
161 assert(procslot >= 0 && procslot < I386_VM_DIR_ENTRIES);
163 if(srcproc) assert(!RTS_ISSET(srcproc, RTS_SLOT_FREE));
164 if(dstproc) assert(!RTS_ISSET(dstproc, RTS_SLOT_FREE));
165 assert(!RTS_ISSET(get_cpulocal_var(ptproc), RTS_SLOT_FREE));
166 assert(get_cpulocal_var(ptproc)->p_seg.p_cr3_v);
167 if(srcproc) assert(!RTS_ISSET(srcproc, RTS_VMINHIBIT));
168 if(dstproc) assert(!RTS_ISSET(dstproc, RTS_VMINHIBIT));
170 while(bytes > 0) {
171 phys_bytes srcptr, dstptr;
172 vir_bytes chunk = bytes;
173 int changed = 0;
175 #ifdef CONFIG_SMP
176 unsigned cpu = cpuid;
178 if (srcproc && GET_BIT(srcproc->p_stale_tlb, cpu)) {
179 changed = 1;
180 UNSET_BIT(srcproc->p_stale_tlb, cpu);
182 if (dstproc && GET_BIT(dstproc->p_stale_tlb, cpu)) {
183 changed = 1;
184 UNSET_BIT(dstproc->p_stale_tlb, cpu);
186 #endif
188 /* Set up 4MB ranges. */
189 srcptr = createpde(srcproc, srclinaddr, &chunk, 0, &changed);
190 dstptr = createpde(dstproc, dstlinaddr, &chunk, 1, &changed);
191 if(changed)
192 reload_cr3();
194 /* Check for overflow. */
195 if (srcptr + chunk < srcptr) return EFAULT_SRC;
196 if (dstptr + chunk < dstptr) return EFAULT_DST;
198 /* Copy pages. */
199 PHYS_COPY_CATCH(srcptr, dstptr, chunk, addr);
201 if(addr) {
202 /* If addr is nonzero, a page fault was caught. */
204 if(addr >= srcptr && addr < (srcptr + chunk)) {
205 return EFAULT_SRC;
207 if(addr >= dstptr && addr < (dstptr + chunk)) {
208 return EFAULT_DST;
211 panic("lin_lin_copy fault out of range");
213 /* Not reached. */
214 return EFAULT;
217 /* Update counter and addresses for next iteration, if any. */
218 bytes -= chunk;
219 srclinaddr += chunk;
220 dstlinaddr += chunk;
223 if(srcproc) assert(!RTS_ISSET(srcproc, RTS_SLOT_FREE));
224 if(dstproc) assert(!RTS_ISSET(dstproc, RTS_SLOT_FREE));
225 assert(!RTS_ISSET(get_cpulocal_var(ptproc), RTS_SLOT_FREE));
226 assert(get_cpulocal_var(ptproc)->p_seg.p_cr3_v);
228 return OK;
232 static u32_t phys_get32(phys_bytes addr)
234 u32_t v;
235 int r;
237 if((r=lin_lin_copy(NULL, addr,
238 proc_addr(SYSTEM), (phys_bytes) &v, sizeof(v))) != OK) {
239 panic("lin_lin_copy for phys_get32 failed: %d", r);
242 return v;
245 #if 0
246 static char *cr0_str(u32_t e)
248 static char str[80];
249 strcpy(str, "");
250 #define FLAG(v) do { if(e & (v)) { strcat(str, #v " "); e &= ~v; } } while(0)
251 FLAG(I386_CR0_PE);
252 FLAG(I386_CR0_MP);
253 FLAG(I386_CR0_EM);
254 FLAG(I386_CR0_TS);
255 FLAG(I386_CR0_ET);
256 FLAG(I386_CR0_PG);
257 FLAG(I386_CR0_WP);
258 if(e) { strcat(str, " (++)"); }
259 return str;
262 static char *cr4_str(u32_t e)
264 static char str[80];
265 strcpy(str, "");
266 FLAG(I386_CR4_VME);
267 FLAG(I386_CR4_PVI);
268 FLAG(I386_CR4_TSD);
269 FLAG(I386_CR4_DE);
270 FLAG(I386_CR4_PSE);
271 FLAG(I386_CR4_PAE);
272 FLAG(I386_CR4_MCE);
273 FLAG(I386_CR4_PGE);
274 if(e) { strcat(str, " (++)"); }
275 return str;
277 #endif
279 /*===========================================================================*
280 * umap_virtual *
281 *===========================================================================*/
282 phys_bytes umap_virtual(
283 register struct proc *rp, /* pointer to proc table entry for process */
284 int seg, /* T, D, or S segment */
285 vir_bytes vir_addr, /* virtual address in bytes within the seg */
286 vir_bytes bytes /* # of bytes to be copied */
289 phys_bytes phys = 0;
291 if(vm_lookup(rp, vir_addr, &phys, NULL) != OK) {
292 printf("SYSTEM:umap_virtual: vm_lookup of %s: seg 0x%x: 0x%lx failed\n", rp->p_name, seg, vir_addr);
293 phys = 0;
294 } else {
295 if(phys == 0)
296 panic("vm_lookup returned phys: 0x%lx", phys);
299 if(phys == 0) {
300 printf("SYSTEM:umap_virtual: lookup failed\n");
301 return 0;
304 /* Now make sure addresses are contiguous in physical memory
305 * so that the umap makes sense.
307 if(bytes > 0 && vm_lookup_range(rp, vir_addr, NULL, bytes) != bytes) {
308 printf("umap_virtual: %s: %lu at 0x%lx (vir 0x%lx) not contiguous\n",
309 rp->p_name, bytes, vir_addr, vir_addr);
310 return 0;
313 /* phys must be larger than 0 (or the caller will think the call
314 * failed), and address must not cross a page boundary.
316 assert(phys);
318 return phys;
322 /*===========================================================================*
323 * vm_lookup *
324 *===========================================================================*/
325 int vm_lookup(const struct proc *proc, const vir_bytes virtual,
326 phys_bytes *physical, u32_t *ptent)
328 u32_t *root, *pt;
329 int pde, pte;
330 u32_t pde_v, pte_v;
332 assert(proc);
333 assert(physical);
334 assert(!isemptyp(proc));
335 assert(HASPT(proc));
337 /* Retrieve page directory entry. */
338 root = (u32_t *) proc->p_seg.p_cr3;
339 assert(!((u32_t) root % I386_PAGE_SIZE));
340 pde = I386_VM_PDE(virtual);
341 assert(pde >= 0 && pde < I386_VM_DIR_ENTRIES);
342 pde_v = phys_get32((u32_t) (root + pde));
344 if(!(pde_v & I386_VM_PRESENT)) {
345 return EFAULT;
348 /* We don't expect to ever see this. */
349 if(pde_v & I386_VM_BIGPAGE) {
350 *physical = pde_v & I386_VM_ADDR_MASK_4MB;
351 if(ptent) *ptent = pde_v;
352 *physical += virtual & I386_VM_OFFSET_MASK_4MB;
353 } else {
354 /* Retrieve page table entry. */
355 pt = (u32_t *) I386_VM_PFA(pde_v);
356 assert(!((u32_t) pt % I386_PAGE_SIZE));
357 pte = I386_VM_PTE(virtual);
358 assert(pte >= 0 && pte < I386_VM_PT_ENTRIES);
359 pte_v = phys_get32((u32_t) (pt + pte));
360 if(!(pte_v & I386_VM_PRESENT)) {
361 return EFAULT;
364 if(ptent) *ptent = pte_v;
366 /* Actual address now known; retrieve it and add page offset. */
367 *physical = I386_VM_PFA(pte_v);
368 *physical += virtual % I386_PAGE_SIZE;
371 return OK;
374 /*===========================================================================*
375 * vm_lookup_range *
376 *===========================================================================*/
377 size_t vm_lookup_range(const struct proc *proc, vir_bytes vir_addr,
378 phys_bytes *phys_addr, size_t bytes)
380 /* Look up the physical address corresponding to linear virtual address
381 * 'vir_addr' for process 'proc'. Return the size of the range covered
382 * by contiguous physical memory starting from that address; this may
383 * be anywhere between 0 and 'bytes' inclusive. If the return value is
384 * nonzero, and 'phys_addr' is non-NULL, 'phys_addr' will be set to the
385 * base physical address of the range. 'vir_addr' and 'bytes' need not
386 * be page-aligned, but the caller must have verified that the given
387 * linear range is valid for the given process at all.
389 phys_bytes phys, next_phys;
390 size_t len;
392 assert(proc);
393 assert(bytes > 0);
394 assert(HASPT(proc));
396 /* Look up the first page. */
397 if (vm_lookup(proc, vir_addr, &phys, NULL) != OK)
398 return 0;
400 if (phys_addr != NULL)
401 *phys_addr = phys;
403 len = I386_PAGE_SIZE - (vir_addr % I386_PAGE_SIZE);
404 vir_addr += len;
405 next_phys = phys + len;
407 /* Look up any next pages and test physical contiguity. */
408 while (len < bytes) {
409 if (vm_lookup(proc, vir_addr, &phys, NULL) != OK)
410 break;
412 if (next_phys != phys)
413 break;
415 len += I386_PAGE_SIZE;
416 vir_addr += I386_PAGE_SIZE;
417 next_phys += I386_PAGE_SIZE;
420 /* We might now have overshot the requested length somewhat. */
421 return MIN(bytes, len);
424 /*===========================================================================*
425 * vm_check_range *
426 *===========================================================================*/
427 int vm_check_range(struct proc *caller, struct proc *target,
428 vir_bytes vir_addr, size_t bytes, int writeflag)
430 /* Public interface to vm_suspend(), for use by kernel calls. On behalf
431 * of 'caller', call into VM to check linear virtual address range of
432 * process 'target', starting at 'vir_addr', for 'bytes' bytes. This
433 * function assumes that it will called twice if VM returned an error
434 * the first time (since nothing has changed in that case), and will
435 * then return the error code resulting from the first call. Upon the
436 * first call, a non-success error code is returned as well.
438 int r;
440 if ((caller->p_misc_flags & MF_KCALL_RESUME) &&
441 (r = caller->p_vmrequest.vmresult) != OK)
442 return r;
444 vm_suspend(caller, target, vir_addr, bytes, VMSTYPE_KERNELCALL,
445 writeflag);
447 return VMSUSPEND;
450 #if 0
451 static char *flagstr(u32_t e, const int dir)
453 static char str[80];
454 strcpy(str, "");
455 FLAG(I386_VM_PRESENT);
456 FLAG(I386_VM_WRITE);
457 FLAG(I386_VM_USER);
458 FLAG(I386_VM_PWT);
459 FLAG(I386_VM_PCD);
460 FLAG(I386_VM_GLOBAL);
461 if(dir)
462 FLAG(I386_VM_BIGPAGE); /* Page directory entry only */
463 else
464 FLAG(I386_VM_DIRTY); /* Page table entry only */
465 return str;
468 static void vm_pt_print(u32_t *pagetable, const u32_t v)
470 int pte;
471 int col = 0;
473 assert(!((u32_t) pagetable % I386_PAGE_SIZE));
475 for(pte = 0; pte < I386_VM_PT_ENTRIES; pte++) {
476 u32_t pte_v, pfa;
477 pte_v = phys_get32((u32_t) (pagetable + pte));
478 if(!(pte_v & I386_VM_PRESENT))
479 continue;
480 pfa = I386_VM_PFA(pte_v);
481 printf("%4d:%08lx:%08lx %2s ",
482 pte, v + I386_PAGE_SIZE*pte, pfa,
483 (pte_v & I386_VM_WRITE) ? "rw":"RO");
484 col++;
485 if(col == 3) { printf("\n"); col = 0; }
487 if(col > 0) printf("\n");
489 return;
492 static void vm_print(u32_t *root)
494 int pde;
496 assert(!((u32_t) root % I386_PAGE_SIZE));
498 printf("page table 0x%lx:\n", root);
500 for(pde = 0; pde < I386_VM_DIR_ENTRIES; pde++) {
501 u32_t pde_v;
502 u32_t *pte_a;
503 pde_v = phys_get32((u32_t) (root + pde));
504 if(!(pde_v & I386_VM_PRESENT))
505 continue;
506 if(pde_v & I386_VM_BIGPAGE) {
507 printf("%4d: 0x%lx, flags %s\n",
508 pde, I386_VM_PFA(pde_v), flagstr(pde_v, 1));
509 } else {
510 pte_a = (u32_t *) I386_VM_PFA(pde_v);
511 printf("%4d: pt %08lx %s\n",
512 pde, pte_a, flagstr(pde_v, 1));
513 vm_pt_print(pte_a, pde * I386_VM_PT_ENTRIES * I386_PAGE_SIZE);
514 printf("\n");
519 return;
521 #endif
523 /*===========================================================================*
524 * vmmemset *
525 *===========================================================================*/
526 int vm_memset(struct proc* caller, endpoint_t who, phys_bytes ph, int c,
527 phys_bytes count)
529 u32_t pattern;
530 struct proc *whoptr = NULL;
531 phys_bytes cur_ph = ph;
532 phys_bytes left = count;
533 phys_bytes ptr, chunk, pfa = 0;
534 int new_cr3, r = OK;
536 if ((r = check_resumed_caller(caller)) != OK)
537 return r;
539 /* NONE for physical, otherwise virtual */
540 if (who != NONE && !(whoptr = endpoint_lookup(who)))
541 return ESRCH;
543 c &= 0xFF;
544 pattern = c | (c << 8) | (c << 16) | (c << 24);
546 assert(get_cpulocal_var(ptproc)->p_seg.p_cr3_v);
547 assert(!catch_pagefaults);
548 catch_pagefaults = 1;
550 /* We can memset as many bytes as we have remaining,
551 * or as many as remain in the 4MB chunk we mapped in.
553 while (left > 0) {
554 new_cr3 = 0;
555 chunk = left;
556 ptr = createpde(whoptr, cur_ph, &chunk, 0, &new_cr3);
558 if (new_cr3)
559 reload_cr3();
561 /* If a page fault happens, pfa is non-null */
562 if ((pfa = phys_memset(ptr, pattern, chunk))) {
564 /* If a process pagefaults, VM may help out */
565 if (whoptr) {
566 vm_suspend(caller, whoptr, ph, count,
567 VMSTYPE_KERNELCALL, 1);
568 assert(catch_pagefaults);
569 catch_pagefaults = 0;
570 return VMSUSPEND;
573 /* Pagefault when phys copying ?! */
574 panic("vm_memset: pf %lx addr=%lx len=%lu\n",
575 pfa , ptr, chunk);
578 cur_ph += chunk;
579 left -= chunk;
582 assert(get_cpulocal_var(ptproc)->p_seg.p_cr3_v);
583 assert(catch_pagefaults);
584 catch_pagefaults = 0;
586 return OK;
589 /*===========================================================================*
590 * virtual_copy_f *
591 *===========================================================================*/
592 int virtual_copy_f(
593 struct proc * caller,
594 struct vir_addr *src_addr, /* source virtual address */
595 struct vir_addr *dst_addr, /* destination virtual address */
596 vir_bytes bytes, /* # of bytes to copy */
597 int vmcheck /* if nonzero, can return VMSUSPEND */
600 /* Copy bytes from virtual address src_addr to virtual address dst_addr. */
601 struct vir_addr *vir_addr[2]; /* virtual source and destination address */
602 int i, r;
603 struct proc *procs[2];
605 assert((vmcheck && caller) || (!vmcheck && !caller));
607 /* Check copy count. */
608 if (bytes <= 0) return(EDOM);
610 /* Do some more checks and map virtual addresses to physical addresses. */
611 vir_addr[_SRC_] = src_addr;
612 vir_addr[_DST_] = dst_addr;
614 for (i=_SRC_; i<=_DST_; i++) {
615 endpoint_t proc_e = vir_addr[i]->proc_nr_e;
616 int proc_nr;
617 struct proc *p;
619 if(proc_e == NONE) {
620 p = NULL;
621 } else {
622 if(!isokendpt(proc_e, &proc_nr)) {
623 printf("virtual_copy: no reasonable endpoint\n");
624 return ESRCH;
626 p = proc_addr(proc_nr);
629 procs[i] = p;
632 if ((r = check_resumed_caller(caller)) != OK)
633 return r;
635 if((r=lin_lin_copy(procs[_SRC_], vir_addr[_SRC_]->offset,
636 procs[_DST_], vir_addr[_DST_]->offset, bytes)) != OK) {
637 int writeflag;
638 struct proc *target = NULL;
639 phys_bytes lin;
640 if(r != EFAULT_SRC && r != EFAULT_DST)
641 panic("lin_lin_copy failed: %d", r);
642 if(!vmcheck || !caller) {
643 return r;
646 if(r == EFAULT_SRC) {
647 lin = vir_addr[_SRC_]->offset;
648 target = procs[_SRC_];
649 writeflag = 0;
650 } else if(r == EFAULT_DST) {
651 lin = vir_addr[_DST_]->offset;
652 target = procs[_DST_];
653 writeflag = 1;
654 } else {
655 panic("r strange: %d", r);
658 assert(caller);
659 assert(target);
661 vm_suspend(caller, target, lin, bytes, VMSTYPE_KERNELCALL, writeflag);
662 return VMSUSPEND;
665 return OK;
668 /*===========================================================================*
669 * data_copy *
670 *===========================================================================*/
671 int data_copy(const endpoint_t from_proc, const vir_bytes from_addr,
672 const endpoint_t to_proc, const vir_bytes to_addr,
673 size_t bytes)
675 struct vir_addr src, dst;
677 src.offset = from_addr;
678 dst.offset = to_addr;
679 src.proc_nr_e = from_proc;
680 dst.proc_nr_e = to_proc;
681 assert(src.proc_nr_e != NONE);
682 assert(dst.proc_nr_e != NONE);
684 return virtual_copy(&src, &dst, bytes);
687 /*===========================================================================*
688 * data_copy_vmcheck *
689 *===========================================================================*/
690 int data_copy_vmcheck(struct proc * caller,
691 const endpoint_t from_proc, const vir_bytes from_addr,
692 const endpoint_t to_proc, const vir_bytes to_addr,
693 size_t bytes)
695 struct vir_addr src, dst;
697 src.offset = from_addr;
698 dst.offset = to_addr;
699 src.proc_nr_e = from_proc;
700 dst.proc_nr_e = to_proc;
701 assert(src.proc_nr_e != NONE);
702 assert(dst.proc_nr_e != NONE);
704 return virtual_copy_vmcheck(caller, &src, &dst, bytes);
707 void memory_init(void)
709 assert(nfreepdes == 0);
711 freepdes[nfreepdes++] = kinfo.freepde_start++;
712 freepdes[nfreepdes++] = kinfo.freepde_start++;
714 assert(kinfo.freepde_start < I386_VM_DIR_ENTRIES);
715 assert(nfreepdes == 2);
716 assert(nfreepdes <= MAXFREEPDES);
719 /*===========================================================================*
720 * arch_proc_init *
721 *===========================================================================*/
722 void arch_proc_init(struct proc *pr, const u32_t ip, const u32_t sp,
723 const u32_t ps_str, char *name)
725 arch_proc_reset(pr);
726 strlcpy(pr->p_name, name, sizeof(pr->p_name));
728 /* set custom state we know */
729 pr->p_reg.pc = ip;
730 pr->p_reg.sp = sp;
731 pr->p_reg.bx = ps_str;
734 static int oxpcie_mapping_index = -1,
735 lapic_mapping_index = -1,
736 ioapic_first_index = -1,
737 ioapic_last_index = -1,
738 video_mem_mapping_index = -1,
739 usermapped_glo_index = -1,
740 usermapped_index = -1, first_um_idx = -1;
742 extern char *video_mem;
744 extern char usermapped_start, usermapped_end, usermapped_nonglo_start;
746 int arch_phys_map(const int index,
747 phys_bytes *addr,
748 phys_bytes *len,
749 int *flags)
751 static int first = 1;
752 int freeidx = 0;
753 static char *ser_var = NULL;
754 u32_t glo_len = (u32_t) &usermapped_nonglo_start -
755 (u32_t) &usermapped_start;
757 if(first) {
758 memset(&minix_kerninfo, 0, sizeof(minix_kerninfo));
759 video_mem_mapping_index = freeidx++;
760 if(glo_len > 0) {
761 usermapped_glo_index = freeidx++;
764 usermapped_index = freeidx++;
765 first_um_idx = usermapped_index;
766 if(usermapped_glo_index != -1)
767 first_um_idx = usermapped_glo_index;
769 #ifdef USE_APIC
770 if(lapic_addr)
771 lapic_mapping_index = freeidx++;
772 if (ioapic_enabled) {
773 ioapic_first_index = freeidx;
774 assert(nioapics > 0);
775 freeidx += nioapics;
776 ioapic_last_index = freeidx-1;
778 #endif
780 #ifdef CONFIG_OXPCIE
781 if((ser_var = env_get("oxpcie"))) {
782 if(ser_var[0] != '0' || ser_var[1] != 'x') {
783 printf("oxpcie address in hex please\n");
784 } else {
785 printf("oxpcie address is %s\n", ser_var);
786 oxpcie_mapping_index = freeidx++;
789 #endif
791 first = 0;
794 if(index == usermapped_glo_index) {
795 *addr = vir2phys(&usermapped_start);
796 *len = glo_len;
797 *flags = VMMF_USER | VMMF_GLO;
798 return OK;
800 else if(index == usermapped_index) {
801 *addr = vir2phys(&usermapped_nonglo_start);
802 *len = (u32_t) &usermapped_end -
803 (u32_t) &usermapped_nonglo_start;
804 *flags = VMMF_USER;
805 return OK;
807 else if (index == video_mem_mapping_index) {
808 /* map video memory in so we can print panic messages */
809 *addr = MULTIBOOT_VIDEO_BUFFER;
810 *len = I386_PAGE_SIZE;
811 *flags = VMMF_WRITE;
812 return OK;
814 #ifdef USE_APIC
815 else if (index == lapic_mapping_index) {
816 /* map the local APIC if enabled */
817 if (!lapic_addr)
818 return EINVAL;
819 *addr = lapic_addr;
820 *len = 4 << 10 /* 4kB */;
821 *flags = VMMF_UNCACHED | VMMF_WRITE;
822 return OK;
824 else if (ioapic_enabled && index >= ioapic_first_index && index <= ioapic_last_index) {
825 int ioapic_idx = index - ioapic_first_index;
826 *addr = io_apic[ioapic_idx].paddr;
827 assert(*addr);
828 *len = 4 << 10 /* 4kB */;
829 *flags = VMMF_UNCACHED | VMMF_WRITE;
830 printf("ioapic map: addr 0x%lx\n", *addr);
831 return OK;
833 #endif
835 #if CONFIG_OXPCIE
836 if(index == oxpcie_mapping_index) {
837 *addr = strtoul(ser_var+2, NULL, 16);
838 *len = 0x4000;
839 *flags = VMMF_UNCACHED | VMMF_WRITE;
840 return OK;
842 #endif
844 return EINVAL;
847 int arch_phys_map_reply(const int index, const vir_bytes addr)
849 #ifdef USE_APIC
850 /* if local APIC is enabled */
851 if (index == lapic_mapping_index && lapic_addr) {
852 lapic_addr_vaddr = addr;
853 return OK;
855 else if (ioapic_enabled && index >= ioapic_first_index &&
856 index <= ioapic_last_index) {
857 int i = index - ioapic_first_index;
858 io_apic[i].vaddr = addr;
859 return OK;
861 #endif
863 #if CONFIG_OXPCIE
864 if (index == oxpcie_mapping_index) {
865 oxpcie_set_vaddr((unsigned char *) addr);
866 return OK;
868 #endif
869 if(index == first_um_idx) {
870 extern struct minix_ipcvecs minix_ipcvecs_sysenter,
871 minix_ipcvecs_syscall,
872 minix_ipcvecs_softint;
873 extern u32_t usermapped_offset;
874 assert(addr > (u32_t) &usermapped_start);
875 usermapped_offset = addr - (u32_t) &usermapped_start;
876 #define FIXEDPTR(ptr) (void *) ((u32_t)ptr + usermapped_offset)
877 #define FIXPTR(ptr) ptr = FIXEDPTR(ptr)
878 #define ASSIGN(minixstruct) minix_kerninfo.minixstruct = FIXEDPTR(&minixstruct)
879 ASSIGN(kinfo);
880 ASSIGN(machine);
881 ASSIGN(kmessages);
882 ASSIGN(loadinfo);
883 ASSIGN(kuserinfo);
884 ASSIGN(arm_frclock); /* eh, why not. */
885 ASSIGN(kclockinfo);
887 /* select the right set of IPC routines to map into processes */
888 if(minix_feature_flags & MKF_I386_INTEL_SYSENTER) {
889 DEBUGBASIC(("kernel: selecting intel sysenter ipc style\n"));
890 minix_kerninfo.minix_ipcvecs = &minix_ipcvecs_sysenter;
891 } else if(minix_feature_flags & MKF_I386_AMD_SYSCALL) {
892 DEBUGBASIC(("kernel: selecting amd syscall ipc style\n"));
893 minix_kerninfo.minix_ipcvecs = &minix_ipcvecs_syscall;
894 } else {
895 DEBUGBASIC(("kernel: selecting fallback (int) ipc style\n"));
896 minix_kerninfo.minix_ipcvecs = &minix_ipcvecs_softint;
899 /* adjust the pointers of the functions and the struct
900 * itself to the user-accessible mapping
902 FIXPTR(minix_kerninfo.minix_ipcvecs->send);
903 FIXPTR(minix_kerninfo.minix_ipcvecs->receive);
904 FIXPTR(minix_kerninfo.minix_ipcvecs->sendrec);
905 FIXPTR(minix_kerninfo.minix_ipcvecs->senda);
906 FIXPTR(minix_kerninfo.minix_ipcvecs->sendnb);
907 FIXPTR(minix_kerninfo.minix_ipcvecs->notify);
908 FIXPTR(minix_kerninfo.minix_ipcvecs->do_kernel_call);
909 FIXPTR(minix_kerninfo.minix_ipcvecs);
911 minix_kerninfo.kerninfo_magic = KERNINFO_MAGIC;
912 minix_kerninfo.minix_feature_flags = minix_feature_flags;
913 minix_kerninfo_user = (vir_bytes) FIXEDPTR(&minix_kerninfo);
915 /* if libc_ipc is set, disable usermapped ipc functions
916 * and force binaries to use in-libc fallbacks.
918 if(env_get("libc_ipc")) {
919 printf("kernel: forcing in-libc fallback ipc style\n");
920 minix_kerninfo.minix_ipcvecs = NULL;
921 } else {
922 minix_kerninfo.ki_flags |= MINIX_KIF_IPCVECS;
925 minix_kerninfo.ki_flags |= MINIX_KIF_USERINFO;
927 return OK;
930 if(index == usermapped_index) return OK;
932 if (index == video_mem_mapping_index) {
933 video_mem_vaddr = addr;
934 return OK;
937 return EINVAL;
940 int arch_enable_paging(struct proc * caller)
942 assert(caller->p_seg.p_cr3);
944 /* load caller's page table */
945 switch_address_space(caller);
947 video_mem = (char *) video_mem_vaddr;
949 #ifdef USE_APIC
950 /* start using the virtual addresses */
952 /* if local APIC is enabled */
953 if (lapic_addr) {
954 lapic_addr = lapic_addr_vaddr;
955 lapic_eoi_addr = LAPIC_EOI;
957 /* if IO apics are enabled */
958 if (ioapic_enabled) {
959 int i;
961 for (i = 0; i < nioapics; i++) {
962 io_apic[i].addr = io_apic[i].vaddr;
965 #if CONFIG_SMP
966 barrier();
968 wait_for_APs_to_finish_booting();
969 #endif
970 #endif
972 #ifdef USE_WATCHDOG
974 * We make sure that we don't enable the watchdog until paging is turned
975 * on as we might get an NMI while switching and we might still use wrong
976 * lapic address. Bad things would happen. It is unfortunate but such is
977 * life
979 if (watchdog_enabled)
980 i386_watchdog_start();
981 #endif
983 return OK;
986 void release_address_space(struct proc *pr)
988 pr->p_seg.p_cr3_v = NULL;
991 /* computes a checksum of a buffer of a given length. The byte sum must be zero */
992 int platform_tbl_checksum_ok(void *ptr, unsigned int length)
994 u8_t total = 0;
995 unsigned int i;
996 for (i = 0; i < length; i++)
997 total += ((unsigned char *)ptr)[i];
998 return !total;
1001 int platform_tbl_ptr(phys_bytes start,
1002 phys_bytes end,
1003 unsigned increment,
1004 void * buff,
1005 unsigned size,
1006 phys_bytes * phys_addr,
1007 int ((* cmp_f)(void *)))
1009 phys_bytes addr;
1011 for (addr = start; addr < end; addr += increment) {
1012 phys_copy (addr, (phys_bytes) buff, size);
1013 if (cmp_f(buff)) {
1014 if (phys_addr)
1015 *phys_addr = addr;
1016 return 1;
1019 return 0;