e1000: add i82583V 1000baseT Ethernet
[minix3.git] / sys / ufs / ffs / ffs_bswap.c
blob8aeb96e6147e3df3af9cecd3e58838b6d7135b94
1 /* $NetBSD: ffs_bswap.c,v 1.39 2015/05/20 18:21:17 riastradh Exp $ */
3 /*
4 * Copyright (c) 1998 Manuel Bouyer.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 #if HAVE_NBTOOL_CONFIG_H
29 #include "nbtool_config.h"
30 #endif
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: ffs_bswap.c,v 1.39 2015/05/20 18:21:17 riastradh Exp $");
35 #include <sys/param.h>
36 #if defined(_KERNEL)
37 #include <sys/systm.h>
38 #endif
40 #include <ufs/ufs/dinode.h>
41 #include <ufs/ufs/quota.h>
42 #include <ufs/ufs/ufs_bswap.h>
43 #include <ufs/ffs/fs.h>
44 #include <ufs/ffs/ffs_extern.h>
46 #if !defined(_KERNEL)
47 #include <stddef.h>
48 #include <stdio.h>
49 #include <stdlib.h>
50 #include <string.h>
51 #define panic(x) printf("%s\n", (x)), abort()
52 #endif
54 void
55 ffs_sb_swap(struct fs *o, struct fs *n)
57 size_t i;
58 u_int32_t *o32, *n32;
61 * In order to avoid a lot of lines, as the first N fields (52)
62 * of the superblock up to fs_fmod are u_int32_t, we just loop
63 * here to convert them.
65 o32 = (u_int32_t *)o;
66 n32 = (u_int32_t *)n;
67 for (i = 0; i < offsetof(struct fs, fs_fmod) / sizeof(u_int32_t); i++)
68 n32[i] = bswap32(o32[i]);
70 n->fs_swuid = bswap64(o->fs_swuid);
71 n->fs_cgrotor = bswap32(o->fs_cgrotor); /* Unused */
72 n->fs_old_cpc = bswap32(o->fs_old_cpc);
74 /* These fields overlap with a possible location for the
75 * historic FS_DYNAMICPOSTBLFMT postbl table, and with the
76 * first half of the historic FS_42POSTBLFMT postbl table.
78 n->fs_maxbsize = bswap32(o->fs_maxbsize);
79 /* XXX journal */
80 n->fs_quota_magic = bswap32(o->fs_quota_magic);
81 for (i = 0; i < MAXQUOTAS; i++)
82 n->fs_quotafile[i] = bswap64(o->fs_quotafile[i]);
83 n->fs_sblockloc = bswap64(o->fs_sblockloc);
84 ffs_csumtotal_swap(&o->fs_cstotal, &n->fs_cstotal);
85 n->fs_time = bswap64(o->fs_time);
86 n->fs_size = bswap64(o->fs_size);
87 n->fs_dsize = bswap64(o->fs_dsize);
88 n->fs_csaddr = bswap64(o->fs_csaddr);
89 n->fs_pendingblocks = bswap64(o->fs_pendingblocks);
90 n->fs_pendinginodes = bswap32(o->fs_pendinginodes);
92 /* These fields overlap with the second half of the
93 * historic FS_42POSTBLFMT postbl table
95 for (i = 0; i < FSMAXSNAP; i++)
96 n->fs_snapinum[i] = bswap32(o->fs_snapinum[i]);
97 n->fs_avgfilesize = bswap32(o->fs_avgfilesize);
98 n->fs_avgfpdir = bswap32(o->fs_avgfpdir);
99 /* fs_sparecon[28] - ignore for now */
100 n->fs_flags = bswap32(o->fs_flags);
101 n->fs_contigsumsize = bswap32(o->fs_contigsumsize);
102 n->fs_maxsymlinklen = bswap32(o->fs_maxsymlinklen);
103 n->fs_old_inodefmt = bswap32(o->fs_old_inodefmt);
104 n->fs_maxfilesize = bswap64(o->fs_maxfilesize);
105 n->fs_qbmask = bswap64(o->fs_qbmask);
106 n->fs_qfmask = bswap64(o->fs_qfmask);
107 n->fs_state = bswap32(o->fs_state);
108 n->fs_old_postblformat = bswap32(o->fs_old_postblformat);
109 n->fs_old_nrpos = bswap32(o->fs_old_nrpos);
110 n->fs_old_postbloff = bswap32(o->fs_old_postbloff);
111 n->fs_old_rotbloff = bswap32(o->fs_old_rotbloff);
113 n->fs_magic = bswap32(o->fs_magic);
116 void
117 ffs_dinode1_swap(struct ufs1_dinode *o, struct ufs1_dinode *n)
120 n->di_mode = bswap16(o->di_mode);
121 n->di_nlink = bswap16(o->di_nlink);
122 n->di_oldids[0] = bswap16(o->di_oldids[0]);
123 n->di_oldids[1] = bswap16(o->di_oldids[1]);
124 n->di_size = bswap64(o->di_size);
125 n->di_atime = bswap32(o->di_atime);
126 n->di_atimensec = bswap32(o->di_atimensec);
127 n->di_mtime = bswap32(o->di_mtime);
128 n->di_mtimensec = bswap32(o->di_mtimensec);
129 n->di_ctime = bswap32(o->di_ctime);
130 n->di_ctimensec = bswap32(o->di_ctimensec);
131 memcpy(n->di_db, o->di_db, sizeof(n->di_db));
132 memcpy(n->di_ib, o->di_ib, sizeof(n->di_ib));
133 n->di_flags = bswap32(o->di_flags);
134 n->di_blocks = bswap32(o->di_blocks);
135 n->di_gen = bswap32(o->di_gen);
136 n->di_uid = bswap32(o->di_uid);
137 n->di_gid = bswap32(o->di_gid);
140 void
141 ffs_dinode2_swap(struct ufs2_dinode *o, struct ufs2_dinode *n)
143 n->di_mode = bswap16(o->di_mode);
144 n->di_nlink = bswap16(o->di_nlink);
145 n->di_uid = bswap32(o->di_uid);
146 n->di_gid = bswap32(o->di_gid);
147 n->di_blksize = bswap32(o->di_blksize);
148 n->di_size = bswap64(o->di_size);
149 n->di_blocks = bswap64(o->di_blocks);
150 n->di_atime = bswap64(o->di_atime);
151 n->di_atimensec = bswap32(o->di_atimensec);
152 n->di_mtime = bswap64(o->di_mtime);
153 n->di_mtimensec = bswap32(o->di_mtimensec);
154 n->di_ctime = bswap64(o->di_ctime);
155 n->di_ctimensec = bswap32(o->di_ctimensec);
156 n->di_birthtime = bswap64(o->di_birthtime);
157 n->di_birthnsec = bswap32(o->di_birthnsec);
158 n->di_gen = bswap32(o->di_gen);
159 n->di_kernflags = bswap32(o->di_kernflags);
160 n->di_flags = bswap32(o->di_flags);
161 n->di_extsize = bswap32(o->di_extsize);
162 memcpy(n->di_extb, o->di_extb, sizeof(n->di_extb));
163 memcpy(n->di_db, o->di_db, sizeof(n->di_db));
164 memcpy(n->di_ib, o->di_ib, sizeof(n->di_ib));
167 void
168 ffs_csum_swap(struct csum *o, struct csum *n, int size)
170 size_t i;
171 u_int32_t *oint, *nint;
173 oint = (u_int32_t*)o;
174 nint = (u_int32_t*)n;
176 for (i = 0; i < size / sizeof(u_int32_t); i++)
177 nint[i] = bswap32(oint[i]);
180 void
181 ffs_csumtotal_swap(struct csum_total *o, struct csum_total *n)
183 n->cs_ndir = bswap64(o->cs_ndir);
184 n->cs_nbfree = bswap64(o->cs_nbfree);
185 n->cs_nifree = bswap64(o->cs_nifree);
186 n->cs_nffree = bswap64(o->cs_nffree);
190 * Note that ffs_cg_swap may be called with o == n.
192 void
193 ffs_cg_swap(struct cg *o, struct cg *n, struct fs *fs)
195 int i;
196 u_int32_t *n32, *o32;
197 u_int16_t *n16, *o16;
198 int32_t btotoff, boff, clustersumoff;
200 n->cg_firstfield = bswap32(o->cg_firstfield);
201 n->cg_magic = bswap32(o->cg_magic);
202 n->cg_old_time = bswap32(o->cg_old_time);
203 n->cg_cgx = bswap32(o->cg_cgx);
204 n->cg_old_ncyl = bswap16(o->cg_old_ncyl);
205 n->cg_old_niblk = bswap16(o->cg_old_niblk);
206 n->cg_ndblk = bswap32(o->cg_ndblk);
207 n->cg_cs.cs_ndir = bswap32(o->cg_cs.cs_ndir);
208 n->cg_cs.cs_nbfree = bswap32(o->cg_cs.cs_nbfree);
209 n->cg_cs.cs_nifree = bswap32(o->cg_cs.cs_nifree);
210 n->cg_cs.cs_nffree = bswap32(o->cg_cs.cs_nffree);
211 n->cg_rotor = bswap32(o->cg_rotor);
212 n->cg_frotor = bswap32(o->cg_frotor);
213 n->cg_irotor = bswap32(o->cg_irotor);
214 for (i = 0; i < MAXFRAG; i++)
215 n->cg_frsum[i] = bswap32(o->cg_frsum[i]);
217 if ((fs->fs_magic != FS_UFS2_MAGIC) &&
218 (fs->fs_old_postblformat == FS_42POSTBLFMT)) { /* old format */
219 struct ocg *on, *oo;
220 int j;
221 on = (struct ocg *)n;
222 oo = (struct ocg *)o;
224 for (i = 0; i < 32; i++) {
225 on->cg_btot[i] = bswap32(oo->cg_btot[i]);
226 for (j = 0; j < 8; j++)
227 on->cg_b[i][j] = bswap16(oo->cg_b[i][j]);
229 memmove(on->cg_iused, oo->cg_iused, 256);
230 on->cg_magic = bswap32(oo->cg_magic);
231 } else { /* new format */
233 n->cg_old_btotoff = bswap32(o->cg_old_btotoff);
234 n->cg_old_boff = bswap32(o->cg_old_boff);
235 n->cg_iusedoff = bswap32(o->cg_iusedoff);
236 n->cg_freeoff = bswap32(o->cg_freeoff);
237 n->cg_nextfreeoff = bswap32(o->cg_nextfreeoff);
238 n->cg_clustersumoff = bswap32(o->cg_clustersumoff);
239 n->cg_clusteroff = bswap32(o->cg_clusteroff);
240 n->cg_nclusterblks = bswap32(o->cg_nclusterblks);
241 n->cg_niblk = bswap32(o->cg_niblk);
242 n->cg_initediblk = bswap32(o->cg_initediblk);
243 n->cg_time = bswap64(o->cg_time);
245 if (n->cg_magic == CG_MAGIC) {
246 btotoff = n->cg_old_btotoff;
247 boff = n->cg_old_boff;
248 clustersumoff = n->cg_clustersumoff;
249 } else {
250 btotoff = bswap32(n->cg_old_btotoff);
251 boff = bswap32(n->cg_old_boff);
252 clustersumoff = bswap32(n->cg_clustersumoff);
255 n32 = (u_int32_t *)((u_int8_t *)n + clustersumoff);
256 o32 = (u_int32_t *)((u_int8_t *)o + clustersumoff);
257 for (i = 1; i < fs->fs_contigsumsize + 1; i++)
258 n32[i] = bswap32(o32[i]);
260 if (fs->fs_magic == FS_UFS2_MAGIC)
261 return;
263 n32 = (u_int32_t *)((u_int8_t *)n + btotoff);
264 o32 = (u_int32_t *)((u_int8_t *)o + btotoff);
265 n16 = (u_int16_t *)((u_int8_t *)n + boff);
266 o16 = (u_int16_t *)((u_int8_t *)o + boff);
268 for (i = 0; i < fs->fs_old_cpg; i++)
269 n32[i] = bswap32(o32[i]);
271 for (i = 0; i < fs->fs_old_cpg * fs->fs_old_nrpos; i++)
272 n16[i] = bswap16(o16[i]);