Remove building with NOCRYPTO option
[minix3.git] / sys / ufs / chfs / chfs_malloc.c
blob3dfc054623cc9b5b30460f13698f3de39f6301c9
1 /* $NetBSD: chfs_malloc.c,v 1.4 2012/10/19 12:44:39 ttoth Exp $ */
3 /*-
4 * Copyright (c) 2010 Department of Software Engineering,
5 * University of Szeged, Hungary
6 * Copyright (C) 2010 Tamas Toth <ttoth@inf.u-szeged.hu>
7 * Copyright (C) 2010 Adam Hoka <ahoka@NetBSD.org>
8 * All rights reserved.
10 * This code is derived from software contributed to The NetBSD Foundation
11 * by the Department of Software Engineering, University of Szeged, Hungary
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
35 #include "chfs.h"
36 #include <sys/pool.h>
38 pool_cache_t chfs_vnode_cache;
39 pool_cache_t chfs_nrefs_cache;
40 pool_cache_t chfs_flash_vnode_cache;
41 pool_cache_t chfs_flash_dirent_cache;
42 pool_cache_t chfs_flash_dnode_cache;
43 pool_cache_t chfs_node_frag_cache;
44 pool_cache_t chfs_tmp_dnode_cache;
45 pool_cache_t chfs_tmp_dnode_info_cache;
47 /* chfs_alloc_pool_caches - allocating pool caches */
48 int
49 chfs_alloc_pool_caches(void)
51 chfs_vnode_cache = pool_cache_init(
52 sizeof(struct chfs_vnode_cache),
53 0, 0, 0, "chfs_vnode_cache", NULL, IPL_NONE, NULL, NULL,
54 NULL);
55 if (!chfs_vnode_cache)
56 goto err_vnode;
58 chfs_nrefs_cache = pool_cache_init(
59 (REFS_BLOCK_LEN + 1) * sizeof(struct chfs_node_ref), 0, 0,
60 0, "chfs_nrefs_pool", NULL, IPL_NONE, NULL, NULL, NULL);
61 if (!chfs_nrefs_cache)
62 goto err_nrefs;
64 chfs_flash_vnode_cache = pool_cache_init(
65 sizeof(struct chfs_flash_vnode), 0, 0, 0,
66 "chfs_flash_vnode_pool", NULL, IPL_NONE, NULL, NULL, NULL);
67 if (!chfs_flash_vnode_cache)
68 goto err_flash_vnode;
70 chfs_flash_dirent_cache = pool_cache_init(
71 sizeof(struct chfs_flash_dirent_node), 0, 0, 0,
72 "chfs_flash_dirent_pool", NULL, IPL_NONE, NULL, NULL, NULL);
73 if (!chfs_flash_dirent_cache)
74 goto err_flash_dirent;
76 chfs_flash_dnode_cache = pool_cache_init(
77 sizeof(struct chfs_flash_data_node), 0, 0, 0,
78 "chfs_flash_dnode_pool", NULL, IPL_NONE, NULL, NULL, NULL);
79 if (!chfs_flash_dnode_cache)
80 goto err_flash_dnode;
82 chfs_node_frag_cache = pool_cache_init(
83 sizeof(struct chfs_node_frag), 0, 0, 0,
84 "chfs_node_frag_pool", NULL, IPL_NONE, NULL, NULL, NULL);
85 if (!chfs_node_frag_cache)
86 goto err_node_frag;
88 chfs_tmp_dnode_cache = pool_cache_init(
89 sizeof(struct chfs_tmp_dnode), 0, 0, 0,
90 "chfs_tmp_dnode_pool", NULL, IPL_NONE, NULL, NULL, NULL);
91 if (!chfs_tmp_dnode_cache)
92 goto err_tmp_dnode;
94 chfs_tmp_dnode_info_cache = pool_cache_init(
95 sizeof(struct chfs_tmp_dnode_info), 0, 0, 0,
96 "chfs_tmp_dnode_info_pool", NULL, IPL_NONE, NULL, NULL, NULL);
97 if (!chfs_tmp_dnode_info_cache)
98 goto err_tmp_dnode_info;
100 return 0;
102 err_tmp_dnode_info:
103 pool_cache_destroy(chfs_tmp_dnode_cache);
104 err_tmp_dnode:
105 pool_cache_destroy(chfs_node_frag_cache);
106 err_node_frag:
107 pool_cache_destroy(chfs_flash_dnode_cache);
108 err_flash_dnode:
109 pool_cache_destroy(chfs_flash_dirent_cache);
110 err_flash_dirent:
111 pool_cache_destroy(chfs_flash_vnode_cache);
112 err_flash_vnode:
113 pool_cache_destroy(chfs_nrefs_cache);
114 err_nrefs:
115 pool_cache_destroy(chfs_vnode_cache);
116 err_vnode:
118 return ENOMEM;
121 /* chfs_destroy_pool_caches - destroying pool caches */
122 void
123 chfs_destroy_pool_caches(void)
125 if (chfs_vnode_cache)
126 pool_cache_destroy(chfs_vnode_cache);
128 if (chfs_nrefs_cache)
129 pool_cache_destroy(chfs_nrefs_cache);
131 if (chfs_flash_vnode_cache)
132 pool_cache_destroy(chfs_flash_vnode_cache);
134 if (chfs_flash_dirent_cache)
135 pool_cache_destroy(chfs_flash_dirent_cache);
137 if (chfs_flash_dnode_cache)
138 pool_cache_destroy(chfs_flash_dnode_cache);
140 if (chfs_node_frag_cache)
141 pool_cache_destroy(chfs_node_frag_cache);
143 if (chfs_tmp_dnode_cache)
144 pool_cache_destroy(chfs_tmp_dnode_cache);
146 if (chfs_tmp_dnode_info_cache)
147 pool_cache_destroy(chfs_tmp_dnode_info_cache);
150 /* chfs_vnode_cache_alloc - allocating and initializing a vnode cache */
151 struct chfs_vnode_cache *
152 chfs_vnode_cache_alloc(ino_t vno)
154 struct chfs_vnode_cache* vc;
155 vc = pool_cache_get(chfs_vnode_cache, PR_WAITOK);
157 memset(vc, 0, sizeof(*vc));
158 vc->vno = vno;
159 /* vnode cache is the last element of all chain */
160 vc->v = (void *)vc;
161 vc->dirents = (void *)vc;
162 vc->dnode = (void *)vc;
163 TAILQ_INIT(&vc->scan_dirents);
164 vc->highest_version = 0;
166 return vc;
169 /* chfs_vnode_cache_free - freeing a vnode cache */
170 void
171 chfs_vnode_cache_free(struct chfs_vnode_cache *vc)
173 pool_cache_put(chfs_vnode_cache, vc);
177 * chfs_alloc_refblock - allocating a refblock
179 * Returns a pointer of the first element in the block.
181 * We are not allocating just one node ref, instead we allocating REFS_BLOCK_LEN
182 * number of node refs, the last element will be a pointer to the next block.
183 * We do this, because we need a chain of nodes which have been ordered by the
184 * physical address of them.
187 struct chfs_node_ref*
188 chfs_alloc_refblock(void)
190 int i;
191 struct chfs_node_ref *nref;
192 nref = pool_cache_get(chfs_nrefs_cache, PR_WAITOK);
194 for (i = 0; i < REFS_BLOCK_LEN; i++) {
195 nref[i].nref_lnr = REF_EMPTY_NODE;
196 nref[i].nref_next = NULL;
198 i = REFS_BLOCK_LEN;
199 nref[i].nref_lnr = REF_LINK_TO_NEXT;
200 nref[i].nref_next = NULL;
202 return nref;
205 /* chfs_free_refblock - freeing a refblock */
206 void
207 chfs_free_refblock(struct chfs_node_ref *nref)
209 pool_cache_put(chfs_nrefs_cache, nref);
213 * chfs_alloc_node_ref - allocating a node ref from a refblock
215 * Allocating a node ref from a refblock, it there isn't any free element in the
216 * block, a new block will be allocated and be linked to the current block.
218 struct chfs_node_ref*
219 chfs_alloc_node_ref(struct chfs_eraseblock *cheb)
221 struct chfs_node_ref *nref, *new, *old;
222 old = cheb->last_node;
223 nref = cheb->last_node;
225 if (!nref) {
226 /* There haven't been any nref allocated for this block yet */
227 nref = chfs_alloc_refblock();
229 cheb->first_node = nref;
230 cheb->last_node = nref;
231 nref->nref_lnr = cheb->lnr;
232 KASSERT(cheb->lnr == nref->nref_lnr);
234 return nref;
237 nref++;
238 if (nref->nref_lnr == REF_LINK_TO_NEXT) {
239 /* this was the last element, allocate a new block */
240 new = chfs_alloc_refblock();
241 nref->nref_next = new;
242 nref = new;
245 cheb->last_node = nref;
246 nref->nref_lnr = cheb->lnr;
248 KASSERT(old->nref_lnr == nref->nref_lnr &&
249 nref->nref_lnr == cheb->lnr);
251 return nref;
254 /* chfs_free_node_refs - freeing an eraseblock's node refs */
255 void
256 chfs_free_node_refs(struct chfs_eraseblock *cheb)
258 struct chfs_node_ref *nref, *block;
260 block = nref = cheb->first_node;
262 while (nref) {
263 if (nref->nref_lnr == REF_LINK_TO_NEXT) {
264 nref = nref->nref_next;
265 chfs_free_refblock(block);
266 block = nref;
267 continue;
269 nref++;
273 /* chfs_alloc_dirent - allocating a directory entry */
274 struct chfs_dirent*
275 chfs_alloc_dirent(int namesize)
277 struct chfs_dirent *ret;
278 size_t size = sizeof(struct chfs_dirent) + namesize;
280 ret = kmem_alloc(size, KM_SLEEP);
282 return ret;
285 /* chfs_free_dirent - freeing a directory entry */
286 void
287 chfs_free_dirent(struct chfs_dirent *dirent)
289 size_t size = sizeof(struct chfs_dirent) + dirent->nsize + 1;
291 kmem_free(dirent, size);
294 /* chfs_alloc_full_dnode - allocating a full data node */
295 struct chfs_full_dnode*
296 chfs_alloc_full_dnode(void)
298 struct chfs_full_dnode *ret;
299 ret = kmem_alloc(sizeof(struct chfs_full_dnode), KM_SLEEP);
300 ret->nref = NULL;
301 ret->frags = 0;
302 return ret;
305 /* chfs_free_full_dnode - freeing a full data node */
306 void
307 chfs_free_full_dnode(struct chfs_full_dnode *fd)
309 kmem_free(fd,(sizeof(struct chfs_full_dnode)));
312 /* chfs_alloc_flash_vnode - allocating vnode info (used on flash) */
313 struct chfs_flash_vnode*
314 chfs_alloc_flash_vnode(void)
316 struct chfs_flash_vnode *ret;
317 ret = pool_cache_get(chfs_flash_vnode_cache, 0);
318 return ret;
321 /* chfs_free_flash_vnode - freeing vnode info */
322 void
323 chfs_free_flash_vnode(struct chfs_flash_vnode *fvnode)
325 pool_cache_put(chfs_flash_vnode_cache, fvnode);
328 /* chfs_alloc_flash_dirent - allocating a directory entry (used on flash) */
329 struct chfs_flash_dirent_node*
330 chfs_alloc_flash_dirent(void)
332 struct chfs_flash_dirent_node *ret;
333 ret = pool_cache_get(chfs_flash_dirent_cache, 0);
334 return ret;
337 /* chfs_free_flash_dirent - freeing a (flash) directory entry */
338 void
339 chfs_free_flash_dirent(struct chfs_flash_dirent_node *fdnode)
341 pool_cache_put(chfs_flash_dirent_cache, fdnode);
344 /* chfs_alloc_flash_dnode - allocating a data node (used on flash) */
345 struct chfs_flash_data_node*
346 chfs_alloc_flash_dnode(void)
348 struct chfs_flash_data_node *ret;
349 ret = pool_cache_get(chfs_flash_dnode_cache, 0);
350 return ret;
353 /* chfs_free_flash_dnode - freeing a (flash) data node */
354 void
355 chfs_free_flash_dnode(struct chfs_flash_data_node *fdnode)
357 pool_cache_put(chfs_flash_dnode_cache, fdnode);
360 /* chfs_alloc_node_frag - allocating a fragment of a node */
361 struct chfs_node_frag*
362 chfs_alloc_node_frag(void)
364 struct chfs_node_frag *ret;
365 ret = pool_cache_get(chfs_node_frag_cache, 0);
366 return ret;
369 /* chfs_free_node_frag - freeing a fragment of a node */
370 void
371 chfs_free_node_frag(struct chfs_node_frag *frag)
373 pool_cache_put(chfs_node_frag_cache, frag);
376 /* chfs_alloc_tmp_dnode - allocating a temporarly used dnode */
377 struct chfs_tmp_dnode *
378 chfs_alloc_tmp_dnode(void)
380 struct chfs_tmp_dnode *ret;
381 ret = pool_cache_get(chfs_tmp_dnode_cache, 0);
382 ret->next = NULL;
383 return ret;
386 /* chfs_free_tmp_dnode - freeing a temporarly used dnode */
387 void
388 chfs_free_tmp_dnode(struct chfs_tmp_dnode *td)
390 pool_cache_put(chfs_tmp_dnode_cache, td);
393 /* chfs_alloc_tmp_dnode_info - allocating a temporarly used dnode descriptor */
394 struct chfs_tmp_dnode_info *
395 chfs_alloc_tmp_dnode_info(void)
397 struct chfs_tmp_dnode_info *ret;
398 ret = pool_cache_get(chfs_tmp_dnode_info_cache, 0);
399 ret->tmpnode = NULL;
400 return ret;
403 /* chfs_free_tmp_dnode_info - freeing a temporarly used dnode descriptor */
404 void
405 chfs_free_tmp_dnode_info(struct chfs_tmp_dnode_info *di)
407 pool_cache_put(chfs_tmp_dnode_info_cache, di);