Remove building with NOCRYPTO option
[minix3.git] / minix / servers / pm / signal.c
blobc3a9e4c2553f76094fe3392b7fb08397a1970110
1 /* This file handles signals, which are asynchronous events and are generally
2 * a messy and unpleasant business. Signals can be generated by the KILL
3 * system call, or from the keyboard (SIGINT) or from the clock (SIGALRM).
4 * In all cases control eventually passes to check_sig() to see which processes
5 * can be signaled. The actual signaling is done by sig_proc().
7 * The entry points into this file are:
8 * do_sigaction: perform the SIGACTION system call
9 * do_sigpending: perform the SIGPENDING system call
10 * do_sigprocmask: perform the SIGPROCMASK system call
11 * do_sigreturn: perform the SIGRETURN system call
12 * do_sigsuspend: perform the SIGSUSPEND system call
13 * do_kill: perform the KILL system call
14 * process_ksig: process a signal an behalf of the kernel
15 * sig_proc: interrupt or terminate a signaled process
16 * check_sig: check which processes to signal with sig_proc()
17 * check_pending: check if a pending signal can now be delivered
18 * restart_sigs: restart signal work after finishing a VFS call
21 #include "pm.h"
22 #include <sys/stat.h>
23 #include <sys/ptrace.h>
24 #include <minix/callnr.h>
25 #include <minix/endpoint.h>
26 #include <minix/com.h>
27 #include <minix/vm.h>
28 #include <signal.h>
29 #include <sys/resource.h>
30 #include <assert.h>
31 #include "mproc.h"
33 static int unpause(struct mproc *rmp);
34 static int sig_send(struct mproc *rmp, int signo);
35 static void sig_proc_exit(struct mproc *rmp, int signo);
37 /*===========================================================================*
38 * do_sigaction *
39 *===========================================================================*/
40 int do_sigaction(void)
42 int r, sig_nr;
43 struct sigaction svec;
44 struct sigaction *svp;
46 assert(!(mp->mp_flags & (PROC_STOPPED | VFS_CALL | UNPAUSED | EVENT_CALL)));
48 sig_nr = m_in.m_lc_pm_sig.nr;
49 if (sig_nr == SIGKILL) return(OK);
50 if (sig_nr < 1 || sig_nr >= _NSIG) return(EINVAL);
52 svp = &mp->mp_sigact[sig_nr];
53 if (m_in.m_lc_pm_sig.oact != 0) {
54 r = sys_datacopy(PM_PROC_NR,(vir_bytes) svp, who_e,
55 m_in.m_lc_pm_sig.oact, (phys_bytes) sizeof(svec));
56 if (r != OK) return(r);
59 if (m_in.m_lc_pm_sig.act == 0)
60 return(OK);
62 /* Read in the sigaction structure. */
63 r = sys_datacopy(who_e, m_in.m_lc_pm_sig.act, PM_PROC_NR, (vir_bytes) &svec,
64 (phys_bytes) sizeof(svec));
65 if (r != OK) return(r);
67 if (svec.sa_handler == SIG_IGN) {
68 sigaddset(&mp->mp_ignore, sig_nr);
69 sigdelset(&mp->mp_sigpending, sig_nr);
70 sigdelset(&mp->mp_ksigpending, sig_nr);
71 sigdelset(&mp->mp_catch, sig_nr);
72 } else if (svec.sa_handler == SIG_DFL) {
73 sigdelset(&mp->mp_ignore, sig_nr);
74 sigdelset(&mp->mp_catch, sig_nr);
75 } else {
76 sigdelset(&mp->mp_ignore, sig_nr);
77 sigaddset(&mp->mp_catch, sig_nr);
79 mp->mp_sigact[sig_nr].sa_handler = svec.sa_handler;
80 sigdelset(&svec.sa_mask, SIGKILL);
81 sigdelset(&svec.sa_mask, SIGSTOP);
82 mp->mp_sigact[sig_nr].sa_mask = svec.sa_mask;
83 mp->mp_sigact[sig_nr].sa_flags = svec.sa_flags;
84 mp->mp_sigreturn = m_in.m_lc_pm_sig.ret;
85 return(OK);
88 /*===========================================================================*
89 * do_sigpending *
90 *===========================================================================*/
91 int do_sigpending(void)
93 assert(!(mp->mp_flags & (PROC_STOPPED | VFS_CALL | UNPAUSED | EVENT_CALL)));
95 mp->mp_reply.m_pm_lc_sigset.set = mp->mp_sigpending;
96 return OK;
99 /*===========================================================================*
100 * do_sigprocmask *
101 *===========================================================================*/
102 int do_sigprocmask(void)
104 /* Note that the library interface passes the actual mask in sigmask_set,
105 * not a pointer to the mask, in order to save a copy. Similarly,
106 * the old mask is placed in the return message which the library
107 * interface copies (if requested) to the user specified address.
109 * The library interface must set SIG_INQUIRE if the 'act' argument
110 * is NULL.
112 * KILL and STOP can't be masked.
114 sigset_t set;
115 int i;
117 assert(!(mp->mp_flags & (PROC_STOPPED | VFS_CALL | UNPAUSED | EVENT_CALL)));
119 set = m_in.m_lc_pm_sigset.set;
120 mp->mp_reply.m_pm_lc_sigset.set = mp->mp_sigmask;
122 switch (m_in.m_lc_pm_sigset.how) {
123 case SIG_BLOCK:
124 sigdelset(&set, SIGKILL);
125 sigdelset(&set, SIGSTOP);
126 for (i = 1; i < _NSIG; i++) {
127 if (sigismember(&set, i))
128 sigaddset(&mp->mp_sigmask, i);
130 break;
132 case SIG_UNBLOCK:
133 for (i = 1; i < _NSIG; i++) {
134 if (sigismember(&set, i))
135 sigdelset(&mp->mp_sigmask, i);
137 check_pending(mp);
138 break;
140 case SIG_SETMASK:
141 sigdelset(&set, SIGKILL);
142 sigdelset(&set, SIGSTOP);
143 mp->mp_sigmask = set;
144 check_pending(mp);
145 break;
147 case SIG_INQUIRE:
148 break;
150 default:
151 return(EINVAL);
152 break;
154 return OK;
157 /*===========================================================================*
158 * do_sigsuspend *
159 *===========================================================================*/
160 int do_sigsuspend(void)
162 assert(!(mp->mp_flags & (PROC_STOPPED | VFS_CALL | UNPAUSED | EVENT_CALL)));
164 mp->mp_sigmask2 = mp->mp_sigmask; /* save the old mask */
165 mp->mp_sigmask = m_in.m_lc_pm_sigset.set;
166 sigdelset(&mp->mp_sigmask, SIGKILL);
167 sigdelset(&mp->mp_sigmask, SIGSTOP);
168 mp->mp_flags |= SIGSUSPENDED;
169 check_pending(mp);
170 return(SUSPEND);
173 /*===========================================================================*
174 * do_sigreturn *
175 *===========================================================================*/
176 int do_sigreturn(void)
178 /* A user signal handler is done. Restore context and check for
179 * pending unblocked signals.
181 int r;
183 assert(!(mp->mp_flags & (PROC_STOPPED | VFS_CALL | UNPAUSED | EVENT_CALL)));
185 mp->mp_sigmask = m_in.m_lc_pm_sigset.set;
186 sigdelset(&mp->mp_sigmask, SIGKILL);
187 sigdelset(&mp->mp_sigmask, SIGSTOP);
189 r = sys_sigreturn(who_e, (struct sigmsg *)m_in.m_lc_pm_sigset.ctx);
190 check_pending(mp);
191 return(r);
194 /*===========================================================================*
195 * do_kill *
196 *===========================================================================*/
197 int do_kill(void)
199 /* Perform the kill(pid, signo) system call. */
201 return check_sig(m_in.m_lc_pm_sig.pid, m_in.m_lc_pm_sig.nr, FALSE /* ksig */);
204 /*===========================================================================*
205 * do_srv_kill *
206 *===========================================================================*/
207 int do_srv_kill(void)
209 /* Perform the srv_kill(pid, signo) system call. */
211 /* Only RS is allowed to use srv_kill. */
212 if (mp->mp_endpoint != RS_PROC_NR)
213 return EPERM;
215 /* Pretend the signal comes from the kernel when RS wants to deliver a signal
216 * to a system process. RS sends a SIGKILL when it wants to perform cleanup.
217 * In that case, ksig == TRUE forces PM to exit the process immediately.
219 return check_sig(m_in.m_rs_pm_srv_kill.pid, m_in.m_rs_pm_srv_kill.nr,
220 TRUE /* ksig */);
223 /*===========================================================================*
224 * stop_proc *
225 *===========================================================================*/
226 static int stop_proc(struct mproc *rmp, int may_delay)
228 /* Try to stop the given process in the kernel. If successful, mark the process
229 * as stopped and return TRUE. If the process is still busy sending a message,
230 * the behavior depends on the 'may_delay' parameter. If set, the process will
231 * be marked as having a delay call pending, and the function returns FALSE. If
232 * not set, the caller already knows that the process has no delay call, and PM
233 * will panic.
235 int r;
237 assert(!(rmp->mp_flags & (PROC_STOPPED | DELAY_CALL | UNPAUSED)));
239 r = sys_delay_stop(rmp->mp_endpoint);
241 /* If the process is still busy sending a message, the kernel will give us
242 * EBUSY now and send a SIGSNDELAY to the process as soon as sending is done.
244 switch (r) {
245 case OK:
246 rmp->mp_flags |= PROC_STOPPED;
248 return TRUE;
250 case EBUSY:
251 if (!may_delay)
252 panic("stop_proc: unexpected delay call");
254 rmp->mp_flags |= DELAY_CALL;
256 return FALSE;
258 default:
259 panic("sys_delay_stop failed: %d", r);
263 /*===========================================================================*
264 * try_resume_proc *
265 *===========================================================================*/
266 static void try_resume_proc(struct mproc *rmp)
268 /* Resume the given process if possible. */
269 int r;
271 assert(rmp->mp_flags & PROC_STOPPED);
273 /* If the process is blocked on a VFS call or a process event notification,
274 * do not resume it now. Most likely it will be unpausing, in which case the
275 * process must remain stopped. Otherwise, it will still be resumed once the
276 * VFS or event call is replied to. If the process has died, do not resume
277 * it either.
279 if (rmp->mp_flags & (VFS_CALL | EVENT_CALL | EXITING))
280 return;
282 if ((r = sys_resume(rmp->mp_endpoint)) != OK)
283 panic("sys_resume failed: %d", r);
285 /* Also unset the unpaused flag. We can safely assume that a stopped process
286 * need only be unpaused once, but once it is resumed, all bets are off.
288 rmp->mp_flags &= ~(PROC_STOPPED | UNPAUSED);
291 /*===========================================================================*
292 * process_ksig *
293 *===========================================================================*/
294 int process_ksig(endpoint_t proc_nr_e, int signo)
296 register struct mproc *rmp;
297 int proc_nr;
298 pid_t proc_id, id;
300 if(pm_isokendpt(proc_nr_e, &proc_nr) != OK) {
301 printf("PM: process_ksig: %d?? not ok\n", proc_nr_e);
302 return EDEADEPT; /* process is gone. */
304 rmp = &mproc[proc_nr];
305 if ((rmp->mp_flags & (IN_USE | EXITING)) != IN_USE) {
306 #if 0
307 printf("PM: process_ksig: %d?? exiting / not in use\n", proc_nr_e);
308 #endif
309 return EDEADEPT; /* process is gone. */
311 proc_id = rmp->mp_pid;
312 mp = &mproc[0]; /* pretend signals are from PM */
313 mp->mp_procgrp = rmp->mp_procgrp; /* get process group right */
315 /* For SIGVTALRM and SIGPROF, see if we need to restart a
316 * virtual timer. For SIGINT, SIGINFO, SIGWINCH and SIGQUIT, use proc_id 0
317 * to indicate a broadcast to the recipient's process group. For
318 * SIGKILL, use proc_id -1 to indicate a systemwide broadcast.
320 switch (signo) {
321 case SIGINT:
322 case SIGQUIT:
323 case SIGWINCH:
324 case SIGINFO:
325 id = 0; break; /* broadcast to process group */
326 case SIGVTALRM:
327 case SIGPROF:
328 check_vtimer(proc_nr, signo);
329 /* fall-through */
330 default:
331 id = proc_id;
332 break;
334 check_sig(id, signo, TRUE /* ksig */);
335 mp->mp_procgrp = 0; /* restore proper PM process group */
337 /* If SIGSNDELAY is set, an earlier sys_stop() failed because the process was
338 * still sending, and the kernel hereby tells us that the process is now done
339 * with that. We can now try to resume what we planned to do in the first
340 * place: set up a signal handler. However, the process's message may have
341 * been a call to PM, in which case the process may have changed any of its
342 * signal settings. The process may also have forked, exited etcetera.
344 if (signo == SIGSNDELAY && (rmp->mp_flags & DELAY_CALL)) {
345 /* When getting SIGSNDELAY, the process is stopped at least until the
346 * receipt of the SIGSNDELAY signal is acknowledged to the kernel. The
347 * process is not stopped on PROC_STOP in the kernel. However, now that
348 * there is no longer a delay call, stop_proc() is guaranteed to
349 * succeed immediately.
351 rmp->mp_flags &= ~DELAY_CALL;
353 assert(!(rmp->mp_flags & PROC_STOPPED));
355 /* If the delay call was to PM, it may have resulted in a VFS call. In
356 * that case, we must wait with further signal processing until VFS has
357 * replied. Stop the process.
359 if (rmp->mp_flags & (VFS_CALL | EVENT_CALL)) {
360 stop_proc(rmp, FALSE /*may_delay*/);
362 return OK;
365 /* Process as many normal signals as possible. */
366 check_pending(rmp);
368 assert(!(rmp->mp_flags & DELAY_CALL));
371 /* See if the process is still alive */
372 if ((mproc[proc_nr].mp_flags & (IN_USE | EXITING)) == IN_USE) {
373 return OK; /* signal has been delivered */
375 else {
376 return EDEADEPT; /* process is gone */
380 /*===========================================================================*
381 * sig_proc *
382 *===========================================================================*/
383 void
384 sig_proc(
385 register struct mproc *rmp, /* pointer to the process to be signaled */
386 int signo, /* signal to send to process (1 to _NSIG-1) */
387 int trace, /* pass signal to tracer first? */
388 int ksig /* non-zero means signal comes from kernel */
391 /* Send a signal to a process. Check to see if the signal is to be caught,
392 * ignored, tranformed into a message (for system processes) or blocked.
393 * - If the signal is to be transformed into a message, request the KERNEL to
394 * send the target process a system notification with the pending signal as an
395 * argument.
396 * - If the signal is to be caught, request the KERNEL to push a sigcontext
397 * structure and a sigframe structure onto the catcher's stack. Also, KERNEL
398 * will reset the program counter and stack pointer, so that when the process
399 * next runs, it will be executing the signal handler. When the signal handler
400 * returns, sigreturn(2) will be called. Then KERNEL will restore the signal
401 * context from the sigcontext structure.
402 * If there is insufficient stack space, kill the process.
404 int slot, badignore;
406 slot = (int) (rmp - mproc);
407 if ((rmp->mp_flags & (IN_USE | EXITING)) != IN_USE) {
408 panic("PM: signal %d sent to exiting process %d\n", signo, slot);
411 if (trace == TRUE && rmp->mp_tracer != NO_TRACER && signo != SIGKILL) {
412 /* Signal should be passed to the debugger first.
413 * This happens before any checks on block/ignore masks; otherwise,
414 * the process itself could block/ignore debugger signals.
417 sigaddset(&rmp->mp_sigtrace, signo);
419 if (!(rmp->mp_flags & TRACE_STOPPED))
420 trace_stop(rmp, signo); /* a signal causes it to stop */
422 return;
425 if (rmp->mp_flags & (VFS_CALL | EVENT_CALL)) {
426 sigaddset(&rmp->mp_sigpending, signo);
427 if(ksig)
428 sigaddset(&rmp->mp_ksigpending, signo);
430 /* Process the signal once VFS and process event subscribers reply.
431 * Stop the process in the meantime, so that it cannot make another
432 * call after the VFS reply comes in but before we look at its signals
433 * again. Since we always stop the process to deliver signals during a
434 * VFS or event call, the PROC_STOPPED flag doubles as an indicator in
435 * restart_sigs() that signals must be rechecked after a reply arrives.
437 if (!(rmp->mp_flags & (PROC_STOPPED | DELAY_CALL))) {
438 /* If a VFS call is ongoing and the process is not yet stopped,
439 * the process must have made a call to PM. Therefore, there
440 * can be no delay calls in this case.
442 stop_proc(rmp, FALSE /*delay_call*/);
444 return;
447 /* Handle system signals for system processes first. */
448 if(rmp->mp_flags & PRIV_PROC) {
449 /* Always skip signals for PM (only necessary when broadcasting). */
450 if(rmp->mp_endpoint == PM_PROC_NR) {
451 return;
454 /* System signals have always to go through the kernel first to let it
455 * pick the right signal manager. If PM is the assigned signal manager,
456 * the signal will come back and will actually be processed.
458 if(!ksig) {
459 sys_kill(rmp->mp_endpoint, signo);
460 return;
463 /* Print stacktrace if necessary. */
464 if(SIGS_IS_STACKTRACE(signo)) {
465 sys_diagctl_stacktrace(rmp->mp_endpoint);
468 if(!SIGS_IS_TERMINATION(signo)) {
469 /* Translate every non-termination sys signal into a message. */
470 message m;
471 m.m_type = SIGS_SIGNAL_RECEIVED;
472 m.m_pm_lsys_sigs_signal.num = signo;
473 asynsend3(rmp->mp_endpoint, &m, AMF_NOREPLY);
475 else {
476 /* Exit the process in case of termination system signal. */
477 sig_proc_exit(rmp, signo);
479 return;
482 /* Handle user processes now. See if the signal cannot be safely ignored. */
483 badignore = ksig && sigismember(&noign_sset, signo) && (
484 sigismember(&rmp->mp_ignore, signo) ||
485 sigismember(&rmp->mp_sigmask, signo));
487 if (!badignore && sigismember(&rmp->mp_ignore, signo)) {
488 /* Signal should be ignored. */
489 return;
491 if (!badignore && sigismember(&rmp->mp_sigmask, signo)) {
492 /* Signal should be blocked. */
493 sigaddset(&rmp->mp_sigpending, signo);
494 if(ksig)
495 sigaddset(&rmp->mp_ksigpending, signo);
496 return;
499 if ((rmp->mp_flags & TRACE_STOPPED) && signo != SIGKILL) {
500 /* If the process is stopped for a debugger, do not deliver any signals
501 * (except SIGKILL) in order not to confuse the debugger. The signals
502 * will be delivered using the check_pending() calls in do_trace().
504 sigaddset(&rmp->mp_sigpending, signo);
505 if(ksig)
506 sigaddset(&rmp->mp_ksigpending, signo);
507 return;
509 if (!badignore && sigismember(&rmp->mp_catch, signo)) {
510 /* Signal is caught. First interrupt the process's current call, if
511 * applicable. This may involve a roundtrip to VFS, in which case we'll
512 * have to check back later.
514 if (!unpause(rmp)) {
515 /* not yet unpaused; continue later */
516 sigaddset(&rmp->mp_sigpending, signo);
517 if(ksig)
518 sigaddset(&rmp->mp_ksigpending, signo);
520 return;
523 /* Then send the actual signal to the process, by setting up a signal
524 * handler.
526 if (sig_send(rmp, signo))
527 return;
529 /* We were unable to spawn a signal handler. Kill the process. */
530 printf("PM: %d can't catch signal %d - killing\n",
531 rmp->mp_pid, signo);
533 else if (!badignore && sigismember(&ign_sset, signo)) {
534 /* Signal defaults to being ignored. */
535 return;
538 /* Terminate process */
539 sig_proc_exit(rmp, signo);
542 /*===========================================================================*
543 * sig_proc_exit *
544 *===========================================================================*/
545 static void
546 sig_proc_exit(
547 struct mproc *rmp, /* process that must exit */
548 int signo /* signal that caused termination */
551 rmp->mp_sigstatus = (char) signo;
552 if (sigismember(&core_sset, signo)) {
553 if(!(rmp->mp_flags & PRIV_PROC)) {
554 printf("PM: coredump signal %d for %d / %s\n", signo,
555 rmp->mp_pid, rmp->mp_name);
556 sys_diagctl_stacktrace(rmp->mp_endpoint);
558 exit_proc(rmp, 0, TRUE /*dump_core*/);
560 else {
561 exit_proc(rmp, 0, FALSE /*dump_core*/);
565 /*===========================================================================*
566 * check_sig *
567 *===========================================================================*/
568 int check_sig(proc_id, signo, ksig)
569 pid_t proc_id; /* pid of proc to sig, or 0 or -1, or -pgrp */
570 int signo; /* signal to send to process (0 to _NSIG-1) */
571 int ksig; /* non-zero means signal comes from kernel */
573 /* Check to see if it is possible to send a signal. The signal may have to be
574 * sent to a group of processes. This routine is invoked by the KILL system
575 * call, and also when the kernel catches a DEL or other signal.
578 register struct mproc *rmp;
579 int count; /* count # of signals sent */
580 int error_code;
582 if (signo < 0 || signo >= _NSIG) return(EINVAL);
584 /* Return EINVAL for attempts to send SIGKILL to INIT alone. */
585 if (proc_id == INIT_PID && signo == SIGKILL) return(EINVAL);
587 /* Signal RS first when broadcasting SIGTERM. */
588 if (proc_id == -1 && signo == SIGTERM)
589 sys_kill(RS_PROC_NR, signo);
591 /* Search the proc table for processes to signal. Start from the end of the
592 * table to analyze core system processes at the end when broadcasting.
593 * (See forkexit.c about pid magic.)
595 count = 0;
596 error_code = ESRCH;
597 for (rmp = &mproc[NR_PROCS-1]; rmp >= &mproc[0]; rmp--) {
598 if (!(rmp->mp_flags & IN_USE)) continue;
600 /* Check for selection. */
601 if (proc_id > 0 && proc_id != rmp->mp_pid) continue;
602 if (proc_id == 0 && mp->mp_procgrp != rmp->mp_procgrp) continue;
603 if (proc_id == -1 && rmp->mp_pid <= INIT_PID) continue;
604 if (proc_id < -1 && rmp->mp_procgrp != -proc_id) continue;
606 /* Do not kill servers and drivers when broadcasting SIGKILL. */
607 if (proc_id == -1 && signo == SIGKILL &&
608 (rmp->mp_flags & PRIV_PROC)) continue;
610 /* Skip VM entirely as it might lead to a deadlock with its signal
611 * manager if the manager page faults at the same time.
613 if (rmp->mp_endpoint == VM_PROC_NR) continue;
615 /* Disallow lethal signals sent by user processes to sys processes. */
616 if (!ksig && SIGS_IS_LETHAL(signo) && (rmp->mp_flags & PRIV_PROC)) {
617 error_code = EPERM;
618 continue;
621 /* Check for permission. */
622 if (mp->mp_effuid != SUPER_USER
623 && mp->mp_realuid != rmp->mp_realuid
624 && mp->mp_effuid != rmp->mp_realuid
625 && mp->mp_realuid != rmp->mp_effuid
626 && mp->mp_effuid != rmp->mp_effuid) {
627 error_code = EPERM;
628 continue;
631 count++;
632 if (signo == 0 || (rmp->mp_flags & EXITING)) continue;
634 /* 'sig_proc' will handle the disposition of the signal. The
635 * signal may be caught, blocked, ignored, or cause process
636 * termination, possibly with core dump.
638 sig_proc(rmp, signo, TRUE /*trace*/, ksig);
640 if (proc_id > 0) break; /* only one process being signaled */
643 /* If the calling process has killed itself, don't reply. */
644 if ((mp->mp_flags & (IN_USE | EXITING)) != IN_USE) return(SUSPEND);
645 return(count > 0 ? OK : error_code);
648 /*===========================================================================*
649 * check_pending *
650 *===========================================================================*/
651 void
652 check_pending(register struct mproc *rmp)
654 /* Check to see if any pending signals have been unblocked. Deliver as many
655 * of them as we can, until we have to wait for a reply from VFS first.
657 * There are several places in this file where the signal mask is
658 * changed. At each such place, check_pending() should be called to
659 * check for newly unblocked signals.
661 int i;
662 int ksig;
664 for (i = 1; i < _NSIG; i++) {
665 if (sigismember(&rmp->mp_sigpending, i) &&
666 !sigismember(&rmp->mp_sigmask, i)) {
667 ksig = sigismember(&rmp->mp_ksigpending, i);
668 sigdelset(&rmp->mp_sigpending, i);
669 sigdelset(&rmp->mp_ksigpending, i);
670 sig_proc(rmp, i, FALSE /*trace*/, ksig);
672 if (rmp->mp_flags & (VFS_CALL | EVENT_CALL)) {
673 /* Signals must be rechecked upon return from the new
674 * VFS call, unless the process was killed. In both
675 * cases, the process is stopped.
677 assert(rmp->mp_flags & PROC_STOPPED);
678 break;
684 /*===========================================================================*
685 * restart_sigs *
686 *===========================================================================*/
687 void
688 restart_sigs(struct mproc *rmp)
690 /* VFS has replied to a request from us; do signal-related work.
693 if (rmp->mp_flags & (VFS_CALL | EVENT_CALL | EXITING)) return;
695 if (rmp->mp_flags & TRACE_EXIT) {
696 /* Tracer requested exit with specific exit value */
697 exit_proc(rmp, rmp->mp_exitstatus, FALSE /*dump_core*/);
699 else if (rmp->mp_flags & PROC_STOPPED) {
700 /* If a signal arrives while we are performing a VFS call, the process
701 * will always be stopped immediately. Thus, if the process is stopped
702 * once the reply from VFS arrives, we might have to check signals.
704 assert(!(rmp->mp_flags & DELAY_CALL));
706 /* We saved signal(s) for after finishing a VFS call. Deal with this.
707 * PROC_STOPPED remains set to indicate the process is still stopped.
709 check_pending(rmp);
711 /* Resume the process now, unless there is a reason not to. */
712 try_resume_proc(rmp);
716 /*===========================================================================*
717 * unpause *
718 *===========================================================================*/
719 static int
720 unpause(
721 struct mproc *rmp /* which process */
724 /* A signal is to be sent to a process. If that process is hanging on a
725 * system call, the system call must be terminated with EINTR. First check if
726 * the process is hanging on an PM call. If not, tell VFS, so it can check for
727 * interruptible calls such as READs and WRITEs from pipes, ttys and the like.
729 message m;
731 assert(!(rmp->mp_flags & (VFS_CALL | EVENT_CALL)));
733 /* If the UNPAUSED flag is set, VFS replied to an earlier unpause request. */
734 if (rmp->mp_flags & UNPAUSED) {
735 assert((rmp->mp_flags & (DELAY_CALL | PROC_STOPPED)) == PROC_STOPPED);
737 return TRUE;
740 /* If the process is already stopping, don't do anything now. */
741 if (rmp->mp_flags & DELAY_CALL)
742 return FALSE;
744 /* Check to see if process is hanging on a WAIT or SIGSUSPEND call. */
745 if (rmp->mp_flags & (WAITING | SIGSUSPENDED)) {
746 /* Stop the process from running. Do not interrupt the actual call yet.
747 * sig_send() will interrupt the call and resume the process afterward.
748 * No delay calls: we know for a fact that the process called us.
750 stop_proc(rmp, FALSE /*may_delay*/);
752 return TRUE;
755 /* Not paused in PM. Let VFS, and after that any matching process event
756 * subscribers, try to unpause the process. The process needs to be stopped
757 * for this. If it is not already stopped, try to stop it now. If that does
758 * not succeed immediately, postpone signal delivery.
760 if (!(rmp->mp_flags & PROC_STOPPED) && !stop_proc(rmp, TRUE /*may_delay*/))
761 return FALSE;
763 memset(&m, 0, sizeof(m));
764 m.m_type = VFS_PM_UNPAUSE;
765 m.VFS_PM_ENDPT = rmp->mp_endpoint;
767 tell_vfs(rmp, &m);
769 return FALSE;
772 /*===========================================================================*
773 * sig_send *
774 *===========================================================================*/
775 static int
776 sig_send(
777 struct mproc *rmp, /* what process to spawn a signal handler in */
778 int signo /* signal to send to process (1 to _NSIG-1) */
781 /* The process is supposed to catch this signal. Spawn a signal handler.
782 * Return TRUE if this succeeded, FALSE otherwise.
784 struct sigmsg sigmsg;
785 int i, r, sigflags, slot;
787 assert(rmp->mp_flags & PROC_STOPPED);
789 sigflags = rmp->mp_sigact[signo].sa_flags;
790 slot = (int) (rmp - mproc);
792 if (rmp->mp_flags & SIGSUSPENDED)
793 sigmsg.sm_mask = rmp->mp_sigmask2;
794 else
795 sigmsg.sm_mask = rmp->mp_sigmask;
796 sigmsg.sm_signo = signo;
797 sigmsg.sm_sighandler =
798 (vir_bytes) rmp->mp_sigact[signo].sa_handler;
799 sigmsg.sm_sigreturn = rmp->mp_sigreturn;
800 for (i = 1; i < _NSIG; i++) {
801 if (sigismember(&rmp->mp_sigact[signo].sa_mask, i))
802 sigaddset(&rmp->mp_sigmask, i);
805 if (sigflags & SA_NODEFER)
806 sigdelset(&rmp->mp_sigmask, signo);
807 else
808 sigaddset(&rmp->mp_sigmask, signo);
810 if (sigflags & SA_RESETHAND) {
811 sigdelset(&rmp->mp_catch, signo);
812 rmp->mp_sigact[signo].sa_handler = SIG_DFL;
814 sigdelset(&rmp->mp_sigpending, signo);
815 sigdelset(&rmp->mp_ksigpending, signo);
817 /* Ask the kernel to deliver the signal */
818 r = sys_sigsend(rmp->mp_endpoint, &sigmsg);
819 /* sys_sigsend can fail legitimately with EFAULT or ENOMEM if the process
820 * memory can't accommodate the signal handler. The target process will be
821 * killed in that case, so do not bother interrupting or resuming it.
823 if(r == EFAULT || r == ENOMEM) {
824 return(FALSE);
826 /* Other errors are unexpected pm/kernel discrepancies. */
827 if (r != OK) {
828 panic("sys_sigsend failed: %d", r);
831 /* Was the process suspended in PM? Then interrupt the blocking call. */
832 if (rmp->mp_flags & (WAITING | SIGSUSPENDED)) {
833 rmp->mp_flags &= ~(WAITING | SIGSUSPENDED);
835 reply(slot, EINTR);
837 /* The process must just have been stopped by unpause(), which means
838 * that the UNPAUSE flag is not set.
840 assert(!(rmp->mp_flags & UNPAUSED));
842 try_resume_proc(rmp);
844 assert(!(rmp->mp_flags & PROC_STOPPED));
845 } else {
846 /* If the process was not suspended in PM, VFS must first have
847 * confirmed that it has tried to unsuspend any blocking call. Thus, we
848 * got here from restart_sigs() as part of handling PM_UNPAUSE_REPLY,
849 * and restart_sigs() will resume the process later.
851 assert(rmp->mp_flags & UNPAUSED);
854 return(TRUE);