2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
9 * Copyright (C) 2006 Qumranet, Inc.
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
21 #include "kvm_cache_regs.h"
23 #include <linux/kvm_host.h>
24 #include <linux/types.h>
25 #include <linux/string.h>
27 #include <linux/highmem.h>
28 #include <linux/module.h>
29 #include <linux/swap.h>
30 #include <linux/hugetlb.h>
31 #include <linux/compiler.h>
34 #include <asm/cmpxchg.h>
39 * When setting this variable to true it enables Two-Dimensional-Paging
40 * where the hardware walks 2 page tables:
41 * 1. the guest-virtual to guest-physical
42 * 2. while doing 1. it walks guest-physical to host-physical
43 * If the hardware supports that we don't need to do shadow paging.
45 bool tdp_enabled
= false;
52 static void kvm_mmu_audit(struct kvm_vcpu
*vcpu
, const char *msg
);
54 static void kvm_mmu_audit(struct kvm_vcpu
*vcpu
, const char *msg
) {}
59 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
60 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
64 #define pgprintk(x...) do { } while (0)
65 #define rmap_printk(x...) do { } while (0)
69 #if defined(MMU_DEBUG) || defined(AUDIT)
71 module_param(dbg
, bool, 0644);
74 static int oos_shadow
= 1;
75 module_param(oos_shadow
, bool, 0644);
78 #define ASSERT(x) do { } while (0)
82 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
83 __FILE__, __LINE__, #x); \
87 #define PT_FIRST_AVAIL_BITS_SHIFT 9
88 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
90 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
92 #define PT64_LEVEL_BITS 9
94 #define PT64_LEVEL_SHIFT(level) \
95 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
97 #define PT64_LEVEL_MASK(level) \
98 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
100 #define PT64_INDEX(address, level)\
101 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
104 #define PT32_LEVEL_BITS 10
106 #define PT32_LEVEL_SHIFT(level) \
107 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
109 #define PT32_LEVEL_MASK(level) \
110 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
111 #define PT32_LVL_OFFSET_MASK(level) \
112 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
113 * PT32_LEVEL_BITS))) - 1))
115 #define PT32_INDEX(address, level)\
116 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
119 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
120 #define PT64_DIR_BASE_ADDR_MASK \
121 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
122 #define PT64_LVL_ADDR_MASK(level) \
123 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
124 * PT64_LEVEL_BITS))) - 1))
125 #define PT64_LVL_OFFSET_MASK(level) \
126 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
127 * PT64_LEVEL_BITS))) - 1))
129 #define PT32_BASE_ADDR_MASK PAGE_MASK
130 #define PT32_DIR_BASE_ADDR_MASK \
131 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
132 #define PT32_LVL_ADDR_MASK(level) \
133 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
134 * PT32_LEVEL_BITS))) - 1))
136 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
139 #define PFERR_PRESENT_MASK (1U << 0)
140 #define PFERR_WRITE_MASK (1U << 1)
141 #define PFERR_USER_MASK (1U << 2)
142 #define PFERR_RSVD_MASK (1U << 3)
143 #define PFERR_FETCH_MASK (1U << 4)
145 #define PT_PDPE_LEVEL 3
146 #define PT_DIRECTORY_LEVEL 2
147 #define PT_PAGE_TABLE_LEVEL 1
151 #define ACC_EXEC_MASK 1
152 #define ACC_WRITE_MASK PT_WRITABLE_MASK
153 #define ACC_USER_MASK PT_USER_MASK
154 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
156 #define CREATE_TRACE_POINTS
157 #include "mmutrace.h"
159 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
161 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
163 struct kvm_rmap_desc
{
164 u64
*sptes
[RMAP_EXT
];
165 struct kvm_rmap_desc
*more
;
168 struct kvm_shadow_walk_iterator
{
176 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
177 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
178 shadow_walk_okay(&(_walker)); \
179 shadow_walk_next(&(_walker)))
182 struct kvm_unsync_walk
{
183 int (*entry
) (struct kvm_mmu_page
*sp
, struct kvm_unsync_walk
*walk
);
186 typedef int (*mmu_parent_walk_fn
) (struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
);
188 static struct kmem_cache
*pte_chain_cache
;
189 static struct kmem_cache
*rmap_desc_cache
;
190 static struct kmem_cache
*mmu_page_header_cache
;
192 static u64 __read_mostly shadow_trap_nonpresent_pte
;
193 static u64 __read_mostly shadow_notrap_nonpresent_pte
;
194 static u64 __read_mostly shadow_base_present_pte
;
195 static u64 __read_mostly shadow_nx_mask
;
196 static u64 __read_mostly shadow_x_mask
; /* mutual exclusive with nx_mask */
197 static u64 __read_mostly shadow_user_mask
;
198 static u64 __read_mostly shadow_accessed_mask
;
199 static u64 __read_mostly shadow_dirty_mask
;
201 static inline u64
rsvd_bits(int s
, int e
)
203 return ((1ULL << (e
- s
+ 1)) - 1) << s
;
206 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte
, u64 notrap_pte
)
208 shadow_trap_nonpresent_pte
= trap_pte
;
209 shadow_notrap_nonpresent_pte
= notrap_pte
;
211 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes
);
213 void kvm_mmu_set_base_ptes(u64 base_pte
)
215 shadow_base_present_pte
= base_pte
;
217 EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes
);
219 void kvm_mmu_set_mask_ptes(u64 user_mask
, u64 accessed_mask
,
220 u64 dirty_mask
, u64 nx_mask
, u64 x_mask
)
222 shadow_user_mask
= user_mask
;
223 shadow_accessed_mask
= accessed_mask
;
224 shadow_dirty_mask
= dirty_mask
;
225 shadow_nx_mask
= nx_mask
;
226 shadow_x_mask
= x_mask
;
228 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes
);
230 static int is_write_protection(struct kvm_vcpu
*vcpu
)
232 return vcpu
->arch
.cr0
& X86_CR0_WP
;
235 static int is_cpuid_PSE36(void)
240 static int is_nx(struct kvm_vcpu
*vcpu
)
242 return vcpu
->arch
.shadow_efer
& EFER_NX
;
245 static int is_shadow_present_pte(u64 pte
)
247 return pte
!= shadow_trap_nonpresent_pte
248 && pte
!= shadow_notrap_nonpresent_pte
;
251 static int is_large_pte(u64 pte
)
253 return pte
& PT_PAGE_SIZE_MASK
;
256 static int is_writeble_pte(unsigned long pte
)
258 return pte
& PT_WRITABLE_MASK
;
261 static int is_dirty_gpte(unsigned long pte
)
263 return pte
& PT_DIRTY_MASK
;
266 static int is_rmap_spte(u64 pte
)
268 return is_shadow_present_pte(pte
);
271 static int is_last_spte(u64 pte
, int level
)
273 if (level
== PT_PAGE_TABLE_LEVEL
)
275 if (is_large_pte(pte
))
280 static pfn_t
spte_to_pfn(u64 pte
)
282 return (pte
& PT64_BASE_ADDR_MASK
) >> PAGE_SHIFT
;
285 static gfn_t
pse36_gfn_delta(u32 gpte
)
287 int shift
= 32 - PT32_DIR_PSE36_SHIFT
- PAGE_SHIFT
;
289 return (gpte
& PT32_DIR_PSE36_MASK
) << shift
;
292 static void __set_spte(u64
*sptep
, u64 spte
)
295 set_64bit((unsigned long *)sptep
, spte
);
297 set_64bit((unsigned long long *)sptep
, spte
);
301 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache
*cache
,
302 struct kmem_cache
*base_cache
, int min
)
306 if (cache
->nobjs
>= min
)
308 while (cache
->nobjs
< ARRAY_SIZE(cache
->objects
)) {
309 obj
= kmem_cache_zalloc(base_cache
, GFP_KERNEL
);
312 cache
->objects
[cache
->nobjs
++] = obj
;
317 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache
*mc
)
320 kfree(mc
->objects
[--mc
->nobjs
]);
323 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache
*cache
,
328 if (cache
->nobjs
>= min
)
330 while (cache
->nobjs
< ARRAY_SIZE(cache
->objects
)) {
331 page
= alloc_page(GFP_KERNEL
);
334 set_page_private(page
, 0);
335 cache
->objects
[cache
->nobjs
++] = page_address(page
);
340 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache
*mc
)
343 free_page((unsigned long)mc
->objects
[--mc
->nobjs
]);
346 static int mmu_topup_memory_caches(struct kvm_vcpu
*vcpu
)
350 r
= mmu_topup_memory_cache(&vcpu
->arch
.mmu_pte_chain_cache
,
354 r
= mmu_topup_memory_cache(&vcpu
->arch
.mmu_rmap_desc_cache
,
358 r
= mmu_topup_memory_cache_page(&vcpu
->arch
.mmu_page_cache
, 8);
361 r
= mmu_topup_memory_cache(&vcpu
->arch
.mmu_page_header_cache
,
362 mmu_page_header_cache
, 4);
367 static void mmu_free_memory_caches(struct kvm_vcpu
*vcpu
)
369 mmu_free_memory_cache(&vcpu
->arch
.mmu_pte_chain_cache
);
370 mmu_free_memory_cache(&vcpu
->arch
.mmu_rmap_desc_cache
);
371 mmu_free_memory_cache_page(&vcpu
->arch
.mmu_page_cache
);
372 mmu_free_memory_cache(&vcpu
->arch
.mmu_page_header_cache
);
375 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache
*mc
,
381 p
= mc
->objects
[--mc
->nobjs
];
385 static struct kvm_pte_chain
*mmu_alloc_pte_chain(struct kvm_vcpu
*vcpu
)
387 return mmu_memory_cache_alloc(&vcpu
->arch
.mmu_pte_chain_cache
,
388 sizeof(struct kvm_pte_chain
));
391 static void mmu_free_pte_chain(struct kvm_pte_chain
*pc
)
396 static struct kvm_rmap_desc
*mmu_alloc_rmap_desc(struct kvm_vcpu
*vcpu
)
398 return mmu_memory_cache_alloc(&vcpu
->arch
.mmu_rmap_desc_cache
,
399 sizeof(struct kvm_rmap_desc
));
402 static void mmu_free_rmap_desc(struct kvm_rmap_desc
*rd
)
408 * Return the pointer to the largepage write count for a given
409 * gfn, handling slots that are not large page aligned.
411 static int *slot_largepage_idx(gfn_t gfn
,
412 struct kvm_memory_slot
*slot
,
417 idx
= (gfn
/ KVM_PAGES_PER_HPAGE(level
)) -
418 (slot
->base_gfn
/ KVM_PAGES_PER_HPAGE(level
));
419 return &slot
->lpage_info
[level
- 2][idx
].write_count
;
422 static void account_shadowed(struct kvm
*kvm
, gfn_t gfn
)
424 struct kvm_memory_slot
*slot
;
428 gfn
= unalias_gfn(kvm
, gfn
);
430 slot
= gfn_to_memslot_unaliased(kvm
, gfn
);
431 for (i
= PT_DIRECTORY_LEVEL
;
432 i
< PT_PAGE_TABLE_LEVEL
+ KVM_NR_PAGE_SIZES
; ++i
) {
433 write_count
= slot_largepage_idx(gfn
, slot
, i
);
438 static void unaccount_shadowed(struct kvm
*kvm
, gfn_t gfn
)
440 struct kvm_memory_slot
*slot
;
444 gfn
= unalias_gfn(kvm
, gfn
);
445 for (i
= PT_DIRECTORY_LEVEL
;
446 i
< PT_PAGE_TABLE_LEVEL
+ KVM_NR_PAGE_SIZES
; ++i
) {
447 slot
= gfn_to_memslot_unaliased(kvm
, gfn
);
448 write_count
= slot_largepage_idx(gfn
, slot
, i
);
450 WARN_ON(*write_count
< 0);
454 static int has_wrprotected_page(struct kvm
*kvm
,
458 struct kvm_memory_slot
*slot
;
461 gfn
= unalias_gfn(kvm
, gfn
);
462 slot
= gfn_to_memslot_unaliased(kvm
, gfn
);
464 largepage_idx
= slot_largepage_idx(gfn
, slot
, level
);
465 return *largepage_idx
;
471 static int host_mapping_level(struct kvm
*kvm
, gfn_t gfn
)
473 unsigned long page_size
= PAGE_SIZE
;
474 struct vm_area_struct
*vma
;
478 addr
= gfn_to_hva(kvm
, gfn
);
479 if (kvm_is_error_hva(addr
))
482 down_read(¤t
->mm
->mmap_sem
);
483 vma
= find_vma(current
->mm
, addr
);
487 page_size
= vma_kernel_pagesize(vma
);
490 up_read(¤t
->mm
->mmap_sem
);
492 for (i
= PT_PAGE_TABLE_LEVEL
;
493 i
< (PT_PAGE_TABLE_LEVEL
+ KVM_NR_PAGE_SIZES
); ++i
) {
494 if (page_size
>= KVM_HPAGE_SIZE(i
))
503 static int mapping_level(struct kvm_vcpu
*vcpu
, gfn_t large_gfn
)
505 struct kvm_memory_slot
*slot
;
507 int level
= PT_PAGE_TABLE_LEVEL
;
509 slot
= gfn_to_memslot(vcpu
->kvm
, large_gfn
);
510 if (slot
&& slot
->dirty_bitmap
)
511 return PT_PAGE_TABLE_LEVEL
;
513 host_level
= host_mapping_level(vcpu
->kvm
, large_gfn
);
515 if (host_level
== PT_PAGE_TABLE_LEVEL
)
518 for (level
= PT_DIRECTORY_LEVEL
; level
<= host_level
; ++level
) {
520 if (has_wrprotected_page(vcpu
->kvm
, large_gfn
, level
))
528 * Take gfn and return the reverse mapping to it.
529 * Note: gfn must be unaliased before this function get called
532 static unsigned long *gfn_to_rmap(struct kvm
*kvm
, gfn_t gfn
, int level
)
534 struct kvm_memory_slot
*slot
;
537 slot
= gfn_to_memslot(kvm
, gfn
);
538 if (likely(level
== PT_PAGE_TABLE_LEVEL
))
539 return &slot
->rmap
[gfn
- slot
->base_gfn
];
541 idx
= (gfn
/ KVM_PAGES_PER_HPAGE(level
)) -
542 (slot
->base_gfn
/ KVM_PAGES_PER_HPAGE(level
));
544 return &slot
->lpage_info
[level
- 2][idx
].rmap_pde
;
548 * Reverse mapping data structures:
550 * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
551 * that points to page_address(page).
553 * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
554 * containing more mappings.
556 * Returns the number of rmap entries before the spte was added or zero if
557 * the spte was not added.
560 static int rmap_add(struct kvm_vcpu
*vcpu
, u64
*spte
, gfn_t gfn
)
562 struct kvm_mmu_page
*sp
;
563 struct kvm_rmap_desc
*desc
;
564 unsigned long *rmapp
;
567 if (!is_rmap_spte(*spte
))
569 gfn
= unalias_gfn(vcpu
->kvm
, gfn
);
570 sp
= page_header(__pa(spte
));
571 sp
->gfns
[spte
- sp
->spt
] = gfn
;
572 rmapp
= gfn_to_rmap(vcpu
->kvm
, gfn
, sp
->role
.level
);
574 rmap_printk("rmap_add: %p %llx 0->1\n", spte
, *spte
);
575 *rmapp
= (unsigned long)spte
;
576 } else if (!(*rmapp
& 1)) {
577 rmap_printk("rmap_add: %p %llx 1->many\n", spte
, *spte
);
578 desc
= mmu_alloc_rmap_desc(vcpu
);
579 desc
->sptes
[0] = (u64
*)*rmapp
;
580 desc
->sptes
[1] = spte
;
581 *rmapp
= (unsigned long)desc
| 1;
583 rmap_printk("rmap_add: %p %llx many->many\n", spte
, *spte
);
584 desc
= (struct kvm_rmap_desc
*)(*rmapp
& ~1ul);
585 while (desc
->sptes
[RMAP_EXT
-1] && desc
->more
) {
589 if (desc
->sptes
[RMAP_EXT
-1]) {
590 desc
->more
= mmu_alloc_rmap_desc(vcpu
);
593 for (i
= 0; desc
->sptes
[i
]; ++i
)
595 desc
->sptes
[i
] = spte
;
600 static void rmap_desc_remove_entry(unsigned long *rmapp
,
601 struct kvm_rmap_desc
*desc
,
603 struct kvm_rmap_desc
*prev_desc
)
607 for (j
= RMAP_EXT
- 1; !desc
->sptes
[j
] && j
> i
; --j
)
609 desc
->sptes
[i
] = desc
->sptes
[j
];
610 desc
->sptes
[j
] = NULL
;
613 if (!prev_desc
&& !desc
->more
)
614 *rmapp
= (unsigned long)desc
->sptes
[0];
617 prev_desc
->more
= desc
->more
;
619 *rmapp
= (unsigned long)desc
->more
| 1;
620 mmu_free_rmap_desc(desc
);
623 static void rmap_remove(struct kvm
*kvm
, u64
*spte
)
625 struct kvm_rmap_desc
*desc
;
626 struct kvm_rmap_desc
*prev_desc
;
627 struct kvm_mmu_page
*sp
;
629 unsigned long *rmapp
;
632 if (!is_rmap_spte(*spte
))
634 sp
= page_header(__pa(spte
));
635 pfn
= spte_to_pfn(*spte
);
636 if (*spte
& shadow_accessed_mask
)
637 kvm_set_pfn_accessed(pfn
);
638 if (is_writeble_pte(*spte
))
639 kvm_set_pfn_dirty(pfn
);
640 rmapp
= gfn_to_rmap(kvm
, sp
->gfns
[spte
- sp
->spt
], sp
->role
.level
);
642 printk(KERN_ERR
"rmap_remove: %p %llx 0->BUG\n", spte
, *spte
);
644 } else if (!(*rmapp
& 1)) {
645 rmap_printk("rmap_remove: %p %llx 1->0\n", spte
, *spte
);
646 if ((u64
*)*rmapp
!= spte
) {
647 printk(KERN_ERR
"rmap_remove: %p %llx 1->BUG\n",
653 rmap_printk("rmap_remove: %p %llx many->many\n", spte
, *spte
);
654 desc
= (struct kvm_rmap_desc
*)(*rmapp
& ~1ul);
657 for (i
= 0; i
< RMAP_EXT
&& desc
->sptes
[i
]; ++i
)
658 if (desc
->sptes
[i
] == spte
) {
659 rmap_desc_remove_entry(rmapp
,
671 static u64
*rmap_next(struct kvm
*kvm
, unsigned long *rmapp
, u64
*spte
)
673 struct kvm_rmap_desc
*desc
;
674 struct kvm_rmap_desc
*prev_desc
;
680 else if (!(*rmapp
& 1)) {
682 return (u64
*)*rmapp
;
685 desc
= (struct kvm_rmap_desc
*)(*rmapp
& ~1ul);
689 for (i
= 0; i
< RMAP_EXT
&& desc
->sptes
[i
]; ++i
) {
690 if (prev_spte
== spte
)
691 return desc
->sptes
[i
];
692 prev_spte
= desc
->sptes
[i
];
699 static int rmap_write_protect(struct kvm
*kvm
, u64 gfn
)
701 unsigned long *rmapp
;
703 int i
, write_protected
= 0;
705 gfn
= unalias_gfn(kvm
, gfn
);
706 rmapp
= gfn_to_rmap(kvm
, gfn
, PT_PAGE_TABLE_LEVEL
);
708 spte
= rmap_next(kvm
, rmapp
, NULL
);
711 BUG_ON(!(*spte
& PT_PRESENT_MASK
));
712 rmap_printk("rmap_write_protect: spte %p %llx\n", spte
, *spte
);
713 if (is_writeble_pte(*spte
)) {
714 __set_spte(spte
, *spte
& ~PT_WRITABLE_MASK
);
717 spte
= rmap_next(kvm
, rmapp
, spte
);
719 if (write_protected
) {
722 spte
= rmap_next(kvm
, rmapp
, NULL
);
723 pfn
= spte_to_pfn(*spte
);
724 kvm_set_pfn_dirty(pfn
);
727 /* check for huge page mappings */
728 for (i
= PT_DIRECTORY_LEVEL
;
729 i
< PT_PAGE_TABLE_LEVEL
+ KVM_NR_PAGE_SIZES
; ++i
) {
730 rmapp
= gfn_to_rmap(kvm
, gfn
, i
);
731 spte
= rmap_next(kvm
, rmapp
, NULL
);
734 BUG_ON(!(*spte
& PT_PRESENT_MASK
));
735 BUG_ON((*spte
& (PT_PAGE_SIZE_MASK
|PT_PRESENT_MASK
)) != (PT_PAGE_SIZE_MASK
|PT_PRESENT_MASK
));
736 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte
, *spte
, gfn
);
737 if (is_writeble_pte(*spte
)) {
738 rmap_remove(kvm
, spte
);
740 __set_spte(spte
, shadow_trap_nonpresent_pte
);
744 spte
= rmap_next(kvm
, rmapp
, spte
);
748 return write_protected
;
751 static int kvm_unmap_rmapp(struct kvm
*kvm
, unsigned long *rmapp
, u64 data
)
754 int need_tlb_flush
= 0;
756 while ((spte
= rmap_next(kvm
, rmapp
, NULL
))) {
757 BUG_ON(!(*spte
& PT_PRESENT_MASK
));
758 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte
, *spte
);
759 rmap_remove(kvm
, spte
);
760 __set_spte(spte
, shadow_trap_nonpresent_pte
);
763 return need_tlb_flush
;
766 static int kvm_set_pte_rmapp(struct kvm
*kvm
, unsigned long *rmapp
, u64 data
)
770 pte_t
*ptep
= (pte_t
*)data
;
773 WARN_ON(pte_huge(*ptep
));
774 new_pfn
= pte_pfn(*ptep
);
775 spte
= rmap_next(kvm
, rmapp
, NULL
);
777 BUG_ON(!is_shadow_present_pte(*spte
));
778 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte
, *spte
);
780 if (pte_write(*ptep
)) {
781 rmap_remove(kvm
, spte
);
782 __set_spte(spte
, shadow_trap_nonpresent_pte
);
783 spte
= rmap_next(kvm
, rmapp
, NULL
);
785 new_spte
= *spte
&~ (PT64_BASE_ADDR_MASK
);
786 new_spte
|= (u64
)new_pfn
<< PAGE_SHIFT
;
788 new_spte
&= ~PT_WRITABLE_MASK
;
789 new_spte
&= ~SPTE_HOST_WRITEABLE
;
790 if (is_writeble_pte(*spte
))
791 kvm_set_pfn_dirty(spte_to_pfn(*spte
));
792 __set_spte(spte
, new_spte
);
793 spte
= rmap_next(kvm
, rmapp
, spte
);
797 kvm_flush_remote_tlbs(kvm
);
802 static int kvm_handle_hva(struct kvm
*kvm
, unsigned long hva
, u64 data
,
803 int (*handler
)(struct kvm
*kvm
, unsigned long *rmapp
,
810 * If mmap_sem isn't taken, we can look the memslots with only
811 * the mmu_lock by skipping over the slots with userspace_addr == 0.
813 for (i
= 0; i
< kvm
->nmemslots
; i
++) {
814 struct kvm_memory_slot
*memslot
= &kvm
->memslots
[i
];
815 unsigned long start
= memslot
->userspace_addr
;
818 /* mmu_lock protects userspace_addr */
822 end
= start
+ (memslot
->npages
<< PAGE_SHIFT
);
823 if (hva
>= start
&& hva
< end
) {
824 gfn_t gfn_offset
= (hva
- start
) >> PAGE_SHIFT
;
826 retval
|= handler(kvm
, &memslot
->rmap
[gfn_offset
],
829 for (j
= 0; j
< KVM_NR_PAGE_SIZES
- 1; ++j
) {
830 int idx
= gfn_offset
;
831 idx
/= KVM_PAGES_PER_HPAGE(PT_DIRECTORY_LEVEL
+ j
);
832 retval
|= handler(kvm
,
833 &memslot
->lpage_info
[j
][idx
].rmap_pde
,
842 int kvm_unmap_hva(struct kvm
*kvm
, unsigned long hva
)
844 return kvm_handle_hva(kvm
, hva
, 0, kvm_unmap_rmapp
);
847 void kvm_set_spte_hva(struct kvm
*kvm
, unsigned long hva
, pte_t pte
)
849 kvm_handle_hva(kvm
, hva
, (u64
)&pte
, kvm_set_pte_rmapp
);
852 static int kvm_age_rmapp(struct kvm
*kvm
, unsigned long *rmapp
, u64 data
)
857 /* always return old for EPT */
858 if (!shadow_accessed_mask
)
861 spte
= rmap_next(kvm
, rmapp
, NULL
);
865 BUG_ON(!(_spte
& PT_PRESENT_MASK
));
866 _young
= _spte
& PT_ACCESSED_MASK
;
869 clear_bit(PT_ACCESSED_SHIFT
, (unsigned long *)spte
);
871 spte
= rmap_next(kvm
, rmapp
, spte
);
876 #define RMAP_RECYCLE_THRESHOLD 1000
878 static void rmap_recycle(struct kvm_vcpu
*vcpu
, u64
*spte
, gfn_t gfn
)
880 unsigned long *rmapp
;
881 struct kvm_mmu_page
*sp
;
883 sp
= page_header(__pa(spte
));
885 gfn
= unalias_gfn(vcpu
->kvm
, gfn
);
886 rmapp
= gfn_to_rmap(vcpu
->kvm
, gfn
, sp
->role
.level
);
888 kvm_unmap_rmapp(vcpu
->kvm
, rmapp
, 0);
889 kvm_flush_remote_tlbs(vcpu
->kvm
);
892 int kvm_age_hva(struct kvm
*kvm
, unsigned long hva
)
894 return kvm_handle_hva(kvm
, hva
, 0, kvm_age_rmapp
);
898 static int is_empty_shadow_page(u64
*spt
)
903 for (pos
= spt
, end
= pos
+ PAGE_SIZE
/ sizeof(u64
); pos
!= end
; pos
++)
904 if (is_shadow_present_pte(*pos
)) {
905 printk(KERN_ERR
"%s: %p %llx\n", __func__
,
913 static void kvm_mmu_free_page(struct kvm
*kvm
, struct kvm_mmu_page
*sp
)
915 ASSERT(is_empty_shadow_page(sp
->spt
));
917 __free_page(virt_to_page(sp
->spt
));
918 __free_page(virt_to_page(sp
->gfns
));
920 ++kvm
->arch
.n_free_mmu_pages
;
923 static unsigned kvm_page_table_hashfn(gfn_t gfn
)
925 return gfn
& ((1 << KVM_MMU_HASH_SHIFT
) - 1);
928 static struct kvm_mmu_page
*kvm_mmu_alloc_page(struct kvm_vcpu
*vcpu
,
931 struct kvm_mmu_page
*sp
;
933 sp
= mmu_memory_cache_alloc(&vcpu
->arch
.mmu_page_header_cache
, sizeof *sp
);
934 sp
->spt
= mmu_memory_cache_alloc(&vcpu
->arch
.mmu_page_cache
, PAGE_SIZE
);
935 sp
->gfns
= mmu_memory_cache_alloc(&vcpu
->arch
.mmu_page_cache
, PAGE_SIZE
);
936 set_page_private(virt_to_page(sp
->spt
), (unsigned long)sp
);
937 list_add(&sp
->link
, &vcpu
->kvm
->arch
.active_mmu_pages
);
938 INIT_LIST_HEAD(&sp
->oos_link
);
939 bitmap_zero(sp
->slot_bitmap
, KVM_MEMORY_SLOTS
+ KVM_PRIVATE_MEM_SLOTS
);
941 sp
->parent_pte
= parent_pte
;
942 --vcpu
->kvm
->arch
.n_free_mmu_pages
;
946 static void mmu_page_add_parent_pte(struct kvm_vcpu
*vcpu
,
947 struct kvm_mmu_page
*sp
, u64
*parent_pte
)
949 struct kvm_pte_chain
*pte_chain
;
950 struct hlist_node
*node
;
955 if (!sp
->multimapped
) {
956 u64
*old
= sp
->parent_pte
;
959 sp
->parent_pte
= parent_pte
;
963 pte_chain
= mmu_alloc_pte_chain(vcpu
);
964 INIT_HLIST_HEAD(&sp
->parent_ptes
);
965 hlist_add_head(&pte_chain
->link
, &sp
->parent_ptes
);
966 pte_chain
->parent_ptes
[0] = old
;
968 hlist_for_each_entry(pte_chain
, node
, &sp
->parent_ptes
, link
) {
969 if (pte_chain
->parent_ptes
[NR_PTE_CHAIN_ENTRIES
-1])
971 for (i
= 0; i
< NR_PTE_CHAIN_ENTRIES
; ++i
)
972 if (!pte_chain
->parent_ptes
[i
]) {
973 pte_chain
->parent_ptes
[i
] = parent_pte
;
977 pte_chain
= mmu_alloc_pte_chain(vcpu
);
979 hlist_add_head(&pte_chain
->link
, &sp
->parent_ptes
);
980 pte_chain
->parent_ptes
[0] = parent_pte
;
983 static void mmu_page_remove_parent_pte(struct kvm_mmu_page
*sp
,
986 struct kvm_pte_chain
*pte_chain
;
987 struct hlist_node
*node
;
990 if (!sp
->multimapped
) {
991 BUG_ON(sp
->parent_pte
!= parent_pte
);
992 sp
->parent_pte
= NULL
;
995 hlist_for_each_entry(pte_chain
, node
, &sp
->parent_ptes
, link
)
996 for (i
= 0; i
< NR_PTE_CHAIN_ENTRIES
; ++i
) {
997 if (!pte_chain
->parent_ptes
[i
])
999 if (pte_chain
->parent_ptes
[i
] != parent_pte
)
1001 while (i
+ 1 < NR_PTE_CHAIN_ENTRIES
1002 && pte_chain
->parent_ptes
[i
+ 1]) {
1003 pte_chain
->parent_ptes
[i
]
1004 = pte_chain
->parent_ptes
[i
+ 1];
1007 pte_chain
->parent_ptes
[i
] = NULL
;
1009 hlist_del(&pte_chain
->link
);
1010 mmu_free_pte_chain(pte_chain
);
1011 if (hlist_empty(&sp
->parent_ptes
)) {
1012 sp
->multimapped
= 0;
1013 sp
->parent_pte
= NULL
;
1022 static void mmu_parent_walk(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
,
1023 mmu_parent_walk_fn fn
)
1025 struct kvm_pte_chain
*pte_chain
;
1026 struct hlist_node
*node
;
1027 struct kvm_mmu_page
*parent_sp
;
1030 if (!sp
->multimapped
&& sp
->parent_pte
) {
1031 parent_sp
= page_header(__pa(sp
->parent_pte
));
1032 fn(vcpu
, parent_sp
);
1033 mmu_parent_walk(vcpu
, parent_sp
, fn
);
1036 hlist_for_each_entry(pte_chain
, node
, &sp
->parent_ptes
, link
)
1037 for (i
= 0; i
< NR_PTE_CHAIN_ENTRIES
; ++i
) {
1038 if (!pte_chain
->parent_ptes
[i
])
1040 parent_sp
= page_header(__pa(pte_chain
->parent_ptes
[i
]));
1041 fn(vcpu
, parent_sp
);
1042 mmu_parent_walk(vcpu
, parent_sp
, fn
);
1046 static void kvm_mmu_update_unsync_bitmap(u64
*spte
)
1049 struct kvm_mmu_page
*sp
= page_header(__pa(spte
));
1051 index
= spte
- sp
->spt
;
1052 if (!__test_and_set_bit(index
, sp
->unsync_child_bitmap
))
1053 sp
->unsync_children
++;
1054 WARN_ON(!sp
->unsync_children
);
1057 static void kvm_mmu_update_parents_unsync(struct kvm_mmu_page
*sp
)
1059 struct kvm_pte_chain
*pte_chain
;
1060 struct hlist_node
*node
;
1063 if (!sp
->parent_pte
)
1066 if (!sp
->multimapped
) {
1067 kvm_mmu_update_unsync_bitmap(sp
->parent_pte
);
1071 hlist_for_each_entry(pte_chain
, node
, &sp
->parent_ptes
, link
)
1072 for (i
= 0; i
< NR_PTE_CHAIN_ENTRIES
; ++i
) {
1073 if (!pte_chain
->parent_ptes
[i
])
1075 kvm_mmu_update_unsync_bitmap(pte_chain
->parent_ptes
[i
]);
1079 static int unsync_walk_fn(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
)
1081 kvm_mmu_update_parents_unsync(sp
);
1085 static void kvm_mmu_mark_parents_unsync(struct kvm_vcpu
*vcpu
,
1086 struct kvm_mmu_page
*sp
)
1088 mmu_parent_walk(vcpu
, sp
, unsync_walk_fn
);
1089 kvm_mmu_update_parents_unsync(sp
);
1092 static void nonpaging_prefetch_page(struct kvm_vcpu
*vcpu
,
1093 struct kvm_mmu_page
*sp
)
1097 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
)
1098 sp
->spt
[i
] = shadow_trap_nonpresent_pte
;
1101 static int nonpaging_sync_page(struct kvm_vcpu
*vcpu
,
1102 struct kvm_mmu_page
*sp
)
1107 static void nonpaging_invlpg(struct kvm_vcpu
*vcpu
, gva_t gva
)
1111 #define KVM_PAGE_ARRAY_NR 16
1113 struct kvm_mmu_pages
{
1114 struct mmu_page_and_offset
{
1115 struct kvm_mmu_page
*sp
;
1117 } page
[KVM_PAGE_ARRAY_NR
];
1121 #define for_each_unsync_children(bitmap, idx) \
1122 for (idx = find_first_bit(bitmap, 512); \
1124 idx = find_next_bit(bitmap, 512, idx+1))
1126 static int mmu_pages_add(struct kvm_mmu_pages
*pvec
, struct kvm_mmu_page
*sp
,
1132 for (i
=0; i
< pvec
->nr
; i
++)
1133 if (pvec
->page
[i
].sp
== sp
)
1136 pvec
->page
[pvec
->nr
].sp
= sp
;
1137 pvec
->page
[pvec
->nr
].idx
= idx
;
1139 return (pvec
->nr
== KVM_PAGE_ARRAY_NR
);
1142 static int __mmu_unsync_walk(struct kvm_mmu_page
*sp
,
1143 struct kvm_mmu_pages
*pvec
)
1145 int i
, ret
, nr_unsync_leaf
= 0;
1147 for_each_unsync_children(sp
->unsync_child_bitmap
, i
) {
1148 u64 ent
= sp
->spt
[i
];
1150 if (is_shadow_present_pte(ent
) && !is_large_pte(ent
)) {
1151 struct kvm_mmu_page
*child
;
1152 child
= page_header(ent
& PT64_BASE_ADDR_MASK
);
1154 if (child
->unsync_children
) {
1155 if (mmu_pages_add(pvec
, child
, i
))
1158 ret
= __mmu_unsync_walk(child
, pvec
);
1160 __clear_bit(i
, sp
->unsync_child_bitmap
);
1162 nr_unsync_leaf
+= ret
;
1167 if (child
->unsync
) {
1169 if (mmu_pages_add(pvec
, child
, i
))
1175 if (find_first_bit(sp
->unsync_child_bitmap
, 512) == 512)
1176 sp
->unsync_children
= 0;
1178 return nr_unsync_leaf
;
1181 static int mmu_unsync_walk(struct kvm_mmu_page
*sp
,
1182 struct kvm_mmu_pages
*pvec
)
1184 if (!sp
->unsync_children
)
1187 mmu_pages_add(pvec
, sp
, 0);
1188 return __mmu_unsync_walk(sp
, pvec
);
1191 static struct kvm_mmu_page
*kvm_mmu_lookup_page(struct kvm
*kvm
, gfn_t gfn
)
1194 struct hlist_head
*bucket
;
1195 struct kvm_mmu_page
*sp
;
1196 struct hlist_node
*node
;
1198 pgprintk("%s: looking for gfn %lx\n", __func__
, gfn
);
1199 index
= kvm_page_table_hashfn(gfn
);
1200 bucket
= &kvm
->arch
.mmu_page_hash
[index
];
1201 hlist_for_each_entry(sp
, node
, bucket
, hash_link
)
1202 if (sp
->gfn
== gfn
&& !sp
->role
.direct
1203 && !sp
->role
.invalid
) {
1204 pgprintk("%s: found role %x\n",
1205 __func__
, sp
->role
.word
);
1211 static void kvm_unlink_unsync_page(struct kvm
*kvm
, struct kvm_mmu_page
*sp
)
1213 WARN_ON(!sp
->unsync
);
1215 --kvm
->stat
.mmu_unsync
;
1218 static int kvm_mmu_zap_page(struct kvm
*kvm
, struct kvm_mmu_page
*sp
);
1220 static int kvm_sync_page(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
)
1222 if (sp
->role
.glevels
!= vcpu
->arch
.mmu
.root_level
) {
1223 kvm_mmu_zap_page(vcpu
->kvm
, sp
);
1227 trace_kvm_mmu_sync_page(sp
);
1228 if (rmap_write_protect(vcpu
->kvm
, sp
->gfn
))
1229 kvm_flush_remote_tlbs(vcpu
->kvm
);
1230 kvm_unlink_unsync_page(vcpu
->kvm
, sp
);
1231 if (vcpu
->arch
.mmu
.sync_page(vcpu
, sp
)) {
1232 kvm_mmu_zap_page(vcpu
->kvm
, sp
);
1236 kvm_mmu_flush_tlb(vcpu
);
1240 struct mmu_page_path
{
1241 struct kvm_mmu_page
*parent
[PT64_ROOT_LEVEL
-1];
1242 unsigned int idx
[PT64_ROOT_LEVEL
-1];
1245 #define for_each_sp(pvec, sp, parents, i) \
1246 for (i = mmu_pages_next(&pvec, &parents, -1), \
1247 sp = pvec.page[i].sp; \
1248 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1249 i = mmu_pages_next(&pvec, &parents, i))
1251 static int mmu_pages_next(struct kvm_mmu_pages
*pvec
,
1252 struct mmu_page_path
*parents
,
1257 for (n
= i
+1; n
< pvec
->nr
; n
++) {
1258 struct kvm_mmu_page
*sp
= pvec
->page
[n
].sp
;
1260 if (sp
->role
.level
== PT_PAGE_TABLE_LEVEL
) {
1261 parents
->idx
[0] = pvec
->page
[n
].idx
;
1265 parents
->parent
[sp
->role
.level
-2] = sp
;
1266 parents
->idx
[sp
->role
.level
-1] = pvec
->page
[n
].idx
;
1272 static void mmu_pages_clear_parents(struct mmu_page_path
*parents
)
1274 struct kvm_mmu_page
*sp
;
1275 unsigned int level
= 0;
1278 unsigned int idx
= parents
->idx
[level
];
1280 sp
= parents
->parent
[level
];
1284 --sp
->unsync_children
;
1285 WARN_ON((int)sp
->unsync_children
< 0);
1286 __clear_bit(idx
, sp
->unsync_child_bitmap
);
1288 } while (level
< PT64_ROOT_LEVEL
-1 && !sp
->unsync_children
);
1291 static void kvm_mmu_pages_init(struct kvm_mmu_page
*parent
,
1292 struct mmu_page_path
*parents
,
1293 struct kvm_mmu_pages
*pvec
)
1295 parents
->parent
[parent
->role
.level
-1] = NULL
;
1299 static void mmu_sync_children(struct kvm_vcpu
*vcpu
,
1300 struct kvm_mmu_page
*parent
)
1303 struct kvm_mmu_page
*sp
;
1304 struct mmu_page_path parents
;
1305 struct kvm_mmu_pages pages
;
1307 kvm_mmu_pages_init(parent
, &parents
, &pages
);
1308 while (mmu_unsync_walk(parent
, &pages
)) {
1311 for_each_sp(pages
, sp
, parents
, i
)
1312 protected |= rmap_write_protect(vcpu
->kvm
, sp
->gfn
);
1315 kvm_flush_remote_tlbs(vcpu
->kvm
);
1317 for_each_sp(pages
, sp
, parents
, i
) {
1318 kvm_sync_page(vcpu
, sp
);
1319 mmu_pages_clear_parents(&parents
);
1321 cond_resched_lock(&vcpu
->kvm
->mmu_lock
);
1322 kvm_mmu_pages_init(parent
, &parents
, &pages
);
1326 static struct kvm_mmu_page
*kvm_mmu_get_page(struct kvm_vcpu
*vcpu
,
1334 union kvm_mmu_page_role role
;
1337 struct hlist_head
*bucket
;
1338 struct kvm_mmu_page
*sp
;
1339 struct hlist_node
*node
, *tmp
;
1341 role
= vcpu
->arch
.mmu
.base_role
;
1343 role
.direct
= direct
;
1344 role
.access
= access
;
1345 if (vcpu
->arch
.mmu
.root_level
<= PT32_ROOT_LEVEL
) {
1346 quadrant
= gaddr
>> (PAGE_SHIFT
+ (PT64_PT_BITS
* level
));
1347 quadrant
&= (1 << ((PT32_PT_BITS
- PT64_PT_BITS
) * level
)) - 1;
1348 role
.quadrant
= quadrant
;
1350 index
= kvm_page_table_hashfn(gfn
);
1351 bucket
= &vcpu
->kvm
->arch
.mmu_page_hash
[index
];
1352 hlist_for_each_entry_safe(sp
, node
, tmp
, bucket
, hash_link
)
1353 if (sp
->gfn
== gfn
) {
1355 if (kvm_sync_page(vcpu
, sp
))
1358 if (sp
->role
.word
!= role
.word
)
1361 mmu_page_add_parent_pte(vcpu
, sp
, parent_pte
);
1362 if (sp
->unsync_children
) {
1363 set_bit(KVM_REQ_MMU_SYNC
, &vcpu
->requests
);
1364 kvm_mmu_mark_parents_unsync(vcpu
, sp
);
1366 trace_kvm_mmu_get_page(sp
, false);
1369 ++vcpu
->kvm
->stat
.mmu_cache_miss
;
1370 sp
= kvm_mmu_alloc_page(vcpu
, parent_pte
);
1375 hlist_add_head(&sp
->hash_link
, bucket
);
1377 if (rmap_write_protect(vcpu
->kvm
, gfn
))
1378 kvm_flush_remote_tlbs(vcpu
->kvm
);
1379 account_shadowed(vcpu
->kvm
, gfn
);
1381 if (shadow_trap_nonpresent_pte
!= shadow_notrap_nonpresent_pte
)
1382 vcpu
->arch
.mmu
.prefetch_page(vcpu
, sp
);
1384 nonpaging_prefetch_page(vcpu
, sp
);
1385 trace_kvm_mmu_get_page(sp
, true);
1389 static void shadow_walk_init(struct kvm_shadow_walk_iterator
*iterator
,
1390 struct kvm_vcpu
*vcpu
, u64 addr
)
1392 iterator
->addr
= addr
;
1393 iterator
->shadow_addr
= vcpu
->arch
.mmu
.root_hpa
;
1394 iterator
->level
= vcpu
->arch
.mmu
.shadow_root_level
;
1395 if (iterator
->level
== PT32E_ROOT_LEVEL
) {
1396 iterator
->shadow_addr
1397 = vcpu
->arch
.mmu
.pae_root
[(addr
>> 30) & 3];
1398 iterator
->shadow_addr
&= PT64_BASE_ADDR_MASK
;
1400 if (!iterator
->shadow_addr
)
1401 iterator
->level
= 0;
1405 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator
*iterator
)
1407 if (iterator
->level
< PT_PAGE_TABLE_LEVEL
)
1410 if (iterator
->level
== PT_PAGE_TABLE_LEVEL
)
1411 if (is_large_pte(*iterator
->sptep
))
1414 iterator
->index
= SHADOW_PT_INDEX(iterator
->addr
, iterator
->level
);
1415 iterator
->sptep
= ((u64
*)__va(iterator
->shadow_addr
)) + iterator
->index
;
1419 static void shadow_walk_next(struct kvm_shadow_walk_iterator
*iterator
)
1421 iterator
->shadow_addr
= *iterator
->sptep
& PT64_BASE_ADDR_MASK
;
1425 static void kvm_mmu_page_unlink_children(struct kvm
*kvm
,
1426 struct kvm_mmu_page
*sp
)
1434 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
) {
1437 if (is_shadow_present_pte(ent
)) {
1438 if (!is_last_spte(ent
, sp
->role
.level
)) {
1439 ent
&= PT64_BASE_ADDR_MASK
;
1440 mmu_page_remove_parent_pte(page_header(ent
),
1443 if (is_large_pte(ent
))
1445 rmap_remove(kvm
, &pt
[i
]);
1448 pt
[i
] = shadow_trap_nonpresent_pte
;
1452 static void kvm_mmu_put_page(struct kvm_mmu_page
*sp
, u64
*parent_pte
)
1454 mmu_page_remove_parent_pte(sp
, parent_pte
);
1457 static void kvm_mmu_reset_last_pte_updated(struct kvm
*kvm
)
1460 struct kvm_vcpu
*vcpu
;
1462 kvm_for_each_vcpu(i
, vcpu
, kvm
)
1463 vcpu
->arch
.last_pte_updated
= NULL
;
1466 static void kvm_mmu_unlink_parents(struct kvm
*kvm
, struct kvm_mmu_page
*sp
)
1470 while (sp
->multimapped
|| sp
->parent_pte
) {
1471 if (!sp
->multimapped
)
1472 parent_pte
= sp
->parent_pte
;
1474 struct kvm_pte_chain
*chain
;
1476 chain
= container_of(sp
->parent_ptes
.first
,
1477 struct kvm_pte_chain
, link
);
1478 parent_pte
= chain
->parent_ptes
[0];
1480 BUG_ON(!parent_pte
);
1481 kvm_mmu_put_page(sp
, parent_pte
);
1482 __set_spte(parent_pte
, shadow_trap_nonpresent_pte
);
1486 static int mmu_zap_unsync_children(struct kvm
*kvm
,
1487 struct kvm_mmu_page
*parent
)
1490 struct mmu_page_path parents
;
1491 struct kvm_mmu_pages pages
;
1493 if (parent
->role
.level
== PT_PAGE_TABLE_LEVEL
)
1496 kvm_mmu_pages_init(parent
, &parents
, &pages
);
1497 while (mmu_unsync_walk(parent
, &pages
)) {
1498 struct kvm_mmu_page
*sp
;
1500 for_each_sp(pages
, sp
, parents
, i
) {
1501 kvm_mmu_zap_page(kvm
, sp
);
1502 mmu_pages_clear_parents(&parents
);
1505 kvm_mmu_pages_init(parent
, &parents
, &pages
);
1511 static int kvm_mmu_zap_page(struct kvm
*kvm
, struct kvm_mmu_page
*sp
)
1515 trace_kvm_mmu_zap_page(sp
);
1516 ++kvm
->stat
.mmu_shadow_zapped
;
1517 ret
= mmu_zap_unsync_children(kvm
, sp
);
1518 kvm_mmu_page_unlink_children(kvm
, sp
);
1519 kvm_mmu_unlink_parents(kvm
, sp
);
1520 kvm_flush_remote_tlbs(kvm
);
1521 if (!sp
->role
.invalid
&& !sp
->role
.direct
)
1522 unaccount_shadowed(kvm
, sp
->gfn
);
1524 kvm_unlink_unsync_page(kvm
, sp
);
1525 if (!sp
->root_count
) {
1526 hlist_del(&sp
->hash_link
);
1527 kvm_mmu_free_page(kvm
, sp
);
1529 sp
->role
.invalid
= 1;
1530 list_move(&sp
->link
, &kvm
->arch
.active_mmu_pages
);
1531 kvm_reload_remote_mmus(kvm
);
1533 kvm_mmu_reset_last_pte_updated(kvm
);
1538 * Changing the number of mmu pages allocated to the vm
1539 * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
1541 void kvm_mmu_change_mmu_pages(struct kvm
*kvm
, unsigned int kvm_nr_mmu_pages
)
1545 used_pages
= kvm
->arch
.n_alloc_mmu_pages
- kvm
->arch
.n_free_mmu_pages
;
1546 used_pages
= max(0, used_pages
);
1549 * If we set the number of mmu pages to be smaller be than the
1550 * number of actived pages , we must to free some mmu pages before we
1554 if (used_pages
> kvm_nr_mmu_pages
) {
1555 while (used_pages
> kvm_nr_mmu_pages
) {
1556 struct kvm_mmu_page
*page
;
1558 page
= container_of(kvm
->arch
.active_mmu_pages
.prev
,
1559 struct kvm_mmu_page
, link
);
1560 kvm_mmu_zap_page(kvm
, page
);
1563 kvm
->arch
.n_free_mmu_pages
= 0;
1566 kvm
->arch
.n_free_mmu_pages
+= kvm_nr_mmu_pages
1567 - kvm
->arch
.n_alloc_mmu_pages
;
1569 kvm
->arch
.n_alloc_mmu_pages
= kvm_nr_mmu_pages
;
1572 static int kvm_mmu_unprotect_page(struct kvm
*kvm
, gfn_t gfn
)
1575 struct hlist_head
*bucket
;
1576 struct kvm_mmu_page
*sp
;
1577 struct hlist_node
*node
, *n
;
1580 pgprintk("%s: looking for gfn %lx\n", __func__
, gfn
);
1582 index
= kvm_page_table_hashfn(gfn
);
1583 bucket
= &kvm
->arch
.mmu_page_hash
[index
];
1584 hlist_for_each_entry_safe(sp
, node
, n
, bucket
, hash_link
)
1585 if (sp
->gfn
== gfn
&& !sp
->role
.direct
) {
1586 pgprintk("%s: gfn %lx role %x\n", __func__
, gfn
,
1589 if (kvm_mmu_zap_page(kvm
, sp
))
1595 static void mmu_unshadow(struct kvm
*kvm
, gfn_t gfn
)
1598 struct hlist_head
*bucket
;
1599 struct kvm_mmu_page
*sp
;
1600 struct hlist_node
*node
, *nn
;
1602 index
= kvm_page_table_hashfn(gfn
);
1603 bucket
= &kvm
->arch
.mmu_page_hash
[index
];
1604 hlist_for_each_entry_safe(sp
, node
, nn
, bucket
, hash_link
) {
1605 if (sp
->gfn
== gfn
&& !sp
->role
.direct
1606 && !sp
->role
.invalid
) {
1607 pgprintk("%s: zap %lx %x\n",
1608 __func__
, gfn
, sp
->role
.word
);
1609 kvm_mmu_zap_page(kvm
, sp
);
1614 static void page_header_update_slot(struct kvm
*kvm
, void *pte
, gfn_t gfn
)
1616 int slot
= memslot_id(kvm
, gfn_to_memslot(kvm
, gfn
));
1617 struct kvm_mmu_page
*sp
= page_header(__pa(pte
));
1619 __set_bit(slot
, sp
->slot_bitmap
);
1622 static void mmu_convert_notrap(struct kvm_mmu_page
*sp
)
1627 if (shadow_trap_nonpresent_pte
== shadow_notrap_nonpresent_pte
)
1630 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
) {
1631 if (pt
[i
] == shadow_notrap_nonpresent_pte
)
1632 __set_spte(&pt
[i
], shadow_trap_nonpresent_pte
);
1636 struct page
*gva_to_page(struct kvm_vcpu
*vcpu
, gva_t gva
)
1640 gpa_t gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, gva
);
1642 if (gpa
== UNMAPPED_GVA
)
1645 page
= gfn_to_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
1651 * The function is based on mtrr_type_lookup() in
1652 * arch/x86/kernel/cpu/mtrr/generic.c
1654 static int get_mtrr_type(struct mtrr_state_type
*mtrr_state
,
1659 u8 prev_match
, curr_match
;
1660 int num_var_ranges
= KVM_NR_VAR_MTRR
;
1662 if (!mtrr_state
->enabled
)
1665 /* Make end inclusive end, instead of exclusive */
1668 /* Look in fixed ranges. Just return the type as per start */
1669 if (mtrr_state
->have_fixed
&& (start
< 0x100000)) {
1672 if (start
< 0x80000) {
1674 idx
+= (start
>> 16);
1675 return mtrr_state
->fixed_ranges
[idx
];
1676 } else if (start
< 0xC0000) {
1678 idx
+= ((start
- 0x80000) >> 14);
1679 return mtrr_state
->fixed_ranges
[idx
];
1680 } else if (start
< 0x1000000) {
1682 idx
+= ((start
- 0xC0000) >> 12);
1683 return mtrr_state
->fixed_ranges
[idx
];
1688 * Look in variable ranges
1689 * Look of multiple ranges matching this address and pick type
1690 * as per MTRR precedence
1692 if (!(mtrr_state
->enabled
& 2))
1693 return mtrr_state
->def_type
;
1696 for (i
= 0; i
< num_var_ranges
; ++i
) {
1697 unsigned short start_state
, end_state
;
1699 if (!(mtrr_state
->var_ranges
[i
].mask_lo
& (1 << 11)))
1702 base
= (((u64
)mtrr_state
->var_ranges
[i
].base_hi
) << 32) +
1703 (mtrr_state
->var_ranges
[i
].base_lo
& PAGE_MASK
);
1704 mask
= (((u64
)mtrr_state
->var_ranges
[i
].mask_hi
) << 32) +
1705 (mtrr_state
->var_ranges
[i
].mask_lo
& PAGE_MASK
);
1707 start_state
= ((start
& mask
) == (base
& mask
));
1708 end_state
= ((end
& mask
) == (base
& mask
));
1709 if (start_state
!= end_state
)
1712 if ((start
& mask
) != (base
& mask
))
1715 curr_match
= mtrr_state
->var_ranges
[i
].base_lo
& 0xff;
1716 if (prev_match
== 0xFF) {
1717 prev_match
= curr_match
;
1721 if (prev_match
== MTRR_TYPE_UNCACHABLE
||
1722 curr_match
== MTRR_TYPE_UNCACHABLE
)
1723 return MTRR_TYPE_UNCACHABLE
;
1725 if ((prev_match
== MTRR_TYPE_WRBACK
&&
1726 curr_match
== MTRR_TYPE_WRTHROUGH
) ||
1727 (prev_match
== MTRR_TYPE_WRTHROUGH
&&
1728 curr_match
== MTRR_TYPE_WRBACK
)) {
1729 prev_match
= MTRR_TYPE_WRTHROUGH
;
1730 curr_match
= MTRR_TYPE_WRTHROUGH
;
1733 if (prev_match
!= curr_match
)
1734 return MTRR_TYPE_UNCACHABLE
;
1737 if (prev_match
!= 0xFF)
1740 return mtrr_state
->def_type
;
1743 u8
kvm_get_guest_memory_type(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1747 mtrr
= get_mtrr_type(&vcpu
->arch
.mtrr_state
, gfn
<< PAGE_SHIFT
,
1748 (gfn
<< PAGE_SHIFT
) + PAGE_SIZE
);
1749 if (mtrr
== 0xfe || mtrr
== 0xff)
1750 mtrr
= MTRR_TYPE_WRBACK
;
1753 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type
);
1755 static int kvm_unsync_page(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
)
1758 struct hlist_head
*bucket
;
1759 struct kvm_mmu_page
*s
;
1760 struct hlist_node
*node
, *n
;
1762 trace_kvm_mmu_unsync_page(sp
);
1763 index
= kvm_page_table_hashfn(sp
->gfn
);
1764 bucket
= &vcpu
->kvm
->arch
.mmu_page_hash
[index
];
1765 /* don't unsync if pagetable is shadowed with multiple roles */
1766 hlist_for_each_entry_safe(s
, node
, n
, bucket
, hash_link
) {
1767 if (s
->gfn
!= sp
->gfn
|| s
->role
.direct
)
1769 if (s
->role
.word
!= sp
->role
.word
)
1772 ++vcpu
->kvm
->stat
.mmu_unsync
;
1775 kvm_mmu_mark_parents_unsync(vcpu
, sp
);
1777 mmu_convert_notrap(sp
);
1781 static int mmu_need_write_protect(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
1784 struct kvm_mmu_page
*shadow
;
1786 shadow
= kvm_mmu_lookup_page(vcpu
->kvm
, gfn
);
1788 if (shadow
->role
.level
!= PT_PAGE_TABLE_LEVEL
)
1792 if (can_unsync
&& oos_shadow
)
1793 return kvm_unsync_page(vcpu
, shadow
);
1799 static int set_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
,
1800 unsigned pte_access
, int user_fault
,
1801 int write_fault
, int dirty
, int level
,
1802 gfn_t gfn
, pfn_t pfn
, bool speculative
,
1803 bool can_unsync
, bool reset_host_protection
)
1809 * We don't set the accessed bit, since we sometimes want to see
1810 * whether the guest actually used the pte (in order to detect
1813 spte
= shadow_base_present_pte
| shadow_dirty_mask
;
1815 spte
|= shadow_accessed_mask
;
1817 pte_access
&= ~ACC_WRITE_MASK
;
1818 if (pte_access
& ACC_EXEC_MASK
)
1819 spte
|= shadow_x_mask
;
1821 spte
|= shadow_nx_mask
;
1822 if (pte_access
& ACC_USER_MASK
)
1823 spte
|= shadow_user_mask
;
1824 if (level
> PT_PAGE_TABLE_LEVEL
)
1825 spte
|= PT_PAGE_SIZE_MASK
;
1827 spte
|= kvm_x86_ops
->get_mt_mask(vcpu
, gfn
,
1828 kvm_is_mmio_pfn(pfn
));
1830 if (reset_host_protection
)
1831 spte
|= SPTE_HOST_WRITEABLE
;
1833 spte
|= (u64
)pfn
<< PAGE_SHIFT
;
1835 if ((pte_access
& ACC_WRITE_MASK
)
1836 || (write_fault
&& !is_write_protection(vcpu
) && !user_fault
)) {
1838 if (level
> PT_PAGE_TABLE_LEVEL
&&
1839 has_wrprotected_page(vcpu
->kvm
, gfn
, level
)) {
1841 spte
= shadow_trap_nonpresent_pte
;
1845 spte
|= PT_WRITABLE_MASK
;
1848 * Optimization: for pte sync, if spte was writable the hash
1849 * lookup is unnecessary (and expensive). Write protection
1850 * is responsibility of mmu_get_page / kvm_sync_page.
1851 * Same reasoning can be applied to dirty page accounting.
1853 if (!can_unsync
&& is_writeble_pte(*sptep
))
1856 if (mmu_need_write_protect(vcpu
, gfn
, can_unsync
)) {
1857 pgprintk("%s: found shadow page for %lx, marking ro\n",
1860 pte_access
&= ~ACC_WRITE_MASK
;
1861 if (is_writeble_pte(spte
))
1862 spte
&= ~PT_WRITABLE_MASK
;
1866 if (pte_access
& ACC_WRITE_MASK
)
1867 mark_page_dirty(vcpu
->kvm
, gfn
);
1870 __set_spte(sptep
, spte
);
1874 static void mmu_set_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
,
1875 unsigned pt_access
, unsigned pte_access
,
1876 int user_fault
, int write_fault
, int dirty
,
1877 int *ptwrite
, int level
, gfn_t gfn
,
1878 pfn_t pfn
, bool speculative
,
1879 bool reset_host_protection
)
1881 int was_rmapped
= 0;
1882 int was_writeble
= is_writeble_pte(*sptep
);
1885 pgprintk("%s: spte %llx access %x write_fault %d"
1886 " user_fault %d gfn %lx\n",
1887 __func__
, *sptep
, pt_access
,
1888 write_fault
, user_fault
, gfn
);
1890 if (is_rmap_spte(*sptep
)) {
1892 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
1893 * the parent of the now unreachable PTE.
1895 if (level
> PT_PAGE_TABLE_LEVEL
&&
1896 !is_large_pte(*sptep
)) {
1897 struct kvm_mmu_page
*child
;
1900 child
= page_header(pte
& PT64_BASE_ADDR_MASK
);
1901 mmu_page_remove_parent_pte(child
, sptep
);
1902 } else if (pfn
!= spte_to_pfn(*sptep
)) {
1903 pgprintk("hfn old %lx new %lx\n",
1904 spte_to_pfn(*sptep
), pfn
);
1905 rmap_remove(vcpu
->kvm
, sptep
);
1910 if (set_spte(vcpu
, sptep
, pte_access
, user_fault
, write_fault
,
1911 dirty
, level
, gfn
, pfn
, speculative
, true,
1912 reset_host_protection
)) {
1915 kvm_x86_ops
->tlb_flush(vcpu
);
1918 pgprintk("%s: setting spte %llx\n", __func__
, *sptep
);
1919 pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
1920 is_large_pte(*sptep
)? "2MB" : "4kB",
1921 *sptep
& PT_PRESENT_MASK
?"RW":"R", gfn
,
1923 if (!was_rmapped
&& is_large_pte(*sptep
))
1924 ++vcpu
->kvm
->stat
.lpages
;
1926 page_header_update_slot(vcpu
->kvm
, sptep
, gfn
);
1928 rmap_count
= rmap_add(vcpu
, sptep
, gfn
);
1929 kvm_release_pfn_clean(pfn
);
1930 if (rmap_count
> RMAP_RECYCLE_THRESHOLD
)
1931 rmap_recycle(vcpu
, sptep
, gfn
);
1934 kvm_release_pfn_dirty(pfn
);
1936 kvm_release_pfn_clean(pfn
);
1939 vcpu
->arch
.last_pte_updated
= sptep
;
1940 vcpu
->arch
.last_pte_gfn
= gfn
;
1944 static void nonpaging_new_cr3(struct kvm_vcpu
*vcpu
)
1948 static int __direct_map(struct kvm_vcpu
*vcpu
, gpa_t v
, int write
,
1949 int level
, gfn_t gfn
, pfn_t pfn
)
1951 struct kvm_shadow_walk_iterator iterator
;
1952 struct kvm_mmu_page
*sp
;
1956 for_each_shadow_entry(vcpu
, (u64
)gfn
<< PAGE_SHIFT
, iterator
) {
1957 if (iterator
.level
== level
) {
1958 mmu_set_spte(vcpu
, iterator
.sptep
, ACC_ALL
, ACC_ALL
,
1959 0, write
, 1, &pt_write
,
1960 level
, gfn
, pfn
, false, true);
1961 ++vcpu
->stat
.pf_fixed
;
1965 if (*iterator
.sptep
== shadow_trap_nonpresent_pte
) {
1966 pseudo_gfn
= (iterator
.addr
& PT64_DIR_BASE_ADDR_MASK
) >> PAGE_SHIFT
;
1967 sp
= kvm_mmu_get_page(vcpu
, pseudo_gfn
, iterator
.addr
,
1969 1, ACC_ALL
, iterator
.sptep
);
1971 pgprintk("nonpaging_map: ENOMEM\n");
1972 kvm_release_pfn_clean(pfn
);
1976 __set_spte(iterator
.sptep
,
1978 | PT_PRESENT_MASK
| PT_WRITABLE_MASK
1979 | shadow_user_mask
| shadow_x_mask
);
1985 static int nonpaging_map(struct kvm_vcpu
*vcpu
, gva_t v
, int write
, gfn_t gfn
)
1990 unsigned long mmu_seq
;
1992 level
= mapping_level(vcpu
, gfn
);
1995 * This path builds a PAE pagetable - so we can map 2mb pages at
1996 * maximum. Therefore check if the level is larger than that.
1998 if (level
> PT_DIRECTORY_LEVEL
)
1999 level
= PT_DIRECTORY_LEVEL
;
2001 gfn
&= ~(KVM_PAGES_PER_HPAGE(level
) - 1);
2003 mmu_seq
= vcpu
->kvm
->mmu_notifier_seq
;
2005 pfn
= gfn_to_pfn(vcpu
->kvm
, gfn
);
2008 if (is_error_pfn(pfn
)) {
2009 kvm_release_pfn_clean(pfn
);
2013 spin_lock(&vcpu
->kvm
->mmu_lock
);
2014 if (mmu_notifier_retry(vcpu
, mmu_seq
))
2016 kvm_mmu_free_some_pages(vcpu
);
2017 r
= __direct_map(vcpu
, v
, write
, level
, gfn
, pfn
);
2018 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2024 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2025 kvm_release_pfn_clean(pfn
);
2030 static void mmu_free_roots(struct kvm_vcpu
*vcpu
)
2033 struct kvm_mmu_page
*sp
;
2035 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
2037 spin_lock(&vcpu
->kvm
->mmu_lock
);
2038 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
) {
2039 hpa_t root
= vcpu
->arch
.mmu
.root_hpa
;
2041 sp
= page_header(root
);
2043 if (!sp
->root_count
&& sp
->role
.invalid
)
2044 kvm_mmu_zap_page(vcpu
->kvm
, sp
);
2045 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
2046 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2049 for (i
= 0; i
< 4; ++i
) {
2050 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
2053 root
&= PT64_BASE_ADDR_MASK
;
2054 sp
= page_header(root
);
2056 if (!sp
->root_count
&& sp
->role
.invalid
)
2057 kvm_mmu_zap_page(vcpu
->kvm
, sp
);
2059 vcpu
->arch
.mmu
.pae_root
[i
] = INVALID_PAGE
;
2061 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2062 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
2065 static int mmu_check_root(struct kvm_vcpu
*vcpu
, gfn_t root_gfn
)
2069 if (!kvm_is_visible_gfn(vcpu
->kvm
, root_gfn
)) {
2070 set_bit(KVM_REQ_TRIPLE_FAULT
, &vcpu
->requests
);
2077 static int mmu_alloc_roots(struct kvm_vcpu
*vcpu
)
2081 struct kvm_mmu_page
*sp
;
2085 root_gfn
= vcpu
->arch
.cr3
>> PAGE_SHIFT
;
2087 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
) {
2088 hpa_t root
= vcpu
->arch
.mmu
.root_hpa
;
2090 ASSERT(!VALID_PAGE(root
));
2093 if (mmu_check_root(vcpu
, root_gfn
))
2095 sp
= kvm_mmu_get_page(vcpu
, root_gfn
, 0,
2096 PT64_ROOT_LEVEL
, direct
,
2098 root
= __pa(sp
->spt
);
2100 vcpu
->arch
.mmu
.root_hpa
= root
;
2103 direct
= !is_paging(vcpu
);
2106 for (i
= 0; i
< 4; ++i
) {
2107 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
2109 ASSERT(!VALID_PAGE(root
));
2110 if (vcpu
->arch
.mmu
.root_level
== PT32E_ROOT_LEVEL
) {
2111 pdptr
= kvm_pdptr_read(vcpu
, i
);
2112 if (!is_present_gpte(pdptr
)) {
2113 vcpu
->arch
.mmu
.pae_root
[i
] = 0;
2116 root_gfn
= pdptr
>> PAGE_SHIFT
;
2117 } else if (vcpu
->arch
.mmu
.root_level
== 0)
2119 if (mmu_check_root(vcpu
, root_gfn
))
2121 sp
= kvm_mmu_get_page(vcpu
, root_gfn
, i
<< 30,
2122 PT32_ROOT_LEVEL
, direct
,
2124 root
= __pa(sp
->spt
);
2126 vcpu
->arch
.mmu
.pae_root
[i
] = root
| PT_PRESENT_MASK
;
2128 vcpu
->arch
.mmu
.root_hpa
= __pa(vcpu
->arch
.mmu
.pae_root
);
2132 static void mmu_sync_roots(struct kvm_vcpu
*vcpu
)
2135 struct kvm_mmu_page
*sp
;
2137 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
2139 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
) {
2140 hpa_t root
= vcpu
->arch
.mmu
.root_hpa
;
2141 sp
= page_header(root
);
2142 mmu_sync_children(vcpu
, sp
);
2145 for (i
= 0; i
< 4; ++i
) {
2146 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
2148 if (root
&& VALID_PAGE(root
)) {
2149 root
&= PT64_BASE_ADDR_MASK
;
2150 sp
= page_header(root
);
2151 mmu_sync_children(vcpu
, sp
);
2156 void kvm_mmu_sync_roots(struct kvm_vcpu
*vcpu
)
2158 spin_lock(&vcpu
->kvm
->mmu_lock
);
2159 mmu_sync_roots(vcpu
);
2160 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2163 static gpa_t
nonpaging_gva_to_gpa(struct kvm_vcpu
*vcpu
, gva_t vaddr
)
2168 static int nonpaging_page_fault(struct kvm_vcpu
*vcpu
, gva_t gva
,
2174 pgprintk("%s: gva %lx error %x\n", __func__
, gva
, error_code
);
2175 r
= mmu_topup_memory_caches(vcpu
);
2180 ASSERT(VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
2182 gfn
= gva
>> PAGE_SHIFT
;
2184 return nonpaging_map(vcpu
, gva
& PAGE_MASK
,
2185 error_code
& PFERR_WRITE_MASK
, gfn
);
2188 static int tdp_page_fault(struct kvm_vcpu
*vcpu
, gva_t gpa
,
2194 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
2195 unsigned long mmu_seq
;
2198 ASSERT(VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
2200 r
= mmu_topup_memory_caches(vcpu
);
2204 level
= mapping_level(vcpu
, gfn
);
2206 gfn
&= ~(KVM_PAGES_PER_HPAGE(level
) - 1);
2208 mmu_seq
= vcpu
->kvm
->mmu_notifier_seq
;
2210 pfn
= gfn_to_pfn(vcpu
->kvm
, gfn
);
2211 if (is_error_pfn(pfn
)) {
2212 kvm_release_pfn_clean(pfn
);
2215 spin_lock(&vcpu
->kvm
->mmu_lock
);
2216 if (mmu_notifier_retry(vcpu
, mmu_seq
))
2218 kvm_mmu_free_some_pages(vcpu
);
2219 r
= __direct_map(vcpu
, gpa
, error_code
& PFERR_WRITE_MASK
,
2221 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2226 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2227 kvm_release_pfn_clean(pfn
);
2231 static void nonpaging_free(struct kvm_vcpu
*vcpu
)
2233 mmu_free_roots(vcpu
);
2236 static int nonpaging_init_context(struct kvm_vcpu
*vcpu
)
2238 struct kvm_mmu
*context
= &vcpu
->arch
.mmu
;
2240 context
->new_cr3
= nonpaging_new_cr3
;
2241 context
->page_fault
= nonpaging_page_fault
;
2242 context
->gva_to_gpa
= nonpaging_gva_to_gpa
;
2243 context
->free
= nonpaging_free
;
2244 context
->prefetch_page
= nonpaging_prefetch_page
;
2245 context
->sync_page
= nonpaging_sync_page
;
2246 context
->invlpg
= nonpaging_invlpg
;
2247 context
->root_level
= 0;
2248 context
->shadow_root_level
= PT32E_ROOT_LEVEL
;
2249 context
->root_hpa
= INVALID_PAGE
;
2253 void kvm_mmu_flush_tlb(struct kvm_vcpu
*vcpu
)
2255 ++vcpu
->stat
.tlb_flush
;
2256 kvm_x86_ops
->tlb_flush(vcpu
);
2259 static void paging_new_cr3(struct kvm_vcpu
*vcpu
)
2261 pgprintk("%s: cr3 %lx\n", __func__
, vcpu
->arch
.cr3
);
2262 mmu_free_roots(vcpu
);
2265 static void inject_page_fault(struct kvm_vcpu
*vcpu
,
2269 kvm_inject_page_fault(vcpu
, addr
, err_code
);
2272 static void paging_free(struct kvm_vcpu
*vcpu
)
2274 nonpaging_free(vcpu
);
2277 static bool is_rsvd_bits_set(struct kvm_vcpu
*vcpu
, u64 gpte
, int level
)
2281 bit7
= (gpte
>> 7) & 1;
2282 return (gpte
& vcpu
->arch
.mmu
.rsvd_bits_mask
[bit7
][level
-1]) != 0;
2286 #include "paging_tmpl.h"
2290 #include "paging_tmpl.h"
2293 static void reset_rsvds_bits_mask(struct kvm_vcpu
*vcpu
, int level
)
2295 struct kvm_mmu
*context
= &vcpu
->arch
.mmu
;
2296 int maxphyaddr
= cpuid_maxphyaddr(vcpu
);
2297 u64 exb_bit_rsvd
= 0;
2300 exb_bit_rsvd
= rsvd_bits(63, 63);
2302 case PT32_ROOT_LEVEL
:
2303 /* no rsvd bits for 2 level 4K page table entries */
2304 context
->rsvd_bits_mask
[0][1] = 0;
2305 context
->rsvd_bits_mask
[0][0] = 0;
2306 if (is_cpuid_PSE36())
2307 /* 36bits PSE 4MB page */
2308 context
->rsvd_bits_mask
[1][1] = rsvd_bits(17, 21);
2310 /* 32 bits PSE 4MB page */
2311 context
->rsvd_bits_mask
[1][1] = rsvd_bits(13, 21);
2312 context
->rsvd_bits_mask
[1][0] = context
->rsvd_bits_mask
[1][0];
2314 case PT32E_ROOT_LEVEL
:
2315 context
->rsvd_bits_mask
[0][2] =
2316 rsvd_bits(maxphyaddr
, 63) |
2317 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
2318 context
->rsvd_bits_mask
[0][1] = exb_bit_rsvd
|
2319 rsvd_bits(maxphyaddr
, 62); /* PDE */
2320 context
->rsvd_bits_mask
[0][0] = exb_bit_rsvd
|
2321 rsvd_bits(maxphyaddr
, 62); /* PTE */
2322 context
->rsvd_bits_mask
[1][1] = exb_bit_rsvd
|
2323 rsvd_bits(maxphyaddr
, 62) |
2324 rsvd_bits(13, 20); /* large page */
2325 context
->rsvd_bits_mask
[1][0] = context
->rsvd_bits_mask
[1][0];
2327 case PT64_ROOT_LEVEL
:
2328 context
->rsvd_bits_mask
[0][3] = exb_bit_rsvd
|
2329 rsvd_bits(maxphyaddr
, 51) | rsvd_bits(7, 8);
2330 context
->rsvd_bits_mask
[0][2] = exb_bit_rsvd
|
2331 rsvd_bits(maxphyaddr
, 51) | rsvd_bits(7, 8);
2332 context
->rsvd_bits_mask
[0][1] = exb_bit_rsvd
|
2333 rsvd_bits(maxphyaddr
, 51);
2334 context
->rsvd_bits_mask
[0][0] = exb_bit_rsvd
|
2335 rsvd_bits(maxphyaddr
, 51);
2336 context
->rsvd_bits_mask
[1][3] = context
->rsvd_bits_mask
[0][3];
2337 context
->rsvd_bits_mask
[1][2] = exb_bit_rsvd
|
2338 rsvd_bits(maxphyaddr
, 51) |
2340 context
->rsvd_bits_mask
[1][1] = exb_bit_rsvd
|
2341 rsvd_bits(maxphyaddr
, 51) |
2342 rsvd_bits(13, 20); /* large page */
2343 context
->rsvd_bits_mask
[1][0] = context
->rsvd_bits_mask
[1][0];
2348 static int paging64_init_context_common(struct kvm_vcpu
*vcpu
, int level
)
2350 struct kvm_mmu
*context
= &vcpu
->arch
.mmu
;
2352 ASSERT(is_pae(vcpu
));
2353 context
->new_cr3
= paging_new_cr3
;
2354 context
->page_fault
= paging64_page_fault
;
2355 context
->gva_to_gpa
= paging64_gva_to_gpa
;
2356 context
->prefetch_page
= paging64_prefetch_page
;
2357 context
->sync_page
= paging64_sync_page
;
2358 context
->invlpg
= paging64_invlpg
;
2359 context
->free
= paging_free
;
2360 context
->root_level
= level
;
2361 context
->shadow_root_level
= level
;
2362 context
->root_hpa
= INVALID_PAGE
;
2366 static int paging64_init_context(struct kvm_vcpu
*vcpu
)
2368 reset_rsvds_bits_mask(vcpu
, PT64_ROOT_LEVEL
);
2369 return paging64_init_context_common(vcpu
, PT64_ROOT_LEVEL
);
2372 static int paging32_init_context(struct kvm_vcpu
*vcpu
)
2374 struct kvm_mmu
*context
= &vcpu
->arch
.mmu
;
2376 reset_rsvds_bits_mask(vcpu
, PT32_ROOT_LEVEL
);
2377 context
->new_cr3
= paging_new_cr3
;
2378 context
->page_fault
= paging32_page_fault
;
2379 context
->gva_to_gpa
= paging32_gva_to_gpa
;
2380 context
->free
= paging_free
;
2381 context
->prefetch_page
= paging32_prefetch_page
;
2382 context
->sync_page
= paging32_sync_page
;
2383 context
->invlpg
= paging32_invlpg
;
2384 context
->root_level
= PT32_ROOT_LEVEL
;
2385 context
->shadow_root_level
= PT32E_ROOT_LEVEL
;
2386 context
->root_hpa
= INVALID_PAGE
;
2390 static int paging32E_init_context(struct kvm_vcpu
*vcpu
)
2392 reset_rsvds_bits_mask(vcpu
, PT32E_ROOT_LEVEL
);
2393 return paging64_init_context_common(vcpu
, PT32E_ROOT_LEVEL
);
2396 static int init_kvm_tdp_mmu(struct kvm_vcpu
*vcpu
)
2398 struct kvm_mmu
*context
= &vcpu
->arch
.mmu
;
2400 context
->new_cr3
= nonpaging_new_cr3
;
2401 context
->page_fault
= tdp_page_fault
;
2402 context
->free
= nonpaging_free
;
2403 context
->prefetch_page
= nonpaging_prefetch_page
;
2404 context
->sync_page
= nonpaging_sync_page
;
2405 context
->invlpg
= nonpaging_invlpg
;
2406 context
->shadow_root_level
= kvm_x86_ops
->get_tdp_level();
2407 context
->root_hpa
= INVALID_PAGE
;
2409 if (!is_paging(vcpu
)) {
2410 context
->gva_to_gpa
= nonpaging_gva_to_gpa
;
2411 context
->root_level
= 0;
2412 } else if (is_long_mode(vcpu
)) {
2413 reset_rsvds_bits_mask(vcpu
, PT64_ROOT_LEVEL
);
2414 context
->gva_to_gpa
= paging64_gva_to_gpa
;
2415 context
->root_level
= PT64_ROOT_LEVEL
;
2416 } else if (is_pae(vcpu
)) {
2417 reset_rsvds_bits_mask(vcpu
, PT32E_ROOT_LEVEL
);
2418 context
->gva_to_gpa
= paging64_gva_to_gpa
;
2419 context
->root_level
= PT32E_ROOT_LEVEL
;
2421 reset_rsvds_bits_mask(vcpu
, PT32_ROOT_LEVEL
);
2422 context
->gva_to_gpa
= paging32_gva_to_gpa
;
2423 context
->root_level
= PT32_ROOT_LEVEL
;
2429 static int init_kvm_softmmu(struct kvm_vcpu
*vcpu
)
2434 ASSERT(!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
2436 if (!is_paging(vcpu
))
2437 r
= nonpaging_init_context(vcpu
);
2438 else if (is_long_mode(vcpu
))
2439 r
= paging64_init_context(vcpu
);
2440 else if (is_pae(vcpu
))
2441 r
= paging32E_init_context(vcpu
);
2443 r
= paging32_init_context(vcpu
);
2445 vcpu
->arch
.mmu
.base_role
.glevels
= vcpu
->arch
.mmu
.root_level
;
2450 static int init_kvm_mmu(struct kvm_vcpu
*vcpu
)
2452 vcpu
->arch
.update_pte
.pfn
= bad_pfn
;
2455 return init_kvm_tdp_mmu(vcpu
);
2457 return init_kvm_softmmu(vcpu
);
2460 static void destroy_kvm_mmu(struct kvm_vcpu
*vcpu
)
2463 if (VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
)) {
2464 vcpu
->arch
.mmu
.free(vcpu
);
2465 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
2469 int kvm_mmu_reset_context(struct kvm_vcpu
*vcpu
)
2471 destroy_kvm_mmu(vcpu
);
2472 return init_kvm_mmu(vcpu
);
2474 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context
);
2476 int kvm_mmu_load(struct kvm_vcpu
*vcpu
)
2480 r
= mmu_topup_memory_caches(vcpu
);
2483 spin_lock(&vcpu
->kvm
->mmu_lock
);
2484 kvm_mmu_free_some_pages(vcpu
);
2485 r
= mmu_alloc_roots(vcpu
);
2486 mmu_sync_roots(vcpu
);
2487 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2490 /* set_cr3() should ensure TLB has been flushed */
2491 kvm_x86_ops
->set_cr3(vcpu
, vcpu
->arch
.mmu
.root_hpa
);
2495 EXPORT_SYMBOL_GPL(kvm_mmu_load
);
2497 void kvm_mmu_unload(struct kvm_vcpu
*vcpu
)
2499 mmu_free_roots(vcpu
);
2502 static void mmu_pte_write_zap_pte(struct kvm_vcpu
*vcpu
,
2503 struct kvm_mmu_page
*sp
,
2507 struct kvm_mmu_page
*child
;
2510 if (is_shadow_present_pte(pte
)) {
2511 if (is_last_spte(pte
, sp
->role
.level
))
2512 rmap_remove(vcpu
->kvm
, spte
);
2514 child
= page_header(pte
& PT64_BASE_ADDR_MASK
);
2515 mmu_page_remove_parent_pte(child
, spte
);
2518 __set_spte(spte
, shadow_trap_nonpresent_pte
);
2519 if (is_large_pte(pte
))
2520 --vcpu
->kvm
->stat
.lpages
;
2523 static void mmu_pte_write_new_pte(struct kvm_vcpu
*vcpu
,
2524 struct kvm_mmu_page
*sp
,
2528 if (sp
->role
.level
!= PT_PAGE_TABLE_LEVEL
) {
2529 ++vcpu
->kvm
->stat
.mmu_pde_zapped
;
2533 ++vcpu
->kvm
->stat
.mmu_pte_updated
;
2534 if (sp
->role
.glevels
== PT32_ROOT_LEVEL
)
2535 paging32_update_pte(vcpu
, sp
, spte
, new);
2537 paging64_update_pte(vcpu
, sp
, spte
, new);
2540 static bool need_remote_flush(u64 old
, u64
new)
2542 if (!is_shadow_present_pte(old
))
2544 if (!is_shadow_present_pte(new))
2546 if ((old
^ new) & PT64_BASE_ADDR_MASK
)
2548 old
^= PT64_NX_MASK
;
2549 new ^= PT64_NX_MASK
;
2550 return (old
& ~new & PT64_PERM_MASK
) != 0;
2553 static void mmu_pte_write_flush_tlb(struct kvm_vcpu
*vcpu
, u64 old
, u64
new)
2555 if (need_remote_flush(old
, new))
2556 kvm_flush_remote_tlbs(vcpu
->kvm
);
2558 kvm_mmu_flush_tlb(vcpu
);
2561 static bool last_updated_pte_accessed(struct kvm_vcpu
*vcpu
)
2563 u64
*spte
= vcpu
->arch
.last_pte_updated
;
2565 return !!(spte
&& (*spte
& shadow_accessed_mask
));
2568 static void mmu_guess_page_from_pte_write(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
2569 const u8
*new, int bytes
)
2576 if (bytes
!= 4 && bytes
!= 8)
2580 * Assume that the pte write on a page table of the same type
2581 * as the current vcpu paging mode. This is nearly always true
2582 * (might be false while changing modes). Note it is verified later
2586 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
2587 if ((bytes
== 4) && (gpa
% 4 == 0)) {
2588 r
= kvm_read_guest(vcpu
->kvm
, gpa
& ~(u64
)7, &gpte
, 8);
2591 memcpy((void *)&gpte
+ (gpa
% 8), new, 4);
2592 } else if ((bytes
== 8) && (gpa
% 8 == 0)) {
2593 memcpy((void *)&gpte
, new, 8);
2596 if ((bytes
== 4) && (gpa
% 4 == 0))
2597 memcpy((void *)&gpte
, new, 4);
2599 if (!is_present_gpte(gpte
))
2601 gfn
= (gpte
& PT64_BASE_ADDR_MASK
) >> PAGE_SHIFT
;
2603 vcpu
->arch
.update_pte
.mmu_seq
= vcpu
->kvm
->mmu_notifier_seq
;
2605 pfn
= gfn_to_pfn(vcpu
->kvm
, gfn
);
2607 if (is_error_pfn(pfn
)) {
2608 kvm_release_pfn_clean(pfn
);
2611 vcpu
->arch
.update_pte
.gfn
= gfn
;
2612 vcpu
->arch
.update_pte
.pfn
= pfn
;
2615 static void kvm_mmu_access_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
2617 u64
*spte
= vcpu
->arch
.last_pte_updated
;
2620 && vcpu
->arch
.last_pte_gfn
== gfn
2621 && shadow_accessed_mask
2622 && !(*spte
& shadow_accessed_mask
)
2623 && is_shadow_present_pte(*spte
))
2624 set_bit(PT_ACCESSED_SHIFT
, (unsigned long *)spte
);
2627 void kvm_mmu_pte_write(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
2628 const u8
*new, int bytes
,
2629 bool guest_initiated
)
2631 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
2632 struct kvm_mmu_page
*sp
;
2633 struct hlist_node
*node
, *n
;
2634 struct hlist_head
*bucket
;
2638 unsigned offset
= offset_in_page(gpa
);
2640 unsigned page_offset
;
2641 unsigned misaligned
;
2648 pgprintk("%s: gpa %llx bytes %d\n", __func__
, gpa
, bytes
);
2649 mmu_guess_page_from_pte_write(vcpu
, gpa
, new, bytes
);
2650 spin_lock(&vcpu
->kvm
->mmu_lock
);
2651 kvm_mmu_access_page(vcpu
, gfn
);
2652 kvm_mmu_free_some_pages(vcpu
);
2653 ++vcpu
->kvm
->stat
.mmu_pte_write
;
2654 kvm_mmu_audit(vcpu
, "pre pte write");
2655 if (guest_initiated
) {
2656 if (gfn
== vcpu
->arch
.last_pt_write_gfn
2657 && !last_updated_pte_accessed(vcpu
)) {
2658 ++vcpu
->arch
.last_pt_write_count
;
2659 if (vcpu
->arch
.last_pt_write_count
>= 3)
2662 vcpu
->arch
.last_pt_write_gfn
= gfn
;
2663 vcpu
->arch
.last_pt_write_count
= 1;
2664 vcpu
->arch
.last_pte_updated
= NULL
;
2667 index
= kvm_page_table_hashfn(gfn
);
2668 bucket
= &vcpu
->kvm
->arch
.mmu_page_hash
[index
];
2669 hlist_for_each_entry_safe(sp
, node
, n
, bucket
, hash_link
) {
2670 if (sp
->gfn
!= gfn
|| sp
->role
.direct
|| sp
->role
.invalid
)
2672 pte_size
= sp
->role
.glevels
== PT32_ROOT_LEVEL
? 4 : 8;
2673 misaligned
= (offset
^ (offset
+ bytes
- 1)) & ~(pte_size
- 1);
2674 misaligned
|= bytes
< 4;
2675 if (misaligned
|| flooded
) {
2677 * Misaligned accesses are too much trouble to fix
2678 * up; also, they usually indicate a page is not used
2681 * If we're seeing too many writes to a page,
2682 * it may no longer be a page table, or we may be
2683 * forking, in which case it is better to unmap the
2686 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
2687 gpa
, bytes
, sp
->role
.word
);
2688 if (kvm_mmu_zap_page(vcpu
->kvm
, sp
))
2690 ++vcpu
->kvm
->stat
.mmu_flooded
;
2693 page_offset
= offset
;
2694 level
= sp
->role
.level
;
2696 if (sp
->role
.glevels
== PT32_ROOT_LEVEL
) {
2697 page_offset
<<= 1; /* 32->64 */
2699 * A 32-bit pde maps 4MB while the shadow pdes map
2700 * only 2MB. So we need to double the offset again
2701 * and zap two pdes instead of one.
2703 if (level
== PT32_ROOT_LEVEL
) {
2704 page_offset
&= ~7; /* kill rounding error */
2708 quadrant
= page_offset
>> PAGE_SHIFT
;
2709 page_offset
&= ~PAGE_MASK
;
2710 if (quadrant
!= sp
->role
.quadrant
)
2713 spte
= &sp
->spt
[page_offset
/ sizeof(*spte
)];
2714 if ((gpa
& (pte_size
- 1)) || (bytes
< pte_size
)) {
2716 r
= kvm_read_guest_atomic(vcpu
->kvm
,
2717 gpa
& ~(u64
)(pte_size
- 1),
2719 new = (const void *)&gentry
;
2725 mmu_pte_write_zap_pte(vcpu
, sp
, spte
);
2727 mmu_pte_write_new_pte(vcpu
, sp
, spte
, new);
2728 mmu_pte_write_flush_tlb(vcpu
, entry
, *spte
);
2732 kvm_mmu_audit(vcpu
, "post pte write");
2733 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2734 if (!is_error_pfn(vcpu
->arch
.update_pte
.pfn
)) {
2735 kvm_release_pfn_clean(vcpu
->arch
.update_pte
.pfn
);
2736 vcpu
->arch
.update_pte
.pfn
= bad_pfn
;
2740 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu
*vcpu
, gva_t gva
)
2748 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, gva
);
2750 spin_lock(&vcpu
->kvm
->mmu_lock
);
2751 r
= kvm_mmu_unprotect_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
2752 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2755 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt
);
2757 void __kvm_mmu_free_some_pages(struct kvm_vcpu
*vcpu
)
2759 while (vcpu
->kvm
->arch
.n_free_mmu_pages
< KVM_REFILL_PAGES
&&
2760 !list_empty(&vcpu
->kvm
->arch
.active_mmu_pages
)) {
2761 struct kvm_mmu_page
*sp
;
2763 sp
= container_of(vcpu
->kvm
->arch
.active_mmu_pages
.prev
,
2764 struct kvm_mmu_page
, link
);
2765 kvm_mmu_zap_page(vcpu
->kvm
, sp
);
2766 ++vcpu
->kvm
->stat
.mmu_recycled
;
2770 int kvm_mmu_page_fault(struct kvm_vcpu
*vcpu
, gva_t cr2
, u32 error_code
)
2773 enum emulation_result er
;
2775 r
= vcpu
->arch
.mmu
.page_fault(vcpu
, cr2
, error_code
);
2784 r
= mmu_topup_memory_caches(vcpu
);
2788 er
= emulate_instruction(vcpu
, cr2
, error_code
, 0);
2793 case EMULATE_DO_MMIO
:
2794 ++vcpu
->stat
.mmio_exits
;
2797 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
2798 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
2806 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault
);
2808 void kvm_mmu_invlpg(struct kvm_vcpu
*vcpu
, gva_t gva
)
2810 vcpu
->arch
.mmu
.invlpg(vcpu
, gva
);
2811 kvm_mmu_flush_tlb(vcpu
);
2812 ++vcpu
->stat
.invlpg
;
2814 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg
);
2816 void kvm_enable_tdp(void)
2820 EXPORT_SYMBOL_GPL(kvm_enable_tdp
);
2822 void kvm_disable_tdp(void)
2824 tdp_enabled
= false;
2826 EXPORT_SYMBOL_GPL(kvm_disable_tdp
);
2828 static void free_mmu_pages(struct kvm_vcpu
*vcpu
)
2830 free_page((unsigned long)vcpu
->arch
.mmu
.pae_root
);
2833 static int alloc_mmu_pages(struct kvm_vcpu
*vcpu
)
2841 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
2842 * Therefore we need to allocate shadow page tables in the first
2843 * 4GB of memory, which happens to fit the DMA32 zone.
2845 page
= alloc_page(GFP_KERNEL
| __GFP_DMA32
);
2848 vcpu
->arch
.mmu
.pae_root
= page_address(page
);
2849 for (i
= 0; i
< 4; ++i
)
2850 vcpu
->arch
.mmu
.pae_root
[i
] = INVALID_PAGE
;
2855 free_mmu_pages(vcpu
);
2859 int kvm_mmu_create(struct kvm_vcpu
*vcpu
)
2862 ASSERT(!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
2864 return alloc_mmu_pages(vcpu
);
2867 int kvm_mmu_setup(struct kvm_vcpu
*vcpu
)
2870 ASSERT(!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
2872 return init_kvm_mmu(vcpu
);
2875 void kvm_mmu_destroy(struct kvm_vcpu
*vcpu
)
2879 destroy_kvm_mmu(vcpu
);
2880 free_mmu_pages(vcpu
);
2881 mmu_free_memory_caches(vcpu
);
2884 void kvm_mmu_slot_remove_write_access(struct kvm
*kvm
, int slot
)
2886 struct kvm_mmu_page
*sp
;
2888 list_for_each_entry(sp
, &kvm
->arch
.active_mmu_pages
, link
) {
2892 if (!test_bit(slot
, sp
->slot_bitmap
))
2896 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
)
2898 if (pt
[i
] & PT_WRITABLE_MASK
)
2899 pt
[i
] &= ~PT_WRITABLE_MASK
;
2901 kvm_flush_remote_tlbs(kvm
);
2904 void kvm_mmu_zap_all(struct kvm
*kvm
)
2906 struct kvm_mmu_page
*sp
, *node
;
2908 spin_lock(&kvm
->mmu_lock
);
2909 list_for_each_entry_safe(sp
, node
, &kvm
->arch
.active_mmu_pages
, link
)
2910 if (kvm_mmu_zap_page(kvm
, sp
))
2911 node
= container_of(kvm
->arch
.active_mmu_pages
.next
,
2912 struct kvm_mmu_page
, link
);
2913 spin_unlock(&kvm
->mmu_lock
);
2915 kvm_flush_remote_tlbs(kvm
);
2918 static void kvm_mmu_remove_one_alloc_mmu_page(struct kvm
*kvm
)
2920 struct kvm_mmu_page
*page
;
2922 page
= container_of(kvm
->arch
.active_mmu_pages
.prev
,
2923 struct kvm_mmu_page
, link
);
2924 kvm_mmu_zap_page(kvm
, page
);
2927 static int mmu_shrink(int nr_to_scan
, gfp_t gfp_mask
)
2930 struct kvm
*kvm_freed
= NULL
;
2931 int cache_count
= 0;
2933 spin_lock(&kvm_lock
);
2935 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
2938 if (!down_read_trylock(&kvm
->slots_lock
))
2940 spin_lock(&kvm
->mmu_lock
);
2941 npages
= kvm
->arch
.n_alloc_mmu_pages
-
2942 kvm
->arch
.n_free_mmu_pages
;
2943 cache_count
+= npages
;
2944 if (!kvm_freed
&& nr_to_scan
> 0 && npages
> 0) {
2945 kvm_mmu_remove_one_alloc_mmu_page(kvm
);
2951 spin_unlock(&kvm
->mmu_lock
);
2952 up_read(&kvm
->slots_lock
);
2955 list_move_tail(&kvm_freed
->vm_list
, &vm_list
);
2957 spin_unlock(&kvm_lock
);
2962 static struct shrinker mmu_shrinker
= {
2963 .shrink
= mmu_shrink
,
2964 .seeks
= DEFAULT_SEEKS
* 10,
2967 static void mmu_destroy_caches(void)
2969 if (pte_chain_cache
)
2970 kmem_cache_destroy(pte_chain_cache
);
2971 if (rmap_desc_cache
)
2972 kmem_cache_destroy(rmap_desc_cache
);
2973 if (mmu_page_header_cache
)
2974 kmem_cache_destroy(mmu_page_header_cache
);
2977 void kvm_mmu_module_exit(void)
2979 mmu_destroy_caches();
2980 unregister_shrinker(&mmu_shrinker
);
2983 int kvm_mmu_module_init(void)
2985 pte_chain_cache
= kmem_cache_create("kvm_pte_chain",
2986 sizeof(struct kvm_pte_chain
),
2988 if (!pte_chain_cache
)
2990 rmap_desc_cache
= kmem_cache_create("kvm_rmap_desc",
2991 sizeof(struct kvm_rmap_desc
),
2993 if (!rmap_desc_cache
)
2996 mmu_page_header_cache
= kmem_cache_create("kvm_mmu_page_header",
2997 sizeof(struct kvm_mmu_page
),
2999 if (!mmu_page_header_cache
)
3002 register_shrinker(&mmu_shrinker
);
3007 mmu_destroy_caches();
3012 * Caculate mmu pages needed for kvm.
3014 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm
*kvm
)
3017 unsigned int nr_mmu_pages
;
3018 unsigned int nr_pages
= 0;
3020 for (i
= 0; i
< kvm
->nmemslots
; i
++)
3021 nr_pages
+= kvm
->memslots
[i
].npages
;
3023 nr_mmu_pages
= nr_pages
* KVM_PERMILLE_MMU_PAGES
/ 1000;
3024 nr_mmu_pages
= max(nr_mmu_pages
,
3025 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES
);
3027 return nr_mmu_pages
;
3030 static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer
*buffer
,
3033 if (len
> buffer
->len
)
3038 static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer
*buffer
,
3043 ret
= pv_mmu_peek_buffer(buffer
, len
);
3048 buffer
->processed
+= len
;
3052 static int kvm_pv_mmu_write(struct kvm_vcpu
*vcpu
,
3053 gpa_t addr
, gpa_t value
)
3058 if (!is_long_mode(vcpu
) && !is_pae(vcpu
))
3061 r
= mmu_topup_memory_caches(vcpu
);
3065 if (!emulator_write_phys(vcpu
, addr
, &value
, bytes
))
3071 static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu
*vcpu
)
3073 kvm_set_cr3(vcpu
, vcpu
->arch
.cr3
);
3077 static int kvm_pv_mmu_release_pt(struct kvm_vcpu
*vcpu
, gpa_t addr
)
3079 spin_lock(&vcpu
->kvm
->mmu_lock
);
3080 mmu_unshadow(vcpu
->kvm
, addr
>> PAGE_SHIFT
);
3081 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3085 static int kvm_pv_mmu_op_one(struct kvm_vcpu
*vcpu
,
3086 struct kvm_pv_mmu_op_buffer
*buffer
)
3088 struct kvm_mmu_op_header
*header
;
3090 header
= pv_mmu_peek_buffer(buffer
, sizeof *header
);
3093 switch (header
->op
) {
3094 case KVM_MMU_OP_WRITE_PTE
: {
3095 struct kvm_mmu_op_write_pte
*wpte
;
3097 wpte
= pv_mmu_read_buffer(buffer
, sizeof *wpte
);
3100 return kvm_pv_mmu_write(vcpu
, wpte
->pte_phys
,
3103 case KVM_MMU_OP_FLUSH_TLB
: {
3104 struct kvm_mmu_op_flush_tlb
*ftlb
;
3106 ftlb
= pv_mmu_read_buffer(buffer
, sizeof *ftlb
);
3109 return kvm_pv_mmu_flush_tlb(vcpu
);
3111 case KVM_MMU_OP_RELEASE_PT
: {
3112 struct kvm_mmu_op_release_pt
*rpt
;
3114 rpt
= pv_mmu_read_buffer(buffer
, sizeof *rpt
);
3117 return kvm_pv_mmu_release_pt(vcpu
, rpt
->pt_phys
);
3123 int kvm_pv_mmu_op(struct kvm_vcpu
*vcpu
, unsigned long bytes
,
3124 gpa_t addr
, unsigned long *ret
)
3127 struct kvm_pv_mmu_op_buffer
*buffer
= &vcpu
->arch
.mmu_op_buffer
;
3129 buffer
->ptr
= buffer
->buf
;
3130 buffer
->len
= min_t(unsigned long, bytes
, sizeof buffer
->buf
);
3131 buffer
->processed
= 0;
3133 r
= kvm_read_guest(vcpu
->kvm
, addr
, buffer
->buf
, buffer
->len
);
3137 while (buffer
->len
) {
3138 r
= kvm_pv_mmu_op_one(vcpu
, buffer
);
3147 *ret
= buffer
->processed
;
3151 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu
*vcpu
, u64 addr
, u64 sptes
[4])
3153 struct kvm_shadow_walk_iterator iterator
;
3156 spin_lock(&vcpu
->kvm
->mmu_lock
);
3157 for_each_shadow_entry(vcpu
, addr
, iterator
) {
3158 sptes
[iterator
.level
-1] = *iterator
.sptep
;
3160 if (!is_shadow_present_pte(*iterator
.sptep
))
3163 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3167 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy
);
3171 static const char *audit_msg
;
3173 static gva_t
canonicalize(gva_t gva
)
3175 #ifdef CONFIG_X86_64
3176 gva
= (long long)(gva
<< 16) >> 16;
3182 typedef void (*inspect_spte_fn
) (struct kvm
*kvm
, struct kvm_mmu_page
*sp
,
3185 static void __mmu_spte_walk(struct kvm
*kvm
, struct kvm_mmu_page
*sp
,
3190 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
) {
3191 u64 ent
= sp
->spt
[i
];
3193 if (is_shadow_present_pte(ent
)) {
3194 if (!is_last_spte(ent
, sp
->role
.level
)) {
3195 struct kvm_mmu_page
*child
;
3196 child
= page_header(ent
& PT64_BASE_ADDR_MASK
);
3197 __mmu_spte_walk(kvm
, child
, fn
);
3199 fn(kvm
, sp
, &sp
->spt
[i
]);
3204 static void mmu_spte_walk(struct kvm_vcpu
*vcpu
, inspect_spte_fn fn
)
3207 struct kvm_mmu_page
*sp
;
3209 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
3211 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
) {
3212 hpa_t root
= vcpu
->arch
.mmu
.root_hpa
;
3213 sp
= page_header(root
);
3214 __mmu_spte_walk(vcpu
->kvm
, sp
, fn
);
3217 for (i
= 0; i
< 4; ++i
) {
3218 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
3220 if (root
&& VALID_PAGE(root
)) {
3221 root
&= PT64_BASE_ADDR_MASK
;
3222 sp
= page_header(root
);
3223 __mmu_spte_walk(vcpu
->kvm
, sp
, fn
);
3229 static void audit_mappings_page(struct kvm_vcpu
*vcpu
, u64 page_pte
,
3230 gva_t va
, int level
)
3232 u64
*pt
= __va(page_pte
& PT64_BASE_ADDR_MASK
);
3234 gva_t va_delta
= 1ul << (PAGE_SHIFT
+ 9 * (level
- 1));
3236 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
, va
+= va_delta
) {
3239 if (ent
== shadow_trap_nonpresent_pte
)
3242 va
= canonicalize(va
);
3243 if (is_shadow_present_pte(ent
) && !is_last_spte(ent
, level
))
3244 audit_mappings_page(vcpu
, ent
, va
, level
- 1);
3246 gpa_t gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, va
);
3247 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
3248 pfn_t pfn
= gfn_to_pfn(vcpu
->kvm
, gfn
);
3249 hpa_t hpa
= (hpa_t
)pfn
<< PAGE_SHIFT
;
3251 if (is_error_pfn(pfn
)) {
3252 kvm_release_pfn_clean(pfn
);
3256 if (is_shadow_present_pte(ent
)
3257 && (ent
& PT64_BASE_ADDR_MASK
) != hpa
)
3258 printk(KERN_ERR
"xx audit error: (%s) levels %d"
3259 " gva %lx gpa %llx hpa %llx ent %llx %d\n",
3260 audit_msg
, vcpu
->arch
.mmu
.root_level
,
3262 is_shadow_present_pte(ent
));
3263 else if (ent
== shadow_notrap_nonpresent_pte
3264 && !is_error_hpa(hpa
))
3265 printk(KERN_ERR
"audit: (%s) notrap shadow,"
3266 " valid guest gva %lx\n", audit_msg
, va
);
3267 kvm_release_pfn_clean(pfn
);
3273 static void audit_mappings(struct kvm_vcpu
*vcpu
)
3277 if (vcpu
->arch
.mmu
.root_level
== 4)
3278 audit_mappings_page(vcpu
, vcpu
->arch
.mmu
.root_hpa
, 0, 4);
3280 for (i
= 0; i
< 4; ++i
)
3281 if (vcpu
->arch
.mmu
.pae_root
[i
] & PT_PRESENT_MASK
)
3282 audit_mappings_page(vcpu
,
3283 vcpu
->arch
.mmu
.pae_root
[i
],
3288 static int count_rmaps(struct kvm_vcpu
*vcpu
)
3293 for (i
= 0; i
< KVM_MEMORY_SLOTS
; ++i
) {
3294 struct kvm_memory_slot
*m
= &vcpu
->kvm
->memslots
[i
];
3295 struct kvm_rmap_desc
*d
;
3297 for (j
= 0; j
< m
->npages
; ++j
) {
3298 unsigned long *rmapp
= &m
->rmap
[j
];
3302 if (!(*rmapp
& 1)) {
3306 d
= (struct kvm_rmap_desc
*)(*rmapp
& ~1ul);
3308 for (k
= 0; k
< RMAP_EXT
; ++k
)
3320 void inspect_spte_has_rmap(struct kvm
*kvm
, struct kvm_mmu_page
*sp
, u64
*sptep
)
3322 unsigned long *rmapp
;
3323 struct kvm_mmu_page
*rev_sp
;
3326 if (*sptep
& PT_WRITABLE_MASK
) {
3327 rev_sp
= page_header(__pa(sptep
));
3328 gfn
= rev_sp
->gfns
[sptep
- rev_sp
->spt
];
3330 if (!gfn_to_memslot(kvm
, gfn
)) {
3331 if (!printk_ratelimit())
3333 printk(KERN_ERR
"%s: no memslot for gfn %ld\n",
3335 printk(KERN_ERR
"%s: index %ld of sp (gfn=%lx)\n",
3336 audit_msg
, sptep
- rev_sp
->spt
,
3342 rmapp
= gfn_to_rmap(kvm
, rev_sp
->gfns
[sptep
- rev_sp
->spt
],
3343 is_large_pte(*sptep
));
3345 if (!printk_ratelimit())
3347 printk(KERN_ERR
"%s: no rmap for writable spte %llx\n",
3355 void audit_writable_sptes_have_rmaps(struct kvm_vcpu
*vcpu
)
3357 mmu_spte_walk(vcpu
, inspect_spte_has_rmap
);
3360 static void check_writable_mappings_rmap(struct kvm_vcpu
*vcpu
)
3362 struct kvm_mmu_page
*sp
;
3365 list_for_each_entry(sp
, &vcpu
->kvm
->arch
.active_mmu_pages
, link
) {
3368 if (sp
->role
.level
!= PT_PAGE_TABLE_LEVEL
)
3371 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
) {
3374 if (!(ent
& PT_PRESENT_MASK
))
3376 if (!(ent
& PT_WRITABLE_MASK
))
3378 inspect_spte_has_rmap(vcpu
->kvm
, sp
, &pt
[i
]);
3384 static void audit_rmap(struct kvm_vcpu
*vcpu
)
3386 check_writable_mappings_rmap(vcpu
);
3390 static void audit_write_protection(struct kvm_vcpu
*vcpu
)
3392 struct kvm_mmu_page
*sp
;
3393 struct kvm_memory_slot
*slot
;
3394 unsigned long *rmapp
;
3398 list_for_each_entry(sp
, &vcpu
->kvm
->arch
.active_mmu_pages
, link
) {
3399 if (sp
->role
.direct
)
3404 gfn
= unalias_gfn(vcpu
->kvm
, sp
->gfn
);
3405 slot
= gfn_to_memslot_unaliased(vcpu
->kvm
, sp
->gfn
);
3406 rmapp
= &slot
->rmap
[gfn
- slot
->base_gfn
];
3408 spte
= rmap_next(vcpu
->kvm
, rmapp
, NULL
);
3410 if (*spte
& PT_WRITABLE_MASK
)
3411 printk(KERN_ERR
"%s: (%s) shadow page has "
3412 "writable mappings: gfn %lx role %x\n",
3413 __func__
, audit_msg
, sp
->gfn
,
3415 spte
= rmap_next(vcpu
->kvm
, rmapp
, spte
);
3420 static void kvm_mmu_audit(struct kvm_vcpu
*vcpu
, const char *msg
)
3427 audit_write_protection(vcpu
);
3428 if (strcmp("pre pte write", audit_msg
) != 0)
3429 audit_mappings(vcpu
);
3430 audit_writable_sptes_have_rmaps(vcpu
);