2 * TLB support routines.
4 * Copyright (C) 1998-2001, 2003 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
7 * 08/02/00 A. Mallick <asit.k.mallick@intel.com>
8 * Modified RID allocation for SMP
9 * Goutham Rao <goutham.rao@intel.com>
10 * IPI based ptc implementation and A-step IPI implementation.
11 * Rohit Seth <rohit.seth@intel.com>
12 * Ken Chen <kenneth.w.chen@intel.com>
13 * Christophe de Dinechin <ddd@hp.com>: Avoid ptc.e on memory allocation
14 * Copyright (C) 2007 Intel Corp
15 * Fenghua Yu <fenghua.yu@intel.com>
16 * Add multiple ptc.g/ptc.ga instruction support in global tlb purge.
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/smp.h>
24 #include <linux/bootmem.h>
26 #include <asm/delay.h>
27 #include <asm/mmu_context.h>
28 #include <asm/pgalloc.h>
30 #include <asm/tlbflush.h>
32 #include <asm/processor.h>
37 u64 mask
; /* mask of supported purge page-sizes */
38 unsigned long max_bits
; /* log2 of largest supported purge page-size */
41 struct ia64_ctx ia64_ctx
= {
42 .lock
= __SPIN_LOCK_UNLOCKED(ia64_ctx
.lock
),
47 DEFINE_PER_CPU(u8
, ia64_need_tlb_flush
);
48 DEFINE_PER_CPU(u8
, ia64_tr_num
); /*Number of TR slots in current processor*/
49 DEFINE_PER_CPU(u8
, ia64_tr_used
); /*Max Slot number used by kernel*/
51 struct ia64_tr_entry __per_cpu_idtrs
[NR_CPUS
][2][IA64_TR_ALLOC_MAX
];
54 * Initializes the ia64_ctx.bitmap array based on max_ctx+1.
55 * Called after cpu_init() has setup ia64_ctx.max_ctx based on
56 * maximum RID that is supported by boot CPU.
59 mmu_context_init (void)
61 ia64_ctx
.bitmap
= alloc_bootmem((ia64_ctx
.max_ctx
+1)>>3);
62 ia64_ctx
.flushmap
= alloc_bootmem((ia64_ctx
.max_ctx
+1)>>3);
66 * Acquire the ia64_ctx.lock before calling this function!
69 wrap_mmu_context (struct mm_struct
*mm
)
72 unsigned long flush_bit
;
74 for (i
=0; i
<= ia64_ctx
.max_ctx
/ BITS_PER_LONG
; i
++) {
75 flush_bit
= xchg(&ia64_ctx
.flushmap
[i
], 0);
76 ia64_ctx
.bitmap
[i
] ^= flush_bit
;
79 /* use offset at 300 to skip daemons */
80 ia64_ctx
.next
= find_next_zero_bit(ia64_ctx
.bitmap
,
81 ia64_ctx
.max_ctx
, 300);
82 ia64_ctx
.limit
= find_next_bit(ia64_ctx
.bitmap
,
83 ia64_ctx
.max_ctx
, ia64_ctx
.next
);
86 * can't call flush_tlb_all() here because of race condition
87 * with O(1) scheduler [EF]
89 cpu
= get_cpu(); /* prevent preemption/migration */
90 for_each_online_cpu(i
)
92 per_cpu(ia64_need_tlb_flush
, i
) = 1;
94 local_flush_tlb_all();
98 * Implement "spinaphores" ... like counting semaphores, but they
99 * spin instead of sleeping. If there are ever any other users for
100 * this primitive it can be moved up to a spinaphore.h header.
106 static inline void spinaphore_init(struct spinaphore
*ss
, int val
)
108 atomic_set(&ss
->cur
, val
);
111 static inline void down_spin(struct spinaphore
*ss
)
113 while (unlikely(!atomic_add_unless(&ss
->cur
, -1, 0)))
114 while (atomic_read(&ss
->cur
) == 0)
118 static inline void up_spin(struct spinaphore
*ss
)
120 atomic_add(1, &ss
->cur
);
123 static struct spinaphore ptcg_sem
;
124 static u16 nptcg
= 1;
125 static int need_ptcg_sem
= 1;
126 static int toolatetochangeptcgsem
= 0;
129 * Kernel parameter "nptcg=" overrides max number of concurrent global TLB
130 * purges which is reported from either PAL or SAL PALO.
132 * We don't have sanity checking for nptcg value. It's the user's responsibility
133 * for valid nptcg value on the platform. Otherwise, kernel may hang in some
141 get_option(&str
, &value
);
142 setup_ptcg_sem(value
, NPTCG_FROM_KERNEL_PARAMETER
);
147 __setup("nptcg=", set_nptcg
);
150 * Maximum number of simultaneous ptc.g purges in the system can
151 * be defined by PAL_VM_SUMMARY (in which case we should take
152 * the smallest value for any cpu in the system) or by the PAL
153 * override table (in which case we should ignore the value from
156 * Kernel parameter "nptcg=" overrides maximum number of simultanesous ptc.g
157 * purges defined in either PAL_VM_SUMMARY or PAL override table. In this case,
158 * we should ignore the value from either PAL_VM_SUMMARY or PAL override table.
160 * Complicating the logic here is the fact that num_possible_cpus()
161 * isn't fully setup until we start bringing cpus online.
164 setup_ptcg_sem(int max_purges
, int nptcg_from
)
166 static int kp_override
;
167 static int palo_override
;
168 static int firstcpu
= 1;
170 if (toolatetochangeptcgsem
) {
171 if (nptcg_from
== NPTCG_FROM_PAL
&& max_purges
== 0)
174 BUG_ON(max_purges
< nptcg
);
178 if (nptcg_from
== NPTCG_FROM_KERNEL_PARAMETER
) {
184 need_ptcg_sem
= num_possible_cpus() > nptcg
;
188 if (nptcg_from
== NPTCG_FROM_PALO
) {
191 /* In PALO max_purges == 0 really means it! */
193 panic("Whoa! Platform does not support global TLB purges.\n");
195 if (nptcg
== PALO_MAX_TLB_PURGES
) {
202 if (nptcg
!= PALO_MAX_TLB_PURGES
)
203 need_ptcg_sem
= (num_possible_cpus() > nptcg
);
207 /* In PAL_VM_SUMMARY max_purges == 0 actually means 1 */
208 if (max_purges
== 0) max_purges
= 1;
214 if (max_purges
< nptcg
)
216 if (nptcg
== PAL_MAX_PURGES
) {
220 need_ptcg_sem
= (num_possible_cpus() > nptcg
);
223 spinaphore_init(&ptcg_sem
, max_purges
);
227 ia64_global_tlb_purge (struct mm_struct
*mm
, unsigned long start
,
228 unsigned long end
, unsigned long nbits
)
230 struct mm_struct
*active_mm
= current
->active_mm
;
232 toolatetochangeptcgsem
= 1;
234 if (mm
!= active_mm
) {
235 /* Restore region IDs for mm */
236 if (mm
&& active_mm
) {
237 activate_context(mm
);
245 down_spin(&ptcg_sem
);
249 * Flush ALAT entries also.
251 ia64_ptcga(start
, (nbits
<< 2));
253 start
+= (1UL << nbits
);
254 } while (start
< end
);
259 if (mm
!= active_mm
) {
260 activate_context(active_mm
);
265 local_flush_tlb_all (void)
267 unsigned long i
, j
, flags
, count0
, count1
, stride0
, stride1
, addr
;
269 addr
= local_cpu_data
->ptce_base
;
270 count0
= local_cpu_data
->ptce_count
[0];
271 count1
= local_cpu_data
->ptce_count
[1];
272 stride0
= local_cpu_data
->ptce_stride
[0];
273 stride1
= local_cpu_data
->ptce_stride
[1];
275 local_irq_save(flags
);
276 for (i
= 0; i
< count0
; ++i
) {
277 for (j
= 0; j
< count1
; ++j
) {
283 local_irq_restore(flags
);
284 ia64_srlz_i(); /* srlz.i implies srlz.d */
288 flush_tlb_range (struct vm_area_struct
*vma
, unsigned long start
,
291 struct mm_struct
*mm
= vma
->vm_mm
;
292 unsigned long size
= end
- start
;
296 if (mm
!= current
->active_mm
) {
302 nbits
= ia64_fls(size
+ 0xfff);
303 while (unlikely (((1UL << nbits
) & purge
.mask
) == 0) &&
304 (nbits
< purge
.max_bits
))
306 if (nbits
> purge
.max_bits
)
307 nbits
= purge
.max_bits
;
308 start
&= ~((1UL << nbits
) - 1);
312 if (mm
!= current
->active_mm
|| cpumask_weight(mm_cpumask(mm
)) != 1) {
313 platform_global_tlb_purge(mm
, start
, end
, nbits
);
319 ia64_ptcl(start
, (nbits
<<2));
320 start
+= (1UL << nbits
);
321 } while (start
< end
);
323 ia64_srlz_i(); /* srlz.i implies srlz.d */
325 EXPORT_SYMBOL(flush_tlb_range
);
330 ia64_ptce_info_t
uninitialized_var(ptce_info
); /* GCC be quiet */
333 pal_vm_info_1_u_t vm_info_1
;
334 pal_vm_info_2_u_t vm_info_2
;
335 int cpu
= smp_processor_id();
337 if ((status
= ia64_pal_vm_page_size(&tr_pgbits
, &purge
.mask
)) != 0) {
338 printk(KERN_ERR
"PAL_VM_PAGE_SIZE failed with status=%ld; "
339 "defaulting to architected purge page-sizes.\n", status
);
340 purge
.mask
= 0x115557000UL
;
342 purge
.max_bits
= ia64_fls(purge
.mask
);
344 ia64_get_ptce(&ptce_info
);
345 local_cpu_data
->ptce_base
= ptce_info
.base
;
346 local_cpu_data
->ptce_count
[0] = ptce_info
.count
[0];
347 local_cpu_data
->ptce_count
[1] = ptce_info
.count
[1];
348 local_cpu_data
->ptce_stride
[0] = ptce_info
.stride
[0];
349 local_cpu_data
->ptce_stride
[1] = ptce_info
.stride
[1];
351 local_flush_tlb_all(); /* nuke left overs from bootstrapping... */
352 status
= ia64_pal_vm_summary(&vm_info_1
, &vm_info_2
);
355 printk(KERN_ERR
"ia64_pal_vm_summary=%ld\n", status
);
356 per_cpu(ia64_tr_num
, cpu
) = 8;
359 per_cpu(ia64_tr_num
, cpu
) = vm_info_1
.pal_vm_info_1_s
.max_itr_entry
+1;
360 if (per_cpu(ia64_tr_num
, cpu
) >
361 (vm_info_1
.pal_vm_info_1_s
.max_dtr_entry
+1))
362 per_cpu(ia64_tr_num
, cpu
) =
363 vm_info_1
.pal_vm_info_1_s
.max_dtr_entry
+1;
364 if (per_cpu(ia64_tr_num
, cpu
) > IA64_TR_ALLOC_MAX
) {
365 static int justonce
= 1;
366 per_cpu(ia64_tr_num
, cpu
) = IA64_TR_ALLOC_MAX
;
369 printk(KERN_DEBUG
"TR register number exceeds "
370 "IA64_TR_ALLOC_MAX!\n");
378 * Check overlap with inserted TRs.
380 static int is_tr_overlap(struct ia64_tr_entry
*p
, u64 va
, u64 log_size
)
384 u64 va_rr
= ia64_get_rr(va
);
385 u64 va_rid
= RR_TO_RID(va_rr
);
386 u64 va_end
= va
+ (1<<log_size
) - 1;
388 if (va_rid
!= RR_TO_RID(p
->rr
))
390 tr_log_size
= (p
->itir
& 0xff) >> 2;
391 tr_end
= p
->ifa
+ (1<<tr_log_size
) - 1;
393 if (va
> tr_end
|| p
->ifa
> va_end
)
400 * ia64_insert_tr in virtual mode. Allocate a TR slot
402 * target_mask : 0x1 : itr, 0x2 : dtr, 0x3 : idtr
404 * va : virtual address.
405 * pte : pte entries inserted.
406 * log_size: range to be covered.
408 * Return value: <0 : error No.
410 * >=0 : slot number allocated for TR.
411 * Must be called with preemption disabled.
413 int ia64_itr_entry(u64 target_mask
, u64 va
, u64 pte
, u64 log_size
)
417 struct ia64_tr_entry
*p
;
418 int cpu
= smp_processor_id();
421 /*Check overlap with existing TR entries*/
422 if (target_mask
& 0x1) {
423 p
= &__per_cpu_idtrs
[cpu
][0][0];
424 for (i
= IA64_TR_ALLOC_BASE
; i
<= per_cpu(ia64_tr_used
, cpu
);
427 if (is_tr_overlap(p
, va
, log_size
)) {
428 printk(KERN_DEBUG
"Overlapped Entry"
429 "Inserted for TR Reigster!!\n");
434 if (target_mask
& 0x2) {
435 p
= &__per_cpu_idtrs
[cpu
][1][0];
436 for (i
= IA64_TR_ALLOC_BASE
; i
<= per_cpu(ia64_tr_used
, cpu
);
439 if (is_tr_overlap(p
, va
, log_size
)) {
440 printk(KERN_DEBUG
"Overlapped Entry"
441 "Inserted for TR Reigster!!\n");
447 for (i
= IA64_TR_ALLOC_BASE
; i
< per_cpu(ia64_tr_num
, cpu
); i
++) {
448 switch (target_mask
& 0x3) {
450 if (!(__per_cpu_idtrs
[cpu
][0][i
].pte
& 0x1))
454 if (!(__per_cpu_idtrs
[cpu
][1][i
].pte
& 0x1))
458 if (!(__per_cpu_idtrs
[cpu
][0][i
].pte
& 0x1) &&
459 !(__per_cpu_idtrs
[cpu
][1][i
].pte
& 0x1))
468 if (i
>= per_cpu(ia64_tr_num
, cpu
))
471 /*Record tr info for mca hander use!*/
472 if (i
> per_cpu(ia64_tr_used
, cpu
))
473 per_cpu(ia64_tr_used
, cpu
) = i
;
475 psr
= ia64_clear_ic();
476 if (target_mask
& 0x1) {
477 ia64_itr(0x1, i
, va
, pte
, log_size
);
479 p
= &__per_cpu_idtrs
[cpu
][0][i
];
482 p
->itir
= log_size
<< 2;
483 p
->rr
= ia64_get_rr(va
);
485 if (target_mask
& 0x2) {
486 ia64_itr(0x2, i
, va
, pte
, log_size
);
488 p
= &__per_cpu_idtrs
[cpu
][1][i
];
491 p
->itir
= log_size
<< 2;
492 p
->rr
= ia64_get_rr(va
);
499 EXPORT_SYMBOL_GPL(ia64_itr_entry
);
504 * target_mask: 0x1: purge itr, 0x2 : purge dtr, 0x3 purge idtr.
505 * slot: slot number to be freed.
507 * Must be called with preemption disabled.
509 void ia64_ptr_entry(u64 target_mask
, int slot
)
511 int cpu
= smp_processor_id();
513 struct ia64_tr_entry
*p
;
515 if (slot
< IA64_TR_ALLOC_BASE
|| slot
>= per_cpu(ia64_tr_num
, cpu
))
518 if (target_mask
& 0x1) {
519 p
= &__per_cpu_idtrs
[cpu
][0][slot
];
520 if ((p
->pte
&0x1) && is_tr_overlap(p
, p
->ifa
, p
->itir
>>2)) {
522 ia64_ptr(0x1, p
->ifa
, p
->itir
>>2);
527 if (target_mask
& 0x2) {
528 p
= &__per_cpu_idtrs
[cpu
][1][slot
];
529 if ((p
->pte
& 0x1) && is_tr_overlap(p
, p
->ifa
, p
->itir
>>2)) {
531 ia64_ptr(0x2, p
->ifa
, p
->itir
>>2);
536 for (i
= per_cpu(ia64_tr_used
, cpu
); i
>= IA64_TR_ALLOC_BASE
; i
--) {
537 if ((__per_cpu_idtrs
[cpu
][0][i
].pte
& 0x1) ||
538 (__per_cpu_idtrs
[cpu
][1][i
].pte
& 0x1))
541 per_cpu(ia64_tr_used
, cpu
) = i
;
543 EXPORT_SYMBOL_GPL(ia64_ptr_entry
);