Merge of VFS by Balasz Gerofi with Minix trunk.
[minix3.git] / servers / mfs / cache.c
blob02e2a8c2cb3d0080790db5bc61dd7128b95ec1e4
1 /* The file system maintains a buffer cache to reduce the number of disk
2 * accesses needed. Whenever a read or write to the disk is done, a check is
3 * first made to see if the block is in the cache. This file manages the
4 * cache.
6 * The entry points into this file are:
7 * get_block: request to fetch a block for reading or writing from cache
8 * put_block: return a block previously requested with get_block
9 * alloc_zone: allocate a new zone (to increase the length of a file)
10 * free_zone: release a zone (when a file is removed)
11 * invalidate: remove all the cache blocks on some device
13 * Private functions:
14 * rw_block: read or write a block from the disk itself
17 #include "fs.h"
18 #include <minix/com.h>
19 #include "buf.h"
20 #include "super.h"
22 FORWARD _PROTOTYPE( void rm_lru, (struct buf *bp) );
23 FORWARD _PROTOTYPE( int rw_block, (struct buf *, int) );
25 #define ENABLE_CACHE2 0
27 /*===========================================================================*
28 * get_block *
29 *===========================================================================*/
30 PUBLIC struct buf *get_block(dev, block, only_search)
31 register dev_t dev; /* on which device is the block? */
32 register block_t block; /* which block is wanted? */
33 int only_search; /* if NO_READ, don't read, else act normal */
35 /* Check to see if the requested block is in the block cache. If so, return
36 * a pointer to it. If not, evict some other block and fetch it (unless
37 * 'only_search' is 1). All the blocks in the cache that are not in use
38 * are linked together in a chain, with 'front' pointing to the least recently
39 * used block and 'rear' to the most recently used block. If 'only_search' is
40 * 1, the block being requested will be overwritten in its entirety, so it is
41 * only necessary to see if it is in the cache; if it is not, any free buffer
42 * will do. It is not necessary to actually read the block in from disk.
43 * If 'only_search' is PREFETCH, the block need not be read from the disk,
44 * and the device is not to be marked on the block, so callers can tell if
45 * the block returned is valid.
46 * In addition to the LRU chain, there is also a hash chain to link together
47 * blocks whose block numbers end with the same bit strings, for fast lookup.
50 int b;
51 register struct buf *bp, *prev_ptr;
53 /* Search the hash chain for (dev, block). Do_read() can use
54 * get_block(NO_DEV ...) to get an unnamed block to fill with zeros when
55 * someone wants to read from a hole in a file, in which case this search
56 * is skipped
58 if (dev != NO_DEV) {
59 b = (int) block & HASH_MASK;
60 bp = buf_hash[b];
61 while (bp != NIL_BUF) {
62 if (bp->b_blocknr == block && bp->b_dev == dev) {
63 /* Block needed has been found. */
64 if (bp->b_count == 0) rm_lru(bp);
65 bp->b_count++; /* record that block is in use */
67 return(bp);
68 } else {
69 /* This block is not the one sought. */
70 bp = bp->b_hash; /* move to next block on hash chain */
75 /* Desired block is not on available chain. Take oldest block ('front'). */
76 if ((bp = front) == NIL_BUF) panic(__FILE__,"all buffers in use", NR_BUFS);
77 rm_lru(bp);
79 /* Remove the block that was just taken from its hash chain. */
80 b = (int) bp->b_blocknr & HASH_MASK;
81 prev_ptr = buf_hash[b];
82 if (prev_ptr == bp) {
83 buf_hash[b] = bp->b_hash;
84 } else {
85 /* The block just taken is not on the front of its hash chain. */
86 while (prev_ptr->b_hash != NIL_BUF)
87 if (prev_ptr->b_hash == bp) {
88 prev_ptr->b_hash = bp->b_hash; /* found it */
89 break;
90 } else {
91 prev_ptr = prev_ptr->b_hash; /* keep looking */
95 /* If the block taken is dirty, make it clean by writing it to the disk.
96 * Avoid hysteresis by flushing all other dirty blocks for the same device.
98 if (bp->b_dev != NO_DEV) {
99 if (bp->b_dirt == DIRTY) flushall(bp->b_dev);
100 #if ENABLE_CACHE2
101 put_block2(bp);
102 #endif
105 /* Fill in block's parameters and add it to the hash chain where it goes. */
106 bp->b_dev = dev; /* fill in device number */
107 bp->b_blocknr = block; /* fill in block number */
108 bp->b_count++; /* record that block is being used */
109 b = (int) bp->b_blocknr & HASH_MASK;
110 bp->b_hash = buf_hash[b];
111 buf_hash[b] = bp; /* add to hash list */
113 /* Go get the requested block unless searching or prefetching. */
114 if (dev != NO_DEV) {
115 #if ENABLE_CACHE2
116 if (get_block2(bp, only_search)) /* in 2nd level cache */;
117 else
118 #endif
119 if (only_search == PREFETCH) bp->b_dev = NO_DEV;
120 else
121 if (only_search == NORMAL) {
122 rw_block(bp, READING);
125 return(bp); /* return the newly acquired block */
128 /*===========================================================================*
129 * put_block *
130 *===========================================================================*/
131 PUBLIC void put_block(bp, block_type)
132 register struct buf *bp; /* pointer to the buffer to be released */
133 int block_type; /* INODE_BLOCK, DIRECTORY_BLOCK, or whatever */
135 /* Return a block to the list of available blocks. Depending on 'block_type'
136 * it may be put on the front or rear of the LRU chain. Blocks that are
137 * expected to be needed again shortly (e.g., partially full data blocks)
138 * go on the rear; blocks that are unlikely to be needed again shortly
139 * (e.g., full data blocks) go on the front. Blocks whose loss can hurt
140 * the integrity of the file system (e.g., inode blocks) are written to
141 * disk immediately if they are dirty.
143 if (bp == NIL_BUF) return; /* it is easier to check here than in caller */
145 bp->b_count--; /* there is one use fewer now */
146 if (bp->b_count != 0) return; /* block is still in use */
148 bufs_in_use--; /* one fewer block buffers in use */
150 /* Put this block back on the LRU chain. If the ONE_SHOT bit is set in
151 * 'block_type', the block is not likely to be needed again shortly, so put
152 * it on the front of the LRU chain where it will be the first one to be
153 * taken when a free buffer is needed later.
155 if (bp->b_dev == DEV_RAM || (block_type & ONE_SHOT)) {
156 /* Block probably won't be needed quickly. Put it on front of chain.
157 * It will be the next block to be evicted from the cache.
159 bp->b_prev = NIL_BUF;
160 bp->b_next = front;
161 if (front == NIL_BUF)
162 rear = bp; /* LRU chain was empty */
163 else
164 front->b_prev = bp;
165 front = bp;
167 else {
168 /* Block probably will be needed quickly. Put it on rear of chain.
169 * It will not be evicted from the cache for a long time.
171 bp->b_prev = rear;
172 bp->b_next = NIL_BUF;
173 if (rear == NIL_BUF)
174 front = bp;
175 else
176 rear->b_next = bp;
177 rear = bp;
180 /* Some blocks are so important (e.g., inodes, indirect blocks) that they
181 * should be written to the disk immediately to avoid messing up the file
182 * system in the event of a crash.
184 if ((block_type & WRITE_IMMED) && bp->b_dirt==DIRTY && bp->b_dev != NO_DEV) {
185 rw_block(bp, WRITING);
189 /*===========================================================================*
190 * alloc_zone *
191 *===========================================================================*/
192 PUBLIC zone_t alloc_zone(dev, z)
193 dev_t dev; /* device where zone wanted */
194 zone_t z; /* try to allocate new zone near this one */
196 /* Allocate a new zone on the indicated device and return its number. */
198 int major, minor;
199 bit_t b, bit;
200 struct super_block *sp;
202 /* Note that the routine alloc_bit() returns 1 for the lowest possible
203 * zone, which corresponds to sp->s_firstdatazone. To convert a value
204 * between the bit number, 'b', used by alloc_bit() and the zone number, 'z',
205 * stored in the inode, use the formula:
206 * z = b + sp->s_firstdatazone - 1
207 * Alloc_bit() never returns 0, since this is used for NO_BIT (failure).
209 sp = get_super(dev);
211 /* If z is 0, skip initial part of the map known to be fully in use. */
212 if (z == sp->s_firstdatazone) {
213 bit = sp->s_zsearch;
214 } else {
215 bit = (bit_t) z - (sp->s_firstdatazone - 1);
217 b = alloc_bit(sp, ZMAP, bit);
218 if (b == NO_BIT) {
219 err_code = ENOSPC;
220 major = (int) (sp->s_dev >> MAJOR) & BYTE;
221 minor = (int) (sp->s_dev >> MINOR) & BYTE;
222 printf("No space on device %d/%d\n", major, minor);
223 return(NO_ZONE);
225 if (z == sp->s_firstdatazone) sp->s_zsearch = b; /* for next time */
226 return(sp->s_firstdatazone - 1 + (zone_t) b);
229 /*===========================================================================*
230 * free_zone *
231 *===========================================================================*/
232 PUBLIC void free_zone(dev, numb)
233 dev_t dev; /* device where zone located */
234 zone_t numb; /* zone to be returned */
236 /* Return a zone. */
238 register struct super_block *sp;
239 bit_t bit;
241 /* Locate the appropriate super_block and return bit. */
242 sp = get_super(dev);
243 if (numb < sp->s_firstdatazone || numb >= sp->s_zones) return;
244 bit = (bit_t) (numb - (sp->s_firstdatazone - 1));
245 free_bit(sp, ZMAP, bit);
246 if (bit < sp->s_zsearch) sp->s_zsearch = bit;
249 /*===========================================================================*
250 * rw_block *
251 *===========================================================================*/
252 PRIVATE int rw_block(bp, rw_flag)
253 register struct buf *bp; /* buffer pointer */
254 int rw_flag; /* READING or WRITING */
256 /* Read or write a disk block. This is the only routine in which actual disk
257 * I/O is invoked. If an error occurs, a message is printed here, but the error
258 * is not reported to the caller. If the error occurred while purging a block
259 * from the cache, it is not clear what the caller could do about it anyway.
261 int r, op;
262 off_t pos;
263 dev_t dev;
264 int block_size;
266 block_size = get_block_size(bp->b_dev);
268 if ( (dev = bp->b_dev) != NO_DEV) {
269 pos = (off_t) bp->b_blocknr * block_size;
270 op = (rw_flag == READING ? DEV_READ : DEV_WRITE);
271 r = block_dev_io(op, dev, SELF_E, bp->b_data, pos, block_size, 0);
272 if (r != block_size) {
273 if (r >= 0) r = END_OF_FILE;
274 if (r != END_OF_FILE)
275 printf("MFS(%d) I/O error on device %d/%d, block %ld\n",
276 SELF_E, (dev>>MAJOR)&BYTE, (dev>>MINOR)&BYTE,
277 bp->b_blocknr);
279 bp->b_dev = NO_DEV; /* invalidate block */
281 /* Report read errors to interested parties. */
282 if (rw_flag == READING) rdwt_err = r;
286 bp->b_dirt = CLEAN;
288 return OK;
291 /*===========================================================================*
292 * invalidate *
293 *===========================================================================*/
294 PUBLIC void invalidate(device)
295 dev_t device; /* device whose blocks are to be purged */
297 /* Remove all the blocks belonging to some device from the cache. */
299 register struct buf *bp;
301 for (bp = &buf[0]; bp < &buf[NR_BUFS]; bp++)
302 if (bp->b_dev == device) bp->b_dev = NO_DEV;
304 #if ENABLE_CACHE2
305 invalidate2(device);
306 #endif
309 /*===========================================================================*
310 * flushall *
311 *===========================================================================*/
312 PUBLIC void flushall(dev)
313 dev_t dev; /* device to flush */
315 /* Flush all dirty blocks for one device. */
317 register struct buf *bp;
318 static struct buf *dirty[NR_BUFS]; /* static so it isn't on stack */
319 int ndirty;
321 for (bp = &buf[0], ndirty = 0; bp < &buf[NR_BUFS]; bp++)
322 if (bp->b_dirt == DIRTY && bp->b_dev == dev) dirty[ndirty++] = bp;
323 rw_scattered(dev, dirty, ndirty, WRITING);
326 /*===========================================================================*
327 * rw_scattered *
328 *===========================================================================*/
329 PUBLIC void rw_scattered(dev, bufq, bufqsize, rw_flag)
330 dev_t dev; /* major-minor device number */
331 struct buf **bufq; /* pointer to array of buffers */
332 int bufqsize; /* number of buffers */
333 int rw_flag; /* READING or WRITING */
335 /* Read or write scattered data from a device. */
337 register struct buf *bp;
338 int gap;
339 register int i;
340 register iovec_t *iop;
341 static iovec_t iovec[NR_IOREQS]; /* static so it isn't on stack */
342 int j, r;
343 int block_size;
345 block_size = get_block_size(dev);
347 /* (Shell) sort buffers on b_blocknr. */
348 gap = 1;
350 gap = 3 * gap + 1;
351 while (gap <= bufqsize);
352 while (gap != 1) {
353 gap /= 3;
354 for (j = gap; j < bufqsize; j++) {
355 for (i = j - gap;
356 i >= 0 && bufq[i]->b_blocknr > bufq[i + gap]->b_blocknr;
357 i -= gap) {
358 bp = bufq[i];
359 bufq[i] = bufq[i + gap];
360 bufq[i + gap] = bp;
365 /* Set up I/O vector and do I/O. The result of dev_io is OK if everything
366 * went fine, otherwise the error code for the first failed transfer.
368 while (bufqsize > 0) {
369 for (j = 0, iop = iovec; j < NR_IOREQS && j < bufqsize; j++, iop++) {
370 bp = bufq[j];
371 if (bp->b_blocknr != bufq[0]->b_blocknr + j) break;
372 iop->iov_addr = (vir_bytes) bp->b_data;
373 iop->iov_size = block_size;
375 r = block_dev_io(rw_flag == WRITING ? DEV_SCATTER : DEV_GATHER,
376 dev, SELF_E, iovec,
377 (off_t) bufq[0]->b_blocknr * block_size, j, 0);
379 /* Harvest the results. Dev_io reports the first error it may have
380 * encountered, but we only care if it's the first block that failed.
382 for (i = 0, iop = iovec; i < j; i++, iop++) {
383 bp = bufq[i];
384 if (iop->iov_size != 0) {
385 /* Transfer failed. An error? Do we care? */
386 if (r != OK && i == 0) {
387 printf(
388 "fs: I/O error on device %d/%d, block %lu\n",
389 (dev>>MAJOR)&BYTE, (dev>>MINOR)&BYTE,
390 bp->b_blocknr);
391 bp->b_dev = NO_DEV; /* invalidate block */
393 break;
395 if (rw_flag == READING) {
396 bp->b_dev = dev; /* validate block */
397 put_block(bp, PARTIAL_DATA_BLOCK);
398 } else {
399 bp->b_dirt = CLEAN;
402 bufq += i;
403 bufqsize -= i;
404 if (rw_flag == READING) {
405 /* Don't bother reading more than the device is willing to
406 * give at this time. Don't forget to release those extras.
408 while (bufqsize > 0) {
409 put_block(*bufq++, PARTIAL_DATA_BLOCK);
410 bufqsize--;
413 if (rw_flag == WRITING && i == 0) {
414 /* We're not making progress, this means we might keep
415 * looping. Buffers remain dirty if un-written. Buffers are
416 * lost if invalidate()d or LRU-removed while dirty. This
417 * is better than keeping unwritable blocks around forever..
419 break;
424 /*===========================================================================*
425 * rm_lru *
426 *===========================================================================*/
427 PRIVATE void rm_lru(bp)
428 struct buf *bp;
430 /* Remove a block from its LRU chain. */
431 struct buf *next_ptr, *prev_ptr;
433 bufs_in_use++;
434 next_ptr = bp->b_next; /* successor on LRU chain */
435 prev_ptr = bp->b_prev; /* predecessor on LRU chain */
436 if (prev_ptr != NIL_BUF)
437 prev_ptr->b_next = next_ptr;
438 else
439 front = next_ptr; /* this block was at front of chain */
441 if (next_ptr != NIL_BUF)
442 next_ptr->b_prev = prev_ptr;
443 else
444 rear = prev_ptr; /* this block was at rear of chain */