2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
21 #include <linux/kvm_host.h>
22 #include <linux/module.h>
23 #include <linux/kernel.h>
25 #include <linux/highmem.h>
26 #include <linux/sched.h>
27 #include <linux/moduleparam.h>
28 #include <linux/ftrace_event.h>
29 #include "kvm_cache_regs.h"
35 #include <asm/virtext.h>
40 #define __ex(x) __kvm_handle_fault_on_reboot(x)
42 MODULE_AUTHOR("Qumranet");
43 MODULE_LICENSE("GPL");
45 static int __read_mostly bypass_guest_pf
= 1;
46 module_param(bypass_guest_pf
, bool, S_IRUGO
);
48 static int __read_mostly enable_vpid
= 1;
49 module_param_named(vpid
, enable_vpid
, bool, 0444);
51 static int __read_mostly flexpriority_enabled
= 1;
52 module_param_named(flexpriority
, flexpriority_enabled
, bool, S_IRUGO
);
54 static int __read_mostly enable_ept
= 1;
55 module_param_named(ept
, enable_ept
, bool, S_IRUGO
);
57 static int __read_mostly enable_unrestricted_guest
= 1;
58 module_param_named(unrestricted_guest
,
59 enable_unrestricted_guest
, bool, S_IRUGO
);
61 static int __read_mostly emulate_invalid_guest_state
= 0;
62 module_param(emulate_invalid_guest_state
, bool, S_IRUGO
);
72 struct list_head local_vcpus_link
;
73 unsigned long host_rsp
;
76 u32 idt_vectoring_info
;
77 struct kvm_msr_entry
*guest_msrs
;
78 struct kvm_msr_entry
*host_msrs
;
83 int msr_offset_kernel_gs_base
;
88 u16 fs_sel
, gs_sel
, ldt_sel
;
89 int gs_ldt_reload_needed
;
91 int guest_efer_loaded
;
96 struct kvm_save_segment
{
101 } tr
, es
, ds
, fs
, gs
;
109 bool emulation_required
;
111 /* Support for vnmi-less CPUs */
112 int soft_vnmi_blocked
;
114 s64 vnmi_blocked_time
;
118 static inline struct vcpu_vmx
*to_vmx(struct kvm_vcpu
*vcpu
)
120 return container_of(vcpu
, struct vcpu_vmx
, vcpu
);
123 static int init_rmode(struct kvm
*kvm
);
124 static u64
construct_eptp(unsigned long root_hpa
);
126 static DEFINE_PER_CPU(struct vmcs
*, vmxarea
);
127 static DEFINE_PER_CPU(struct vmcs
*, current_vmcs
);
128 static DEFINE_PER_CPU(struct list_head
, vcpus_on_cpu
);
130 static unsigned long *vmx_io_bitmap_a
;
131 static unsigned long *vmx_io_bitmap_b
;
132 static unsigned long *vmx_msr_bitmap_legacy
;
133 static unsigned long *vmx_msr_bitmap_longmode
;
135 static DECLARE_BITMAP(vmx_vpid_bitmap
, VMX_NR_VPIDS
);
136 static DEFINE_SPINLOCK(vmx_vpid_lock
);
138 static struct vmcs_config
{
142 u32 pin_based_exec_ctrl
;
143 u32 cpu_based_exec_ctrl
;
144 u32 cpu_based_2nd_exec_ctrl
;
149 static struct vmx_capability
{
154 #define VMX_SEGMENT_FIELD(seg) \
155 [VCPU_SREG_##seg] = { \
156 .selector = GUEST_##seg##_SELECTOR, \
157 .base = GUEST_##seg##_BASE, \
158 .limit = GUEST_##seg##_LIMIT, \
159 .ar_bytes = GUEST_##seg##_AR_BYTES, \
162 static struct kvm_vmx_segment_field
{
167 } kvm_vmx_segment_fields
[] = {
168 VMX_SEGMENT_FIELD(CS
),
169 VMX_SEGMENT_FIELD(DS
),
170 VMX_SEGMENT_FIELD(ES
),
171 VMX_SEGMENT_FIELD(FS
),
172 VMX_SEGMENT_FIELD(GS
),
173 VMX_SEGMENT_FIELD(SS
),
174 VMX_SEGMENT_FIELD(TR
),
175 VMX_SEGMENT_FIELD(LDTR
),
178 static void ept_save_pdptrs(struct kvm_vcpu
*vcpu
);
181 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
182 * away by decrementing the array size.
184 static const u32 vmx_msr_index
[] = {
186 MSR_SYSCALL_MASK
, MSR_LSTAR
, MSR_CSTAR
, MSR_KERNEL_GS_BASE
,
188 MSR_EFER
, MSR_K6_STAR
,
190 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
192 static void load_msrs(struct kvm_msr_entry
*e
, int n
)
196 for (i
= 0; i
< n
; ++i
)
197 wrmsrl(e
[i
].index
, e
[i
].data
);
200 static void save_msrs(struct kvm_msr_entry
*e
, int n
)
204 for (i
= 0; i
< n
; ++i
)
205 rdmsrl(e
[i
].index
, e
[i
].data
);
208 static inline int is_page_fault(u32 intr_info
)
210 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
211 INTR_INFO_VALID_MASK
)) ==
212 (INTR_TYPE_HARD_EXCEPTION
| PF_VECTOR
| INTR_INFO_VALID_MASK
);
215 static inline int is_no_device(u32 intr_info
)
217 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
218 INTR_INFO_VALID_MASK
)) ==
219 (INTR_TYPE_HARD_EXCEPTION
| NM_VECTOR
| INTR_INFO_VALID_MASK
);
222 static inline int is_invalid_opcode(u32 intr_info
)
224 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
225 INTR_INFO_VALID_MASK
)) ==
226 (INTR_TYPE_HARD_EXCEPTION
| UD_VECTOR
| INTR_INFO_VALID_MASK
);
229 static inline int is_external_interrupt(u32 intr_info
)
231 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VALID_MASK
))
232 == (INTR_TYPE_EXT_INTR
| INTR_INFO_VALID_MASK
);
235 static inline int is_machine_check(u32 intr_info
)
237 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
238 INTR_INFO_VALID_MASK
)) ==
239 (INTR_TYPE_HARD_EXCEPTION
| MC_VECTOR
| INTR_INFO_VALID_MASK
);
242 static inline int cpu_has_vmx_msr_bitmap(void)
244 return vmcs_config
.cpu_based_exec_ctrl
& CPU_BASED_USE_MSR_BITMAPS
;
247 static inline int cpu_has_vmx_tpr_shadow(void)
249 return vmcs_config
.cpu_based_exec_ctrl
& CPU_BASED_TPR_SHADOW
;
252 static inline int vm_need_tpr_shadow(struct kvm
*kvm
)
254 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm
));
257 static inline int cpu_has_secondary_exec_ctrls(void)
259 return vmcs_config
.cpu_based_exec_ctrl
&
260 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
;
263 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
265 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
266 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
269 static inline bool cpu_has_vmx_flexpriority(void)
271 return cpu_has_vmx_tpr_shadow() &&
272 cpu_has_vmx_virtualize_apic_accesses();
275 static inline bool cpu_has_vmx_ept_execute_only(void)
277 return !!(vmx_capability
.ept
& VMX_EPT_EXECUTE_ONLY_BIT
);
280 static inline bool cpu_has_vmx_eptp_uncacheable(void)
282 return !!(vmx_capability
.ept
& VMX_EPTP_UC_BIT
);
285 static inline bool cpu_has_vmx_eptp_writeback(void)
287 return !!(vmx_capability
.ept
& VMX_EPTP_WB_BIT
);
290 static inline bool cpu_has_vmx_ept_2m_page(void)
292 return !!(vmx_capability
.ept
& VMX_EPT_2MB_PAGE_BIT
);
295 static inline int cpu_has_vmx_invept_individual_addr(void)
297 return !!(vmx_capability
.ept
& VMX_EPT_EXTENT_INDIVIDUAL_BIT
);
300 static inline int cpu_has_vmx_invept_context(void)
302 return !!(vmx_capability
.ept
& VMX_EPT_EXTENT_CONTEXT_BIT
);
305 static inline int cpu_has_vmx_invept_global(void)
307 return !!(vmx_capability
.ept
& VMX_EPT_EXTENT_GLOBAL_BIT
);
310 static inline int cpu_has_vmx_ept(void)
312 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
313 SECONDARY_EXEC_ENABLE_EPT
;
316 static inline int cpu_has_vmx_unrestricted_guest(void)
318 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
319 SECONDARY_EXEC_UNRESTRICTED_GUEST
;
322 static inline int vm_need_virtualize_apic_accesses(struct kvm
*kvm
)
324 return flexpriority_enabled
&&
325 (cpu_has_vmx_virtualize_apic_accesses()) &&
326 (irqchip_in_kernel(kvm
));
329 static inline int cpu_has_vmx_vpid(void)
331 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
332 SECONDARY_EXEC_ENABLE_VPID
;
335 static inline int cpu_has_virtual_nmis(void)
337 return vmcs_config
.pin_based_exec_ctrl
& PIN_BASED_VIRTUAL_NMIS
;
340 static inline bool report_flexpriority(void)
342 return flexpriority_enabled
;
345 static int __find_msr_index(struct vcpu_vmx
*vmx
, u32 msr
)
349 for (i
= 0; i
< vmx
->nmsrs
; ++i
)
350 if (vmx
->guest_msrs
[i
].index
== msr
)
355 static inline void __invvpid(int ext
, u16 vpid
, gva_t gva
)
361 } operand
= { vpid
, 0, gva
};
363 asm volatile (__ex(ASM_VMX_INVVPID
)
364 /* CF==1 or ZF==1 --> rc = -1 */
366 : : "a"(&operand
), "c"(ext
) : "cc", "memory");
369 static inline void __invept(int ext
, u64 eptp
, gpa_t gpa
)
373 } operand
= {eptp
, gpa
};
375 asm volatile (__ex(ASM_VMX_INVEPT
)
376 /* CF==1 or ZF==1 --> rc = -1 */
377 "; ja 1f ; ud2 ; 1:\n"
378 : : "a" (&operand
), "c" (ext
) : "cc", "memory");
381 static struct kvm_msr_entry
*find_msr_entry(struct vcpu_vmx
*vmx
, u32 msr
)
385 i
= __find_msr_index(vmx
, msr
);
387 return &vmx
->guest_msrs
[i
];
391 static void vmcs_clear(struct vmcs
*vmcs
)
393 u64 phys_addr
= __pa(vmcs
);
396 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX
) "; setna %0"
397 : "=g"(error
) : "a"(&phys_addr
), "m"(phys_addr
)
400 printk(KERN_ERR
"kvm: vmclear fail: %p/%llx\n",
404 static void __vcpu_clear(void *arg
)
406 struct vcpu_vmx
*vmx
= arg
;
407 int cpu
= raw_smp_processor_id();
409 if (vmx
->vcpu
.cpu
== cpu
)
410 vmcs_clear(vmx
->vmcs
);
411 if (per_cpu(current_vmcs
, cpu
) == vmx
->vmcs
)
412 per_cpu(current_vmcs
, cpu
) = NULL
;
413 rdtscll(vmx
->vcpu
.arch
.host_tsc
);
414 list_del(&vmx
->local_vcpus_link
);
419 static void vcpu_clear(struct vcpu_vmx
*vmx
)
421 if (vmx
->vcpu
.cpu
== -1)
423 smp_call_function_single(vmx
->vcpu
.cpu
, __vcpu_clear
, vmx
, 1);
426 static inline void vpid_sync_vcpu_all(struct vcpu_vmx
*vmx
)
431 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT
, vmx
->vpid
, 0);
434 static inline void ept_sync_global(void)
436 if (cpu_has_vmx_invept_global())
437 __invept(VMX_EPT_EXTENT_GLOBAL
, 0, 0);
440 static inline void ept_sync_context(u64 eptp
)
443 if (cpu_has_vmx_invept_context())
444 __invept(VMX_EPT_EXTENT_CONTEXT
, eptp
, 0);
450 static inline void ept_sync_individual_addr(u64 eptp
, gpa_t gpa
)
453 if (cpu_has_vmx_invept_individual_addr())
454 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR
,
457 ept_sync_context(eptp
);
461 static unsigned long vmcs_readl(unsigned long field
)
465 asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX
)
466 : "=a"(value
) : "d"(field
) : "cc");
470 static u16
vmcs_read16(unsigned long field
)
472 return vmcs_readl(field
);
475 static u32
vmcs_read32(unsigned long field
)
477 return vmcs_readl(field
);
480 static u64
vmcs_read64(unsigned long field
)
483 return vmcs_readl(field
);
485 return vmcs_readl(field
) | ((u64
)vmcs_readl(field
+1) << 32);
489 static noinline
void vmwrite_error(unsigned long field
, unsigned long value
)
491 printk(KERN_ERR
"vmwrite error: reg %lx value %lx (err %d)\n",
492 field
, value
, vmcs_read32(VM_INSTRUCTION_ERROR
));
496 static void vmcs_writel(unsigned long field
, unsigned long value
)
500 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX
) "; setna %0"
501 : "=q"(error
) : "a"(value
), "d"(field
) : "cc");
503 vmwrite_error(field
, value
);
506 static void vmcs_write16(unsigned long field
, u16 value
)
508 vmcs_writel(field
, value
);
511 static void vmcs_write32(unsigned long field
, u32 value
)
513 vmcs_writel(field
, value
);
516 static void vmcs_write64(unsigned long field
, u64 value
)
518 vmcs_writel(field
, value
);
519 #ifndef CONFIG_X86_64
521 vmcs_writel(field
+1, value
>> 32);
525 static void vmcs_clear_bits(unsigned long field
, u32 mask
)
527 vmcs_writel(field
, vmcs_readl(field
) & ~mask
);
530 static void vmcs_set_bits(unsigned long field
, u32 mask
)
532 vmcs_writel(field
, vmcs_readl(field
) | mask
);
535 static void update_exception_bitmap(struct kvm_vcpu
*vcpu
)
539 eb
= (1u << PF_VECTOR
) | (1u << UD_VECTOR
) | (1u << MC_VECTOR
);
540 if (!vcpu
->fpu_active
)
541 eb
|= 1u << NM_VECTOR
;
543 * Unconditionally intercept #DB so we can maintain dr6 without
544 * reading it every exit.
546 eb
|= 1u << DB_VECTOR
;
547 if (vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
) {
548 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_SW_BP
)
549 eb
|= 1u << BP_VECTOR
;
551 if (to_vmx(vcpu
)->rmode
.vm86_active
)
554 eb
&= ~(1u << PF_VECTOR
); /* bypass_guest_pf = 0 */
555 vmcs_write32(EXCEPTION_BITMAP
, eb
);
558 static void reload_tss(void)
561 * VT restores TR but not its size. Useless.
563 struct descriptor_table gdt
;
564 struct desc_struct
*descs
;
567 descs
= (void *)gdt
.base
;
568 descs
[GDT_ENTRY_TSS
].type
= 9; /* available TSS */
572 static void load_transition_efer(struct vcpu_vmx
*vmx
)
574 int efer_offset
= vmx
->msr_offset_efer
;
581 host_efer
= vmx
->host_msrs
[efer_offset
].data
;
582 guest_efer
= vmx
->guest_msrs
[efer_offset
].data
;
585 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
588 ignore_bits
= EFER_NX
| EFER_SCE
;
590 ignore_bits
|= EFER_LMA
| EFER_LME
;
591 /* SCE is meaningful only in long mode on Intel */
592 if (guest_efer
& EFER_LMA
)
593 ignore_bits
&= ~(u64
)EFER_SCE
;
595 if ((guest_efer
& ~ignore_bits
) == (host_efer
& ~ignore_bits
))
598 vmx
->host_state
.guest_efer_loaded
= 1;
599 guest_efer
&= ~ignore_bits
;
600 guest_efer
|= host_efer
& ignore_bits
;
601 wrmsrl(MSR_EFER
, guest_efer
);
602 vmx
->vcpu
.stat
.efer_reload
++;
605 static void reload_host_efer(struct vcpu_vmx
*vmx
)
607 if (vmx
->host_state
.guest_efer_loaded
) {
608 vmx
->host_state
.guest_efer_loaded
= 0;
609 load_msrs(vmx
->host_msrs
+ vmx
->msr_offset_efer
, 1);
613 static void vmx_save_host_state(struct kvm_vcpu
*vcpu
)
615 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
617 if (vmx
->host_state
.loaded
)
620 vmx
->host_state
.loaded
= 1;
622 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
623 * allow segment selectors with cpl > 0 or ti == 1.
625 vmx
->host_state
.ldt_sel
= kvm_read_ldt();
626 vmx
->host_state
.gs_ldt_reload_needed
= vmx
->host_state
.ldt_sel
;
627 vmx
->host_state
.fs_sel
= kvm_read_fs();
628 if (!(vmx
->host_state
.fs_sel
& 7)) {
629 vmcs_write16(HOST_FS_SELECTOR
, vmx
->host_state
.fs_sel
);
630 vmx
->host_state
.fs_reload_needed
= 0;
632 vmcs_write16(HOST_FS_SELECTOR
, 0);
633 vmx
->host_state
.fs_reload_needed
= 1;
635 vmx
->host_state
.gs_sel
= kvm_read_gs();
636 if (!(vmx
->host_state
.gs_sel
& 7))
637 vmcs_write16(HOST_GS_SELECTOR
, vmx
->host_state
.gs_sel
);
639 vmcs_write16(HOST_GS_SELECTOR
, 0);
640 vmx
->host_state
.gs_ldt_reload_needed
= 1;
644 vmcs_writel(HOST_FS_BASE
, read_msr(MSR_FS_BASE
));
645 vmcs_writel(HOST_GS_BASE
, read_msr(MSR_GS_BASE
));
647 vmcs_writel(HOST_FS_BASE
, segment_base(vmx
->host_state
.fs_sel
));
648 vmcs_writel(HOST_GS_BASE
, segment_base(vmx
->host_state
.gs_sel
));
652 if (is_long_mode(&vmx
->vcpu
))
653 save_msrs(vmx
->host_msrs
+
654 vmx
->msr_offset_kernel_gs_base
, 1);
657 load_msrs(vmx
->guest_msrs
, vmx
->save_nmsrs
);
658 load_transition_efer(vmx
);
661 static void __vmx_load_host_state(struct vcpu_vmx
*vmx
)
665 if (!vmx
->host_state
.loaded
)
668 ++vmx
->vcpu
.stat
.host_state_reload
;
669 vmx
->host_state
.loaded
= 0;
670 if (vmx
->host_state
.fs_reload_needed
)
671 kvm_load_fs(vmx
->host_state
.fs_sel
);
672 if (vmx
->host_state
.gs_ldt_reload_needed
) {
673 kvm_load_ldt(vmx
->host_state
.ldt_sel
);
675 * If we have to reload gs, we must take care to
676 * preserve our gs base.
678 local_irq_save(flags
);
679 kvm_load_gs(vmx
->host_state
.gs_sel
);
681 wrmsrl(MSR_GS_BASE
, vmcs_readl(HOST_GS_BASE
));
683 local_irq_restore(flags
);
686 save_msrs(vmx
->guest_msrs
, vmx
->save_nmsrs
);
687 load_msrs(vmx
->host_msrs
, vmx
->save_nmsrs
);
688 reload_host_efer(vmx
);
691 static void vmx_load_host_state(struct vcpu_vmx
*vmx
)
694 __vmx_load_host_state(vmx
);
699 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
700 * vcpu mutex is already taken.
702 static void vmx_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
704 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
705 u64 phys_addr
= __pa(vmx
->vmcs
);
706 u64 tsc_this
, delta
, new_offset
;
708 if (vcpu
->cpu
!= cpu
) {
710 kvm_migrate_timers(vcpu
);
711 set_bit(KVM_REQ_TLB_FLUSH
, &vcpu
->requests
);
713 list_add(&vmx
->local_vcpus_link
,
714 &per_cpu(vcpus_on_cpu
, cpu
));
718 if (per_cpu(current_vmcs
, cpu
) != vmx
->vmcs
) {
721 per_cpu(current_vmcs
, cpu
) = vmx
->vmcs
;
722 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX
) "; setna %0"
723 : "=g"(error
) : "a"(&phys_addr
), "m"(phys_addr
)
726 printk(KERN_ERR
"kvm: vmptrld %p/%llx fail\n",
727 vmx
->vmcs
, phys_addr
);
730 if (vcpu
->cpu
!= cpu
) {
731 struct descriptor_table dt
;
732 unsigned long sysenter_esp
;
736 * Linux uses per-cpu TSS and GDT, so set these when switching
739 vmcs_writel(HOST_TR_BASE
, kvm_read_tr_base()); /* 22.2.4 */
741 vmcs_writel(HOST_GDTR_BASE
, dt
.base
); /* 22.2.4 */
743 rdmsrl(MSR_IA32_SYSENTER_ESP
, sysenter_esp
);
744 vmcs_writel(HOST_IA32_SYSENTER_ESP
, sysenter_esp
); /* 22.2.3 */
747 * Make sure the time stamp counter is monotonous.
750 if (tsc_this
< vcpu
->arch
.host_tsc
) {
751 delta
= vcpu
->arch
.host_tsc
- tsc_this
;
752 new_offset
= vmcs_read64(TSC_OFFSET
) + delta
;
753 vmcs_write64(TSC_OFFSET
, new_offset
);
758 static void vmx_vcpu_put(struct kvm_vcpu
*vcpu
)
760 __vmx_load_host_state(to_vmx(vcpu
));
763 static void vmx_fpu_activate(struct kvm_vcpu
*vcpu
)
765 if (vcpu
->fpu_active
)
767 vcpu
->fpu_active
= 1;
768 vmcs_clear_bits(GUEST_CR0
, X86_CR0_TS
);
769 if (vcpu
->arch
.cr0
& X86_CR0_TS
)
770 vmcs_set_bits(GUEST_CR0
, X86_CR0_TS
);
771 update_exception_bitmap(vcpu
);
774 static void vmx_fpu_deactivate(struct kvm_vcpu
*vcpu
)
776 if (!vcpu
->fpu_active
)
778 vcpu
->fpu_active
= 0;
779 vmcs_set_bits(GUEST_CR0
, X86_CR0_TS
);
780 update_exception_bitmap(vcpu
);
783 static unsigned long vmx_get_rflags(struct kvm_vcpu
*vcpu
)
785 unsigned long rflags
;
787 rflags
= vmcs_readl(GUEST_RFLAGS
);
788 if (to_vmx(vcpu
)->rmode
.vm86_active
)
789 rflags
&= ~(unsigned long)(X86_EFLAGS_IOPL
| X86_EFLAGS_VM
);
793 static void vmx_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
795 if (to_vmx(vcpu
)->rmode
.vm86_active
)
796 rflags
|= X86_EFLAGS_IOPL
| X86_EFLAGS_VM
;
797 vmcs_writel(GUEST_RFLAGS
, rflags
);
800 static u32
vmx_get_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
802 u32 interruptibility
= vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
805 if (interruptibility
& GUEST_INTR_STATE_STI
)
806 ret
|= X86_SHADOW_INT_STI
;
807 if (interruptibility
& GUEST_INTR_STATE_MOV_SS
)
808 ret
|= X86_SHADOW_INT_MOV_SS
;
813 static void vmx_set_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
815 u32 interruptibility_old
= vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
816 u32 interruptibility
= interruptibility_old
;
818 interruptibility
&= ~(GUEST_INTR_STATE_STI
| GUEST_INTR_STATE_MOV_SS
);
820 if (mask
& X86_SHADOW_INT_MOV_SS
)
821 interruptibility
|= GUEST_INTR_STATE_MOV_SS
;
822 if (mask
& X86_SHADOW_INT_STI
)
823 interruptibility
|= GUEST_INTR_STATE_STI
;
825 if ((interruptibility
!= interruptibility_old
))
826 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
, interruptibility
);
829 static void skip_emulated_instruction(struct kvm_vcpu
*vcpu
)
833 rip
= kvm_rip_read(vcpu
);
834 rip
+= vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
835 kvm_rip_write(vcpu
, rip
);
837 /* skipping an emulated instruction also counts */
838 vmx_set_interrupt_shadow(vcpu
, 0);
841 static void vmx_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
,
842 bool has_error_code
, u32 error_code
)
844 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
845 u32 intr_info
= nr
| INTR_INFO_VALID_MASK
;
847 if (has_error_code
) {
848 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE
, error_code
);
849 intr_info
|= INTR_INFO_DELIVER_CODE_MASK
;
852 if (vmx
->rmode
.vm86_active
) {
853 vmx
->rmode
.irq
.pending
= true;
854 vmx
->rmode
.irq
.vector
= nr
;
855 vmx
->rmode
.irq
.rip
= kvm_rip_read(vcpu
);
856 if (kvm_exception_is_soft(nr
))
857 vmx
->rmode
.irq
.rip
+=
858 vmx
->vcpu
.arch
.event_exit_inst_len
;
859 intr_info
|= INTR_TYPE_SOFT_INTR
;
860 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, intr_info
);
861 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
, 1);
862 kvm_rip_write(vcpu
, vmx
->rmode
.irq
.rip
- 1);
866 if (kvm_exception_is_soft(nr
)) {
867 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
868 vmx
->vcpu
.arch
.event_exit_inst_len
);
869 intr_info
|= INTR_TYPE_SOFT_EXCEPTION
;
871 intr_info
|= INTR_TYPE_HARD_EXCEPTION
;
873 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, intr_info
);
877 * Swap MSR entry in host/guest MSR entry array.
880 static void move_msr_up(struct vcpu_vmx
*vmx
, int from
, int to
)
882 struct kvm_msr_entry tmp
;
884 tmp
= vmx
->guest_msrs
[to
];
885 vmx
->guest_msrs
[to
] = vmx
->guest_msrs
[from
];
886 vmx
->guest_msrs
[from
] = tmp
;
887 tmp
= vmx
->host_msrs
[to
];
888 vmx
->host_msrs
[to
] = vmx
->host_msrs
[from
];
889 vmx
->host_msrs
[from
] = tmp
;
894 * Set up the vmcs to automatically save and restore system
895 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
896 * mode, as fiddling with msrs is very expensive.
898 static void setup_msrs(struct vcpu_vmx
*vmx
)
901 unsigned long *msr_bitmap
;
903 vmx_load_host_state(vmx
);
906 if (is_long_mode(&vmx
->vcpu
)) {
909 index
= __find_msr_index(vmx
, MSR_SYSCALL_MASK
);
911 move_msr_up(vmx
, index
, save_nmsrs
++);
912 index
= __find_msr_index(vmx
, MSR_LSTAR
);
914 move_msr_up(vmx
, index
, save_nmsrs
++);
915 index
= __find_msr_index(vmx
, MSR_CSTAR
);
917 move_msr_up(vmx
, index
, save_nmsrs
++);
918 index
= __find_msr_index(vmx
, MSR_KERNEL_GS_BASE
);
920 move_msr_up(vmx
, index
, save_nmsrs
++);
922 * MSR_K6_STAR is only needed on long mode guests, and only
923 * if efer.sce is enabled.
925 index
= __find_msr_index(vmx
, MSR_K6_STAR
);
926 if ((index
>= 0) && (vmx
->vcpu
.arch
.shadow_efer
& EFER_SCE
))
927 move_msr_up(vmx
, index
, save_nmsrs
++);
930 vmx
->save_nmsrs
= save_nmsrs
;
933 vmx
->msr_offset_kernel_gs_base
=
934 __find_msr_index(vmx
, MSR_KERNEL_GS_BASE
);
936 vmx
->msr_offset_efer
= __find_msr_index(vmx
, MSR_EFER
);
938 if (cpu_has_vmx_msr_bitmap()) {
939 if (is_long_mode(&vmx
->vcpu
))
940 msr_bitmap
= vmx_msr_bitmap_longmode
;
942 msr_bitmap
= vmx_msr_bitmap_legacy
;
944 vmcs_write64(MSR_BITMAP
, __pa(msr_bitmap
));
949 * reads and returns guest's timestamp counter "register"
950 * guest_tsc = host_tsc + tsc_offset -- 21.3
952 static u64
guest_read_tsc(void)
954 u64 host_tsc
, tsc_offset
;
957 tsc_offset
= vmcs_read64(TSC_OFFSET
);
958 return host_tsc
+ tsc_offset
;
962 * writes 'guest_tsc' into guest's timestamp counter "register"
963 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
965 static void guest_write_tsc(u64 guest_tsc
, u64 host_tsc
)
967 vmcs_write64(TSC_OFFSET
, guest_tsc
- host_tsc
);
971 * Reads an msr value (of 'msr_index') into 'pdata'.
972 * Returns 0 on success, non-0 otherwise.
973 * Assumes vcpu_load() was already called.
975 static int vmx_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
978 struct kvm_msr_entry
*msr
;
981 printk(KERN_ERR
"BUG: get_msr called with NULL pdata\n");
988 data
= vmcs_readl(GUEST_FS_BASE
);
991 data
= vmcs_readl(GUEST_GS_BASE
);
994 return kvm_get_msr_common(vcpu
, msr_index
, pdata
);
997 data
= guest_read_tsc();
999 case MSR_IA32_SYSENTER_CS
:
1000 data
= vmcs_read32(GUEST_SYSENTER_CS
);
1002 case MSR_IA32_SYSENTER_EIP
:
1003 data
= vmcs_readl(GUEST_SYSENTER_EIP
);
1005 case MSR_IA32_SYSENTER_ESP
:
1006 data
= vmcs_readl(GUEST_SYSENTER_ESP
);
1009 msr
= find_msr_entry(to_vmx(vcpu
), msr_index
);
1011 vmx_load_host_state(to_vmx(vcpu
));
1015 return kvm_get_msr_common(vcpu
, msr_index
, pdata
);
1023 * Writes msr value into into the appropriate "register".
1024 * Returns 0 on success, non-0 otherwise.
1025 * Assumes vcpu_load() was already called.
1027 static int vmx_set_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64 data
)
1029 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1030 struct kvm_msr_entry
*msr
;
1034 switch (msr_index
) {
1036 vmx_load_host_state(vmx
);
1037 ret
= kvm_set_msr_common(vcpu
, msr_index
, data
);
1039 #ifdef CONFIG_X86_64
1041 vmcs_writel(GUEST_FS_BASE
, data
);
1044 vmcs_writel(GUEST_GS_BASE
, data
);
1047 case MSR_IA32_SYSENTER_CS
:
1048 vmcs_write32(GUEST_SYSENTER_CS
, data
);
1050 case MSR_IA32_SYSENTER_EIP
:
1051 vmcs_writel(GUEST_SYSENTER_EIP
, data
);
1053 case MSR_IA32_SYSENTER_ESP
:
1054 vmcs_writel(GUEST_SYSENTER_ESP
, data
);
1058 guest_write_tsc(data
, host_tsc
);
1060 case MSR_IA32_CR_PAT
:
1061 if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
) {
1062 vmcs_write64(GUEST_IA32_PAT
, data
);
1063 vcpu
->arch
.pat
= data
;
1066 /* Otherwise falls through to kvm_set_msr_common */
1068 msr
= find_msr_entry(vmx
, msr_index
);
1070 vmx_load_host_state(vmx
);
1074 ret
= kvm_set_msr_common(vcpu
, msr_index
, data
);
1080 static void vmx_cache_reg(struct kvm_vcpu
*vcpu
, enum kvm_reg reg
)
1082 __set_bit(reg
, (unsigned long *)&vcpu
->arch
.regs_avail
);
1085 vcpu
->arch
.regs
[VCPU_REGS_RSP
] = vmcs_readl(GUEST_RSP
);
1088 vcpu
->arch
.regs
[VCPU_REGS_RIP
] = vmcs_readl(GUEST_RIP
);
1090 case VCPU_EXREG_PDPTR
:
1092 ept_save_pdptrs(vcpu
);
1099 static void set_guest_debug(struct kvm_vcpu
*vcpu
, struct kvm_guest_debug
*dbg
)
1101 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
1102 vmcs_writel(GUEST_DR7
, dbg
->arch
.debugreg
[7]);
1104 vmcs_writel(GUEST_DR7
, vcpu
->arch
.dr7
);
1106 update_exception_bitmap(vcpu
);
1109 static __init
int cpu_has_kvm_support(void)
1111 return cpu_has_vmx();
1114 static __init
int vmx_disabled_by_bios(void)
1118 rdmsrl(MSR_IA32_FEATURE_CONTROL
, msr
);
1119 return (msr
& (FEATURE_CONTROL_LOCKED
|
1120 FEATURE_CONTROL_VMXON_ENABLED
))
1121 == FEATURE_CONTROL_LOCKED
;
1122 /* locked but not enabled */
1125 static int hardware_enable(void *garbage
)
1127 int cpu
= raw_smp_processor_id();
1128 u64 phys_addr
= __pa(per_cpu(vmxarea
, cpu
));
1131 if (read_cr4() & X86_CR4_VMXE
)
1134 INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu
, cpu
));
1135 rdmsrl(MSR_IA32_FEATURE_CONTROL
, old
);
1136 if ((old
& (FEATURE_CONTROL_LOCKED
|
1137 FEATURE_CONTROL_VMXON_ENABLED
))
1138 != (FEATURE_CONTROL_LOCKED
|
1139 FEATURE_CONTROL_VMXON_ENABLED
))
1140 /* enable and lock */
1141 wrmsrl(MSR_IA32_FEATURE_CONTROL
, old
|
1142 FEATURE_CONTROL_LOCKED
|
1143 FEATURE_CONTROL_VMXON_ENABLED
);
1144 write_cr4(read_cr4() | X86_CR4_VMXE
); /* FIXME: not cpu hotplug safe */
1145 asm volatile (ASM_VMX_VMXON_RAX
1146 : : "a"(&phys_addr
), "m"(phys_addr
)
1154 static void vmclear_local_vcpus(void)
1156 int cpu
= raw_smp_processor_id();
1157 struct vcpu_vmx
*vmx
, *n
;
1159 list_for_each_entry_safe(vmx
, n
, &per_cpu(vcpus_on_cpu
, cpu
),
1165 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1168 static void kvm_cpu_vmxoff(void)
1170 asm volatile (__ex(ASM_VMX_VMXOFF
) : : : "cc");
1171 write_cr4(read_cr4() & ~X86_CR4_VMXE
);
1174 static void hardware_disable(void *garbage
)
1176 vmclear_local_vcpus();
1180 static __init
int adjust_vmx_controls(u32 ctl_min
, u32 ctl_opt
,
1181 u32 msr
, u32
*result
)
1183 u32 vmx_msr_low
, vmx_msr_high
;
1184 u32 ctl
= ctl_min
| ctl_opt
;
1186 rdmsr(msr
, vmx_msr_low
, vmx_msr_high
);
1188 ctl
&= vmx_msr_high
; /* bit == 0 in high word ==> must be zero */
1189 ctl
|= vmx_msr_low
; /* bit == 1 in low word ==> must be one */
1191 /* Ensure minimum (required) set of control bits are supported. */
1199 static __init
int setup_vmcs_config(struct vmcs_config
*vmcs_conf
)
1201 u32 vmx_msr_low
, vmx_msr_high
;
1202 u32 min
, opt
, min2
, opt2
;
1203 u32 _pin_based_exec_control
= 0;
1204 u32 _cpu_based_exec_control
= 0;
1205 u32 _cpu_based_2nd_exec_control
= 0;
1206 u32 _vmexit_control
= 0;
1207 u32 _vmentry_control
= 0;
1209 min
= PIN_BASED_EXT_INTR_MASK
| PIN_BASED_NMI_EXITING
;
1210 opt
= PIN_BASED_VIRTUAL_NMIS
;
1211 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_PINBASED_CTLS
,
1212 &_pin_based_exec_control
) < 0)
1215 min
= CPU_BASED_HLT_EXITING
|
1216 #ifdef CONFIG_X86_64
1217 CPU_BASED_CR8_LOAD_EXITING
|
1218 CPU_BASED_CR8_STORE_EXITING
|
1220 CPU_BASED_CR3_LOAD_EXITING
|
1221 CPU_BASED_CR3_STORE_EXITING
|
1222 CPU_BASED_USE_IO_BITMAPS
|
1223 CPU_BASED_MOV_DR_EXITING
|
1224 CPU_BASED_USE_TSC_OFFSETING
|
1225 CPU_BASED_INVLPG_EXITING
;
1226 opt
= CPU_BASED_TPR_SHADOW
|
1227 CPU_BASED_USE_MSR_BITMAPS
|
1228 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
;
1229 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_PROCBASED_CTLS
,
1230 &_cpu_based_exec_control
) < 0)
1232 #ifdef CONFIG_X86_64
1233 if ((_cpu_based_exec_control
& CPU_BASED_TPR_SHADOW
))
1234 _cpu_based_exec_control
&= ~CPU_BASED_CR8_LOAD_EXITING
&
1235 ~CPU_BASED_CR8_STORE_EXITING
;
1237 if (_cpu_based_exec_control
& CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
) {
1239 opt2
= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
|
1240 SECONDARY_EXEC_WBINVD_EXITING
|
1241 SECONDARY_EXEC_ENABLE_VPID
|
1242 SECONDARY_EXEC_ENABLE_EPT
|
1243 SECONDARY_EXEC_UNRESTRICTED_GUEST
;
1244 if (adjust_vmx_controls(min2
, opt2
,
1245 MSR_IA32_VMX_PROCBASED_CTLS2
,
1246 &_cpu_based_2nd_exec_control
) < 0)
1249 #ifndef CONFIG_X86_64
1250 if (!(_cpu_based_2nd_exec_control
&
1251 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
))
1252 _cpu_based_exec_control
&= ~CPU_BASED_TPR_SHADOW
;
1254 if (_cpu_based_2nd_exec_control
& SECONDARY_EXEC_ENABLE_EPT
) {
1255 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1257 _cpu_based_exec_control
&= ~(CPU_BASED_CR3_LOAD_EXITING
|
1258 CPU_BASED_CR3_STORE_EXITING
|
1259 CPU_BASED_INVLPG_EXITING
);
1260 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP
,
1261 vmx_capability
.ept
, vmx_capability
.vpid
);
1265 #ifdef CONFIG_X86_64
1266 min
|= VM_EXIT_HOST_ADDR_SPACE_SIZE
;
1268 opt
= VM_EXIT_SAVE_IA32_PAT
| VM_EXIT_LOAD_IA32_PAT
;
1269 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_EXIT_CTLS
,
1270 &_vmexit_control
) < 0)
1274 opt
= VM_ENTRY_LOAD_IA32_PAT
;
1275 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_ENTRY_CTLS
,
1276 &_vmentry_control
) < 0)
1279 rdmsr(MSR_IA32_VMX_BASIC
, vmx_msr_low
, vmx_msr_high
);
1281 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1282 if ((vmx_msr_high
& 0x1fff) > PAGE_SIZE
)
1285 #ifdef CONFIG_X86_64
1286 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1287 if (vmx_msr_high
& (1u<<16))
1291 /* Require Write-Back (WB) memory type for VMCS accesses. */
1292 if (((vmx_msr_high
>> 18) & 15) != 6)
1295 vmcs_conf
->size
= vmx_msr_high
& 0x1fff;
1296 vmcs_conf
->order
= get_order(vmcs_config
.size
);
1297 vmcs_conf
->revision_id
= vmx_msr_low
;
1299 vmcs_conf
->pin_based_exec_ctrl
= _pin_based_exec_control
;
1300 vmcs_conf
->cpu_based_exec_ctrl
= _cpu_based_exec_control
;
1301 vmcs_conf
->cpu_based_2nd_exec_ctrl
= _cpu_based_2nd_exec_control
;
1302 vmcs_conf
->vmexit_ctrl
= _vmexit_control
;
1303 vmcs_conf
->vmentry_ctrl
= _vmentry_control
;
1308 static struct vmcs
*alloc_vmcs_cpu(int cpu
)
1310 int node
= cpu_to_node(cpu
);
1314 pages
= alloc_pages_exact_node(node
, GFP_KERNEL
, vmcs_config
.order
);
1317 vmcs
= page_address(pages
);
1318 memset(vmcs
, 0, vmcs_config
.size
);
1319 vmcs
->revision_id
= vmcs_config
.revision_id
; /* vmcs revision id */
1323 static struct vmcs
*alloc_vmcs(void)
1325 return alloc_vmcs_cpu(raw_smp_processor_id());
1328 static void free_vmcs(struct vmcs
*vmcs
)
1330 free_pages((unsigned long)vmcs
, vmcs_config
.order
);
1333 static void free_kvm_area(void)
1337 for_each_possible_cpu(cpu
) {
1338 free_vmcs(per_cpu(vmxarea
, cpu
));
1339 per_cpu(vmxarea
, cpu
) = NULL
;
1343 static __init
int alloc_kvm_area(void)
1347 for_each_possible_cpu(cpu
) {
1350 vmcs
= alloc_vmcs_cpu(cpu
);
1356 per_cpu(vmxarea
, cpu
) = vmcs
;
1361 static __init
int hardware_setup(void)
1363 if (setup_vmcs_config(&vmcs_config
) < 0)
1366 if (boot_cpu_has(X86_FEATURE_NX
))
1367 kvm_enable_efer_bits(EFER_NX
);
1369 if (!cpu_has_vmx_vpid())
1372 if (!cpu_has_vmx_ept()) {
1374 enable_unrestricted_guest
= 0;
1377 if (!cpu_has_vmx_unrestricted_guest())
1378 enable_unrestricted_guest
= 0;
1380 if (!cpu_has_vmx_flexpriority())
1381 flexpriority_enabled
= 0;
1383 if (!cpu_has_vmx_tpr_shadow())
1384 kvm_x86_ops
->update_cr8_intercept
= NULL
;
1386 if (enable_ept
&& !cpu_has_vmx_ept_2m_page())
1387 kvm_disable_largepages();
1389 return alloc_kvm_area();
1392 static __exit
void hardware_unsetup(void)
1397 static void fix_pmode_dataseg(int seg
, struct kvm_save_segment
*save
)
1399 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1401 if (vmcs_readl(sf
->base
) == save
->base
&& (save
->base
& AR_S_MASK
)) {
1402 vmcs_write16(sf
->selector
, save
->selector
);
1403 vmcs_writel(sf
->base
, save
->base
);
1404 vmcs_write32(sf
->limit
, save
->limit
);
1405 vmcs_write32(sf
->ar_bytes
, save
->ar
);
1407 u32 dpl
= (vmcs_read16(sf
->selector
) & SELECTOR_RPL_MASK
)
1409 vmcs_write32(sf
->ar_bytes
, 0x93 | dpl
);
1413 static void enter_pmode(struct kvm_vcpu
*vcpu
)
1415 unsigned long flags
;
1416 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1418 vmx
->emulation_required
= 1;
1419 vmx
->rmode
.vm86_active
= 0;
1421 vmcs_writel(GUEST_TR_BASE
, vmx
->rmode
.tr
.base
);
1422 vmcs_write32(GUEST_TR_LIMIT
, vmx
->rmode
.tr
.limit
);
1423 vmcs_write32(GUEST_TR_AR_BYTES
, vmx
->rmode
.tr
.ar
);
1425 flags
= vmcs_readl(GUEST_RFLAGS
);
1426 flags
&= ~(X86_EFLAGS_IOPL
| X86_EFLAGS_VM
);
1427 flags
|= (vmx
->rmode
.save_iopl
<< IOPL_SHIFT
);
1428 vmcs_writel(GUEST_RFLAGS
, flags
);
1430 vmcs_writel(GUEST_CR4
, (vmcs_readl(GUEST_CR4
) & ~X86_CR4_VME
) |
1431 (vmcs_readl(CR4_READ_SHADOW
) & X86_CR4_VME
));
1433 update_exception_bitmap(vcpu
);
1435 if (emulate_invalid_guest_state
)
1438 fix_pmode_dataseg(VCPU_SREG_ES
, &vmx
->rmode
.es
);
1439 fix_pmode_dataseg(VCPU_SREG_DS
, &vmx
->rmode
.ds
);
1440 fix_pmode_dataseg(VCPU_SREG_GS
, &vmx
->rmode
.gs
);
1441 fix_pmode_dataseg(VCPU_SREG_FS
, &vmx
->rmode
.fs
);
1443 vmcs_write16(GUEST_SS_SELECTOR
, 0);
1444 vmcs_write32(GUEST_SS_AR_BYTES
, 0x93);
1446 vmcs_write16(GUEST_CS_SELECTOR
,
1447 vmcs_read16(GUEST_CS_SELECTOR
) & ~SELECTOR_RPL_MASK
);
1448 vmcs_write32(GUEST_CS_AR_BYTES
, 0x9b);
1451 static gva_t
rmode_tss_base(struct kvm
*kvm
)
1453 if (!kvm
->arch
.tss_addr
) {
1454 gfn_t base_gfn
= kvm
->memslots
[0].base_gfn
+
1455 kvm
->memslots
[0].npages
- 3;
1456 return base_gfn
<< PAGE_SHIFT
;
1458 return kvm
->arch
.tss_addr
;
1461 static void fix_rmode_seg(int seg
, struct kvm_save_segment
*save
)
1463 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1465 save
->selector
= vmcs_read16(sf
->selector
);
1466 save
->base
= vmcs_readl(sf
->base
);
1467 save
->limit
= vmcs_read32(sf
->limit
);
1468 save
->ar
= vmcs_read32(sf
->ar_bytes
);
1469 vmcs_write16(sf
->selector
, save
->base
>> 4);
1470 vmcs_write32(sf
->base
, save
->base
& 0xfffff);
1471 vmcs_write32(sf
->limit
, 0xffff);
1472 vmcs_write32(sf
->ar_bytes
, 0xf3);
1475 static void enter_rmode(struct kvm_vcpu
*vcpu
)
1477 unsigned long flags
;
1478 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1480 if (enable_unrestricted_guest
)
1483 vmx
->emulation_required
= 1;
1484 vmx
->rmode
.vm86_active
= 1;
1486 vmx
->rmode
.tr
.base
= vmcs_readl(GUEST_TR_BASE
);
1487 vmcs_writel(GUEST_TR_BASE
, rmode_tss_base(vcpu
->kvm
));
1489 vmx
->rmode
.tr
.limit
= vmcs_read32(GUEST_TR_LIMIT
);
1490 vmcs_write32(GUEST_TR_LIMIT
, RMODE_TSS_SIZE
- 1);
1492 vmx
->rmode
.tr
.ar
= vmcs_read32(GUEST_TR_AR_BYTES
);
1493 vmcs_write32(GUEST_TR_AR_BYTES
, 0x008b);
1495 flags
= vmcs_readl(GUEST_RFLAGS
);
1496 vmx
->rmode
.save_iopl
1497 = (flags
& X86_EFLAGS_IOPL
) >> IOPL_SHIFT
;
1499 flags
|= X86_EFLAGS_IOPL
| X86_EFLAGS_VM
;
1501 vmcs_writel(GUEST_RFLAGS
, flags
);
1502 vmcs_writel(GUEST_CR4
, vmcs_readl(GUEST_CR4
) | X86_CR4_VME
);
1503 update_exception_bitmap(vcpu
);
1505 if (emulate_invalid_guest_state
)
1506 goto continue_rmode
;
1508 vmcs_write16(GUEST_SS_SELECTOR
, vmcs_readl(GUEST_SS_BASE
) >> 4);
1509 vmcs_write32(GUEST_SS_LIMIT
, 0xffff);
1510 vmcs_write32(GUEST_SS_AR_BYTES
, 0xf3);
1512 vmcs_write32(GUEST_CS_AR_BYTES
, 0xf3);
1513 vmcs_write32(GUEST_CS_LIMIT
, 0xffff);
1514 if (vmcs_readl(GUEST_CS_BASE
) == 0xffff0000)
1515 vmcs_writel(GUEST_CS_BASE
, 0xf0000);
1516 vmcs_write16(GUEST_CS_SELECTOR
, vmcs_readl(GUEST_CS_BASE
) >> 4);
1518 fix_rmode_seg(VCPU_SREG_ES
, &vmx
->rmode
.es
);
1519 fix_rmode_seg(VCPU_SREG_DS
, &vmx
->rmode
.ds
);
1520 fix_rmode_seg(VCPU_SREG_GS
, &vmx
->rmode
.gs
);
1521 fix_rmode_seg(VCPU_SREG_FS
, &vmx
->rmode
.fs
);
1524 kvm_mmu_reset_context(vcpu
);
1525 init_rmode(vcpu
->kvm
);
1528 static void vmx_set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
1530 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1531 struct kvm_msr_entry
*msr
= find_msr_entry(vmx
, MSR_EFER
);
1533 vcpu
->arch
.shadow_efer
= efer
;
1536 if (efer
& EFER_LMA
) {
1537 vmcs_write32(VM_ENTRY_CONTROLS
,
1538 vmcs_read32(VM_ENTRY_CONTROLS
) |
1539 VM_ENTRY_IA32E_MODE
);
1542 vmcs_write32(VM_ENTRY_CONTROLS
,
1543 vmcs_read32(VM_ENTRY_CONTROLS
) &
1544 ~VM_ENTRY_IA32E_MODE
);
1546 msr
->data
= efer
& ~EFER_LME
;
1551 #ifdef CONFIG_X86_64
1553 static void enter_lmode(struct kvm_vcpu
*vcpu
)
1557 guest_tr_ar
= vmcs_read32(GUEST_TR_AR_BYTES
);
1558 if ((guest_tr_ar
& AR_TYPE_MASK
) != AR_TYPE_BUSY_64_TSS
) {
1559 printk(KERN_DEBUG
"%s: tss fixup for long mode. \n",
1561 vmcs_write32(GUEST_TR_AR_BYTES
,
1562 (guest_tr_ar
& ~AR_TYPE_MASK
)
1563 | AR_TYPE_BUSY_64_TSS
);
1565 vcpu
->arch
.shadow_efer
|= EFER_LMA
;
1566 vmx_set_efer(vcpu
, vcpu
->arch
.shadow_efer
);
1569 static void exit_lmode(struct kvm_vcpu
*vcpu
)
1571 vcpu
->arch
.shadow_efer
&= ~EFER_LMA
;
1573 vmcs_write32(VM_ENTRY_CONTROLS
,
1574 vmcs_read32(VM_ENTRY_CONTROLS
)
1575 & ~VM_ENTRY_IA32E_MODE
);
1580 static void vmx_flush_tlb(struct kvm_vcpu
*vcpu
)
1582 vpid_sync_vcpu_all(to_vmx(vcpu
));
1584 ept_sync_context(construct_eptp(vcpu
->arch
.mmu
.root_hpa
));
1587 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu
*vcpu
)
1589 vcpu
->arch
.cr4
&= KVM_GUEST_CR4_MASK
;
1590 vcpu
->arch
.cr4
|= vmcs_readl(GUEST_CR4
) & ~KVM_GUEST_CR4_MASK
;
1593 static void ept_load_pdptrs(struct kvm_vcpu
*vcpu
)
1595 if (!test_bit(VCPU_EXREG_PDPTR
,
1596 (unsigned long *)&vcpu
->arch
.regs_dirty
))
1599 if (is_paging(vcpu
) && is_pae(vcpu
) && !is_long_mode(vcpu
)) {
1600 vmcs_write64(GUEST_PDPTR0
, vcpu
->arch
.pdptrs
[0]);
1601 vmcs_write64(GUEST_PDPTR1
, vcpu
->arch
.pdptrs
[1]);
1602 vmcs_write64(GUEST_PDPTR2
, vcpu
->arch
.pdptrs
[2]);
1603 vmcs_write64(GUEST_PDPTR3
, vcpu
->arch
.pdptrs
[3]);
1607 static void ept_save_pdptrs(struct kvm_vcpu
*vcpu
)
1609 if (is_paging(vcpu
) && is_pae(vcpu
) && !is_long_mode(vcpu
)) {
1610 vcpu
->arch
.pdptrs
[0] = vmcs_read64(GUEST_PDPTR0
);
1611 vcpu
->arch
.pdptrs
[1] = vmcs_read64(GUEST_PDPTR1
);
1612 vcpu
->arch
.pdptrs
[2] = vmcs_read64(GUEST_PDPTR2
);
1613 vcpu
->arch
.pdptrs
[3] = vmcs_read64(GUEST_PDPTR3
);
1616 __set_bit(VCPU_EXREG_PDPTR
,
1617 (unsigned long *)&vcpu
->arch
.regs_avail
);
1618 __set_bit(VCPU_EXREG_PDPTR
,
1619 (unsigned long *)&vcpu
->arch
.regs_dirty
);
1622 static void vmx_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
);
1624 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0
,
1626 struct kvm_vcpu
*vcpu
)
1628 if (!(cr0
& X86_CR0_PG
)) {
1629 /* From paging/starting to nonpaging */
1630 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
,
1631 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
) |
1632 (CPU_BASED_CR3_LOAD_EXITING
|
1633 CPU_BASED_CR3_STORE_EXITING
));
1634 vcpu
->arch
.cr0
= cr0
;
1635 vmx_set_cr4(vcpu
, vcpu
->arch
.cr4
);
1636 } else if (!is_paging(vcpu
)) {
1637 /* From nonpaging to paging */
1638 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
,
1639 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
) &
1640 ~(CPU_BASED_CR3_LOAD_EXITING
|
1641 CPU_BASED_CR3_STORE_EXITING
));
1642 vcpu
->arch
.cr0
= cr0
;
1643 vmx_set_cr4(vcpu
, vcpu
->arch
.cr4
);
1646 if (!(cr0
& X86_CR0_WP
))
1647 *hw_cr0
&= ~X86_CR0_WP
;
1650 static void ept_update_paging_mode_cr4(unsigned long *hw_cr4
,
1651 struct kvm_vcpu
*vcpu
)
1653 if (!is_paging(vcpu
)) {
1654 *hw_cr4
&= ~X86_CR4_PAE
;
1655 *hw_cr4
|= X86_CR4_PSE
;
1656 } else if (!(vcpu
->arch
.cr4
& X86_CR4_PAE
))
1657 *hw_cr4
&= ~X86_CR4_PAE
;
1660 static void vmx_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
1662 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1663 unsigned long hw_cr0
;
1665 if (enable_unrestricted_guest
)
1666 hw_cr0
= (cr0
& ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST
)
1667 | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST
;
1669 hw_cr0
= (cr0
& ~KVM_GUEST_CR0_MASK
) | KVM_VM_CR0_ALWAYS_ON
;
1671 vmx_fpu_deactivate(vcpu
);
1673 if (vmx
->rmode
.vm86_active
&& (cr0
& X86_CR0_PE
))
1676 if (!vmx
->rmode
.vm86_active
&& !(cr0
& X86_CR0_PE
))
1679 #ifdef CONFIG_X86_64
1680 if (vcpu
->arch
.shadow_efer
& EFER_LME
) {
1681 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
))
1683 if (is_paging(vcpu
) && !(cr0
& X86_CR0_PG
))
1689 ept_update_paging_mode_cr0(&hw_cr0
, cr0
, vcpu
);
1691 vmcs_writel(CR0_READ_SHADOW
, cr0
);
1692 vmcs_writel(GUEST_CR0
, hw_cr0
);
1693 vcpu
->arch
.cr0
= cr0
;
1695 if (!(cr0
& X86_CR0_TS
) || !(cr0
& X86_CR0_PE
))
1696 vmx_fpu_activate(vcpu
);
1699 static u64
construct_eptp(unsigned long root_hpa
)
1703 /* TODO write the value reading from MSR */
1704 eptp
= VMX_EPT_DEFAULT_MT
|
1705 VMX_EPT_DEFAULT_GAW
<< VMX_EPT_GAW_EPTP_SHIFT
;
1706 eptp
|= (root_hpa
& PAGE_MASK
);
1711 static void vmx_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
1713 unsigned long guest_cr3
;
1718 eptp
= construct_eptp(cr3
);
1719 vmcs_write64(EPT_POINTER
, eptp
);
1720 guest_cr3
= is_paging(vcpu
) ? vcpu
->arch
.cr3
:
1721 vcpu
->kvm
->arch
.ept_identity_map_addr
;
1724 vmx_flush_tlb(vcpu
);
1725 vmcs_writel(GUEST_CR3
, guest_cr3
);
1726 if (vcpu
->arch
.cr0
& X86_CR0_PE
)
1727 vmx_fpu_deactivate(vcpu
);
1730 static void vmx_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
1732 unsigned long hw_cr4
= cr4
| (to_vmx(vcpu
)->rmode
.vm86_active
?
1733 KVM_RMODE_VM_CR4_ALWAYS_ON
: KVM_PMODE_VM_CR4_ALWAYS_ON
);
1735 vcpu
->arch
.cr4
= cr4
;
1737 ept_update_paging_mode_cr4(&hw_cr4
, vcpu
);
1739 vmcs_writel(CR4_READ_SHADOW
, cr4
);
1740 vmcs_writel(GUEST_CR4
, hw_cr4
);
1743 static u64
vmx_get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
1745 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1747 return vmcs_readl(sf
->base
);
1750 static void vmx_get_segment(struct kvm_vcpu
*vcpu
,
1751 struct kvm_segment
*var
, int seg
)
1753 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1756 var
->base
= vmcs_readl(sf
->base
);
1757 var
->limit
= vmcs_read32(sf
->limit
);
1758 var
->selector
= vmcs_read16(sf
->selector
);
1759 ar
= vmcs_read32(sf
->ar_bytes
);
1760 if ((ar
& AR_UNUSABLE_MASK
) && !emulate_invalid_guest_state
)
1762 var
->type
= ar
& 15;
1763 var
->s
= (ar
>> 4) & 1;
1764 var
->dpl
= (ar
>> 5) & 3;
1765 var
->present
= (ar
>> 7) & 1;
1766 var
->avl
= (ar
>> 12) & 1;
1767 var
->l
= (ar
>> 13) & 1;
1768 var
->db
= (ar
>> 14) & 1;
1769 var
->g
= (ar
>> 15) & 1;
1770 var
->unusable
= (ar
>> 16) & 1;
1773 static int vmx_get_cpl(struct kvm_vcpu
*vcpu
)
1775 if (!(vcpu
->arch
.cr0
& X86_CR0_PE
)) /* if real mode */
1778 if (vmx_get_rflags(vcpu
) & X86_EFLAGS_VM
) /* if virtual 8086 */
1781 return vmcs_read16(GUEST_CS_SELECTOR
) & 3;
1784 static u32
vmx_segment_access_rights(struct kvm_segment
*var
)
1791 ar
= var
->type
& 15;
1792 ar
|= (var
->s
& 1) << 4;
1793 ar
|= (var
->dpl
& 3) << 5;
1794 ar
|= (var
->present
& 1) << 7;
1795 ar
|= (var
->avl
& 1) << 12;
1796 ar
|= (var
->l
& 1) << 13;
1797 ar
|= (var
->db
& 1) << 14;
1798 ar
|= (var
->g
& 1) << 15;
1800 if (ar
== 0) /* a 0 value means unusable */
1801 ar
= AR_UNUSABLE_MASK
;
1806 static void vmx_set_segment(struct kvm_vcpu
*vcpu
,
1807 struct kvm_segment
*var
, int seg
)
1809 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1810 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1813 if (vmx
->rmode
.vm86_active
&& seg
== VCPU_SREG_TR
) {
1814 vmx
->rmode
.tr
.selector
= var
->selector
;
1815 vmx
->rmode
.tr
.base
= var
->base
;
1816 vmx
->rmode
.tr
.limit
= var
->limit
;
1817 vmx
->rmode
.tr
.ar
= vmx_segment_access_rights(var
);
1820 vmcs_writel(sf
->base
, var
->base
);
1821 vmcs_write32(sf
->limit
, var
->limit
);
1822 vmcs_write16(sf
->selector
, var
->selector
);
1823 if (vmx
->rmode
.vm86_active
&& var
->s
) {
1825 * Hack real-mode segments into vm86 compatibility.
1827 if (var
->base
== 0xffff0000 && var
->selector
== 0xf000)
1828 vmcs_writel(sf
->base
, 0xf0000);
1831 ar
= vmx_segment_access_rights(var
);
1834 * Fix the "Accessed" bit in AR field of segment registers for older
1836 * IA32 arch specifies that at the time of processor reset the
1837 * "Accessed" bit in the AR field of segment registers is 1. And qemu
1838 * is setting it to 0 in the usedland code. This causes invalid guest
1839 * state vmexit when "unrestricted guest" mode is turned on.
1840 * Fix for this setup issue in cpu_reset is being pushed in the qemu
1841 * tree. Newer qemu binaries with that qemu fix would not need this
1844 if (enable_unrestricted_guest
&& (seg
!= VCPU_SREG_LDTR
))
1845 ar
|= 0x1; /* Accessed */
1847 vmcs_write32(sf
->ar_bytes
, ar
);
1850 static void vmx_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
1852 u32 ar
= vmcs_read32(GUEST_CS_AR_BYTES
);
1854 *db
= (ar
>> 14) & 1;
1855 *l
= (ar
>> 13) & 1;
1858 static void vmx_get_idt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
1860 dt
->limit
= vmcs_read32(GUEST_IDTR_LIMIT
);
1861 dt
->base
= vmcs_readl(GUEST_IDTR_BASE
);
1864 static void vmx_set_idt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
1866 vmcs_write32(GUEST_IDTR_LIMIT
, dt
->limit
);
1867 vmcs_writel(GUEST_IDTR_BASE
, dt
->base
);
1870 static void vmx_get_gdt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
1872 dt
->limit
= vmcs_read32(GUEST_GDTR_LIMIT
);
1873 dt
->base
= vmcs_readl(GUEST_GDTR_BASE
);
1876 static void vmx_set_gdt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
1878 vmcs_write32(GUEST_GDTR_LIMIT
, dt
->limit
);
1879 vmcs_writel(GUEST_GDTR_BASE
, dt
->base
);
1882 static bool rmode_segment_valid(struct kvm_vcpu
*vcpu
, int seg
)
1884 struct kvm_segment var
;
1887 vmx_get_segment(vcpu
, &var
, seg
);
1888 ar
= vmx_segment_access_rights(&var
);
1890 if (var
.base
!= (var
.selector
<< 4))
1892 if (var
.limit
!= 0xffff)
1900 static bool code_segment_valid(struct kvm_vcpu
*vcpu
)
1902 struct kvm_segment cs
;
1903 unsigned int cs_rpl
;
1905 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
1906 cs_rpl
= cs
.selector
& SELECTOR_RPL_MASK
;
1910 if (~cs
.type
& (AR_TYPE_CODE_MASK
|AR_TYPE_ACCESSES_MASK
))
1914 if (cs
.type
& AR_TYPE_WRITEABLE_MASK
) {
1915 if (cs
.dpl
> cs_rpl
)
1918 if (cs
.dpl
!= cs_rpl
)
1924 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
1928 static bool stack_segment_valid(struct kvm_vcpu
*vcpu
)
1930 struct kvm_segment ss
;
1931 unsigned int ss_rpl
;
1933 vmx_get_segment(vcpu
, &ss
, VCPU_SREG_SS
);
1934 ss_rpl
= ss
.selector
& SELECTOR_RPL_MASK
;
1938 if (ss
.type
!= 3 && ss
.type
!= 7)
1942 if (ss
.dpl
!= ss_rpl
) /* DPL != RPL */
1950 static bool data_segment_valid(struct kvm_vcpu
*vcpu
, int seg
)
1952 struct kvm_segment var
;
1955 vmx_get_segment(vcpu
, &var
, seg
);
1956 rpl
= var
.selector
& SELECTOR_RPL_MASK
;
1964 if (~var
.type
& (AR_TYPE_CODE_MASK
|AR_TYPE_WRITEABLE_MASK
)) {
1965 if (var
.dpl
< rpl
) /* DPL < RPL */
1969 /* TODO: Add other members to kvm_segment_field to allow checking for other access
1975 static bool tr_valid(struct kvm_vcpu
*vcpu
)
1977 struct kvm_segment tr
;
1979 vmx_get_segment(vcpu
, &tr
, VCPU_SREG_TR
);
1983 if (tr
.selector
& SELECTOR_TI_MASK
) /* TI = 1 */
1985 if (tr
.type
!= 3 && tr
.type
!= 11) /* TODO: Check if guest is in IA32e mode */
1993 static bool ldtr_valid(struct kvm_vcpu
*vcpu
)
1995 struct kvm_segment ldtr
;
1997 vmx_get_segment(vcpu
, &ldtr
, VCPU_SREG_LDTR
);
2001 if (ldtr
.selector
& SELECTOR_TI_MASK
) /* TI = 1 */
2011 static bool cs_ss_rpl_check(struct kvm_vcpu
*vcpu
)
2013 struct kvm_segment cs
, ss
;
2015 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
2016 vmx_get_segment(vcpu
, &ss
, VCPU_SREG_SS
);
2018 return ((cs
.selector
& SELECTOR_RPL_MASK
) ==
2019 (ss
.selector
& SELECTOR_RPL_MASK
));
2023 * Check if guest state is valid. Returns true if valid, false if
2025 * We assume that registers are always usable
2027 static bool guest_state_valid(struct kvm_vcpu
*vcpu
)
2029 /* real mode guest state checks */
2030 if (!(vcpu
->arch
.cr0
& X86_CR0_PE
)) {
2031 if (!rmode_segment_valid(vcpu
, VCPU_SREG_CS
))
2033 if (!rmode_segment_valid(vcpu
, VCPU_SREG_SS
))
2035 if (!rmode_segment_valid(vcpu
, VCPU_SREG_DS
))
2037 if (!rmode_segment_valid(vcpu
, VCPU_SREG_ES
))
2039 if (!rmode_segment_valid(vcpu
, VCPU_SREG_FS
))
2041 if (!rmode_segment_valid(vcpu
, VCPU_SREG_GS
))
2044 /* protected mode guest state checks */
2045 if (!cs_ss_rpl_check(vcpu
))
2047 if (!code_segment_valid(vcpu
))
2049 if (!stack_segment_valid(vcpu
))
2051 if (!data_segment_valid(vcpu
, VCPU_SREG_DS
))
2053 if (!data_segment_valid(vcpu
, VCPU_SREG_ES
))
2055 if (!data_segment_valid(vcpu
, VCPU_SREG_FS
))
2057 if (!data_segment_valid(vcpu
, VCPU_SREG_GS
))
2059 if (!tr_valid(vcpu
))
2061 if (!ldtr_valid(vcpu
))
2065 * - Add checks on RIP
2066 * - Add checks on RFLAGS
2072 static int init_rmode_tss(struct kvm
*kvm
)
2074 gfn_t fn
= rmode_tss_base(kvm
) >> PAGE_SHIFT
;
2079 r
= kvm_clear_guest_page(kvm
, fn
, 0, PAGE_SIZE
);
2082 data
= TSS_BASE_SIZE
+ TSS_REDIRECTION_SIZE
;
2083 r
= kvm_write_guest_page(kvm
, fn
++, &data
,
2084 TSS_IOPB_BASE_OFFSET
, sizeof(u16
));
2087 r
= kvm_clear_guest_page(kvm
, fn
++, 0, PAGE_SIZE
);
2090 r
= kvm_clear_guest_page(kvm
, fn
, 0, PAGE_SIZE
);
2094 r
= kvm_write_guest_page(kvm
, fn
, &data
,
2095 RMODE_TSS_SIZE
- 2 * PAGE_SIZE
- 1,
2105 static int init_rmode_identity_map(struct kvm
*kvm
)
2108 pfn_t identity_map_pfn
;
2113 if (unlikely(!kvm
->arch
.ept_identity_pagetable
)) {
2114 printk(KERN_ERR
"EPT: identity-mapping pagetable "
2115 "haven't been allocated!\n");
2118 if (likely(kvm
->arch
.ept_identity_pagetable_done
))
2121 identity_map_pfn
= kvm
->arch
.ept_identity_map_addr
>> PAGE_SHIFT
;
2122 r
= kvm_clear_guest_page(kvm
, identity_map_pfn
, 0, PAGE_SIZE
);
2125 /* Set up identity-mapping pagetable for EPT in real mode */
2126 for (i
= 0; i
< PT32_ENT_PER_PAGE
; i
++) {
2127 tmp
= (i
<< 22) + (_PAGE_PRESENT
| _PAGE_RW
| _PAGE_USER
|
2128 _PAGE_ACCESSED
| _PAGE_DIRTY
| _PAGE_PSE
);
2129 r
= kvm_write_guest_page(kvm
, identity_map_pfn
,
2130 &tmp
, i
* sizeof(tmp
), sizeof(tmp
));
2134 kvm
->arch
.ept_identity_pagetable_done
= true;
2140 static void seg_setup(int seg
)
2142 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
2145 vmcs_write16(sf
->selector
, 0);
2146 vmcs_writel(sf
->base
, 0);
2147 vmcs_write32(sf
->limit
, 0xffff);
2148 if (enable_unrestricted_guest
) {
2150 if (seg
== VCPU_SREG_CS
)
2151 ar
|= 0x08; /* code segment */
2155 vmcs_write32(sf
->ar_bytes
, ar
);
2158 static int alloc_apic_access_page(struct kvm
*kvm
)
2160 struct kvm_userspace_memory_region kvm_userspace_mem
;
2163 down_write(&kvm
->slots_lock
);
2164 if (kvm
->arch
.apic_access_page
)
2166 kvm_userspace_mem
.slot
= APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
;
2167 kvm_userspace_mem
.flags
= 0;
2168 kvm_userspace_mem
.guest_phys_addr
= 0xfee00000ULL
;
2169 kvm_userspace_mem
.memory_size
= PAGE_SIZE
;
2170 r
= __kvm_set_memory_region(kvm
, &kvm_userspace_mem
, 0);
2174 kvm
->arch
.apic_access_page
= gfn_to_page(kvm
, 0xfee00);
2176 up_write(&kvm
->slots_lock
);
2180 static int alloc_identity_pagetable(struct kvm
*kvm
)
2182 struct kvm_userspace_memory_region kvm_userspace_mem
;
2185 down_write(&kvm
->slots_lock
);
2186 if (kvm
->arch
.ept_identity_pagetable
)
2188 kvm_userspace_mem
.slot
= IDENTITY_PAGETABLE_PRIVATE_MEMSLOT
;
2189 kvm_userspace_mem
.flags
= 0;
2190 kvm_userspace_mem
.guest_phys_addr
=
2191 kvm
->arch
.ept_identity_map_addr
;
2192 kvm_userspace_mem
.memory_size
= PAGE_SIZE
;
2193 r
= __kvm_set_memory_region(kvm
, &kvm_userspace_mem
, 0);
2197 kvm
->arch
.ept_identity_pagetable
= gfn_to_page(kvm
,
2198 kvm
->arch
.ept_identity_map_addr
>> PAGE_SHIFT
);
2200 up_write(&kvm
->slots_lock
);
2204 static void allocate_vpid(struct vcpu_vmx
*vmx
)
2211 spin_lock(&vmx_vpid_lock
);
2212 vpid
= find_first_zero_bit(vmx_vpid_bitmap
, VMX_NR_VPIDS
);
2213 if (vpid
< VMX_NR_VPIDS
) {
2215 __set_bit(vpid
, vmx_vpid_bitmap
);
2217 spin_unlock(&vmx_vpid_lock
);
2220 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap
, u32 msr
)
2222 int f
= sizeof(unsigned long);
2224 if (!cpu_has_vmx_msr_bitmap())
2228 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2229 * have the write-low and read-high bitmap offsets the wrong way round.
2230 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2232 if (msr
<= 0x1fff) {
2233 __clear_bit(msr
, msr_bitmap
+ 0x000 / f
); /* read-low */
2234 __clear_bit(msr
, msr_bitmap
+ 0x800 / f
); /* write-low */
2235 } else if ((msr
>= 0xc0000000) && (msr
<= 0xc0001fff)) {
2237 __clear_bit(msr
, msr_bitmap
+ 0x400 / f
); /* read-high */
2238 __clear_bit(msr
, msr_bitmap
+ 0xc00 / f
); /* write-high */
2242 static void vmx_disable_intercept_for_msr(u32 msr
, bool longmode_only
)
2245 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy
, msr
);
2246 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode
, msr
);
2250 * Sets up the vmcs for emulated real mode.
2252 static int vmx_vcpu_setup(struct vcpu_vmx
*vmx
)
2254 u32 host_sysenter_cs
, msr_low
, msr_high
;
2256 u64 host_pat
, tsc_this
, tsc_base
;
2258 struct descriptor_table dt
;
2260 unsigned long kvm_vmx_return
;
2264 vmcs_write64(IO_BITMAP_A
, __pa(vmx_io_bitmap_a
));
2265 vmcs_write64(IO_BITMAP_B
, __pa(vmx_io_bitmap_b
));
2267 if (cpu_has_vmx_msr_bitmap())
2268 vmcs_write64(MSR_BITMAP
, __pa(vmx_msr_bitmap_legacy
));
2270 vmcs_write64(VMCS_LINK_POINTER
, -1ull); /* 22.3.1.5 */
2273 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL
,
2274 vmcs_config
.pin_based_exec_ctrl
);
2276 exec_control
= vmcs_config
.cpu_based_exec_ctrl
;
2277 if (!vm_need_tpr_shadow(vmx
->vcpu
.kvm
)) {
2278 exec_control
&= ~CPU_BASED_TPR_SHADOW
;
2279 #ifdef CONFIG_X86_64
2280 exec_control
|= CPU_BASED_CR8_STORE_EXITING
|
2281 CPU_BASED_CR8_LOAD_EXITING
;
2285 exec_control
|= CPU_BASED_CR3_STORE_EXITING
|
2286 CPU_BASED_CR3_LOAD_EXITING
|
2287 CPU_BASED_INVLPG_EXITING
;
2288 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, exec_control
);
2290 if (cpu_has_secondary_exec_ctrls()) {
2291 exec_control
= vmcs_config
.cpu_based_2nd_exec_ctrl
;
2292 if (!vm_need_virtualize_apic_accesses(vmx
->vcpu
.kvm
))
2294 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
2296 exec_control
&= ~SECONDARY_EXEC_ENABLE_VPID
;
2298 exec_control
&= ~SECONDARY_EXEC_ENABLE_EPT
;
2299 if (!enable_unrestricted_guest
)
2300 exec_control
&= ~SECONDARY_EXEC_UNRESTRICTED_GUEST
;
2301 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
, exec_control
);
2304 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK
, !!bypass_guest_pf
);
2305 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH
, !!bypass_guest_pf
);
2306 vmcs_write32(CR3_TARGET_COUNT
, 0); /* 22.2.1 */
2308 vmcs_writel(HOST_CR0
, read_cr0()); /* 22.2.3 */
2309 vmcs_writel(HOST_CR4
, read_cr4()); /* 22.2.3, 22.2.5 */
2310 vmcs_writel(HOST_CR3
, read_cr3()); /* 22.2.3 FIXME: shadow tables */
2312 vmcs_write16(HOST_CS_SELECTOR
, __KERNEL_CS
); /* 22.2.4 */
2313 vmcs_write16(HOST_DS_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
2314 vmcs_write16(HOST_ES_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
2315 vmcs_write16(HOST_FS_SELECTOR
, kvm_read_fs()); /* 22.2.4 */
2316 vmcs_write16(HOST_GS_SELECTOR
, kvm_read_gs()); /* 22.2.4 */
2317 vmcs_write16(HOST_SS_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
2318 #ifdef CONFIG_X86_64
2319 rdmsrl(MSR_FS_BASE
, a
);
2320 vmcs_writel(HOST_FS_BASE
, a
); /* 22.2.4 */
2321 rdmsrl(MSR_GS_BASE
, a
);
2322 vmcs_writel(HOST_GS_BASE
, a
); /* 22.2.4 */
2324 vmcs_writel(HOST_FS_BASE
, 0); /* 22.2.4 */
2325 vmcs_writel(HOST_GS_BASE
, 0); /* 22.2.4 */
2328 vmcs_write16(HOST_TR_SELECTOR
, GDT_ENTRY_TSS
*8); /* 22.2.4 */
2331 vmcs_writel(HOST_IDTR_BASE
, dt
.base
); /* 22.2.4 */
2333 asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return
));
2334 vmcs_writel(HOST_RIP
, kvm_vmx_return
); /* 22.2.5 */
2335 vmcs_write32(VM_EXIT_MSR_STORE_COUNT
, 0);
2336 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, 0);
2337 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, 0);
2339 rdmsr(MSR_IA32_SYSENTER_CS
, host_sysenter_cs
, junk
);
2340 vmcs_write32(HOST_IA32_SYSENTER_CS
, host_sysenter_cs
);
2341 rdmsrl(MSR_IA32_SYSENTER_ESP
, a
);
2342 vmcs_writel(HOST_IA32_SYSENTER_ESP
, a
); /* 22.2.3 */
2343 rdmsrl(MSR_IA32_SYSENTER_EIP
, a
);
2344 vmcs_writel(HOST_IA32_SYSENTER_EIP
, a
); /* 22.2.3 */
2346 if (vmcs_config
.vmexit_ctrl
& VM_EXIT_LOAD_IA32_PAT
) {
2347 rdmsr(MSR_IA32_CR_PAT
, msr_low
, msr_high
);
2348 host_pat
= msr_low
| ((u64
) msr_high
<< 32);
2349 vmcs_write64(HOST_IA32_PAT
, host_pat
);
2351 if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
) {
2352 rdmsr(MSR_IA32_CR_PAT
, msr_low
, msr_high
);
2353 host_pat
= msr_low
| ((u64
) msr_high
<< 32);
2354 /* Write the default value follow host pat */
2355 vmcs_write64(GUEST_IA32_PAT
, host_pat
);
2356 /* Keep arch.pat sync with GUEST_IA32_PAT */
2357 vmx
->vcpu
.arch
.pat
= host_pat
;
2360 for (i
= 0; i
< NR_VMX_MSR
; ++i
) {
2361 u32 index
= vmx_msr_index
[i
];
2362 u32 data_low
, data_high
;
2366 if (rdmsr_safe(index
, &data_low
, &data_high
) < 0)
2368 if (wrmsr_safe(index
, data_low
, data_high
) < 0)
2370 data
= data_low
| ((u64
)data_high
<< 32);
2371 vmx
->host_msrs
[j
].index
= index
;
2372 vmx
->host_msrs
[j
].reserved
= 0;
2373 vmx
->host_msrs
[j
].data
= data
;
2374 vmx
->guest_msrs
[j
] = vmx
->host_msrs
[j
];
2378 vmcs_write32(VM_EXIT_CONTROLS
, vmcs_config
.vmexit_ctrl
);
2380 /* 22.2.1, 20.8.1 */
2381 vmcs_write32(VM_ENTRY_CONTROLS
, vmcs_config
.vmentry_ctrl
);
2383 vmcs_writel(CR0_GUEST_HOST_MASK
, ~0UL);
2384 vmcs_writel(CR4_GUEST_HOST_MASK
, KVM_GUEST_CR4_MASK
);
2386 tsc_base
= vmx
->vcpu
.kvm
->arch
.vm_init_tsc
;
2388 if (tsc_this
< vmx
->vcpu
.kvm
->arch
.vm_init_tsc
)
2389 tsc_base
= tsc_this
;
2391 guest_write_tsc(0, tsc_base
);
2396 static int init_rmode(struct kvm
*kvm
)
2398 if (!init_rmode_tss(kvm
))
2400 if (!init_rmode_identity_map(kvm
))
2405 static int vmx_vcpu_reset(struct kvm_vcpu
*vcpu
)
2407 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2411 vcpu
->arch
.regs_avail
= ~((1 << VCPU_REGS_RIP
) | (1 << VCPU_REGS_RSP
));
2412 down_read(&vcpu
->kvm
->slots_lock
);
2413 if (!init_rmode(vmx
->vcpu
.kvm
)) {
2418 vmx
->rmode
.vm86_active
= 0;
2420 vmx
->soft_vnmi_blocked
= 0;
2422 vmx
->vcpu
.arch
.regs
[VCPU_REGS_RDX
] = get_rdx_init_val();
2423 kvm_set_cr8(&vmx
->vcpu
, 0);
2424 msr
= 0xfee00000 | MSR_IA32_APICBASE_ENABLE
;
2425 if (kvm_vcpu_is_bsp(&vmx
->vcpu
))
2426 msr
|= MSR_IA32_APICBASE_BSP
;
2427 kvm_set_apic_base(&vmx
->vcpu
, msr
);
2429 fx_init(&vmx
->vcpu
);
2431 seg_setup(VCPU_SREG_CS
);
2433 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2434 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
2436 if (kvm_vcpu_is_bsp(&vmx
->vcpu
)) {
2437 vmcs_write16(GUEST_CS_SELECTOR
, 0xf000);
2438 vmcs_writel(GUEST_CS_BASE
, 0x000f0000);
2440 vmcs_write16(GUEST_CS_SELECTOR
, vmx
->vcpu
.arch
.sipi_vector
<< 8);
2441 vmcs_writel(GUEST_CS_BASE
, vmx
->vcpu
.arch
.sipi_vector
<< 12);
2444 seg_setup(VCPU_SREG_DS
);
2445 seg_setup(VCPU_SREG_ES
);
2446 seg_setup(VCPU_SREG_FS
);
2447 seg_setup(VCPU_SREG_GS
);
2448 seg_setup(VCPU_SREG_SS
);
2450 vmcs_write16(GUEST_TR_SELECTOR
, 0);
2451 vmcs_writel(GUEST_TR_BASE
, 0);
2452 vmcs_write32(GUEST_TR_LIMIT
, 0xffff);
2453 vmcs_write32(GUEST_TR_AR_BYTES
, 0x008b);
2455 vmcs_write16(GUEST_LDTR_SELECTOR
, 0);
2456 vmcs_writel(GUEST_LDTR_BASE
, 0);
2457 vmcs_write32(GUEST_LDTR_LIMIT
, 0xffff);
2458 vmcs_write32(GUEST_LDTR_AR_BYTES
, 0x00082);
2460 vmcs_write32(GUEST_SYSENTER_CS
, 0);
2461 vmcs_writel(GUEST_SYSENTER_ESP
, 0);
2462 vmcs_writel(GUEST_SYSENTER_EIP
, 0);
2464 vmcs_writel(GUEST_RFLAGS
, 0x02);
2465 if (kvm_vcpu_is_bsp(&vmx
->vcpu
))
2466 kvm_rip_write(vcpu
, 0xfff0);
2468 kvm_rip_write(vcpu
, 0);
2469 kvm_register_write(vcpu
, VCPU_REGS_RSP
, 0);
2471 vmcs_writel(GUEST_DR7
, 0x400);
2473 vmcs_writel(GUEST_GDTR_BASE
, 0);
2474 vmcs_write32(GUEST_GDTR_LIMIT
, 0xffff);
2476 vmcs_writel(GUEST_IDTR_BASE
, 0);
2477 vmcs_write32(GUEST_IDTR_LIMIT
, 0xffff);
2479 vmcs_write32(GUEST_ACTIVITY_STATE
, 0);
2480 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
, 0);
2481 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS
, 0);
2483 /* Special registers */
2484 vmcs_write64(GUEST_IA32_DEBUGCTL
, 0);
2488 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, 0); /* 22.2.1 */
2490 if (cpu_has_vmx_tpr_shadow()) {
2491 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
, 0);
2492 if (vm_need_tpr_shadow(vmx
->vcpu
.kvm
))
2493 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
,
2494 page_to_phys(vmx
->vcpu
.arch
.apic
->regs_page
));
2495 vmcs_write32(TPR_THRESHOLD
, 0);
2498 if (vm_need_virtualize_apic_accesses(vmx
->vcpu
.kvm
))
2499 vmcs_write64(APIC_ACCESS_ADDR
,
2500 page_to_phys(vmx
->vcpu
.kvm
->arch
.apic_access_page
));
2503 vmcs_write16(VIRTUAL_PROCESSOR_ID
, vmx
->vpid
);
2505 vmx
->vcpu
.arch
.cr0
= 0x60000010;
2506 vmx_set_cr0(&vmx
->vcpu
, vmx
->vcpu
.arch
.cr0
); /* enter rmode */
2507 vmx_set_cr4(&vmx
->vcpu
, 0);
2508 vmx_set_efer(&vmx
->vcpu
, 0);
2509 vmx_fpu_activate(&vmx
->vcpu
);
2510 update_exception_bitmap(&vmx
->vcpu
);
2512 vpid_sync_vcpu_all(vmx
);
2516 /* HACK: Don't enable emulation on guest boot/reset */
2517 vmx
->emulation_required
= 0;
2520 up_read(&vcpu
->kvm
->slots_lock
);
2524 static void enable_irq_window(struct kvm_vcpu
*vcpu
)
2526 u32 cpu_based_vm_exec_control
;
2528 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
2529 cpu_based_vm_exec_control
|= CPU_BASED_VIRTUAL_INTR_PENDING
;
2530 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
2533 static void enable_nmi_window(struct kvm_vcpu
*vcpu
)
2535 u32 cpu_based_vm_exec_control
;
2537 if (!cpu_has_virtual_nmis()) {
2538 enable_irq_window(vcpu
);
2542 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
2543 cpu_based_vm_exec_control
|= CPU_BASED_VIRTUAL_NMI_PENDING
;
2544 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
2547 static void vmx_inject_irq(struct kvm_vcpu
*vcpu
)
2549 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2551 int irq
= vcpu
->arch
.interrupt
.nr
;
2553 trace_kvm_inj_virq(irq
);
2555 ++vcpu
->stat
.irq_injections
;
2556 if (vmx
->rmode
.vm86_active
) {
2557 vmx
->rmode
.irq
.pending
= true;
2558 vmx
->rmode
.irq
.vector
= irq
;
2559 vmx
->rmode
.irq
.rip
= kvm_rip_read(vcpu
);
2560 if (vcpu
->arch
.interrupt
.soft
)
2561 vmx
->rmode
.irq
.rip
+=
2562 vmx
->vcpu
.arch
.event_exit_inst_len
;
2563 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
2564 irq
| INTR_TYPE_SOFT_INTR
| INTR_INFO_VALID_MASK
);
2565 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
, 1);
2566 kvm_rip_write(vcpu
, vmx
->rmode
.irq
.rip
- 1);
2569 intr
= irq
| INTR_INFO_VALID_MASK
;
2570 if (vcpu
->arch
.interrupt
.soft
) {
2571 intr
|= INTR_TYPE_SOFT_INTR
;
2572 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
2573 vmx
->vcpu
.arch
.event_exit_inst_len
);
2575 intr
|= INTR_TYPE_EXT_INTR
;
2576 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, intr
);
2579 static void vmx_inject_nmi(struct kvm_vcpu
*vcpu
)
2581 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2583 if (!cpu_has_virtual_nmis()) {
2585 * Tracking the NMI-blocked state in software is built upon
2586 * finding the next open IRQ window. This, in turn, depends on
2587 * well-behaving guests: They have to keep IRQs disabled at
2588 * least as long as the NMI handler runs. Otherwise we may
2589 * cause NMI nesting, maybe breaking the guest. But as this is
2590 * highly unlikely, we can live with the residual risk.
2592 vmx
->soft_vnmi_blocked
= 1;
2593 vmx
->vnmi_blocked_time
= 0;
2596 ++vcpu
->stat
.nmi_injections
;
2597 if (vmx
->rmode
.vm86_active
) {
2598 vmx
->rmode
.irq
.pending
= true;
2599 vmx
->rmode
.irq
.vector
= NMI_VECTOR
;
2600 vmx
->rmode
.irq
.rip
= kvm_rip_read(vcpu
);
2601 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
2602 NMI_VECTOR
| INTR_TYPE_SOFT_INTR
|
2603 INTR_INFO_VALID_MASK
);
2604 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
, 1);
2605 kvm_rip_write(vcpu
, vmx
->rmode
.irq
.rip
- 1);
2608 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
2609 INTR_TYPE_NMI_INTR
| INTR_INFO_VALID_MASK
| NMI_VECTOR
);
2612 static int vmx_nmi_allowed(struct kvm_vcpu
*vcpu
)
2614 if (!cpu_has_virtual_nmis() && to_vmx(vcpu
)->soft_vnmi_blocked
)
2617 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) &
2618 (GUEST_INTR_STATE_STI
| GUEST_INTR_STATE_MOV_SS
|
2619 GUEST_INTR_STATE_NMI
));
2622 static int vmx_interrupt_allowed(struct kvm_vcpu
*vcpu
)
2624 return (vmcs_readl(GUEST_RFLAGS
) & X86_EFLAGS_IF
) &&
2625 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) &
2626 (GUEST_INTR_STATE_STI
| GUEST_INTR_STATE_MOV_SS
));
2629 static int vmx_set_tss_addr(struct kvm
*kvm
, unsigned int addr
)
2632 struct kvm_userspace_memory_region tss_mem
= {
2633 .slot
= TSS_PRIVATE_MEMSLOT
,
2634 .guest_phys_addr
= addr
,
2635 .memory_size
= PAGE_SIZE
* 3,
2639 ret
= kvm_set_memory_region(kvm
, &tss_mem
, 0);
2642 kvm
->arch
.tss_addr
= addr
;
2646 static int handle_rmode_exception(struct kvm_vcpu
*vcpu
,
2647 int vec
, u32 err_code
)
2650 * Instruction with address size override prefix opcode 0x67
2651 * Cause the #SS fault with 0 error code in VM86 mode.
2653 if (((vec
== GP_VECTOR
) || (vec
== SS_VECTOR
)) && err_code
== 0)
2654 if (emulate_instruction(vcpu
, 0, 0, 0) == EMULATE_DONE
)
2657 * Forward all other exceptions that are valid in real mode.
2658 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
2659 * the required debugging infrastructure rework.
2663 if (vcpu
->guest_debug
&
2664 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))
2666 kvm_queue_exception(vcpu
, vec
);
2669 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_SW_BP
)
2680 kvm_queue_exception(vcpu
, vec
);
2687 * Trigger machine check on the host. We assume all the MSRs are already set up
2688 * by the CPU and that we still run on the same CPU as the MCE occurred on.
2689 * We pass a fake environment to the machine check handler because we want
2690 * the guest to be always treated like user space, no matter what context
2691 * it used internally.
2693 static void kvm_machine_check(void)
2695 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
2696 struct pt_regs regs
= {
2697 .cs
= 3, /* Fake ring 3 no matter what the guest ran on */
2698 .flags
= X86_EFLAGS_IF
,
2701 do_machine_check(®s
, 0);
2705 static int handle_machine_check(struct kvm_vcpu
*vcpu
)
2707 /* already handled by vcpu_run */
2711 static int handle_exception(struct kvm_vcpu
*vcpu
)
2713 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2714 struct kvm_run
*kvm_run
= vcpu
->run
;
2715 u32 intr_info
, ex_no
, error_code
;
2716 unsigned long cr2
, rip
, dr6
;
2718 enum emulation_result er
;
2720 vect_info
= vmx
->idt_vectoring_info
;
2721 intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
2723 if (is_machine_check(intr_info
))
2724 return handle_machine_check(vcpu
);
2726 if ((vect_info
& VECTORING_INFO_VALID_MASK
) &&
2727 !is_page_fault(intr_info
))
2728 printk(KERN_ERR
"%s: unexpected, vectoring info 0x%x "
2729 "intr info 0x%x\n", __func__
, vect_info
, intr_info
);
2731 if ((intr_info
& INTR_INFO_INTR_TYPE_MASK
) == INTR_TYPE_NMI_INTR
)
2732 return 1; /* already handled by vmx_vcpu_run() */
2734 if (is_no_device(intr_info
)) {
2735 vmx_fpu_activate(vcpu
);
2739 if (is_invalid_opcode(intr_info
)) {
2740 er
= emulate_instruction(vcpu
, 0, 0, EMULTYPE_TRAP_UD
);
2741 if (er
!= EMULATE_DONE
)
2742 kvm_queue_exception(vcpu
, UD_VECTOR
);
2747 rip
= kvm_rip_read(vcpu
);
2748 if (intr_info
& INTR_INFO_DELIVER_CODE_MASK
)
2749 error_code
= vmcs_read32(VM_EXIT_INTR_ERROR_CODE
);
2750 if (is_page_fault(intr_info
)) {
2751 /* EPT won't cause page fault directly */
2754 cr2
= vmcs_readl(EXIT_QUALIFICATION
);
2755 trace_kvm_page_fault(cr2
, error_code
);
2757 if (kvm_event_needs_reinjection(vcpu
))
2758 kvm_mmu_unprotect_page_virt(vcpu
, cr2
);
2759 return kvm_mmu_page_fault(vcpu
, cr2
, error_code
);
2762 if (vmx
->rmode
.vm86_active
&&
2763 handle_rmode_exception(vcpu
, intr_info
& INTR_INFO_VECTOR_MASK
,
2765 if (vcpu
->arch
.halt_request
) {
2766 vcpu
->arch
.halt_request
= 0;
2767 return kvm_emulate_halt(vcpu
);
2772 ex_no
= intr_info
& INTR_INFO_VECTOR_MASK
;
2775 dr6
= vmcs_readl(EXIT_QUALIFICATION
);
2776 if (!(vcpu
->guest_debug
&
2777 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))) {
2778 vcpu
->arch
.dr6
= dr6
| DR6_FIXED_1
;
2779 kvm_queue_exception(vcpu
, DB_VECTOR
);
2782 kvm_run
->debug
.arch
.dr6
= dr6
| DR6_FIXED_1
;
2783 kvm_run
->debug
.arch
.dr7
= vmcs_readl(GUEST_DR7
);
2786 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
2787 kvm_run
->debug
.arch
.pc
= vmcs_readl(GUEST_CS_BASE
) + rip
;
2788 kvm_run
->debug
.arch
.exception
= ex_no
;
2791 kvm_run
->exit_reason
= KVM_EXIT_EXCEPTION
;
2792 kvm_run
->ex
.exception
= ex_no
;
2793 kvm_run
->ex
.error_code
= error_code
;
2799 static int handle_external_interrupt(struct kvm_vcpu
*vcpu
)
2801 ++vcpu
->stat
.irq_exits
;
2805 static int handle_triple_fault(struct kvm_vcpu
*vcpu
)
2807 vcpu
->run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
2811 static int handle_io(struct kvm_vcpu
*vcpu
)
2813 unsigned long exit_qualification
;
2814 int size
, in
, string
;
2817 ++vcpu
->stat
.io_exits
;
2818 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
2819 string
= (exit_qualification
& 16) != 0;
2822 if (emulate_instruction(vcpu
, 0, 0, 0) == EMULATE_DO_MMIO
)
2827 size
= (exit_qualification
& 7) + 1;
2828 in
= (exit_qualification
& 8) != 0;
2829 port
= exit_qualification
>> 16;
2831 skip_emulated_instruction(vcpu
);
2832 return kvm_emulate_pio(vcpu
, in
, size
, port
);
2836 vmx_patch_hypercall(struct kvm_vcpu
*vcpu
, unsigned char *hypercall
)
2839 * Patch in the VMCALL instruction:
2841 hypercall
[0] = 0x0f;
2842 hypercall
[1] = 0x01;
2843 hypercall
[2] = 0xc1;
2846 static int handle_cr(struct kvm_vcpu
*vcpu
)
2848 unsigned long exit_qualification
, val
;
2852 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
2853 cr
= exit_qualification
& 15;
2854 reg
= (exit_qualification
>> 8) & 15;
2855 switch ((exit_qualification
>> 4) & 3) {
2856 case 0: /* mov to cr */
2857 val
= kvm_register_read(vcpu
, reg
);
2858 trace_kvm_cr_write(cr
, val
);
2861 kvm_set_cr0(vcpu
, val
);
2862 skip_emulated_instruction(vcpu
);
2865 kvm_set_cr3(vcpu
, val
);
2866 skip_emulated_instruction(vcpu
);
2869 kvm_set_cr4(vcpu
, val
);
2870 skip_emulated_instruction(vcpu
);
2873 u8 cr8_prev
= kvm_get_cr8(vcpu
);
2874 u8 cr8
= kvm_register_read(vcpu
, reg
);
2875 kvm_set_cr8(vcpu
, cr8
);
2876 skip_emulated_instruction(vcpu
);
2877 if (irqchip_in_kernel(vcpu
->kvm
))
2879 if (cr8_prev
<= cr8
)
2881 vcpu
->run
->exit_reason
= KVM_EXIT_SET_TPR
;
2887 vmx_fpu_deactivate(vcpu
);
2888 vcpu
->arch
.cr0
&= ~X86_CR0_TS
;
2889 vmcs_writel(CR0_READ_SHADOW
, vcpu
->arch
.cr0
);
2890 vmx_fpu_activate(vcpu
);
2891 skip_emulated_instruction(vcpu
);
2893 case 1: /*mov from cr*/
2896 kvm_register_write(vcpu
, reg
, vcpu
->arch
.cr3
);
2897 trace_kvm_cr_read(cr
, vcpu
->arch
.cr3
);
2898 skip_emulated_instruction(vcpu
);
2901 val
= kvm_get_cr8(vcpu
);
2902 kvm_register_write(vcpu
, reg
, val
);
2903 trace_kvm_cr_read(cr
, val
);
2904 skip_emulated_instruction(vcpu
);
2909 kvm_lmsw(vcpu
, (exit_qualification
>> LMSW_SOURCE_DATA_SHIFT
) & 0x0f);
2911 skip_emulated_instruction(vcpu
);
2916 vcpu
->run
->exit_reason
= 0;
2917 pr_unimpl(vcpu
, "unhandled control register: op %d cr %d\n",
2918 (int)(exit_qualification
>> 4) & 3, cr
);
2922 static int handle_dr(struct kvm_vcpu
*vcpu
)
2924 unsigned long exit_qualification
;
2928 if (!kvm_require_cpl(vcpu
, 0))
2930 dr
= vmcs_readl(GUEST_DR7
);
2933 * As the vm-exit takes precedence over the debug trap, we
2934 * need to emulate the latter, either for the host or the
2935 * guest debugging itself.
2937 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) {
2938 vcpu
->run
->debug
.arch
.dr6
= vcpu
->arch
.dr6
;
2939 vcpu
->run
->debug
.arch
.dr7
= dr
;
2940 vcpu
->run
->debug
.arch
.pc
=
2941 vmcs_readl(GUEST_CS_BASE
) +
2942 vmcs_readl(GUEST_RIP
);
2943 vcpu
->run
->debug
.arch
.exception
= DB_VECTOR
;
2944 vcpu
->run
->exit_reason
= KVM_EXIT_DEBUG
;
2947 vcpu
->arch
.dr7
&= ~DR7_GD
;
2948 vcpu
->arch
.dr6
|= DR6_BD
;
2949 vmcs_writel(GUEST_DR7
, vcpu
->arch
.dr7
);
2950 kvm_queue_exception(vcpu
, DB_VECTOR
);
2955 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
2956 dr
= exit_qualification
& DEBUG_REG_ACCESS_NUM
;
2957 reg
= DEBUG_REG_ACCESS_REG(exit_qualification
);
2958 if (exit_qualification
& TYPE_MOV_FROM_DR
) {
2961 val
= vcpu
->arch
.db
[dr
];
2964 val
= vcpu
->arch
.dr6
;
2967 val
= vcpu
->arch
.dr7
;
2972 kvm_register_write(vcpu
, reg
, val
);
2974 val
= vcpu
->arch
.regs
[reg
];
2977 vcpu
->arch
.db
[dr
] = val
;
2978 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
2979 vcpu
->arch
.eff_db
[dr
] = val
;
2982 if (vcpu
->arch
.cr4
& X86_CR4_DE
)
2983 kvm_queue_exception(vcpu
, UD_VECTOR
);
2986 if (val
& 0xffffffff00000000ULL
) {
2987 kvm_queue_exception(vcpu
, GP_VECTOR
);
2990 vcpu
->arch
.dr6
= (val
& DR6_VOLATILE
) | DR6_FIXED_1
;
2993 if (val
& 0xffffffff00000000ULL
) {
2994 kvm_queue_exception(vcpu
, GP_VECTOR
);
2997 vcpu
->arch
.dr7
= (val
& DR7_VOLATILE
) | DR7_FIXED_1
;
2998 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)) {
2999 vmcs_writel(GUEST_DR7
, vcpu
->arch
.dr7
);
3000 vcpu
->arch
.switch_db_regs
=
3001 (val
& DR7_BP_EN_MASK
);
3006 skip_emulated_instruction(vcpu
);
3010 static int handle_cpuid(struct kvm_vcpu
*vcpu
)
3012 kvm_emulate_cpuid(vcpu
);
3016 static int handle_rdmsr(struct kvm_vcpu
*vcpu
)
3018 u32 ecx
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
3021 if (vmx_get_msr(vcpu
, ecx
, &data
)) {
3022 kvm_inject_gp(vcpu
, 0);
3026 trace_kvm_msr_read(ecx
, data
);
3028 /* FIXME: handling of bits 32:63 of rax, rdx */
3029 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = data
& -1u;
3030 vcpu
->arch
.regs
[VCPU_REGS_RDX
] = (data
>> 32) & -1u;
3031 skip_emulated_instruction(vcpu
);
3035 static int handle_wrmsr(struct kvm_vcpu
*vcpu
)
3037 u32 ecx
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
3038 u64 data
= (vcpu
->arch
.regs
[VCPU_REGS_RAX
] & -1u)
3039 | ((u64
)(vcpu
->arch
.regs
[VCPU_REGS_RDX
] & -1u) << 32);
3041 trace_kvm_msr_write(ecx
, data
);
3043 if (vmx_set_msr(vcpu
, ecx
, data
) != 0) {
3044 kvm_inject_gp(vcpu
, 0);
3048 skip_emulated_instruction(vcpu
);
3052 static int handle_tpr_below_threshold(struct kvm_vcpu
*vcpu
)
3057 static int handle_interrupt_window(struct kvm_vcpu
*vcpu
)
3059 u32 cpu_based_vm_exec_control
;
3061 /* clear pending irq */
3062 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
3063 cpu_based_vm_exec_control
&= ~CPU_BASED_VIRTUAL_INTR_PENDING
;
3064 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
3066 ++vcpu
->stat
.irq_window_exits
;
3069 * If the user space waits to inject interrupts, exit as soon as
3072 if (!irqchip_in_kernel(vcpu
->kvm
) &&
3073 vcpu
->run
->request_interrupt_window
&&
3074 !kvm_cpu_has_interrupt(vcpu
)) {
3075 vcpu
->run
->exit_reason
= KVM_EXIT_IRQ_WINDOW_OPEN
;
3081 static int handle_halt(struct kvm_vcpu
*vcpu
)
3083 skip_emulated_instruction(vcpu
);
3084 return kvm_emulate_halt(vcpu
);
3087 static int handle_vmcall(struct kvm_vcpu
*vcpu
)
3089 skip_emulated_instruction(vcpu
);
3090 kvm_emulate_hypercall(vcpu
);
3094 static int handle_vmx_insn(struct kvm_vcpu
*vcpu
)
3096 kvm_queue_exception(vcpu
, UD_VECTOR
);
3100 static int handle_invlpg(struct kvm_vcpu
*vcpu
)
3102 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
3104 kvm_mmu_invlpg(vcpu
, exit_qualification
);
3105 skip_emulated_instruction(vcpu
);
3109 static int handle_wbinvd(struct kvm_vcpu
*vcpu
)
3111 skip_emulated_instruction(vcpu
);
3112 /* TODO: Add support for VT-d/pass-through device */
3116 static int handle_apic_access(struct kvm_vcpu
*vcpu
)
3118 unsigned long exit_qualification
;
3119 enum emulation_result er
;
3120 unsigned long offset
;
3122 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
3123 offset
= exit_qualification
& 0xffful
;
3125 er
= emulate_instruction(vcpu
, 0, 0, 0);
3127 if (er
!= EMULATE_DONE
) {
3129 "Fail to handle apic access vmexit! Offset is 0x%lx\n",
3136 static int handle_task_switch(struct kvm_vcpu
*vcpu
)
3138 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3139 unsigned long exit_qualification
;
3141 int reason
, type
, idt_v
;
3143 idt_v
= (vmx
->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
);
3144 type
= (vmx
->idt_vectoring_info
& VECTORING_INFO_TYPE_MASK
);
3146 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
3148 reason
= (u32
)exit_qualification
>> 30;
3149 if (reason
== TASK_SWITCH_GATE
&& idt_v
) {
3151 case INTR_TYPE_NMI_INTR
:
3152 vcpu
->arch
.nmi_injected
= false;
3153 if (cpu_has_virtual_nmis())
3154 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
,
3155 GUEST_INTR_STATE_NMI
);
3157 case INTR_TYPE_EXT_INTR
:
3158 case INTR_TYPE_SOFT_INTR
:
3159 kvm_clear_interrupt_queue(vcpu
);
3161 case INTR_TYPE_HARD_EXCEPTION
:
3162 case INTR_TYPE_SOFT_EXCEPTION
:
3163 kvm_clear_exception_queue(vcpu
);
3169 tss_selector
= exit_qualification
;
3171 if (!idt_v
|| (type
!= INTR_TYPE_HARD_EXCEPTION
&&
3172 type
!= INTR_TYPE_EXT_INTR
&&
3173 type
!= INTR_TYPE_NMI_INTR
))
3174 skip_emulated_instruction(vcpu
);
3176 if (!kvm_task_switch(vcpu
, tss_selector
, reason
))
3179 /* clear all local breakpoint enable flags */
3180 vmcs_writel(GUEST_DR7
, vmcs_readl(GUEST_DR7
) & ~55);
3183 * TODO: What about debug traps on tss switch?
3184 * Are we supposed to inject them and update dr6?
3190 static int handle_ept_violation(struct kvm_vcpu
*vcpu
)
3192 unsigned long exit_qualification
;
3196 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
3198 if (exit_qualification
& (1 << 6)) {
3199 printk(KERN_ERR
"EPT: GPA exceeds GAW!\n");
3203 gla_validity
= (exit_qualification
>> 7) & 0x3;
3204 if (gla_validity
!= 0x3 && gla_validity
!= 0x1 && gla_validity
!= 0) {
3205 printk(KERN_ERR
"EPT: Handling EPT violation failed!\n");
3206 printk(KERN_ERR
"EPT: GPA: 0x%lx, GVA: 0x%lx\n",
3207 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS
),
3208 vmcs_readl(GUEST_LINEAR_ADDRESS
));
3209 printk(KERN_ERR
"EPT: Exit qualification is 0x%lx\n",
3210 (long unsigned int)exit_qualification
);
3211 vcpu
->run
->exit_reason
= KVM_EXIT_UNKNOWN
;
3212 vcpu
->run
->hw
.hardware_exit_reason
= EXIT_REASON_EPT_VIOLATION
;
3216 gpa
= vmcs_read64(GUEST_PHYSICAL_ADDRESS
);
3217 trace_kvm_page_fault(gpa
, exit_qualification
);
3218 return kvm_mmu_page_fault(vcpu
, gpa
& PAGE_MASK
, 0);
3221 static u64
ept_rsvd_mask(u64 spte
, int level
)
3226 for (i
= 51; i
> boot_cpu_data
.x86_phys_bits
; i
--)
3227 mask
|= (1ULL << i
);
3230 /* bits 7:3 reserved */
3232 else if (level
== 2) {
3233 if (spte
& (1ULL << 7))
3234 /* 2MB ref, bits 20:12 reserved */
3237 /* bits 6:3 reserved */
3244 static void ept_misconfig_inspect_spte(struct kvm_vcpu
*vcpu
, u64 spte
,
3247 printk(KERN_ERR
"%s: spte 0x%llx level %d\n", __func__
, spte
, level
);
3249 /* 010b (write-only) */
3250 WARN_ON((spte
& 0x7) == 0x2);
3252 /* 110b (write/execute) */
3253 WARN_ON((spte
& 0x7) == 0x6);
3255 /* 100b (execute-only) and value not supported by logical processor */
3256 if (!cpu_has_vmx_ept_execute_only())
3257 WARN_ON((spte
& 0x7) == 0x4);
3261 u64 rsvd_bits
= spte
& ept_rsvd_mask(spte
, level
);
3263 if (rsvd_bits
!= 0) {
3264 printk(KERN_ERR
"%s: rsvd_bits = 0x%llx\n",
3265 __func__
, rsvd_bits
);
3269 if (level
== 1 || (level
== 2 && (spte
& (1ULL << 7)))) {
3270 u64 ept_mem_type
= (spte
& 0x38) >> 3;
3272 if (ept_mem_type
== 2 || ept_mem_type
== 3 ||
3273 ept_mem_type
== 7) {
3274 printk(KERN_ERR
"%s: ept_mem_type=0x%llx\n",
3275 __func__
, ept_mem_type
);
3282 static int handle_ept_misconfig(struct kvm_vcpu
*vcpu
)
3288 gpa
= vmcs_read64(GUEST_PHYSICAL_ADDRESS
);
3290 printk(KERN_ERR
"EPT: Misconfiguration.\n");
3291 printk(KERN_ERR
"EPT: GPA: 0x%llx\n", gpa
);
3293 nr_sptes
= kvm_mmu_get_spte_hierarchy(vcpu
, gpa
, sptes
);
3295 for (i
= PT64_ROOT_LEVEL
; i
> PT64_ROOT_LEVEL
- nr_sptes
; --i
)
3296 ept_misconfig_inspect_spte(vcpu
, sptes
[i
-1], i
);
3298 vcpu
->run
->exit_reason
= KVM_EXIT_UNKNOWN
;
3299 vcpu
->run
->hw
.hardware_exit_reason
= EXIT_REASON_EPT_MISCONFIG
;
3304 static int handle_nmi_window(struct kvm_vcpu
*vcpu
)
3306 u32 cpu_based_vm_exec_control
;
3308 /* clear pending NMI */
3309 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
3310 cpu_based_vm_exec_control
&= ~CPU_BASED_VIRTUAL_NMI_PENDING
;
3311 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
3312 ++vcpu
->stat
.nmi_window_exits
;
3317 static int handle_invalid_guest_state(struct kvm_vcpu
*vcpu
)
3319 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3320 enum emulation_result err
= EMULATE_DONE
;
3323 while (!guest_state_valid(vcpu
)) {
3324 err
= emulate_instruction(vcpu
, 0, 0, 0);
3326 if (err
== EMULATE_DO_MMIO
) {
3331 if (err
!= EMULATE_DONE
) {
3332 kvm_report_emulation_failure(vcpu
, "emulation failure");
3333 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
3334 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
3339 if (signal_pending(current
))
3345 vmx
->emulation_required
= 0;
3351 * The exit handlers return 1 if the exit was handled fully and guest execution
3352 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
3353 * to be done to userspace and return 0.
3355 static int (*kvm_vmx_exit_handlers
[])(struct kvm_vcpu
*vcpu
) = {
3356 [EXIT_REASON_EXCEPTION_NMI
] = handle_exception
,
3357 [EXIT_REASON_EXTERNAL_INTERRUPT
] = handle_external_interrupt
,
3358 [EXIT_REASON_TRIPLE_FAULT
] = handle_triple_fault
,
3359 [EXIT_REASON_NMI_WINDOW
] = handle_nmi_window
,
3360 [EXIT_REASON_IO_INSTRUCTION
] = handle_io
,
3361 [EXIT_REASON_CR_ACCESS
] = handle_cr
,
3362 [EXIT_REASON_DR_ACCESS
] = handle_dr
,
3363 [EXIT_REASON_CPUID
] = handle_cpuid
,
3364 [EXIT_REASON_MSR_READ
] = handle_rdmsr
,
3365 [EXIT_REASON_MSR_WRITE
] = handle_wrmsr
,
3366 [EXIT_REASON_PENDING_INTERRUPT
] = handle_interrupt_window
,
3367 [EXIT_REASON_HLT
] = handle_halt
,
3368 [EXIT_REASON_INVLPG
] = handle_invlpg
,
3369 [EXIT_REASON_VMCALL
] = handle_vmcall
,
3370 [EXIT_REASON_VMCLEAR
] = handle_vmx_insn
,
3371 [EXIT_REASON_VMLAUNCH
] = handle_vmx_insn
,
3372 [EXIT_REASON_VMPTRLD
] = handle_vmx_insn
,
3373 [EXIT_REASON_VMPTRST
] = handle_vmx_insn
,
3374 [EXIT_REASON_VMREAD
] = handle_vmx_insn
,
3375 [EXIT_REASON_VMRESUME
] = handle_vmx_insn
,
3376 [EXIT_REASON_VMWRITE
] = handle_vmx_insn
,
3377 [EXIT_REASON_VMOFF
] = handle_vmx_insn
,
3378 [EXIT_REASON_VMON
] = handle_vmx_insn
,
3379 [EXIT_REASON_TPR_BELOW_THRESHOLD
] = handle_tpr_below_threshold
,
3380 [EXIT_REASON_APIC_ACCESS
] = handle_apic_access
,
3381 [EXIT_REASON_WBINVD
] = handle_wbinvd
,
3382 [EXIT_REASON_TASK_SWITCH
] = handle_task_switch
,
3383 [EXIT_REASON_MCE_DURING_VMENTRY
] = handle_machine_check
,
3384 [EXIT_REASON_EPT_VIOLATION
] = handle_ept_violation
,
3385 [EXIT_REASON_EPT_MISCONFIG
] = handle_ept_misconfig
,
3388 static const int kvm_vmx_max_exit_handlers
=
3389 ARRAY_SIZE(kvm_vmx_exit_handlers
);
3392 * The guest has exited. See if we can fix it or if we need userspace
3395 static int vmx_handle_exit(struct kvm_vcpu
*vcpu
)
3397 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3398 u32 exit_reason
= vmx
->exit_reason
;
3399 u32 vectoring_info
= vmx
->idt_vectoring_info
;
3401 trace_kvm_exit(exit_reason
, kvm_rip_read(vcpu
));
3403 /* If guest state is invalid, start emulating */
3404 if (vmx
->emulation_required
&& emulate_invalid_guest_state
)
3405 return handle_invalid_guest_state(vcpu
);
3407 /* Access CR3 don't cause VMExit in paging mode, so we need
3408 * to sync with guest real CR3. */
3409 if (enable_ept
&& is_paging(vcpu
))
3410 vcpu
->arch
.cr3
= vmcs_readl(GUEST_CR3
);
3412 if (unlikely(vmx
->fail
)) {
3413 vcpu
->run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
3414 vcpu
->run
->fail_entry
.hardware_entry_failure_reason
3415 = vmcs_read32(VM_INSTRUCTION_ERROR
);
3419 if ((vectoring_info
& VECTORING_INFO_VALID_MASK
) &&
3420 (exit_reason
!= EXIT_REASON_EXCEPTION_NMI
&&
3421 exit_reason
!= EXIT_REASON_EPT_VIOLATION
&&
3422 exit_reason
!= EXIT_REASON_TASK_SWITCH
))
3423 printk(KERN_WARNING
"%s: unexpected, valid vectoring info "
3424 "(0x%x) and exit reason is 0x%x\n",
3425 __func__
, vectoring_info
, exit_reason
);
3427 if (unlikely(!cpu_has_virtual_nmis() && vmx
->soft_vnmi_blocked
)) {
3428 if (vmx_interrupt_allowed(vcpu
)) {
3429 vmx
->soft_vnmi_blocked
= 0;
3430 } else if (vmx
->vnmi_blocked_time
> 1000000000LL &&
3431 vcpu
->arch
.nmi_pending
) {
3433 * This CPU don't support us in finding the end of an
3434 * NMI-blocked window if the guest runs with IRQs
3435 * disabled. So we pull the trigger after 1 s of
3436 * futile waiting, but inform the user about this.
3438 printk(KERN_WARNING
"%s: Breaking out of NMI-blocked "
3439 "state on VCPU %d after 1 s timeout\n",
3440 __func__
, vcpu
->vcpu_id
);
3441 vmx
->soft_vnmi_blocked
= 0;
3445 if (exit_reason
< kvm_vmx_max_exit_handlers
3446 && kvm_vmx_exit_handlers
[exit_reason
])
3447 return kvm_vmx_exit_handlers
[exit_reason
](vcpu
);
3449 vcpu
->run
->exit_reason
= KVM_EXIT_UNKNOWN
;
3450 vcpu
->run
->hw
.hardware_exit_reason
= exit_reason
;
3455 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
, int tpr
, int irr
)
3457 if (irr
== -1 || tpr
< irr
) {
3458 vmcs_write32(TPR_THRESHOLD
, 0);
3462 vmcs_write32(TPR_THRESHOLD
, irr
);
3465 static void vmx_complete_interrupts(struct vcpu_vmx
*vmx
)
3468 u32 idt_vectoring_info
= vmx
->idt_vectoring_info
;
3472 bool idtv_info_valid
;
3474 exit_intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
3476 vmx
->exit_reason
= vmcs_read32(VM_EXIT_REASON
);
3478 /* Handle machine checks before interrupts are enabled */
3479 if ((vmx
->exit_reason
== EXIT_REASON_MCE_DURING_VMENTRY
)
3480 || (vmx
->exit_reason
== EXIT_REASON_EXCEPTION_NMI
3481 && is_machine_check(exit_intr_info
)))
3482 kvm_machine_check();
3484 /* We need to handle NMIs before interrupts are enabled */
3485 if ((exit_intr_info
& INTR_INFO_INTR_TYPE_MASK
) == INTR_TYPE_NMI_INTR
&&
3486 (exit_intr_info
& INTR_INFO_VALID_MASK
))
3489 idtv_info_valid
= idt_vectoring_info
& VECTORING_INFO_VALID_MASK
;
3491 if (cpu_has_virtual_nmis()) {
3492 unblock_nmi
= (exit_intr_info
& INTR_INFO_UNBLOCK_NMI
) != 0;
3493 vector
= exit_intr_info
& INTR_INFO_VECTOR_MASK
;
3495 * SDM 3: 27.7.1.2 (September 2008)
3496 * Re-set bit "block by NMI" before VM entry if vmexit caused by
3497 * a guest IRET fault.
3498 * SDM 3: 23.2.2 (September 2008)
3499 * Bit 12 is undefined in any of the following cases:
3500 * If the VM exit sets the valid bit in the IDT-vectoring
3501 * information field.
3502 * If the VM exit is due to a double fault.
3504 if ((exit_intr_info
& INTR_INFO_VALID_MASK
) && unblock_nmi
&&
3505 vector
!= DF_VECTOR
&& !idtv_info_valid
)
3506 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
,
3507 GUEST_INTR_STATE_NMI
);
3508 } else if (unlikely(vmx
->soft_vnmi_blocked
))
3509 vmx
->vnmi_blocked_time
+=
3510 ktime_to_ns(ktime_sub(ktime_get(), vmx
->entry_time
));
3512 vmx
->vcpu
.arch
.nmi_injected
= false;
3513 kvm_clear_exception_queue(&vmx
->vcpu
);
3514 kvm_clear_interrupt_queue(&vmx
->vcpu
);
3516 if (!idtv_info_valid
)
3519 vector
= idt_vectoring_info
& VECTORING_INFO_VECTOR_MASK
;
3520 type
= idt_vectoring_info
& VECTORING_INFO_TYPE_MASK
;
3523 case INTR_TYPE_NMI_INTR
:
3524 vmx
->vcpu
.arch
.nmi_injected
= true;
3526 * SDM 3: 27.7.1.2 (September 2008)
3527 * Clear bit "block by NMI" before VM entry if a NMI
3530 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO
,
3531 GUEST_INTR_STATE_NMI
);
3533 case INTR_TYPE_SOFT_EXCEPTION
:
3534 vmx
->vcpu
.arch
.event_exit_inst_len
=
3535 vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
3537 case INTR_TYPE_HARD_EXCEPTION
:
3538 if (idt_vectoring_info
& VECTORING_INFO_DELIVER_CODE_MASK
) {
3539 u32 err
= vmcs_read32(IDT_VECTORING_ERROR_CODE
);
3540 kvm_queue_exception_e(&vmx
->vcpu
, vector
, err
);
3542 kvm_queue_exception(&vmx
->vcpu
, vector
);
3544 case INTR_TYPE_SOFT_INTR
:
3545 vmx
->vcpu
.arch
.event_exit_inst_len
=
3546 vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
3548 case INTR_TYPE_EXT_INTR
:
3549 kvm_queue_interrupt(&vmx
->vcpu
, vector
,
3550 type
== INTR_TYPE_SOFT_INTR
);
3558 * Failure to inject an interrupt should give us the information
3559 * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
3560 * when fetching the interrupt redirection bitmap in the real-mode
3561 * tss, this doesn't happen. So we do it ourselves.
3563 static void fixup_rmode_irq(struct vcpu_vmx
*vmx
)
3565 vmx
->rmode
.irq
.pending
= 0;
3566 if (kvm_rip_read(&vmx
->vcpu
) + 1 != vmx
->rmode
.irq
.rip
)
3568 kvm_rip_write(&vmx
->vcpu
, vmx
->rmode
.irq
.rip
);
3569 if (vmx
->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
) {
3570 vmx
->idt_vectoring_info
&= ~VECTORING_INFO_TYPE_MASK
;
3571 vmx
->idt_vectoring_info
|= INTR_TYPE_EXT_INTR
;
3574 vmx
->idt_vectoring_info
=
3575 VECTORING_INFO_VALID_MASK
3576 | INTR_TYPE_EXT_INTR
3577 | vmx
->rmode
.irq
.vector
;
3580 #ifdef CONFIG_X86_64
3588 static void vmx_vcpu_run(struct kvm_vcpu
*vcpu
)
3590 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3592 if (enable_ept
&& is_paging(vcpu
)) {
3593 vmcs_writel(GUEST_CR3
, vcpu
->arch
.cr3
);
3594 ept_load_pdptrs(vcpu
);
3596 /* Record the guest's net vcpu time for enforced NMI injections. */
3597 if (unlikely(!cpu_has_virtual_nmis() && vmx
->soft_vnmi_blocked
))
3598 vmx
->entry_time
= ktime_get();
3600 /* Don't enter VMX if guest state is invalid, let the exit handler
3601 start emulation until we arrive back to a valid state */
3602 if (vmx
->emulation_required
&& emulate_invalid_guest_state
)
3605 if (test_bit(VCPU_REGS_RSP
, (unsigned long *)&vcpu
->arch
.regs_dirty
))
3606 vmcs_writel(GUEST_RSP
, vcpu
->arch
.regs
[VCPU_REGS_RSP
]);
3607 if (test_bit(VCPU_REGS_RIP
, (unsigned long *)&vcpu
->arch
.regs_dirty
))
3608 vmcs_writel(GUEST_RIP
, vcpu
->arch
.regs
[VCPU_REGS_RIP
]);
3610 /* When single-stepping over STI and MOV SS, we must clear the
3611 * corresponding interruptibility bits in the guest state. Otherwise
3612 * vmentry fails as it then expects bit 14 (BS) in pending debug
3613 * exceptions being set, but that's not correct for the guest debugging
3615 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
3616 vmx_set_interrupt_shadow(vcpu
, 0);
3619 * Loading guest fpu may have cleared host cr0.ts
3621 vmcs_writel(HOST_CR0
, read_cr0());
3623 if (vcpu
->arch
.switch_db_regs
)
3624 set_debugreg(vcpu
->arch
.dr6
, 6);
3627 /* Store host registers */
3628 "push %%"R
"dx; push %%"R
"bp;"
3630 "cmp %%"R
"sp, %c[host_rsp](%0) \n\t"
3632 "mov %%"R
"sp, %c[host_rsp](%0) \n\t"
3633 __ex(ASM_VMX_VMWRITE_RSP_RDX
) "\n\t"
3635 /* Reload cr2 if changed */
3636 "mov %c[cr2](%0), %%"R
"ax \n\t"
3637 "mov %%cr2, %%"R
"dx \n\t"
3638 "cmp %%"R
"ax, %%"R
"dx \n\t"
3640 "mov %%"R
"ax, %%cr2 \n\t"
3642 /* Check if vmlaunch of vmresume is needed */
3643 "cmpl $0, %c[launched](%0) \n\t"
3644 /* Load guest registers. Don't clobber flags. */
3645 "mov %c[rax](%0), %%"R
"ax \n\t"
3646 "mov %c[rbx](%0), %%"R
"bx \n\t"
3647 "mov %c[rdx](%0), %%"R
"dx \n\t"
3648 "mov %c[rsi](%0), %%"R
"si \n\t"
3649 "mov %c[rdi](%0), %%"R
"di \n\t"
3650 "mov %c[rbp](%0), %%"R
"bp \n\t"
3651 #ifdef CONFIG_X86_64
3652 "mov %c[r8](%0), %%r8 \n\t"
3653 "mov %c[r9](%0), %%r9 \n\t"
3654 "mov %c[r10](%0), %%r10 \n\t"
3655 "mov %c[r11](%0), %%r11 \n\t"
3656 "mov %c[r12](%0), %%r12 \n\t"
3657 "mov %c[r13](%0), %%r13 \n\t"
3658 "mov %c[r14](%0), %%r14 \n\t"
3659 "mov %c[r15](%0), %%r15 \n\t"
3661 "mov %c[rcx](%0), %%"R
"cx \n\t" /* kills %0 (ecx) */
3663 /* Enter guest mode */
3664 "jne .Llaunched \n\t"
3665 __ex(ASM_VMX_VMLAUNCH
) "\n\t"
3666 "jmp .Lkvm_vmx_return \n\t"
3667 ".Llaunched: " __ex(ASM_VMX_VMRESUME
) "\n\t"
3668 ".Lkvm_vmx_return: "
3669 /* Save guest registers, load host registers, keep flags */
3670 "xchg %0, (%%"R
"sp) \n\t"
3671 "mov %%"R
"ax, %c[rax](%0) \n\t"
3672 "mov %%"R
"bx, %c[rbx](%0) \n\t"
3673 "push"Q
" (%%"R
"sp); pop"Q
" %c[rcx](%0) \n\t"
3674 "mov %%"R
"dx, %c[rdx](%0) \n\t"
3675 "mov %%"R
"si, %c[rsi](%0) \n\t"
3676 "mov %%"R
"di, %c[rdi](%0) \n\t"
3677 "mov %%"R
"bp, %c[rbp](%0) \n\t"
3678 #ifdef CONFIG_X86_64
3679 "mov %%r8, %c[r8](%0) \n\t"
3680 "mov %%r9, %c[r9](%0) \n\t"
3681 "mov %%r10, %c[r10](%0) \n\t"
3682 "mov %%r11, %c[r11](%0) \n\t"
3683 "mov %%r12, %c[r12](%0) \n\t"
3684 "mov %%r13, %c[r13](%0) \n\t"
3685 "mov %%r14, %c[r14](%0) \n\t"
3686 "mov %%r15, %c[r15](%0) \n\t"
3688 "mov %%cr2, %%"R
"ax \n\t"
3689 "mov %%"R
"ax, %c[cr2](%0) \n\t"
3691 "pop %%"R
"bp; pop %%"R
"bp; pop %%"R
"dx \n\t"
3692 "setbe %c[fail](%0) \n\t"
3693 : : "c"(vmx
), "d"((unsigned long)HOST_RSP
),
3694 [launched
]"i"(offsetof(struct vcpu_vmx
, launched
)),
3695 [fail
]"i"(offsetof(struct vcpu_vmx
, fail
)),
3696 [host_rsp
]"i"(offsetof(struct vcpu_vmx
, host_rsp
)),
3697 [rax
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RAX
])),
3698 [rbx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RBX
])),
3699 [rcx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RCX
])),
3700 [rdx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RDX
])),
3701 [rsi
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RSI
])),
3702 [rdi
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RDI
])),
3703 [rbp
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RBP
])),
3704 #ifdef CONFIG_X86_64
3705 [r8
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R8
])),
3706 [r9
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R9
])),
3707 [r10
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R10
])),
3708 [r11
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R11
])),
3709 [r12
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R12
])),
3710 [r13
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R13
])),
3711 [r14
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R14
])),
3712 [r15
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R15
])),
3714 [cr2
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.cr2
))
3716 , R
"bx", R
"di", R
"si"
3717 #ifdef CONFIG_X86_64
3718 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
3722 vcpu
->arch
.regs_avail
= ~((1 << VCPU_REGS_RIP
) | (1 << VCPU_REGS_RSP
)
3723 | (1 << VCPU_EXREG_PDPTR
));
3724 vcpu
->arch
.regs_dirty
= 0;
3726 if (vcpu
->arch
.switch_db_regs
)
3727 get_debugreg(vcpu
->arch
.dr6
, 6);
3729 vmx
->idt_vectoring_info
= vmcs_read32(IDT_VECTORING_INFO_FIELD
);
3730 if (vmx
->rmode
.irq
.pending
)
3731 fixup_rmode_irq(vmx
);
3733 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS
));
3736 vmx_complete_interrupts(vmx
);
3742 static void vmx_free_vmcs(struct kvm_vcpu
*vcpu
)
3744 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3748 free_vmcs(vmx
->vmcs
);
3753 static void vmx_free_vcpu(struct kvm_vcpu
*vcpu
)
3755 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3757 spin_lock(&vmx_vpid_lock
);
3759 __clear_bit(vmx
->vpid
, vmx_vpid_bitmap
);
3760 spin_unlock(&vmx_vpid_lock
);
3761 vmx_free_vmcs(vcpu
);
3762 kfree(vmx
->host_msrs
);
3763 kfree(vmx
->guest_msrs
);
3764 kvm_vcpu_uninit(vcpu
);
3765 kmem_cache_free(kvm_vcpu_cache
, vmx
);
3768 static struct kvm_vcpu
*vmx_create_vcpu(struct kvm
*kvm
, unsigned int id
)
3771 struct vcpu_vmx
*vmx
= kmem_cache_zalloc(kvm_vcpu_cache
, GFP_KERNEL
);
3775 return ERR_PTR(-ENOMEM
);
3779 err
= kvm_vcpu_init(&vmx
->vcpu
, kvm
, id
);
3783 vmx
->guest_msrs
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
3784 if (!vmx
->guest_msrs
) {
3789 vmx
->host_msrs
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
3790 if (!vmx
->host_msrs
)
3791 goto free_guest_msrs
;
3793 vmx
->vmcs
= alloc_vmcs();
3797 vmcs_clear(vmx
->vmcs
);
3800 vmx_vcpu_load(&vmx
->vcpu
, cpu
);
3801 err
= vmx_vcpu_setup(vmx
);
3802 vmx_vcpu_put(&vmx
->vcpu
);
3806 if (vm_need_virtualize_apic_accesses(kvm
))
3807 if (alloc_apic_access_page(kvm
) != 0)
3811 if (!kvm
->arch
.ept_identity_map_addr
)
3812 kvm
->arch
.ept_identity_map_addr
=
3813 VMX_EPT_IDENTITY_PAGETABLE_ADDR
;
3814 if (alloc_identity_pagetable(kvm
) != 0)
3821 free_vmcs(vmx
->vmcs
);
3823 kfree(vmx
->host_msrs
);
3825 kfree(vmx
->guest_msrs
);
3827 kvm_vcpu_uninit(&vmx
->vcpu
);
3829 kmem_cache_free(kvm_vcpu_cache
, vmx
);
3830 return ERR_PTR(err
);
3833 static void __init
vmx_check_processor_compat(void *rtn
)
3835 struct vmcs_config vmcs_conf
;
3838 if (setup_vmcs_config(&vmcs_conf
) < 0)
3840 if (memcmp(&vmcs_config
, &vmcs_conf
, sizeof(struct vmcs_config
)) != 0) {
3841 printk(KERN_ERR
"kvm: CPU %d feature inconsistency!\n",
3842 smp_processor_id());
3847 static int get_ept_level(void)
3849 return VMX_EPT_DEFAULT_GAW
+ 1;
3852 static u64
vmx_get_mt_mask(struct kvm_vcpu
*vcpu
, gfn_t gfn
, bool is_mmio
)
3856 /* For VT-d and EPT combination
3857 * 1. MMIO: always map as UC
3859 * a. VT-d without snooping control feature: can't guarantee the
3860 * result, try to trust guest.
3861 * b. VT-d with snooping control feature: snooping control feature of
3862 * VT-d engine can guarantee the cache correctness. Just set it
3863 * to WB to keep consistent with host. So the same as item 3.
3864 * 3. EPT without VT-d: always map as WB and set IGMT=1 to keep
3865 * consistent with host MTRR
3868 ret
= MTRR_TYPE_UNCACHABLE
<< VMX_EPT_MT_EPTE_SHIFT
;
3869 else if (vcpu
->kvm
->arch
.iommu_domain
&&
3870 !(vcpu
->kvm
->arch
.iommu_flags
& KVM_IOMMU_CACHE_COHERENCY
))
3871 ret
= kvm_get_guest_memory_type(vcpu
, gfn
) <<
3872 VMX_EPT_MT_EPTE_SHIFT
;
3874 ret
= (MTRR_TYPE_WRBACK
<< VMX_EPT_MT_EPTE_SHIFT
)
3880 static const struct trace_print_flags vmx_exit_reasons_str
[] = {
3881 { EXIT_REASON_EXCEPTION_NMI
, "exception" },
3882 { EXIT_REASON_EXTERNAL_INTERRUPT
, "ext_irq" },
3883 { EXIT_REASON_TRIPLE_FAULT
, "triple_fault" },
3884 { EXIT_REASON_NMI_WINDOW
, "nmi_window" },
3885 { EXIT_REASON_IO_INSTRUCTION
, "io_instruction" },
3886 { EXIT_REASON_CR_ACCESS
, "cr_access" },
3887 { EXIT_REASON_DR_ACCESS
, "dr_access" },
3888 { EXIT_REASON_CPUID
, "cpuid" },
3889 { EXIT_REASON_MSR_READ
, "rdmsr" },
3890 { EXIT_REASON_MSR_WRITE
, "wrmsr" },
3891 { EXIT_REASON_PENDING_INTERRUPT
, "interrupt_window" },
3892 { EXIT_REASON_HLT
, "halt" },
3893 { EXIT_REASON_INVLPG
, "invlpg" },
3894 { EXIT_REASON_VMCALL
, "hypercall" },
3895 { EXIT_REASON_TPR_BELOW_THRESHOLD
, "tpr_below_thres" },
3896 { EXIT_REASON_APIC_ACCESS
, "apic_access" },
3897 { EXIT_REASON_WBINVD
, "wbinvd" },
3898 { EXIT_REASON_TASK_SWITCH
, "task_switch" },
3899 { EXIT_REASON_EPT_VIOLATION
, "ept_violation" },
3903 static bool vmx_gb_page_enable(void)
3908 static struct kvm_x86_ops vmx_x86_ops
= {
3909 .cpu_has_kvm_support
= cpu_has_kvm_support
,
3910 .disabled_by_bios
= vmx_disabled_by_bios
,
3911 .hardware_setup
= hardware_setup
,
3912 .hardware_unsetup
= hardware_unsetup
,
3913 .check_processor_compatibility
= vmx_check_processor_compat
,
3914 .hardware_enable
= hardware_enable
,
3915 .hardware_disable
= hardware_disable
,
3916 .cpu_has_accelerated_tpr
= report_flexpriority
,
3918 .vcpu_create
= vmx_create_vcpu
,
3919 .vcpu_free
= vmx_free_vcpu
,
3920 .vcpu_reset
= vmx_vcpu_reset
,
3922 .prepare_guest_switch
= vmx_save_host_state
,
3923 .vcpu_load
= vmx_vcpu_load
,
3924 .vcpu_put
= vmx_vcpu_put
,
3926 .set_guest_debug
= set_guest_debug
,
3927 .get_msr
= vmx_get_msr
,
3928 .set_msr
= vmx_set_msr
,
3929 .get_segment_base
= vmx_get_segment_base
,
3930 .get_segment
= vmx_get_segment
,
3931 .set_segment
= vmx_set_segment
,
3932 .get_cpl
= vmx_get_cpl
,
3933 .get_cs_db_l_bits
= vmx_get_cs_db_l_bits
,
3934 .decache_cr4_guest_bits
= vmx_decache_cr4_guest_bits
,
3935 .set_cr0
= vmx_set_cr0
,
3936 .set_cr3
= vmx_set_cr3
,
3937 .set_cr4
= vmx_set_cr4
,
3938 .set_efer
= vmx_set_efer
,
3939 .get_idt
= vmx_get_idt
,
3940 .set_idt
= vmx_set_idt
,
3941 .get_gdt
= vmx_get_gdt
,
3942 .set_gdt
= vmx_set_gdt
,
3943 .cache_reg
= vmx_cache_reg
,
3944 .get_rflags
= vmx_get_rflags
,
3945 .set_rflags
= vmx_set_rflags
,
3947 .tlb_flush
= vmx_flush_tlb
,
3949 .run
= vmx_vcpu_run
,
3950 .handle_exit
= vmx_handle_exit
,
3951 .skip_emulated_instruction
= skip_emulated_instruction
,
3952 .set_interrupt_shadow
= vmx_set_interrupt_shadow
,
3953 .get_interrupt_shadow
= vmx_get_interrupt_shadow
,
3954 .patch_hypercall
= vmx_patch_hypercall
,
3955 .set_irq
= vmx_inject_irq
,
3956 .set_nmi
= vmx_inject_nmi
,
3957 .queue_exception
= vmx_queue_exception
,
3958 .interrupt_allowed
= vmx_interrupt_allowed
,
3959 .nmi_allowed
= vmx_nmi_allowed
,
3960 .enable_nmi_window
= enable_nmi_window
,
3961 .enable_irq_window
= enable_irq_window
,
3962 .update_cr8_intercept
= update_cr8_intercept
,
3964 .set_tss_addr
= vmx_set_tss_addr
,
3965 .get_tdp_level
= get_ept_level
,
3966 .get_mt_mask
= vmx_get_mt_mask
,
3968 .exit_reasons_str
= vmx_exit_reasons_str
,
3969 .gb_page_enable
= vmx_gb_page_enable
,
3972 static int __init
vmx_init(void)
3976 vmx_io_bitmap_a
= (unsigned long *)__get_free_page(GFP_KERNEL
);
3977 if (!vmx_io_bitmap_a
)
3980 vmx_io_bitmap_b
= (unsigned long *)__get_free_page(GFP_KERNEL
);
3981 if (!vmx_io_bitmap_b
) {
3986 vmx_msr_bitmap_legacy
= (unsigned long *)__get_free_page(GFP_KERNEL
);
3987 if (!vmx_msr_bitmap_legacy
) {
3992 vmx_msr_bitmap_longmode
= (unsigned long *)__get_free_page(GFP_KERNEL
);
3993 if (!vmx_msr_bitmap_longmode
) {
3999 * Allow direct access to the PC debug port (it is often used for I/O
4000 * delays, but the vmexits simply slow things down).
4002 memset(vmx_io_bitmap_a
, 0xff, PAGE_SIZE
);
4003 clear_bit(0x80, vmx_io_bitmap_a
);
4005 memset(vmx_io_bitmap_b
, 0xff, PAGE_SIZE
);
4007 memset(vmx_msr_bitmap_legacy
, 0xff, PAGE_SIZE
);
4008 memset(vmx_msr_bitmap_longmode
, 0xff, PAGE_SIZE
);
4010 set_bit(0, vmx_vpid_bitmap
); /* 0 is reserved for host */
4012 r
= kvm_init(&vmx_x86_ops
, sizeof(struct vcpu_vmx
), THIS_MODULE
);
4016 vmx_disable_intercept_for_msr(MSR_FS_BASE
, false);
4017 vmx_disable_intercept_for_msr(MSR_GS_BASE
, false);
4018 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE
, true);
4019 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS
, false);
4020 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP
, false);
4021 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP
, false);
4024 bypass_guest_pf
= 0;
4025 kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK
|
4026 VMX_EPT_WRITABLE_MASK
);
4027 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
4028 VMX_EPT_EXECUTABLE_MASK
);
4033 if (bypass_guest_pf
)
4034 kvm_mmu_set_nonpresent_ptes(~0xffeull
, 0ull);
4039 free_page((unsigned long)vmx_msr_bitmap_longmode
);
4041 free_page((unsigned long)vmx_msr_bitmap_legacy
);
4043 free_page((unsigned long)vmx_io_bitmap_b
);
4045 free_page((unsigned long)vmx_io_bitmap_a
);
4049 static void __exit
vmx_exit(void)
4051 free_page((unsigned long)vmx_msr_bitmap_legacy
);
4052 free_page((unsigned long)vmx_msr_bitmap_longmode
);
4053 free_page((unsigned long)vmx_io_bitmap_b
);
4054 free_page((unsigned long)vmx_io_bitmap_a
);
4059 module_init(vmx_init
)
4060 module_exit(vmx_exit
)