some tweaks
[mkp224o.git] / ed25519 / amd64-51-30k / ge25519_unpackneg.c
blob05d4855d789f7837cd29c96054b00a080a8ae14b
1 #include "fe25519.h"
2 #include "ge25519.h"
4 /* d */
5 static const fe25519 ecd = {{929955233495203, 466365720129213, 1662059464998953, 2033849074728123, 1442794654840575}};
6 /* sqrt(-1) */
7 static const fe25519 sqrtm1 = {{1718705420411056, 234908883556509, 2233514472574048, 2117202627021982, 765476049583133}};
9 /* return 0 on success, -1 otherwise */
10 int ge25519_unpackneg_vartime(ge25519_p3 *r, const unsigned char p[32])
12 fe25519 t, chk, num, den, den2, den4, den6;
13 unsigned char par = p[31] >> 7;
15 fe25519_setint(&r->z,1);
16 fe25519_unpack(&r->y, p);
17 fe25519_square(&num, &r->y); /* x = y^2 */
18 fe25519_mul(&den, &num, &ecd); /* den = dy^2 */
19 fe25519_sub(&num, &num, &r->z); /* x = y^2-1 */
20 fe25519_add(&den, &r->z, &den); /* den = dy^2+1 */
22 /* Computation of sqrt(num/den)
23 1.: computation of num^((p-5)/8)*den^((7p-35)/8) = (num*den^7)^((p-5)/8)
25 fe25519_square(&den2, &den);
26 fe25519_square(&den4, &den2);
27 fe25519_mul(&den6, &den4, &den2);
28 fe25519_mul(&t, &den6, &num);
29 fe25519_mul(&t, &t, &den);
31 fe25519_pow2523(&t, &t);
32 /* 2. computation of r->x = t * num * den^3
34 fe25519_mul(&t, &t, &num);
35 fe25519_mul(&t, &t, &den);
36 fe25519_mul(&t, &t, &den);
37 fe25519_mul(&r->x, &t, &den);
39 /* 3. Check whether sqrt computation gave correct result, multiply by sqrt(-1) if not:
41 fe25519_square(&chk, &r->x);
42 fe25519_mul(&chk, &chk, &den);
43 if (!fe25519_iseq_vartime(&chk, &num))
44 fe25519_mul(&r->x, &r->x, &sqrtm1);
46 /* 4. Now we have one of the two square roots, except if input was not a square
48 fe25519_square(&chk, &r->x);
49 fe25519_mul(&chk, &chk, &den);
50 if (!fe25519_iseq_vartime(&chk, &num))
51 return -1;
53 /* 5. Choose the desired square root according to parity:
55 if(fe25519_getparity(&r->x) != (1-par))
56 fe25519_neg(&r->x, &r->x);
58 fe25519_mul(&r->t, &r->x, &r->y);
59 return 0;