Remove building with NOCRYPTO option
[minix3.git] / sys / fs / udf / udf_strat_sequential.c
blob89a8aee65ce5e955b0b17327250085fc625c27b1
1 /* $NetBSD: udf_strat_sequential.c,v 1.14 2015/10/06 08:57:34 hannken Exp $ */
3 /*
4 * Copyright (c) 2006, 2008 Reinoud Zandijk
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 #include <sys/cdefs.h>
30 #ifndef lint
31 __KERNEL_RCSID(0, "$NetBSD: udf_strat_sequential.c,v 1.14 2015/10/06 08:57:34 hannken Exp $");
32 #endif /* not lint */
35 #if defined(_KERNEL_OPT)
36 #include "opt_compat_netbsd.h"
37 #endif
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/sysctl.h>
42 #include <sys/namei.h>
43 #include <sys/proc.h>
44 #include <sys/kernel.h>
45 #include <sys/vnode.h>
46 #include <miscfs/genfs/genfs_node.h>
47 #include <sys/mount.h>
48 #include <sys/buf.h>
49 #include <sys/file.h>
50 #include <sys/device.h>
51 #include <sys/disklabel.h>
52 #include <sys/ioctl.h>
53 #include <sys/malloc.h>
54 #include <sys/dirent.h>
55 #include <sys/stat.h>
56 #include <sys/conf.h>
57 #include <sys/kauth.h>
58 #include <sys/kthread.h>
59 #include <dev/clock_subr.h>
61 #include <fs/udf/ecma167-udf.h>
62 #include <fs/udf/udf_mount.h>
64 #include "udf.h"
65 #include "udf_subr.h"
66 #include "udf_bswap.h"
69 #define VTOI(vnode) ((struct udf_node *) vnode->v_data)
70 #define PRIV(ump) ((struct strat_private *) ump->strategy_private)
72 /* --------------------------------------------------------------------- */
74 /* BUFQ's */
75 #define UDF_SHED_MAX 3
77 #define UDF_SHED_READING 0
78 #define UDF_SHED_WRITING 1
79 #define UDF_SHED_SEQWRITING 2
81 struct strat_private {
82 struct pool desc_pool; /* node descriptors */
84 lwp_t *queue_lwp;
85 kcondvar_t discstrat_cv; /* to wait on */
86 kmutex_t discstrat_mutex; /* disc strategy */
88 int run_thread; /* thread control */
89 int cur_queue;
91 struct disk_strategy old_strategy_setting;
92 struct bufq_state *queues[UDF_SHED_MAX];
93 struct timespec last_queued[UDF_SHED_MAX];
97 /* --------------------------------------------------------------------- */
99 static void
100 udf_wr_nodedscr_callback(struct buf *buf)
102 struct udf_node *udf_node;
104 KASSERT(buf);
105 KASSERT(buf->b_data);
107 /* called when write action is done */
108 DPRINTF(WRITE, ("udf_wr_nodedscr_callback(): node written out\n"));
110 udf_node = VTOI(buf->b_vp);
111 if (udf_node == NULL) {
112 putiobuf(buf);
113 printf("udf_wr_node_callback: NULL node?\n");
114 return;
117 /* XXX right flags to mark dirty again on error? */
118 if (buf->b_error) {
119 udf_node->i_flags |= IN_MODIFIED | IN_ACCESSED;
120 /* XXX TODO reshedule on error */
123 /* decrement outstanding_nodedscr */
124 KASSERT(udf_node->outstanding_nodedscr >= 1);
125 udf_node->outstanding_nodedscr--;
126 if (udf_node->outstanding_nodedscr == 0) {
127 /* first unlock the node */
128 UDF_UNLOCK_NODE(udf_node, 0);
129 wakeup(&udf_node->outstanding_nodedscr);
132 putiobuf(buf);
135 /* --------------------------------------------------------------------- */
137 static int
138 udf_create_logvol_dscr_seq(struct udf_strat_args *args)
140 union dscrptr **dscrptr = &args->dscr;
141 struct udf_mount *ump = args->ump;
142 struct strat_private *priv = PRIV(ump);
143 uint32_t lb_size;
145 lb_size = udf_rw32(ump->logical_vol->lb_size);
146 *dscrptr = pool_get(&priv->desc_pool, PR_WAITOK);
147 memset(*dscrptr, 0, lb_size);
149 return 0;
153 static void
154 udf_free_logvol_dscr_seq(struct udf_strat_args *args)
156 union dscrptr *dscr = args->dscr;
157 struct udf_mount *ump = args->ump;
158 struct strat_private *priv = PRIV(ump);
160 pool_put(&priv->desc_pool, dscr);
164 static int
165 udf_read_logvol_dscr_seq(struct udf_strat_args *args)
167 union dscrptr **dscrptr = &args->dscr;
168 union dscrptr *tmpdscr;
169 struct udf_mount *ump = args->ump;
170 struct long_ad *icb = args->icb;
171 struct strat_private *priv = PRIV(ump);
172 uint32_t lb_size;
173 uint32_t sector, dummy;
174 int error;
176 lb_size = udf_rw32(ump->logical_vol->lb_size);
178 error = udf_translate_vtop(ump, icb, &sector, &dummy);
179 if (error)
180 return error;
182 /* try to read in fe/efe */
183 error = udf_read_phys_dscr(ump, sector, M_UDFTEMP, &tmpdscr);
184 if (error)
185 return error;
187 *dscrptr = pool_get(&priv->desc_pool, PR_WAITOK);
188 memcpy(*dscrptr, tmpdscr, lb_size);
189 free(tmpdscr, M_UDFTEMP);
191 return 0;
195 static int
196 udf_write_logvol_dscr_seq(struct udf_strat_args *args)
198 union dscrptr *dscr = args->dscr;
199 struct udf_mount *ump = args->ump;
200 struct udf_node *udf_node = args->udf_node;
201 struct long_ad *icb = args->icb;
202 int waitfor = args->waitfor;
203 uint32_t logsectornr, sectornr, dummy;
204 int error, vpart;
207 * we have to decide if we write it out sequential or at its fixed
208 * position by examining the partition its (to be) written on.
210 vpart = udf_rw16(udf_node->loc.loc.part_num);
211 logsectornr = udf_rw32(icb->loc.lb_num);
212 sectornr = 0;
213 if (ump->vtop_tp[vpart] != UDF_VTOP_TYPE_VIRT) {
214 error = udf_translate_vtop(ump, icb, &sectornr, &dummy);
215 if (error)
216 goto out;
219 if (waitfor) {
220 DPRINTF(WRITE, ("udf_write_logvol_dscr: sync write\n"));
222 error = udf_write_phys_dscr_sync(ump, udf_node, UDF_C_NODE,
223 dscr, sectornr, logsectornr);
224 } else {
225 DPRINTF(WRITE, ("udf_write_logvol_dscr: no wait, async write\n"));
227 error = udf_write_phys_dscr_async(ump, udf_node, UDF_C_NODE,
228 dscr, sectornr, logsectornr, udf_wr_nodedscr_callback);
229 /* will be UNLOCKED in call back */
230 return error;
232 out:
233 udf_node->outstanding_nodedscr--;
234 if (udf_node->outstanding_nodedscr == 0) {
235 UDF_UNLOCK_NODE(udf_node, 0);
236 wakeup(&udf_node->outstanding_nodedscr);
239 return error;
242 /* --------------------------------------------------------------------- */
245 * Main file-system specific sheduler. Due to the nature of optical media
246 * sheduling can't be performed in the traditional way. Most OS
247 * implementations i've seen thus read or write a file atomically giving all
248 * kinds of side effects.
250 * This implementation uses a kernel thread to shedule the queued requests in
251 * such a way that is semi-optimal for optical media; this means aproximately
252 * (R*|(Wr*|Ws*))* since switching between reading and writing is expensive in
253 * time.
256 static void
257 udf_queuebuf_seq(struct udf_strat_args *args)
259 struct udf_mount *ump = args->ump;
260 struct buf *nestbuf = args->nestbuf;
261 struct strat_private *priv = PRIV(ump);
262 int queue;
263 int what;
265 KASSERT(ump);
266 KASSERT(nestbuf);
267 KASSERT(nestbuf->b_iodone == nestiobuf_iodone);
269 what = nestbuf->b_udf_c_type;
270 queue = UDF_SHED_READING;
271 if ((nestbuf->b_flags & B_READ) == 0) {
272 /* writing */
273 queue = UDF_SHED_SEQWRITING;
274 if (what == UDF_C_ABSOLUTE)
275 queue = UDF_SHED_WRITING;
278 /* use our own sheduler lists for more complex sheduling */
279 mutex_enter(&priv->discstrat_mutex);
280 bufq_put(priv->queues[queue], nestbuf);
281 vfs_timestamp(&priv->last_queued[queue]);
282 mutex_exit(&priv->discstrat_mutex);
284 /* signal our thread that there might be something to do */
285 cv_signal(&priv->discstrat_cv);
288 /* --------------------------------------------------------------------- */
290 /* TODO convert to lb_size */
291 static void
292 udf_VAT_mapping_update(struct udf_mount *ump, struct buf *buf, uint32_t lb_map)
294 union dscrptr *fdscr = (union dscrptr *) buf->b_data;
295 struct vnode *vp = buf->b_vp;
296 struct udf_node *udf_node = VTOI(vp);
297 uint32_t lb_num;
298 uint32_t udf_rw32_lbmap;
299 int c_type = buf->b_udf_c_type;
300 int error;
302 /* only interested when we're using a VAT */
303 KASSERT(ump->vat_node);
304 KASSERT(ump->vtop_alloc[ump->node_part] == UDF_ALLOC_VAT);
306 /* only nodes are recorded in the VAT */
307 /* NOTE: and the fileset descriptor (FIXME ?) */
308 if (c_type != UDF_C_NODE)
309 return;
311 udf_rw32_lbmap = udf_rw32(lb_map);
313 /* if we're the VAT itself, only update our assigned sector number */
314 if (udf_node == ump->vat_node) {
315 fdscr->tag.tag_loc = udf_rw32_lbmap;
316 udf_validate_tag_sum(fdscr);
317 DPRINTF(TRANSLATE, ("VAT assigned to sector %u\n",
318 udf_rw32(udf_rw32_lbmap)));
319 /* no use mapping the VAT node in the VAT */
320 return;
323 /* record new position in VAT file */
324 lb_num = udf_rw32(fdscr->tag.tag_loc);
326 /* lb_num = udf_rw32(udf_node->write_loc.loc.lb_num); */
328 DPRINTF(TRANSLATE, ("VAT entry change (log %u -> phys %u)\n",
329 lb_num, lb_map));
331 /* VAT should be the longer than this write, can't go wrong */
332 KASSERT(lb_num <= ump->vat_entries);
334 mutex_enter(&ump->allocate_mutex);
335 error = udf_vat_write(ump->vat_node,
336 (uint8_t *) &udf_rw32_lbmap, 4,
337 ump->vat_offset + lb_num * 4);
338 mutex_exit(&ump->allocate_mutex);
340 if (error)
341 panic( "udf_VAT_mapping_update: HELP! i couldn't "
342 "write in the VAT file ?\n");
346 static void
347 udf_issue_buf(struct udf_mount *ump, int queue, struct buf *buf)
349 union dscrptr *dscr;
350 struct long_ad *node_ad_cpy;
351 struct part_desc *pdesc;
352 uint64_t *lmapping, *lmappos;
353 uint32_t sectornr, bpos;
354 uint32_t ptov;
355 uint16_t vpart_num;
356 uint8_t *fidblk;
357 int sector_size = ump->discinfo.sector_size;
358 int blks = sector_size / DEV_BSIZE;
359 int len, buf_len;
361 /* if reading, just pass to the device's STRATEGY */
362 if (queue == UDF_SHED_READING) {
363 DPRINTF(SHEDULE, ("\nudf_issue_buf READ %p : sector %d type %d,"
364 "b_resid %d, b_bcount %d, b_bufsize %d\n",
365 buf, (uint32_t) buf->b_blkno / blks, buf->b_udf_c_type,
366 buf->b_resid, buf->b_bcount, buf->b_bufsize));
367 VOP_STRATEGY(ump->devvp, buf);
368 return;
371 if (queue == UDF_SHED_WRITING) {
372 DPRINTF(SHEDULE, ("\nudf_issue_buf WRITE %p : sector %d "
373 "type %d, b_resid %d, b_bcount %d, b_bufsize %d\n",
374 buf, (uint32_t) buf->b_blkno / blks, buf->b_udf_c_type,
375 buf->b_resid, buf->b_bcount, buf->b_bufsize));
376 KASSERT(buf->b_udf_c_type == UDF_C_ABSOLUTE);
378 // udf_fixup_node_internals(ump, buf->b_data, buf->b_udf_c_type);
379 VOP_STRATEGY(ump->devvp, buf);
380 return;
383 KASSERT(queue == UDF_SHED_SEQWRITING);
384 DPRINTF(SHEDULE, ("\nudf_issue_buf SEQWRITE %p : sector XXXX "
385 "type %d, b_resid %d, b_bcount %d, b_bufsize %d\n",
386 buf, buf->b_udf_c_type, buf->b_resid, buf->b_bcount,
387 buf->b_bufsize));
390 * Buffers should not have been allocated to disc addresses yet on
391 * this queue. Note that a buffer can get multiple extents allocated.
393 * lmapping contains lb_num relative to base partition.
395 lmapping = ump->la_lmapping;
396 node_ad_cpy = ump->la_node_ad_cpy;
398 /* logically allocate buf and map it in the file */
399 udf_late_allocate_buf(ump, buf, lmapping, node_ad_cpy, &vpart_num);
402 * NOTE We are using the knowledge here that sequential media will
403 * always be mapped linearly. Thus no use to explicitly translate the
404 * lmapping list.
407 /* calculate offset from physical base partition */
408 pdesc = ump->partitions[ump->vtop[vpart_num]];
409 ptov = udf_rw32(pdesc->start_loc);
411 /* set buffers blkno to the physical block number */
412 buf->b_blkno = (*lmapping + ptov) * blks;
414 /* fixate floating descriptors */
415 if (buf->b_udf_c_type == UDF_C_FLOAT_DSCR) {
416 /* set our tag location to the absolute position */
417 dscr = (union dscrptr *) buf->b_data;
418 dscr->tag.tag_loc = udf_rw32(*lmapping + ptov);
419 udf_validate_tag_and_crc_sums(dscr);
422 /* update mapping in the VAT */
423 if (buf->b_udf_c_type == UDF_C_NODE) {
424 udf_VAT_mapping_update(ump, buf, *lmapping);
425 udf_fixup_node_internals(ump, buf->b_data, buf->b_udf_c_type);
428 /* if we have FIDs, fixup using the new allocation table */
429 if (buf->b_udf_c_type == UDF_C_FIDS) {
430 buf_len = buf->b_bcount;
431 bpos = 0;
432 lmappos = lmapping;
433 while (buf_len) {
434 sectornr = *lmappos++;
435 len = MIN(buf_len, sector_size);
436 fidblk = (uint8_t *) buf->b_data + bpos;
437 udf_fixup_fid_block(fidblk, sector_size,
438 0, len, sectornr);
439 bpos += len;
440 buf_len -= len;
444 VOP_STRATEGY(ump->devvp, buf);
448 static void
449 udf_doshedule(struct udf_mount *ump)
451 struct buf *buf;
452 struct timespec now, *last;
453 struct strat_private *priv = PRIV(ump);
454 void (*b_callback)(struct buf *);
455 int new_queue;
456 int error;
458 buf = bufq_get(priv->queues[priv->cur_queue]);
459 if (buf) {
460 /* transfer from the current queue to the device queue */
461 mutex_exit(&priv->discstrat_mutex);
463 /* transform buffer to synchronous; XXX needed? */
464 b_callback = buf->b_iodone;
465 buf->b_iodone = NULL;
466 CLR(buf->b_flags, B_ASYNC);
468 /* issue and wait on completion */
469 udf_issue_buf(ump, priv->cur_queue, buf);
470 biowait(buf);
472 mutex_enter(&priv->discstrat_mutex);
474 /* if there is an error, repair this error, otherwise propagate */
475 if (buf->b_error && ((buf->b_flags & B_READ) == 0)) {
476 /* check what we need to do */
477 panic("UDF write error, can't handle yet!\n");
480 /* propagate result to higher layers */
481 if (b_callback) {
482 buf->b_iodone = b_callback;
483 (*buf->b_iodone)(buf);
486 return;
489 /* Check if we're idling in this state */
490 vfs_timestamp(&now);
491 last = &priv->last_queued[priv->cur_queue];
492 if (ump->discinfo.mmc_class == MMC_CLASS_CD) {
493 /* dont switch too fast for CD media; its expensive in time */
494 if (now.tv_sec - last->tv_sec < 3)
495 return;
498 /* check if we can/should switch */
499 new_queue = priv->cur_queue;
501 if (bufq_peek(priv->queues[UDF_SHED_READING]))
502 new_queue = UDF_SHED_READING;
503 if (bufq_peek(priv->queues[UDF_SHED_WRITING])) /* only for unmount */
504 new_queue = UDF_SHED_WRITING;
505 if (bufq_peek(priv->queues[UDF_SHED_SEQWRITING]))
506 new_queue = UDF_SHED_SEQWRITING;
507 if (priv->cur_queue == UDF_SHED_READING) {
508 if (new_queue == UDF_SHED_SEQWRITING) {
509 /* TODO use flag to signal if this is needed */
510 mutex_exit(&priv->discstrat_mutex);
512 /* update trackinfo for data and metadata */
513 error = udf_update_trackinfo(ump,
514 &ump->data_track);
515 assert(error == 0);
516 error = udf_update_trackinfo(ump,
517 &ump->metadata_track);
518 assert(error == 0);
519 mutex_enter(&priv->discstrat_mutex);
520 __USE(error);
524 if (new_queue != priv->cur_queue) {
525 DPRINTF(SHEDULE, ("switching from %d to %d\n",
526 priv->cur_queue, new_queue));
529 priv->cur_queue = new_queue;
533 static void
534 udf_discstrat_thread(void *arg)
536 struct udf_mount *ump = (struct udf_mount *) arg;
537 struct strat_private *priv = PRIV(ump);
538 int empty;
540 empty = 1;
541 mutex_enter(&priv->discstrat_mutex);
542 while (priv->run_thread || !empty) {
543 /* process the current selected queue */
544 udf_doshedule(ump);
545 empty = (bufq_peek(priv->queues[UDF_SHED_READING]) == NULL);
546 empty &= (bufq_peek(priv->queues[UDF_SHED_WRITING]) == NULL);
547 empty &= (bufq_peek(priv->queues[UDF_SHED_SEQWRITING]) == NULL);
549 /* wait for more if needed */
550 if (empty)
551 cv_timedwait(&priv->discstrat_cv,
552 &priv->discstrat_mutex, hz/8);
554 mutex_exit(&priv->discstrat_mutex);
556 wakeup(&priv->run_thread);
557 kthread_exit(0);
558 /* not reached */
561 /* --------------------------------------------------------------------- */
563 static void
564 udf_discstrat_init_seq(struct udf_strat_args *args)
566 struct udf_mount *ump = args->ump;
567 struct strat_private *priv = PRIV(ump);
568 struct disk_strategy dkstrat;
569 uint32_t lb_size;
571 KASSERT(ump);
572 KASSERT(ump->logical_vol);
573 KASSERT(priv == NULL);
575 lb_size = udf_rw32(ump->logical_vol->lb_size);
576 KASSERT(lb_size > 0);
578 /* initialise our memory space */
579 ump->strategy_private = malloc(sizeof(struct strat_private),
580 M_UDFTEMP, M_WAITOK);
581 priv = ump->strategy_private;
582 memset(priv, 0 , sizeof(struct strat_private));
584 /* initialise locks */
585 cv_init(&priv->discstrat_cv, "udfstrat");
586 mutex_init(&priv->discstrat_mutex, MUTEX_DEFAULT, IPL_NONE);
589 * Initialise pool for descriptors associated with nodes. This is done
590 * in lb_size units though currently lb_size is dictated to be
591 * sector_size.
593 pool_init(&priv->desc_pool, lb_size, 0, 0, 0, "udf_desc_pool", NULL,
594 IPL_NONE);
597 * remember old device strategy method and explicit set method
598 * `discsort' since we have our own more complex strategy that is not
599 * implementable on the CD device and other strategies will get in the
600 * way.
602 memset(&priv->old_strategy_setting, 0,
603 sizeof(struct disk_strategy));
604 VOP_IOCTL(ump->devvp, DIOCGSTRATEGY, &priv->old_strategy_setting,
605 FREAD | FKIOCTL, NOCRED);
606 memset(&dkstrat, 0, sizeof(struct disk_strategy));
607 strcpy(dkstrat.dks_name, "discsort");
608 VOP_IOCTL(ump->devvp, DIOCSSTRATEGY, &dkstrat, FWRITE | FKIOCTL,
609 NOCRED);
611 /* initialise our internal sheduler */
612 priv->cur_queue = UDF_SHED_READING;
613 bufq_alloc(&priv->queues[UDF_SHED_READING], "disksort",
614 BUFQ_SORT_RAWBLOCK);
615 bufq_alloc(&priv->queues[UDF_SHED_WRITING], "disksort",
616 BUFQ_SORT_RAWBLOCK);
617 bufq_alloc(&priv->queues[UDF_SHED_SEQWRITING], "fcfs", 0);
618 vfs_timestamp(&priv->last_queued[UDF_SHED_READING]);
619 vfs_timestamp(&priv->last_queued[UDF_SHED_WRITING]);
620 vfs_timestamp(&priv->last_queued[UDF_SHED_SEQWRITING]);
622 /* create our disk strategy thread */
623 priv->run_thread = 1;
624 if (kthread_create(PRI_NONE, 0 /* KTHREAD_MPSAFE*/, NULL /* cpu_info*/,
625 udf_discstrat_thread, ump, &priv->queue_lwp,
626 "%s", "udf_rw")) {
627 panic("fork udf_rw");
632 static void
633 udf_discstrat_finish_seq(struct udf_strat_args *args)
635 struct udf_mount *ump = args->ump;
636 struct strat_private *priv = PRIV(ump);
637 int error;
639 if (ump == NULL)
640 return;
642 /* stop our sheduling thread */
643 KASSERT(priv->run_thread == 1);
644 priv->run_thread = 0;
645 wakeup(priv->queue_lwp);
646 do {
647 error = tsleep(&priv->run_thread, PRIBIO+1,
648 "udfshedfin", hz);
649 } while (error);
650 /* kthread should be finished now */
652 /* set back old device strategy method */
653 VOP_IOCTL(ump->devvp, DIOCSSTRATEGY, &priv->old_strategy_setting,
654 FWRITE, NOCRED);
656 /* destroy our pool */
657 pool_destroy(&priv->desc_pool);
659 mutex_destroy(&priv->discstrat_mutex);
660 cv_destroy(&priv->discstrat_cv);
662 /* free our private space */
663 free(ump->strategy_private, M_UDFTEMP);
664 ump->strategy_private = NULL;
667 /* --------------------------------------------------------------------- */
669 struct udf_strategy udf_strat_sequential =
671 udf_create_logvol_dscr_seq,
672 udf_free_logvol_dscr_seq,
673 udf_read_logvol_dscr_seq,
674 udf_write_logvol_dscr_seq,
675 udf_queuebuf_seq,
676 udf_discstrat_init_seq,
677 udf_discstrat_finish_seq