1 /* This file contains essentially all of the process and message handling.
2 * Together with "mpx.s" it forms the lowest layer of the MINIX kernel.
3 * There is one entry point from the outside:
5 * sys_call: a system call, i.e., the kernel is trapped with an INT
8 * Aug 19, 2005 rewrote scheduling code (Jorrit N. Herder)
9 * Jul 25, 2005 rewrote system call handling (Jorrit N. Herder)
10 * May 26, 2005 rewrote message passing functions (Jorrit N. Herder)
11 * May 24, 2005 new notification system call (Jorrit N. Herder)
12 * Oct 28, 2004 nonblocking send and receive calls (Jorrit N. Herder)
14 * The code here is critical to make everything work and is important for the
15 * overall performance of the system. A large fraction of the code deals with
16 * list manipulation. To make this both easy to understand and fast to execute
17 * pointer pointers are used throughout the code. Pointer pointers prevent
18 * exceptions for the head or tail of a linked list.
20 * node_t *queue, *new_node; // assume these as global variables
21 * node_t **xpp = &queue; // get pointer pointer to head of queue
22 * while (*xpp != NULL) // find last pointer of the linked list
23 * xpp = &(*xpp)->next; // get pointer to next pointer
24 * *xpp = new_node; // now replace the end (the NULL pointer)
25 * new_node->next = NULL; // and mark the new end of the list
27 * For example, when adding a new node to the end of the list, one normally
28 * makes an exception for an empty list and looks up the end of the list for
29 * nonempty lists. As shown above, this is not required with pointer pointers.
40 #include "arch_proto.h"
42 #include <minix/syslib.h>
44 /* Scheduling and message passing functions */
45 static void idle(void);
47 * Made public for use in clock.c (for user-space scheduling)
48 static int mini_send(struct proc *caller_ptr, endpoint_t dst_e, message
51 static int mini_receive(struct proc
*caller_ptr
, endpoint_t src
,
52 message
*m_buff_usr
, int flags
);
53 static int mini_senda(struct proc
*caller_ptr
, asynmsg_t
*table
, size_t
55 static int deadlock(int function
, register struct proc
*caller
,
56 endpoint_t src_dst_e
);
57 static int try_async(struct proc
*caller_ptr
);
58 static int try_one(endpoint_t receive_e
, struct proc
*src_ptr
,
59 struct proc
*dst_ptr
);
60 static struct proc
* pick_proc(void);
61 static void enqueue_head(struct proc
*rp
);
63 /* all idles share the same idle_priv structure */
64 static struct priv idle_priv
;
66 static void set_idle_name(char * name
, int n
)
79 for (i
= 4, c
= 100; c
> 0; c
/= 10) {
85 if (p_z
|| digit
!= 0 || c
== 1) {
87 name
[i
++] = '0' + digit
;
97 #define PICK_HIGHERONLY 2
99 #define BuildNotifyMessage(m_ptr, src, dst_ptr) \
100 memset((m_ptr), 0, sizeof(*(m_ptr))); \
101 (m_ptr)->m_type = NOTIFY_MESSAGE; \
102 (m_ptr)->m_notify.timestamp = get_monotonic(); \
105 (m_ptr)->m_notify.interrupts = \
106 priv(dst_ptr)->s_int_pending; \
107 priv(dst_ptr)->s_int_pending = 0; \
110 memcpy(&(m_ptr)->m_notify.sigset, \
111 &priv(dst_ptr)->s_sig_pending, \
113 sigemptyset(&priv(dst_ptr)->s_sig_pending); \
117 static message m_notify_buff
= { 0, NOTIFY_MESSAGE
};
125 /* Clear the process table. Announce each slot as empty and set up
126 * mappings for proc_addr() and proc_nr() macros. Do the same for the
127 * table with privilege structures for the system processes.
129 for (rp
= BEG_PROC_ADDR
, i
= -NR_TASKS
; rp
< END_PROC_ADDR
; ++rp
, ++i
) {
130 rp
->p_rts_flags
= RTS_SLOT_FREE
;/* initialize free slot */
131 rp
->p_magic
= PMAGIC
;
132 rp
->p_nr
= i
; /* proc number from ptr */
133 rp
->p_endpoint
= _ENDPOINT(0, rp
->p_nr
); /* generation no. 0 */
134 rp
->p_scheduler
= NULL
; /* no user space scheduler */
135 rp
->p_priority
= 0; /* no priority */
136 rp
->p_quantum_size_ms
= 0; /* no quantum size */
138 /* arch-specific initialization */
141 for (sp
= BEG_PRIV_ADDR
, i
= 0; sp
< END_PRIV_ADDR
; ++sp
, ++i
) {
142 sp
->s_proc_nr
= NONE
; /* initialize as free */
143 sp
->s_id
= (sys_id_t
) i
; /* priv structure index */
144 ppriv_addr
[i
] = sp
; /* priv ptr from number */
145 sp
->s_sig_mgr
= NONE
; /* clear signal managers */
146 sp
->s_bak_sig_mgr
= NONE
;
149 idle_priv
.s_flags
= IDL_F
;
150 /* initialize IDLE structures for every CPU */
151 for (i
= 0; i
< CONFIG_MAX_CPUS
; i
++) {
152 struct proc
* ip
= get_cpu_var_ptr(i
, idle_proc
);
153 ip
->p_endpoint
= IDLE
;
154 ip
->p_priv
= &idle_priv
;
155 /* must not let idle ever get scheduled */
156 ip
->p_rts_flags
|= RTS_PROC_STOP
;
157 set_idle_name(ip
->p_name
, i
);
161 static void switch_address_space_idle(void)
165 * currently we bet that VM is always alive and its pages available so
166 * when the CPU wakes up the kernel is mapped and no surprises happen.
167 * This is only a problem if more than 1 cpus are available
169 switch_address_space(proc_addr(VM_PROC_NR
));
173 /*===========================================================================*
175 *===========================================================================*/
176 static void idle(void)
180 /* This function is called whenever there is no work to do.
181 * Halt the CPU, and measure how many timestamp counter ticks are
182 * spent not doing anything. This allows test setups to measure
183 * the CPU utilization of certain workloads with high precision.
186 p
= get_cpulocal_var(proc_ptr
) = get_cpulocal_var_ptr(idle_proc
);
187 if (priv(p
)->s_flags
& BILLABLE
)
188 get_cpulocal_var(bill_ptr
) = p
;
190 switch_address_space_idle();
193 get_cpulocal_var(cpu_is_idle
) = 1;
194 /* we don't need to keep time on APs as it is handled on the BSP */
195 if (cpuid
!= bsp_cpu_id
)
201 * If the timer has expired while in kernel we must
202 * rearm it before we go to sleep
204 restart_local_timer();
207 /* start accounting for the idle time */
208 context_stop(proc_addr(KERNEL
));
217 v
= get_cpulocal_var_ptr(idle_interrupted
);
221 interrupts_disable();
226 * end of accounting for the idle task does not happen here, the kernel
227 * is handling stuff for quite a while before it gets back here!
231 /*===========================================================================*
233 *===========================================================================*/
234 void vm_suspend(struct proc
*caller
, const struct proc
*target
,
235 const vir_bytes linaddr
, const vir_bytes len
, const int type
,
238 /* This range is not OK for this process. Set parameters
239 * of the request and notify VM about the pending request.
241 assert(!RTS_ISSET(caller
, RTS_VMREQUEST
));
242 assert(!RTS_ISSET(target
, RTS_VMREQUEST
));
244 RTS_SET(caller
, RTS_VMREQUEST
);
246 caller
->p_vmrequest
.req_type
= VMPTYPE_CHECK
;
247 caller
->p_vmrequest
.target
= target
->p_endpoint
;
248 caller
->p_vmrequest
.params
.check
.start
= linaddr
;
249 caller
->p_vmrequest
.params
.check
.length
= len
;
250 caller
->p_vmrequest
.params
.check
.writeflag
= writeflag
;
251 caller
->p_vmrequest
.type
= type
;
253 /* Connect caller on vmrequest wait queue. */
254 if(!(caller
->p_vmrequest
.nextrequestor
= vmrequest
))
255 if(OK
!= send_sig(VM_PROC_NR
, SIGKMEM
))
256 panic("send_sig failed");
260 /*===========================================================================*
262 *===========================================================================*/
263 static void delivermsg(struct proc
*rp
)
265 assert(!RTS_ISSET(rp
, RTS_VMREQUEST
));
266 assert(rp
->p_misc_flags
& MF_DELIVERMSG
);
267 assert(rp
->p_delivermsg
.m_source
!= NONE
);
269 if (copy_msg_to_user(&rp
->p_delivermsg
,
270 (message
*) rp
->p_delivermsg_vir
)) {
271 if(rp
->p_misc_flags
& MF_MSGFAILED
) {
272 /* 2nd consecutive failure means this won't succeed */
273 printf("WARNING wrong user pointer 0x%08lx from "
275 rp
->p_delivermsg_vir
,
278 cause_sig(rp
->p_nr
, SIGSEGV
);
280 /* 1st failure means we have to ask VM to handle it */
281 vm_suspend(rp
, rp
, rp
->p_delivermsg_vir
,
282 sizeof(message
), VMSTYPE_DELIVERMSG
, 1);
283 rp
->p_misc_flags
|= MF_MSGFAILED
;
286 /* Indicate message has been delivered; address is 'used'. */
287 rp
->p_delivermsg
.m_source
= NONE
;
288 rp
->p_misc_flags
&= ~(MF_DELIVERMSG
|MF_MSGFAILED
);
290 if(!(rp
->p_misc_flags
& MF_CONTEXT_SET
)) {
291 rp
->p_reg
.retreg
= OK
;
296 /*===========================================================================*
298 *===========================================================================*/
299 void switch_to_user(void)
301 /* This function is called an instant before proc_ptr is
302 * to be scheduled again.
306 int tlb_must_refresh
= 0;
309 p
= get_cpulocal_var(proc_ptr
);
311 * if the current process is still runnable check the misc flags and let
312 * it run unless it becomes not runnable in the meantime
314 if (proc_is_runnable(p
))
315 goto check_misc_flags
;
317 * if a process becomes not runnable while handling the misc flags, we
318 * need to pick a new one here and start from scratch. Also if the
319 * current process wasn't runnable, we pick a new one here
321 not_runnable_pick_new
:
322 if (proc_is_preempted(p
)) {
323 p
->p_rts_flags
&= ~RTS_PREEMPTED
;
324 if (proc_is_runnable(p
)) {
325 if (p
->p_cpu_time_left
)
333 * if we have no process to run, set IDLE as the current process for
334 * time accounting and put the cpu in an idle state. After the next
335 * timer interrupt the execution resumes here and we can pick another
336 * process. If there is still nothing runnable we "schedule" IDLE again
338 while (!(p
= pick_proc())) {
342 /* update the global variable */
343 get_cpulocal_var(proc_ptr
) = p
;
346 if (p
->p_misc_flags
& MF_FLUSH_TLB
&& get_cpulocal_var(ptproc
) == p
)
347 tlb_must_refresh
= 1;
349 switch_address_space(p
);
354 assert(proc_is_runnable(p
));
355 while (p
->p_misc_flags
&
356 (MF_KCALL_RESUME
| MF_DELIVERMSG
|
357 MF_SC_DEFER
| MF_SC_TRACE
| MF_SC_ACTIVE
)) {
359 assert(proc_is_runnable(p
));
360 if (p
->p_misc_flags
& MF_KCALL_RESUME
) {
361 kernel_call_resume(p
);
363 else if (p
->p_misc_flags
& MF_DELIVERMSG
) {
364 TRACE(VF_SCHEDULING
, printf("delivering to %s / %d\n",
365 p
->p_name
, p
->p_endpoint
););
368 else if (p
->p_misc_flags
& MF_SC_DEFER
) {
369 /* Perform the system call that we deferred earlier. */
371 assert (!(p
->p_misc_flags
& MF_SC_ACTIVE
));
375 /* If the process is stopped for signal delivery, and
376 * not blocked sending a message after the system call,
379 if ((p
->p_misc_flags
& MF_SIG_DELAY
) &&
380 !RTS_ISSET(p
, RTS_SENDING
))
383 else if (p
->p_misc_flags
& MF_SC_TRACE
) {
384 /* Trigger a system call leave event if this was a
385 * system call. We must do this after processing the
386 * other flags above, both for tracing correctness and
387 * to be able to use 'break'.
389 if (!(p
->p_misc_flags
& MF_SC_ACTIVE
))
393 ~(MF_SC_TRACE
| MF_SC_ACTIVE
);
395 /* Signal the "leave system call" event.
398 cause_sig(proc_nr(p
), SIGTRAP
);
400 else if (p
->p_misc_flags
& MF_SC_ACTIVE
) {
401 /* If MF_SC_ACTIVE was set, remove it now:
402 * we're leaving the system call.
404 p
->p_misc_flags
&= ~MF_SC_ACTIVE
;
410 * the selected process might not be runnable anymore. We have
411 * to checkit and schedule another one
413 if (!proc_is_runnable(p
))
414 goto not_runnable_pick_new
;
417 * check the quantum left before it runs again. We must do it only here
418 * as we are sure that a possible out-of-quantum message to the
419 * scheduler will not collide with the regular ipc
421 if (!p
->p_cpu_time_left
)
424 * After handling the misc flags the selected process might not be
425 * runnable anymore. We have to checkit and schedule another one
427 if (!proc_is_runnable(p
))
428 goto not_runnable_pick_new
;
430 TRACE(VF_SCHEDULING
, printf("cpu %d starting %s / %d "
432 cpuid
, p
->p_name
, p
->p_endpoint
, p
->p_reg
.pc
););
437 p
= arch_finish_switch_to_user();
438 assert(p
->p_cpu_time_left
);
440 context_stop(proc_addr(KERNEL
));
442 /* If the process isn't the owner of FPU, enable the FPU exception */
443 if (get_cpulocal_var(fpu_owner
) != p
)
444 enable_fpu_exception();
446 disable_fpu_exception();
448 /* If MF_CONTEXT_SET is set, don't clobber process state within
449 * the kernel. The next kernel entry is OK again though.
451 p
->p_misc_flags
&= ~MF_CONTEXT_SET
;
453 #if defined(__i386__)
454 assert(p
->p_seg
.p_cr3
!= 0);
455 #elif defined(__arm__)
456 assert(p
->p_seg
.p_ttbr
!= 0);
459 if (p
->p_misc_flags
& MF_FLUSH_TLB
) {
460 if (tlb_must_refresh
)
462 p
->p_misc_flags
&= ~MF_FLUSH_TLB
;
466 restart_local_timer();
469 * restore_user_context() carries out the actual mode switch from kernel
470 * to userspace. This function does not return
472 restore_user_context(p
);
477 * handler for all synchronous IPC calls
479 static int do_sync_ipc(struct proc
* caller_ptr
, /* who made the call */
480 int call_nr
, /* system call number and flags */
481 endpoint_t src_dst_e
, /* src or dst of the call */
482 message
*m_ptr
) /* users pointer to a message */
484 int result
; /* the system call's result */
485 int src_dst_p
; /* Process slot number */
488 /* Check destination. RECEIVE is the only call that accepts ANY (in addition
489 * to a real endpoint). The other calls (SEND, SENDREC, and NOTIFY) require an
490 * endpoint to corresponds to a process. In addition, it is necessary to check
491 * whether a process is allowed to send to a given destination.
493 assert(call_nr
!= SENDA
);
495 /* Only allow non-negative call_nr values less than 32 */
496 if (call_nr
< 0 || call_nr
> IPCNO_HIGHEST
|| call_nr
>= 32
497 || !(callname
= ipc_call_names
[call_nr
])) {
498 #if DEBUG_ENABLE_IPC_WARNINGS
499 printf("sys_call: trap %d not allowed, caller %d, src_dst %d\n",
500 call_nr
, proc_nr(caller_ptr
), src_dst_e
);
502 return(ETRAPDENIED
); /* trap denied by mask or kernel */
505 if (src_dst_e
== ANY
)
507 if (call_nr
!= RECEIVE
)
510 printf("sys_call: %s by %d with bad endpoint %d\n",
512 proc_nr(caller_ptr
), src_dst_e
);
516 src_dst_p
= (int) src_dst_e
;
520 /* Require a valid source and/or destination process. */
521 if(!isokendpt(src_dst_e
, &src_dst_p
)) {
523 printf("sys_call: %s by %d with bad endpoint %d\n",
525 proc_nr(caller_ptr
), src_dst_e
);
530 /* If the call is to send to a process, i.e., for SEND, SENDNB,
531 * SENDREC or NOTIFY, verify that the caller is allowed to send to
532 * the given destination.
534 if (call_nr
!= RECEIVE
)
536 if (!may_send_to(caller_ptr
, src_dst_p
)) {
537 #if DEBUG_ENABLE_IPC_WARNINGS
539 "sys_call: ipc mask denied %s from %d to %d\n",
541 caller_ptr
->p_endpoint
, src_dst_e
);
543 return(ECALLDENIED
); /* call denied by ipc mask */
548 /* Check if the process has privileges for the requested call. Calls to the
549 * kernel may only be SENDREC, because tasks always reply and may not block
550 * if the caller doesn't do receive().
552 if (!(priv(caller_ptr
)->s_trap_mask
& (1 << call_nr
))) {
553 #if DEBUG_ENABLE_IPC_WARNINGS
554 printf("sys_call: %s not allowed, caller %d, src_dst %d\n",
555 callname
, proc_nr(caller_ptr
), src_dst_p
);
557 return(ETRAPDENIED
); /* trap denied by mask or kernel */
560 if (call_nr
!= SENDREC
&& call_nr
!= RECEIVE
&& iskerneln(src_dst_p
)) {
561 #if DEBUG_ENABLE_IPC_WARNINGS
562 printf("sys_call: trap %s not allowed, caller %d, src_dst %d\n",
563 callname
, proc_nr(caller_ptr
), src_dst_e
);
565 return(ETRAPDENIED
); /* trap denied by mask or kernel */
570 /* A flag is set so that notifications cannot interrupt SENDREC. */
571 caller_ptr
->p_misc_flags
|= MF_REPLY_PEND
;
574 result
= mini_send(caller_ptr
, src_dst_e
, m_ptr
, 0);
575 if (call_nr
== SEND
|| result
!= OK
)
576 break; /* done, or SEND failed */
577 /* fall through for SENDREC */
579 if (call_nr
== RECEIVE
) {
580 caller_ptr
->p_misc_flags
&= ~MF_REPLY_PEND
;
581 IPC_STATUS_CLEAR(caller_ptr
); /* clear IPC status code */
583 result
= mini_receive(caller_ptr
, src_dst_e
, m_ptr
, 0);
586 result
= mini_notify(caller_ptr
, src_dst_e
);
589 result
= mini_send(caller_ptr
, src_dst_e
, m_ptr
, NON_BLOCKING
);
592 result
= EBADCALL
; /* illegal system call */
595 /* Now, return the result of the system call to the caller. */
599 int do_ipc(reg_t r1
, reg_t r2
, reg_t r3
)
601 struct proc
*const caller_ptr
= get_cpulocal_var(proc_ptr
); /* get pointer to caller */
602 int call_nr
= (int) r1
;
604 assert(!RTS_ISSET(caller_ptr
, RTS_SLOT_FREE
));
606 /* bill kernel time to this process. */
607 kbill_ipc
= caller_ptr
;
609 /* If this process is subject to system call tracing, handle that first. */
610 if (caller_ptr
->p_misc_flags
& (MF_SC_TRACE
| MF_SC_DEFER
)) {
611 /* Are we tracing this process, and is it the first sys_call entry? */
612 if ((caller_ptr
->p_misc_flags
& (MF_SC_TRACE
| MF_SC_DEFER
)) ==
614 /* We must notify the tracer before processing the actual
615 * system call. If we don't, the tracer could not obtain the
616 * input message. Postpone the entire system call.
618 caller_ptr
->p_misc_flags
&= ~MF_SC_TRACE
;
619 assert(!(caller_ptr
->p_misc_flags
& MF_SC_DEFER
));
620 caller_ptr
->p_misc_flags
|= MF_SC_DEFER
;
621 caller_ptr
->p_defer
.r1
= r1
;
622 caller_ptr
->p_defer
.r2
= r2
;
623 caller_ptr
->p_defer
.r3
= r3
;
625 /* Signal the "enter system call" event. Block the process. */
626 cause_sig(proc_nr(caller_ptr
), SIGTRAP
);
628 /* Preserve the return register's value. */
629 return caller_ptr
->p_reg
.retreg
;
632 /* If the MF_SC_DEFER flag is set, the syscall is now being resumed. */
633 caller_ptr
->p_misc_flags
&= ~MF_SC_DEFER
;
635 assert (!(caller_ptr
->p_misc_flags
& MF_SC_ACTIVE
));
637 /* Set a flag to allow reliable tracing of leaving the system call. */
638 caller_ptr
->p_misc_flags
|= MF_SC_ACTIVE
;
641 if(caller_ptr
->p_misc_flags
& MF_DELIVERMSG
) {
642 panic("sys_call: MF_DELIVERMSG on for %s / %d\n",
643 caller_ptr
->p_name
, caller_ptr
->p_endpoint
);
646 /* Now check if the call is known and try to perform the request. The only
647 * system calls that exist in MINIX are sending and receiving messages.
648 * - SENDREC: combines SEND and RECEIVE in a single system call
649 * - SEND: sender blocks until its message has been delivered
650 * - RECEIVE: receiver blocks until an acceptable message has arrived
651 * - NOTIFY: asynchronous call; deliver notification or mark pending
652 * - SENDA: list of asynchronous send requests
661 /* Process accounting for scheduling */
662 caller_ptr
->p_accounting
.ipc_sync
++;
664 return do_sync_ipc(caller_ptr
, call_nr
, (endpoint_t
) r2
,
670 * Get and check the size of the argument in bytes as it is a
673 size_t msg_size
= (size_t) r2
;
675 /* Process accounting for scheduling */
676 caller_ptr
->p_accounting
.ipc_async
++;
678 /* Limit size to something reasonable. An arbitrary choice is 16
679 * times the number of process table entries.
681 if (msg_size
> 16*(NR_TASKS
+ NR_PROCS
))
683 return mini_senda(caller_ptr
, (asynmsg_t
*) r3
, msg_size
);
687 /* It might not be initialized yet. */
688 if(!minix_kerninfo_user
) {
692 arch_set_secondary_ipc_return(caller_ptr
, minix_kerninfo_user
);
696 return EBADCALL
; /* illegal system call */
700 /*===========================================================================*
702 *===========================================================================*/
704 int function
, /* trap number */
705 register struct proc
*cp
, /* pointer to caller */
706 endpoint_t src_dst_e
/* src or dst process */
709 /* Check for deadlock. This can happen if 'caller_ptr' and 'src_dst' have
710 * a cyclic dependency of blocking send and receive calls. The only cyclic
711 * dependency that is not fatal is if the caller and target directly SEND(REC)
712 * and RECEIVE to each other. If a deadlock is found, the group size is
713 * returned. Otherwise zero is returned.
715 register struct proc
*xp
; /* process pointer */
716 int group_size
= 1; /* start with only caller */
717 #if DEBUG_ENABLE_IPC_WARNINGS
718 static struct proc
*processes
[NR_PROCS
+ NR_TASKS
];
722 while (src_dst_e
!= ANY
) { /* check while process nr */
724 okendpt(src_dst_e
, &src_dst_slot
);
725 xp
= proc_addr(src_dst_slot
); /* follow chain of processes */
726 assert(proc_ptr_ok(xp
));
727 assert(!RTS_ISSET(xp
, RTS_SLOT_FREE
));
728 #if DEBUG_ENABLE_IPC_WARNINGS
729 processes
[group_size
] = xp
;
731 group_size
++; /* extra process in group */
733 /* Check whether the last process in the chain has a dependency. If it
734 * has not, the cycle cannot be closed and we are done.
736 if((src_dst_e
= P_BLOCKEDON(xp
)) == NONE
)
739 /* Now check if there is a cyclic dependency. For group sizes of two,
740 * a combination of SEND(REC) and RECEIVE is not fatal. Larger groups
741 * or other combinations indicate a deadlock.
743 if (src_dst_e
== cp
->p_endpoint
) { /* possible deadlock */
744 if (group_size
== 2) { /* caller and src_dst */
745 /* The function number is magically converted to flags. */
746 if ((xp
->p_rts_flags
^ (function
<< 2)) & RTS_SENDING
) {
747 return(0); /* not a deadlock */
750 #if DEBUG_ENABLE_IPC_WARNINGS
753 printf("deadlock between these processes:\n");
754 for(i
= 0; i
< group_size
; i
++) {
755 printf(" %10s ", processes
[i
]->p_name
);
758 for(i
= 0; i
< group_size
; i
++) {
759 print_proc(processes
[i
]);
760 proc_stacktrace(processes
[i
]);
764 return(group_size
); /* deadlock found */
767 return(0); /* not a deadlock */
770 /*===========================================================================*
772 *===========================================================================*/
773 static int has_pending(sys_map_t
*map
, int src_p
, int asynm
)
775 /* Check to see if there is a pending message from the desired source
780 sys_id_t id
= NULL_PRIV_ID
;
785 /* Either check a specific bit in the mask map, or find the first bit set in
786 * it (if any), depending on whether the receive was called on a specific
790 src_id
= nr_to_id(src_p
);
791 if (get_sys_bit(*map
, src_id
)) {
793 p
= proc_addr(id_to_nr(src_id
));
794 if (asynm
&& RTS_ISSET(p
, RTS_VMINHIBIT
))
795 p
->p_misc_flags
|= MF_SENDA_VM_MISS
;
801 /* Find a source with a pending message */
802 for (src_id
= 0; src_id
< NR_SYS_PROCS
; src_id
+= BITCHUNK_BITS
) {
803 if (get_sys_bits(*map
, src_id
) != 0) {
805 while (src_id
< NR_SYS_PROCS
) {
806 while (!get_sys_bit(*map
, src_id
)) {
807 if (src_id
== NR_SYS_PROCS
)
811 p
= proc_addr(id_to_nr(src_id
));
813 * We must not let kernel fiddle with pages of a
814 * process which are currently being changed by
815 * VM. It is dangerous! So do not report such a
816 * process as having pending async messages.
819 if (asynm
&& RTS_ISSET(p
, RTS_VMINHIBIT
)) {
820 p
->p_misc_flags
|= MF_SENDA_VM_MISS
;
826 while (!get_sys_bit(*map
, src_id
)) src_id
++;
833 if (src_id
< NR_SYS_PROCS
) /* Found one */
840 /*===========================================================================*
841 * has_pending_notify *
842 *===========================================================================*/
843 int has_pending_notify(struct proc
* caller
, int src_p
)
845 sys_map_t
* map
= &priv(caller
)->s_notify_pending
;
846 return has_pending(map
, src_p
, 0);
849 /*===========================================================================*
850 * has_pending_asend *
851 *===========================================================================*/
852 int has_pending_asend(struct proc
* caller
, int src_p
)
854 sys_map_t
* map
= &priv(caller
)->s_asyn_pending
;
855 return has_pending(map
, src_p
, 1);
858 /*===========================================================================*
859 * unset_notify_pending *
860 *===========================================================================*/
861 void unset_notify_pending(struct proc
* caller
, int src_p
)
863 sys_map_t
* map
= &priv(caller
)->s_notify_pending
;
864 unset_sys_bit(*map
, src_p
);
867 /*===========================================================================*
869 *===========================================================================*/
871 register struct proc
*caller_ptr
, /* who is trying to send a message? */
872 endpoint_t dst_e
, /* to whom is message being sent? */
873 message
*m_ptr
, /* pointer to message buffer */
877 /* Send a message from 'caller_ptr' to 'dst'. If 'dst' is blocked waiting
878 * for this message, copy the message to it and unblock 'dst'. If 'dst' is
879 * not waiting at all, or is waiting for another source, queue 'caller_ptr'.
881 register struct proc
*dst_ptr
;
882 register struct proc
**xpp
;
884 dst_p
= _ENDPOINT_P(dst_e
);
885 dst_ptr
= proc_addr(dst_p
);
887 if (RTS_ISSET(dst_ptr
, RTS_NO_ENDPOINT
))
892 /* Check if 'dst' is blocked waiting for this message. The destination's
893 * RTS_SENDING flag may be set when its SENDREC call blocked while sending.
895 if (WILLRECEIVE(caller_ptr
->p_endpoint
, dst_ptr
, (vir_bytes
)m_ptr
, NULL
)) {
897 /* Destination is indeed waiting for this message. */
898 assert(!(dst_ptr
->p_misc_flags
& MF_DELIVERMSG
));
900 if (!(flags
& FROM_KERNEL
)) {
901 if(copy_msg_from_user(m_ptr
, &dst_ptr
->p_delivermsg
))
904 dst_ptr
->p_delivermsg
= *m_ptr
;
905 IPC_STATUS_ADD_FLAGS(dst_ptr
, IPC_FLG_MSG_FROM_KERNEL
);
908 dst_ptr
->p_delivermsg
.m_source
= caller_ptr
->p_endpoint
;
909 dst_ptr
->p_misc_flags
|= MF_DELIVERMSG
;
911 call
= (caller_ptr
->p_misc_flags
& MF_REPLY_PEND
? SENDREC
912 : (flags
& NON_BLOCKING
? SENDNB
: SEND
));
913 IPC_STATUS_ADD_CALL(dst_ptr
, call
);
915 if (dst_ptr
->p_misc_flags
& MF_REPLY_PEND
)
916 dst_ptr
->p_misc_flags
&= ~MF_REPLY_PEND
;
918 RTS_UNSET(dst_ptr
, RTS_RECEIVING
);
921 hook_ipc_msgsend(&dst_ptr
->p_delivermsg
, caller_ptr
, dst_ptr
);
922 hook_ipc_msgrecv(&dst_ptr
->p_delivermsg
, caller_ptr
, dst_ptr
);
925 if(flags
& NON_BLOCKING
) {
929 /* Check for a possible deadlock before actually blocking. */
930 if (deadlock(SEND
, caller_ptr
, dst_e
)) {
934 /* Destination is not waiting. Block and dequeue caller. */
935 if (!(flags
& FROM_KERNEL
)) {
936 if(copy_msg_from_user(m_ptr
, &caller_ptr
->p_sendmsg
))
939 caller_ptr
->p_sendmsg
= *m_ptr
;
941 * we need to remember that this message is from kernel so we
942 * can set the delivery status flags when the message is
945 caller_ptr
->p_misc_flags
|= MF_SENDING_FROM_KERNEL
;
948 RTS_SET(caller_ptr
, RTS_SENDING
);
949 caller_ptr
->p_sendto_e
= dst_e
;
951 /* Process is now blocked. Put in on the destination's queue. */
952 assert(caller_ptr
->p_q_link
== NULL
);
953 xpp
= &dst_ptr
->p_caller_q
; /* find end of list */
954 while (*xpp
) xpp
= &(*xpp
)->p_q_link
;
955 *xpp
= caller_ptr
; /* add caller to end */
958 hook_ipc_msgsend(&caller_ptr
->p_sendmsg
, caller_ptr
, dst_ptr
);
964 /*===========================================================================*
966 *===========================================================================*/
967 static int mini_receive(struct proc
* caller_ptr
,
968 endpoint_t src_e
, /* which message source is wanted */
969 message
* m_buff_usr
, /* pointer to message buffer */
972 /* A process or task wants to get a message. If a message is already queued,
973 * acquire it and deblock the sender. If no message from the desired source
974 * is available block the caller.
976 register struct proc
**xpp
;
977 int r
, src_id
, found
, src_proc_nr
, src_p
;
980 assert(!(caller_ptr
->p_misc_flags
& MF_DELIVERMSG
));
982 /* This is where we want our message. */
983 caller_ptr
->p_delivermsg_vir
= (vir_bytes
) m_buff_usr
;
985 if(src_e
== ANY
) src_p
= ANY
;
988 okendpt(src_e
, &src_p
);
989 if (RTS_ISSET(proc_addr(src_p
), RTS_NO_ENDPOINT
))
996 /* Check to see if a message from desired source is already available. The
997 * caller's RTS_SENDING flag may be set if SENDREC couldn't send. If it is
998 * set, the process should be blocked.
1000 if (!RTS_ISSET(caller_ptr
, RTS_SENDING
)) {
1002 /* Check if there are pending notifications, except for SENDREC. */
1003 if (! (caller_ptr
->p_misc_flags
& MF_REPLY_PEND
)) {
1005 /* Check for pending notifications */
1006 src_id
= has_pending_notify(caller_ptr
, src_p
);
1007 found
= src_id
!= NULL_PRIV_ID
;
1009 src_proc_nr
= id_to_nr(src_id
); /* get source proc */
1010 sender_e
= proc_addr(src_proc_nr
)->p_endpoint
;
1013 if (found
&& CANRECEIVE(src_e
, sender_e
, caller_ptr
, 0,
1016 #if DEBUG_ENABLE_IPC_WARNINGS
1017 if(src_proc_nr
== NONE
) {
1018 printf("mini_receive: sending notify from NONE\n");
1021 assert(src_proc_nr
!= NONE
);
1022 unset_notify_pending(caller_ptr
, src_id
); /* no longer pending */
1024 /* Found a suitable source, deliver the notification message. */
1025 assert(!(caller_ptr
->p_misc_flags
& MF_DELIVERMSG
));
1026 assert(src_e
== ANY
|| sender_e
== src_e
);
1028 /* assemble message */
1029 BuildNotifyMessage(&caller_ptr
->p_delivermsg
, src_proc_nr
, caller_ptr
);
1030 caller_ptr
->p_delivermsg
.m_source
= sender_e
;
1031 caller_ptr
->p_misc_flags
|= MF_DELIVERMSG
;
1033 IPC_STATUS_ADD_CALL(caller_ptr
, NOTIFY
);
1039 /* Check for pending asynchronous messages */
1040 if (has_pending_asend(caller_ptr
, src_p
) != NULL_PRIV_ID
) {
1042 r
= try_one(src_e
, proc_addr(src_p
), caller_ptr
);
1044 r
= try_async(caller_ptr
);
1047 IPC_STATUS_ADD_CALL(caller_ptr
, SENDA
);
1052 /* Check caller queue. Use pointer pointers to keep code simple. */
1053 xpp
= &caller_ptr
->p_caller_q
;
1055 struct proc
* sender
= *xpp
;
1056 endpoint_t sender_e
= sender
->p_endpoint
;
1058 if (CANRECEIVE(src_e
, sender_e
, caller_ptr
, 0, &sender
->p_sendmsg
)) {
1060 assert(!RTS_ISSET(sender
, RTS_SLOT_FREE
));
1061 assert(!RTS_ISSET(sender
, RTS_NO_ENDPOINT
));
1063 /* Found acceptable message. Copy it and update status. */
1064 assert(!(caller_ptr
->p_misc_flags
& MF_DELIVERMSG
));
1065 caller_ptr
->p_delivermsg
= sender
->p_sendmsg
;
1066 caller_ptr
->p_delivermsg
.m_source
= sender
->p_endpoint
;
1067 caller_ptr
->p_misc_flags
|= MF_DELIVERMSG
;
1068 RTS_UNSET(sender
, RTS_SENDING
);
1070 call
= (sender
->p_misc_flags
& MF_REPLY_PEND
? SENDREC
: SEND
);
1071 IPC_STATUS_ADD_CALL(caller_ptr
, call
);
1074 * if the message is originally from the kernel on behalf of this
1075 * process, we must send the status flags accordingly
1077 if (sender
->p_misc_flags
& MF_SENDING_FROM_KERNEL
) {
1078 IPC_STATUS_ADD_FLAGS(caller_ptr
, IPC_FLG_MSG_FROM_KERNEL
);
1079 /* we can clean the flag now, not need anymore */
1080 sender
->p_misc_flags
&= ~MF_SENDING_FROM_KERNEL
;
1082 if (sender
->p_misc_flags
& MF_SIG_DELAY
)
1083 sig_delay_done(sender
);
1086 hook_ipc_msgrecv(&caller_ptr
->p_delivermsg
, *xpp
, caller_ptr
);
1089 *xpp
= sender
->p_q_link
; /* remove from queue */
1090 sender
->p_q_link
= NULL
;
1093 xpp
= &sender
->p_q_link
; /* proceed to next */
1097 /* No suitable message is available or the caller couldn't send in SENDREC.
1098 * Block the process trying to receive, unless the flags tell otherwise.
1100 if ( ! (flags
& NON_BLOCKING
)) {
1101 /* Check for a possible deadlock before actually blocking. */
1102 if (deadlock(RECEIVE
, caller_ptr
, src_e
)) {
1106 caller_ptr
->p_getfrom_e
= src_e
;
1107 RTS_SET(caller_ptr
, RTS_RECEIVING
);
1114 if (caller_ptr
->p_misc_flags
& MF_REPLY_PEND
)
1115 caller_ptr
->p_misc_flags
&= ~MF_REPLY_PEND
;
1119 /*===========================================================================*
1121 *===========================================================================*/
1123 const struct proc
*caller_ptr
, /* sender of the notification */
1124 endpoint_t dst_e
/* which process to notify */
1127 register struct proc
*dst_ptr
;
1128 int src_id
; /* source id for late delivery */
1131 if (!isokendpt(dst_e
, &dst_p
)) {
1133 printf("mini_notify: bogus endpoint %d\n", dst_e
);
1137 dst_ptr
= proc_addr(dst_p
);
1139 /* Check to see if target is blocked waiting for this message. A process
1140 * can be both sending and receiving during a SENDREC system call.
1142 if (WILLRECEIVE(caller_ptr
->p_endpoint
, dst_ptr
, 0, &m_notify_buff
) &&
1143 !(dst_ptr
->p_misc_flags
& MF_REPLY_PEND
)) {
1144 /* Destination is indeed waiting for a message. Assemble a notification
1145 * message and deliver it. Copy from pseudo-source HARDWARE, since the
1146 * message is in the kernel's address space.
1148 assert(!(dst_ptr
->p_misc_flags
& MF_DELIVERMSG
));
1150 BuildNotifyMessage(&dst_ptr
->p_delivermsg
, proc_nr(caller_ptr
), dst_ptr
);
1151 dst_ptr
->p_delivermsg
.m_source
= caller_ptr
->p_endpoint
;
1152 dst_ptr
->p_misc_flags
|= MF_DELIVERMSG
;
1154 IPC_STATUS_ADD_CALL(dst_ptr
, NOTIFY
);
1155 RTS_UNSET(dst_ptr
, RTS_RECEIVING
);
1160 /* Destination is not ready to receive the notification. Add it to the
1161 * bit map with pending notifications. Note the indirectness: the privilege id
1162 * instead of the process number is used in the pending bit map.
1164 src_id
= priv(caller_ptr
)->s_id
;
1165 set_sys_bit(priv(dst_ptr
)->s_notify_pending
, src_id
);
1169 #define ASCOMPLAIN(caller, entry, field) \
1170 printf("kernel:%s:%d: asyn failed for %s in %s " \
1171 "(%d/%zu, tab 0x%lx)\n",__FILE__,__LINE__, \
1172 field, caller->p_name, entry, priv(caller)->s_asynsize, priv(caller)->s_asyntab)
1174 #define A_RETR(entry) do { \
1176 caller_ptr->p_endpoint, table_v + (entry)*sizeof(asynmsg_t),\
1177 KERNEL, (vir_bytes) &tabent, \
1178 sizeof(tabent)) != OK) { \
1179 ASCOMPLAIN(caller_ptr, entry, "message entry"); \
1183 else if(tabent.dst == SELF) { \
1184 tabent.dst = caller_ptr->p_endpoint; \
1188 #define A_INSRT(entry) do { \
1189 if (data_copy(KERNEL, (vir_bytes) &tabent, \
1190 caller_ptr->p_endpoint, table_v + (entry)*sizeof(asynmsg_t),\
1191 sizeof(tabent)) != OK) { \
1192 ASCOMPLAIN(caller_ptr, entry, "message entry"); \
1193 /* Do NOT set r or goto asyn_error here! */ \
1197 /*===========================================================================*
1198 * try_deliver_senda *
1199 *===========================================================================*/
1200 int try_deliver_senda(struct proc
*caller_ptr
,
1204 int r
, dst_p
, done
, do_notify
;
1208 struct proc
*dst_ptr
;
1211 const vir_bytes table_v
= (vir_bytes
) table
;
1212 message
*m_ptr
= NULL
;
1214 privp
= priv(caller_ptr
);
1217 privp
->s_asyntab
= -1;
1218 privp
->s_asynsize
= 0;
1219 privp
->s_asynendpoint
= caller_ptr
->p_endpoint
;
1221 if (size
== 0) return(OK
); /* Nothing to do, just return */
1223 /* Scan the table */
1227 /* Limit size to something reasonable. An arbitrary choice is 16
1228 * times the number of process table entries.
1230 * (this check has been duplicated in sys_call but is left here
1231 * as a sanity check)
1233 if (size
> 16*(NR_TASKS
+ NR_PROCS
)) {
1238 for (i
= 0; i
< size
; i
++) {
1239 /* Process each entry in the table and store the result in the table.
1240 * If we're done handling a message, copy the result to the sender. */
1243 /* Copy message to kernel */
1245 flags
= tabent
.flags
;
1248 if (flags
== 0) continue; /* Skip empty entries */
1250 /* 'flags' field must contain only valid bits */
1251 if(flags
& ~(AMF_VALID
|AMF_DONE
|AMF_NOTIFY
|AMF_NOREPLY
|AMF_NOTIFY_ERR
)) {
1255 if (!(flags
& AMF_VALID
)) { /* Must contain message */
1259 if (flags
& AMF_DONE
) continue; /* Already done processing */
1262 if (!isokendpt(tabent
.dst
, &dst_p
))
1263 r
= EDEADSRCDST
; /* Bad destination, report the error */
1264 else if (iskerneln(dst_p
))
1265 r
= ECALLDENIED
; /* Asyn sends to the kernel are not allowed */
1266 else if (!may_asynsend_to(caller_ptr
, dst_p
))
1267 r
= ECALLDENIED
; /* Send denied by IPC mask */
1269 dst_ptr
= proc_addr(dst_p
);
1271 /* XXX: RTS_NO_ENDPOINT should be removed */
1272 if (r
== OK
&& RTS_ISSET(dst_ptr
, RTS_NO_ENDPOINT
)) {
1276 /* Check if 'dst' is blocked waiting for this message.
1277 * If AMF_NOREPLY is set, do not satisfy the receiving part of
1280 if (r
== OK
&& WILLRECEIVE(caller_ptr
->p_endpoint
, dst_ptr
,
1281 (vir_bytes
)&table
[i
].msg
, NULL
) &&
1282 (!(flags
&AMF_NOREPLY
) || !(dst_ptr
->p_misc_flags
&MF_REPLY_PEND
))) {
1283 /* Destination is indeed waiting for this message. */
1284 dst_ptr
->p_delivermsg
= tabent
.msg
;
1285 dst_ptr
->p_delivermsg
.m_source
= caller_ptr
->p_endpoint
;
1286 dst_ptr
->p_misc_flags
|= MF_DELIVERMSG
;
1287 IPC_STATUS_ADD_CALL(dst_ptr
, SENDA
);
1288 RTS_UNSET(dst_ptr
, RTS_RECEIVING
);
1290 hook_ipc_msgrecv(&dst_ptr
->p_delivermsg
, caller_ptr
, dst_ptr
);
1292 } else if (r
== OK
) {
1293 /* Inform receiver that something is pending */
1294 set_sys_bit(priv(dst_ptr
)->s_asyn_pending
,
1295 priv(caller_ptr
)->s_id
);
1302 tabent
.flags
= flags
| AMF_DONE
;
1303 if (flags
& AMF_NOTIFY
)
1305 else if (r
!= OK
&& (flags
& AMF_NOTIFY_ERR
))
1307 A_INSRT(i
); /* Copy results to caller; ignore errors */
1312 printf("KERNEL senda error %d to %d\n", r
, dst
);
1314 printf("KERNEL senda error %d\n", r
);
1318 mini_notify(proc_addr(ASYNCM
), caller_ptr
->p_endpoint
);
1321 privp
->s_asyntab
= (vir_bytes
) table
;
1322 privp
->s_asynsize
= size
;
1328 /*===========================================================================*
1330 *===========================================================================*/
1331 static int mini_senda(struct proc
*caller_ptr
, asynmsg_t
*table
, size_t size
)
1335 privp
= priv(caller_ptr
);
1336 if (!(privp
->s_flags
& SYS_PROC
)) {
1337 printf( "mini_senda: warning caller has no privilege structure\n");
1341 return try_deliver_senda(caller_ptr
, table
, size
);
1345 /*===========================================================================*
1347 *===========================================================================*/
1348 static int try_async(struct proc
* caller_ptr
)
1352 struct proc
*src_ptr
;
1355 map
= &priv(caller_ptr
)->s_asyn_pending
;
1357 /* Try all privilege structures */
1358 for (privp
= BEG_PRIV_ADDR
; privp
< END_PRIV_ADDR
; ++privp
) {
1359 if (privp
->s_proc_nr
== NONE
)
1362 if (!get_sys_bit(*map
, privp
->s_id
))
1365 src_ptr
= proc_addr(privp
->s_proc_nr
);
1369 * Do not copy from a process which does not have a stable address space
1370 * due to VM fiddling with it
1372 if (RTS_ISSET(src_ptr
, RTS_VMINHIBIT
)) {
1373 src_ptr
->p_misc_flags
|= MF_SENDA_VM_MISS
;
1378 assert(!(caller_ptr
->p_misc_flags
& MF_DELIVERMSG
));
1379 if ((r
= try_one(ANY
, src_ptr
, caller_ptr
)) == OK
)
1387 /*===========================================================================*
1389 *===========================================================================*/
1390 static int try_one(endpoint_t receive_e
, struct proc
*src_ptr
,
1391 struct proc
*dst_ptr
)
1393 /* Try to receive an asynchronous message from 'src_ptr' */
1394 int r
= EAGAIN
, done
, do_notify
;
1395 unsigned int flags
, i
;
1397 endpoint_t dst
, src_e
;
1398 struct proc
*caller_ptr
;
1403 privp
= priv(src_ptr
);
1404 if (!(privp
->s_flags
& SYS_PROC
)) return(EPERM
);
1405 size
= privp
->s_asynsize
;
1406 table_v
= privp
->s_asyntab
;
1408 /* Clear table pending message flag. We're done unless we're not. */
1409 unset_sys_bit(priv(dst_ptr
)->s_asyn_pending
, privp
->s_id
);
1411 if (size
== 0) return(EAGAIN
);
1412 if (privp
->s_asynendpoint
!= src_ptr
->p_endpoint
) return EAGAIN
;
1413 if (!may_asynsend_to(src_ptr
, proc_nr(dst_ptr
))) return (ECALLDENIED
);
1415 caller_ptr
= src_ptr
; /* Needed for A_ macros later on */
1416 src_e
= src_ptr
->p_endpoint
;
1418 /* Scan the table */
1422 for (i
= 0; i
< size
; i
++) {
1423 /* Process each entry in the table and store the result in the table.
1424 * If we're done handling a message, copy the result to the sender.
1425 * Some checks done in mini_senda are duplicated here, as the sender
1426 * could've altered the contents of the table in the meantime.
1429 /* Copy message to kernel */
1431 flags
= tabent
.flags
;
1434 if (flags
== 0) continue; /* Skip empty entries */
1436 /* 'flags' field must contain only valid bits */
1437 if(flags
& ~(AMF_VALID
|AMF_DONE
|AMF_NOTIFY
|AMF_NOREPLY
|AMF_NOTIFY_ERR
))
1439 else if (!(flags
& AMF_VALID
)) /* Must contain message */
1441 else if (flags
& AMF_DONE
) continue; /* Already done processing */
1443 /* Clear done flag. The sender is done sending when all messages in the
1444 * table are marked done or empty. However, we will know that only
1445 * the next time we enter this function or when the sender decides to
1446 * send additional asynchronous messages and manages to deliver them
1454 /* Message must be directed at receiving end */
1455 if (dst
!= dst_ptr
->p_endpoint
) continue;
1457 if (!CANRECEIVE(receive_e
, src_e
, dst_ptr
,
1458 table_v
+ i
*sizeof(asynmsg_t
) + offsetof(struct asynmsg
,msg
),
1463 /* If AMF_NOREPLY is set, then this message is not a reply to a
1464 * SENDREC and thus should not satisfy the receiving part of the
1465 * SENDREC. This message is to be delivered later.
1467 if ((flags
& AMF_NOREPLY
) && (dst_ptr
->p_misc_flags
& MF_REPLY_PEND
))
1470 /* Destination is ready to receive the message; deliver it */
1472 dst_ptr
->p_delivermsg
= tabent
.msg
;
1473 dst_ptr
->p_delivermsg
.m_source
= src_ptr
->p_endpoint
;
1474 dst_ptr
->p_misc_flags
|= MF_DELIVERMSG
;
1476 hook_ipc_msgrecv(&dst_ptr
->p_delivermsg
, src_ptr
, dst_ptr
);
1480 /* Store results for sender. We may just have started delivering a
1481 * message, so we must not return an error to the caller in the case
1482 * that storing the results triggers an error!
1485 tabent
.flags
= flags
| AMF_DONE
;
1486 if (flags
& AMF_NOTIFY
) do_notify
= TRUE
;
1487 else if (r
!= OK
&& (flags
& AMF_NOTIFY_ERR
)) do_notify
= TRUE
;
1488 A_INSRT(i
); /* Copy results to sender; ignore errors */
1494 mini_notify(proc_addr(ASYNCM
), src_ptr
->p_endpoint
);
1497 privp
->s_asyntab
= -1;
1498 privp
->s_asynsize
= 0;
1500 set_sys_bit(priv(dst_ptr
)->s_asyn_pending
, privp
->s_id
);
1507 /*===========================================================================*
1509 *===========================================================================*/
1510 int cancel_async(struct proc
*src_ptr
, struct proc
*dst_ptr
)
1512 /* Cancel asynchronous messages from src to dst, because dst is not interested
1513 * in them (e.g., dst has been restarted) */
1514 int done
, do_notify
;
1515 unsigned int flags
, i
;
1518 struct proc
*caller_ptr
;
1523 privp
= priv(src_ptr
);
1524 if (!(privp
->s_flags
& SYS_PROC
)) return(EPERM
);
1525 size
= privp
->s_asynsize
;
1526 table_v
= privp
->s_asyntab
;
1528 /* Clear table pending message flag. We're done unless we're not. */
1529 privp
->s_asyntab
= -1;
1530 privp
->s_asynsize
= 0;
1531 unset_sys_bit(priv(dst_ptr
)->s_asyn_pending
, privp
->s_id
);
1533 if (size
== 0) return(EAGAIN
);
1534 if (!may_send_to(src_ptr
, proc_nr(dst_ptr
))) return(ECALLDENIED
);
1536 caller_ptr
= src_ptr
; /* Needed for A_ macros later on */
1538 /* Scan the table */
1543 for (i
= 0; i
< size
; i
++) {
1544 /* Process each entry in the table and store the result in the table.
1545 * If we're done handling a message, copy the result to the sender.
1546 * Some checks done in mini_senda are duplicated here, as the sender
1547 * could've altered the contents of the table in the mean time.
1550 int r
= EDEADSRCDST
; /* Cancel delivery due to dead dst */
1552 /* Copy message to kernel */
1554 flags
= tabent
.flags
;
1557 if (flags
== 0) continue; /* Skip empty entries */
1559 /* 'flags' field must contain only valid bits */
1560 if(flags
& ~(AMF_VALID
|AMF_DONE
|AMF_NOTIFY
|AMF_NOREPLY
|AMF_NOTIFY_ERR
))
1562 else if (!(flags
& AMF_VALID
)) /* Must contain message */
1564 else if (flags
& AMF_DONE
) continue; /* Already done processing */
1566 /* Message must be directed at receiving end */
1567 if (dst
!= dst_ptr
->p_endpoint
) {
1572 /* Store results for sender */
1574 tabent
.flags
= flags
| AMF_DONE
;
1575 if (flags
& AMF_NOTIFY
) do_notify
= TRUE
;
1576 else if (r
!= OK
&& (flags
& AMF_NOTIFY_ERR
)) do_notify
= TRUE
;
1577 A_INSRT(i
); /* Copy results to sender; ignore errors */
1581 mini_notify(proc_addr(ASYNCM
), src_ptr
->p_endpoint
);
1584 privp
->s_asyntab
= table_v
;
1585 privp
->s_asynsize
= size
;
1592 /*===========================================================================*
1594 *===========================================================================*/
1596 register struct proc
*rp
/* this process is now runnable */
1599 /* Add 'rp' to one of the queues of runnable processes. This function is
1600 * responsible for inserting a process into one of the scheduling queues.
1601 * The mechanism is implemented here. The actual scheduling policy is
1602 * defined in sched() and pick_proc().
1604 * This function can be used x-cpu as it always uses the queues of the cpu the
1605 * process is assigned to.
1607 int q
= rp
->p_priority
; /* scheduling queue to use */
1608 struct proc
**rdy_head
, **rdy_tail
;
1610 assert(proc_is_runnable(rp
));
1614 rdy_head
= get_cpu_var(rp
->p_cpu
, run_q_head
);
1615 rdy_tail
= get_cpu_var(rp
->p_cpu
, run_q_tail
);
1617 /* Now add the process to the queue. */
1618 if (!rdy_head
[q
]) { /* add to empty queue */
1619 rdy_head
[q
] = rdy_tail
[q
] = rp
; /* create a new queue */
1620 rp
->p_nextready
= NULL
; /* mark new end */
1622 else { /* add to tail of queue */
1623 rdy_tail
[q
]->p_nextready
= rp
; /* chain tail of queue */
1624 rdy_tail
[q
] = rp
; /* set new queue tail */
1625 rp
->p_nextready
= NULL
; /* mark new end */
1628 if (cpuid
== rp
->p_cpu
) {
1630 * enqueueing a process with a higher priority than the current one,
1631 * it gets preempted. The current process must be preemptible. Testing
1632 * the priority also makes sure that a process does not preempt itself
1635 p
= get_cpulocal_var(proc_ptr
);
1637 if((p
->p_priority
> rp
->p_priority
) &&
1638 (priv(p
)->s_flags
& PREEMPTIBLE
))
1639 RTS_SET(p
, RTS_PREEMPTED
); /* calls dequeue() */
1643 * if the process was enqueued on a different cpu and the cpu is idle, i.e.
1644 * the time is off, we need to wake up that cpu and let it schedule this new
1647 else if (get_cpu_var(rp
->p_cpu
, cpu_is_idle
)) {
1648 smp_schedule(rp
->p_cpu
);
1652 /* Make note of when this process was added to queue */
1653 read_tsc_64(&(get_cpulocal_var(proc_ptr
)->p_accounting
.enter_queue
));
1656 #if DEBUG_SANITYCHECKS
1657 assert(runqueues_ok_local());
1661 /*===========================================================================*
1663 *===========================================================================*/
1665 * put a process at the front of its run queue. It comes handy when a process is
1666 * preempted and removed from run queue to not to have a currently not-runnable
1667 * process on a run queue. We have to put this process back at the fron to be
1670 static void enqueue_head(struct proc
*rp
)
1672 const int q
= rp
->p_priority
; /* scheduling queue to use */
1674 struct proc
**rdy_head
, **rdy_tail
;
1676 assert(proc_ptr_ok(rp
));
1677 assert(proc_is_runnable(rp
));
1680 * the process was runnable without its quantum expired when dequeued. A
1681 * process with no time left should have been handled else and differently
1683 assert(rp
->p_cpu_time_left
);
1688 rdy_head
= get_cpu_var(rp
->p_cpu
, run_q_head
);
1689 rdy_tail
= get_cpu_var(rp
->p_cpu
, run_q_tail
);
1691 /* Now add the process to the queue. */
1692 if (!rdy_head
[q
]) { /* add to empty queue */
1693 rdy_head
[q
] = rdy_tail
[q
] = rp
; /* create a new queue */
1694 rp
->p_nextready
= NULL
; /* mark new end */
1695 } else { /* add to head of queue */
1696 rp
->p_nextready
= rdy_head
[q
]; /* chain head of queue */
1697 rdy_head
[q
] = rp
; /* set new queue head */
1700 /* Make note of when this process was added to queue */
1701 read_tsc_64(&(get_cpulocal_var(proc_ptr
->p_accounting
.enter_queue
)));
1704 /* Process accounting for scheduling */
1705 rp
->p_accounting
.dequeues
--;
1706 rp
->p_accounting
.preempted
++;
1708 #if DEBUG_SANITYCHECKS
1709 assert(runqueues_ok_local());
1713 /*===========================================================================*
1715 *===========================================================================*/
1716 void dequeue(struct proc
*rp
)
1717 /* this process is no longer runnable */
1719 /* A process must be removed from the scheduling queues, for example, because
1720 * it has blocked. If the currently active process is removed, a new process
1721 * is picked to run by calling pick_proc().
1723 * This function can operate x-cpu as it always removes the process from the
1724 * queue of the cpu the process is currently assigned to.
1726 int q
= rp
->p_priority
; /* queue to use */
1727 struct proc
**xpp
; /* iterate over queue */
1728 struct proc
*prev_xp
;
1729 u64_t tsc
, tsc_delta
;
1731 struct proc
**rdy_tail
;
1733 assert(proc_ptr_ok(rp
));
1734 assert(!proc_is_runnable(rp
));
1736 /* Side-effect for kernel: check if the task's stack still is ok? */
1737 assert (!iskernelp(rp
) || *priv(rp
)->s_stack_guard
== STACK_GUARD
);
1739 rdy_tail
= get_cpu_var(rp
->p_cpu
, run_q_tail
);
1741 /* Now make sure that the process is not in its ready queue. Remove the
1742 * process if it is found. A process can be made unready even if it is not
1743 * running by being sent a signal that kills it.
1746 for (xpp
= get_cpu_var_ptr(rp
->p_cpu
, run_q_head
[q
]); *xpp
;
1747 xpp
= &(*xpp
)->p_nextready
) {
1748 if (*xpp
== rp
) { /* found process to remove */
1749 *xpp
= (*xpp
)->p_nextready
; /* replace with next chain */
1750 if (rp
== rdy_tail
[q
]) { /* queue tail removed */
1751 rdy_tail
[q
] = prev_xp
; /* set new tail */
1756 prev_xp
= *xpp
; /* save previous in chain */
1760 /* Process accounting for scheduling */
1761 rp
->p_accounting
.dequeues
++;
1763 /* this is not all that accurate on virtual machines, especially with
1764 IO bound processes that only spend a short amount of time in the queue
1766 if (rp
->p_accounting
.enter_queue
) {
1768 tsc_delta
= tsc
- rp
->p_accounting
.enter_queue
;
1769 rp
->p_accounting
.time_in_queue
= rp
->p_accounting
.time_in_queue
+
1771 rp
->p_accounting
.enter_queue
= 0;
1774 /* For ps(1), remember when the process was last dequeued. */
1775 rp
->p_dequeued
= get_monotonic();
1777 #if DEBUG_SANITYCHECKS
1778 assert(runqueues_ok_local());
1782 /*===========================================================================*
1784 *===========================================================================*/
1785 static struct proc
* pick_proc(void)
1787 /* Decide who to run now. A new process is selected an returned.
1788 * When a billable process is selected, record it in 'bill_ptr', so that the
1789 * clock task can tell who to bill for system time.
1791 * This function always uses the run queues of the local cpu!
1793 register struct proc
*rp
; /* process to run */
1794 struct proc
**rdy_head
;
1795 int q
; /* iterate over queues */
1797 /* Check each of the scheduling queues for ready processes. The number of
1798 * queues is defined in proc.h, and priorities are set in the task table.
1799 * If there are no processes ready to run, return NULL.
1801 rdy_head
= get_cpulocal_var(run_q_head
);
1802 for (q
=0; q
< NR_SCHED_QUEUES
; q
++) {
1803 if(!(rp
= rdy_head
[q
])) {
1804 TRACE(VF_PICKPROC
, printf("cpu %d queue %d empty\n", cpuid
, q
););
1807 assert(proc_is_runnable(rp
));
1808 if (priv(rp
)->s_flags
& BILLABLE
)
1809 get_cpulocal_var(bill_ptr
) = rp
; /* bill for system time */
1815 /*===========================================================================*
1817 *===========================================================================*/
1818 struct proc
*endpoint_lookup(endpoint_t e
)
1822 if(!isokendpt(e
, &n
)) return NULL
;
1824 return proc_addr(n
);
1827 /*===========================================================================*
1829 *===========================================================================*/
1830 #if DEBUG_ENABLE_IPC_WARNINGS
1831 int isokendpt_f(const char * file
, int line
, endpoint_t e
, int * p
,
1832 const int fatalflag
)
1834 int isokendpt_f(endpoint_t e
, int * p
, const int fatalflag
)
1838 /* Convert an endpoint number into a process number.
1839 * Return nonzero if the process is alive with the corresponding
1840 * generation number, zero otherwise.
1842 * This function is called with file and line number by the
1843 * isokendpt_d macro if DEBUG_ENABLE_IPC_WARNINGS is defined,
1844 * otherwise without. This allows us to print the where the
1845 * conversion was attempted, making the errors verbose without
1846 * adding code for that at every call.
1848 * If fatalflag is nonzero, we must panic if the conversion doesn't
1851 *p
= _ENDPOINT_P(e
);
1853 if(isokprocn(*p
) && !isemptyn(*p
) && proc_addr(*p
)->p_endpoint
== e
)
1855 if(!ok
&& fatalflag
)
1856 panic("invalid endpoint: %d", e
);
1860 static void notify_scheduler(struct proc
*p
)
1862 message m_no_quantum
;
1865 assert(!proc_kernel_scheduler(p
));
1867 /* dequeue the process */
1868 RTS_SET(p
, RTS_NO_QUANTUM
);
1870 * Notify the process's scheduler that it has run out of
1871 * quantum. This is done by sending a message to the scheduler
1872 * on the process's behalf
1874 m_no_quantum
.m_source
= p
->p_endpoint
;
1875 m_no_quantum
.m_type
= SCHEDULING_NO_QUANTUM
;
1876 m_no_quantum
.m_krn_lsys_schedule
.acnt_queue
= cpu_time_2_ms(p
->p_accounting
.time_in_queue
);
1877 m_no_quantum
.m_krn_lsys_schedule
.acnt_deqs
= p
->p_accounting
.dequeues
;
1878 m_no_quantum
.m_krn_lsys_schedule
.acnt_ipc_sync
= p
->p_accounting
.ipc_sync
;
1879 m_no_quantum
.m_krn_lsys_schedule
.acnt_ipc_async
= p
->p_accounting
.ipc_async
;
1880 m_no_quantum
.m_krn_lsys_schedule
.acnt_preempt
= p
->p_accounting
.preempted
;
1881 m_no_quantum
.m_krn_lsys_schedule
.acnt_cpu
= cpuid
;
1882 m_no_quantum
.m_krn_lsys_schedule
.acnt_cpu_load
= cpu_load();
1884 /* Reset accounting */
1885 reset_proc_accounting(p
);
1887 if ((err
= mini_send(p
, p
->p_scheduler
->p_endpoint
,
1888 &m_no_quantum
, FROM_KERNEL
))) {
1889 panic("WARNING: Scheduling: mini_send returned %d\n", err
);
1893 void proc_no_time(struct proc
* p
)
1895 if (!proc_kernel_scheduler(p
) && priv(p
)->s_flags
& PREEMPTIBLE
) {
1896 /* this dequeues the process */
1897 notify_scheduler(p
);
1901 * non-preemptible processes only need their quantum to
1902 * be renewed. In fact, they by pass scheduling
1904 p
->p_cpu_time_left
= ms_2_cpu_time(p
->p_quantum_size_ms
);
1906 RTS_SET(p
, RTS_PREEMPTED
);
1907 RTS_UNSET(p
, RTS_PREEMPTED
);
1912 void reset_proc_accounting(struct proc
*p
)
1914 p
->p_accounting
.preempted
= 0;
1915 p
->p_accounting
.ipc_sync
= 0;
1916 p
->p_accounting
.ipc_async
= 0;
1917 p
->p_accounting
.dequeues
= 0;
1918 p
->p_accounting
.time_in_queue
= 0;
1919 p
->p_accounting
.enter_queue
= 0;
1922 void copr_not_available_handler(void)
1925 struct proc
** local_fpu_owner
;
1927 * Disable the FPU exception (both for the kernel and for the process
1928 * once it's scheduled), and initialize or restore the FPU state.
1931 disable_fpu_exception();
1933 p
= get_cpulocal_var(proc_ptr
);
1935 /* if FPU is not owned by anyone, do not store anything */
1936 local_fpu_owner
= get_cpulocal_var_ptr(fpu_owner
);
1937 if (*local_fpu_owner
!= NULL
) {
1938 assert(*local_fpu_owner
!= p
);
1939 save_local_fpu(*local_fpu_owner
, FALSE
/*retain*/);
1943 * restore the current process' state and let it run again, do not
1946 if (restore_fpu(p
) != OK
) {
1947 /* Restoring FPU state failed. This is always the process's own
1948 * fault. Send a signal, and schedule another process instead.
1950 *local_fpu_owner
= NULL
; /* release FPU */
1951 cause_sig(proc_nr(p
), SIGFPE
);
1955 *local_fpu_owner
= p
;
1956 context_stop(proc_addr(KERNEL
));
1957 restore_user_context(p
);
1961 void release_fpu(struct proc
* p
) {
1962 struct proc
** fpu_owner_ptr
;
1964 fpu_owner_ptr
= get_cpu_var_ptr(p
->p_cpu
, fpu_owner
);
1966 if (*fpu_owner_ptr
== p
)
1967 *fpu_owner_ptr
= NULL
;
1970 void ser_dump_proc(void)
1974 for (pp
= BEG_PROC_ADDR
; pp
< END_PROC_ADDR
; pp
++)
1978 print_proc_recursive(pp
);