"[PATCH] Fix leaks on /proc/{*/sched,sched_debug,timer_list,timer_stats}" and
[mmotm.git] / arch / x86 / kvm / vmx.c
blob70020e505c22ee3e2a97f30a1fdbf944819090c8
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
18 #include "irq.h"
19 #include "mmu.h"
21 #include <linux/kvm_host.h>
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/mm.h>
25 #include <linux/highmem.h>
26 #include <linux/sched.h>
27 #include <linux/moduleparam.h>
28 #include <linux/ftrace_event.h>
29 #include "kvm_cache_regs.h"
30 #include "x86.h"
32 #include <asm/io.h>
33 #include <asm/desc.h>
34 #include <asm/vmx.h>
35 #include <asm/virtext.h>
36 #include <asm/mce.h>
38 #include "trace.h"
40 #define __ex(x) __kvm_handle_fault_on_reboot(x)
42 MODULE_AUTHOR("Qumranet");
43 MODULE_LICENSE("GPL");
45 static int __read_mostly bypass_guest_pf = 1;
46 module_param(bypass_guest_pf, bool, S_IRUGO);
48 static int __read_mostly enable_vpid = 1;
49 module_param_named(vpid, enable_vpid, bool, 0444);
51 static int __read_mostly flexpriority_enabled = 1;
52 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
54 static int __read_mostly enable_ept = 1;
55 module_param_named(ept, enable_ept, bool, S_IRUGO);
57 static int __read_mostly enable_unrestricted_guest = 1;
58 module_param_named(unrestricted_guest,
59 enable_unrestricted_guest, bool, S_IRUGO);
61 static int __read_mostly emulate_invalid_guest_state = 0;
62 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
64 struct vmcs {
65 u32 revision_id;
66 u32 abort;
67 char data[0];
70 struct vcpu_vmx {
71 struct kvm_vcpu vcpu;
72 struct list_head local_vcpus_link;
73 unsigned long host_rsp;
74 int launched;
75 u8 fail;
76 u32 idt_vectoring_info;
77 struct kvm_msr_entry *guest_msrs;
78 struct kvm_msr_entry *host_msrs;
79 int nmsrs;
80 int save_nmsrs;
81 int msr_offset_efer;
82 #ifdef CONFIG_X86_64
83 int msr_offset_kernel_gs_base;
84 #endif
85 struct vmcs *vmcs;
86 struct {
87 int loaded;
88 u16 fs_sel, gs_sel, ldt_sel;
89 int gs_ldt_reload_needed;
90 int fs_reload_needed;
91 int guest_efer_loaded;
92 } host_state;
93 struct {
94 int vm86_active;
95 u8 save_iopl;
96 struct kvm_save_segment {
97 u16 selector;
98 unsigned long base;
99 u32 limit;
100 u32 ar;
101 } tr, es, ds, fs, gs;
102 struct {
103 bool pending;
104 u8 vector;
105 unsigned rip;
106 } irq;
107 } rmode;
108 int vpid;
109 bool emulation_required;
111 /* Support for vnmi-less CPUs */
112 int soft_vnmi_blocked;
113 ktime_t entry_time;
114 s64 vnmi_blocked_time;
115 u32 exit_reason;
118 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
120 return container_of(vcpu, struct vcpu_vmx, vcpu);
123 static int init_rmode(struct kvm *kvm);
124 static u64 construct_eptp(unsigned long root_hpa);
126 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
127 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
128 static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
130 static unsigned long *vmx_io_bitmap_a;
131 static unsigned long *vmx_io_bitmap_b;
132 static unsigned long *vmx_msr_bitmap_legacy;
133 static unsigned long *vmx_msr_bitmap_longmode;
135 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
136 static DEFINE_SPINLOCK(vmx_vpid_lock);
138 static struct vmcs_config {
139 int size;
140 int order;
141 u32 revision_id;
142 u32 pin_based_exec_ctrl;
143 u32 cpu_based_exec_ctrl;
144 u32 cpu_based_2nd_exec_ctrl;
145 u32 vmexit_ctrl;
146 u32 vmentry_ctrl;
147 } vmcs_config;
149 static struct vmx_capability {
150 u32 ept;
151 u32 vpid;
152 } vmx_capability;
154 #define VMX_SEGMENT_FIELD(seg) \
155 [VCPU_SREG_##seg] = { \
156 .selector = GUEST_##seg##_SELECTOR, \
157 .base = GUEST_##seg##_BASE, \
158 .limit = GUEST_##seg##_LIMIT, \
159 .ar_bytes = GUEST_##seg##_AR_BYTES, \
162 static struct kvm_vmx_segment_field {
163 unsigned selector;
164 unsigned base;
165 unsigned limit;
166 unsigned ar_bytes;
167 } kvm_vmx_segment_fields[] = {
168 VMX_SEGMENT_FIELD(CS),
169 VMX_SEGMENT_FIELD(DS),
170 VMX_SEGMENT_FIELD(ES),
171 VMX_SEGMENT_FIELD(FS),
172 VMX_SEGMENT_FIELD(GS),
173 VMX_SEGMENT_FIELD(SS),
174 VMX_SEGMENT_FIELD(TR),
175 VMX_SEGMENT_FIELD(LDTR),
178 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
181 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
182 * away by decrementing the array size.
184 static const u32 vmx_msr_index[] = {
185 #ifdef CONFIG_X86_64
186 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
187 #endif
188 MSR_EFER, MSR_K6_STAR,
190 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
192 static void load_msrs(struct kvm_msr_entry *e, int n)
194 int i;
196 for (i = 0; i < n; ++i)
197 wrmsrl(e[i].index, e[i].data);
200 static void save_msrs(struct kvm_msr_entry *e, int n)
202 int i;
204 for (i = 0; i < n; ++i)
205 rdmsrl(e[i].index, e[i].data);
208 static inline int is_page_fault(u32 intr_info)
210 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
211 INTR_INFO_VALID_MASK)) ==
212 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
215 static inline int is_no_device(u32 intr_info)
217 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
218 INTR_INFO_VALID_MASK)) ==
219 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
222 static inline int is_invalid_opcode(u32 intr_info)
224 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
225 INTR_INFO_VALID_MASK)) ==
226 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
229 static inline int is_external_interrupt(u32 intr_info)
231 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
232 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
235 static inline int is_machine_check(u32 intr_info)
237 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
238 INTR_INFO_VALID_MASK)) ==
239 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
242 static inline int cpu_has_vmx_msr_bitmap(void)
244 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
247 static inline int cpu_has_vmx_tpr_shadow(void)
249 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
252 static inline int vm_need_tpr_shadow(struct kvm *kvm)
254 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
257 static inline int cpu_has_secondary_exec_ctrls(void)
259 return vmcs_config.cpu_based_exec_ctrl &
260 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
263 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
265 return vmcs_config.cpu_based_2nd_exec_ctrl &
266 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
269 static inline bool cpu_has_vmx_flexpriority(void)
271 return cpu_has_vmx_tpr_shadow() &&
272 cpu_has_vmx_virtualize_apic_accesses();
275 static inline bool cpu_has_vmx_ept_execute_only(void)
277 return !!(vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT);
280 static inline bool cpu_has_vmx_eptp_uncacheable(void)
282 return !!(vmx_capability.ept & VMX_EPTP_UC_BIT);
285 static inline bool cpu_has_vmx_eptp_writeback(void)
287 return !!(vmx_capability.ept & VMX_EPTP_WB_BIT);
290 static inline bool cpu_has_vmx_ept_2m_page(void)
292 return !!(vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT);
295 static inline int cpu_has_vmx_invept_individual_addr(void)
297 return !!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT);
300 static inline int cpu_has_vmx_invept_context(void)
302 return !!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT);
305 static inline int cpu_has_vmx_invept_global(void)
307 return !!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT);
310 static inline int cpu_has_vmx_ept(void)
312 return vmcs_config.cpu_based_2nd_exec_ctrl &
313 SECONDARY_EXEC_ENABLE_EPT;
316 static inline int cpu_has_vmx_unrestricted_guest(void)
318 return vmcs_config.cpu_based_2nd_exec_ctrl &
319 SECONDARY_EXEC_UNRESTRICTED_GUEST;
322 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
324 return flexpriority_enabled &&
325 (cpu_has_vmx_virtualize_apic_accesses()) &&
326 (irqchip_in_kernel(kvm));
329 static inline int cpu_has_vmx_vpid(void)
331 return vmcs_config.cpu_based_2nd_exec_ctrl &
332 SECONDARY_EXEC_ENABLE_VPID;
335 static inline int cpu_has_virtual_nmis(void)
337 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
340 static inline bool report_flexpriority(void)
342 return flexpriority_enabled;
345 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
347 int i;
349 for (i = 0; i < vmx->nmsrs; ++i)
350 if (vmx->guest_msrs[i].index == msr)
351 return i;
352 return -1;
355 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
357 struct {
358 u64 vpid : 16;
359 u64 rsvd : 48;
360 u64 gva;
361 } operand = { vpid, 0, gva };
363 asm volatile (__ex(ASM_VMX_INVVPID)
364 /* CF==1 or ZF==1 --> rc = -1 */
365 "; ja 1f ; ud2 ; 1:"
366 : : "a"(&operand), "c"(ext) : "cc", "memory");
369 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
371 struct {
372 u64 eptp, gpa;
373 } operand = {eptp, gpa};
375 asm volatile (__ex(ASM_VMX_INVEPT)
376 /* CF==1 or ZF==1 --> rc = -1 */
377 "; ja 1f ; ud2 ; 1:\n"
378 : : "a" (&operand), "c" (ext) : "cc", "memory");
381 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
383 int i;
385 i = __find_msr_index(vmx, msr);
386 if (i >= 0)
387 return &vmx->guest_msrs[i];
388 return NULL;
391 static void vmcs_clear(struct vmcs *vmcs)
393 u64 phys_addr = __pa(vmcs);
394 u8 error;
396 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
397 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
398 : "cc", "memory");
399 if (error)
400 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
401 vmcs, phys_addr);
404 static void __vcpu_clear(void *arg)
406 struct vcpu_vmx *vmx = arg;
407 int cpu = raw_smp_processor_id();
409 if (vmx->vcpu.cpu == cpu)
410 vmcs_clear(vmx->vmcs);
411 if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
412 per_cpu(current_vmcs, cpu) = NULL;
413 rdtscll(vmx->vcpu.arch.host_tsc);
414 list_del(&vmx->local_vcpus_link);
415 vmx->vcpu.cpu = -1;
416 vmx->launched = 0;
419 static void vcpu_clear(struct vcpu_vmx *vmx)
421 if (vmx->vcpu.cpu == -1)
422 return;
423 smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
426 static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
428 if (vmx->vpid == 0)
429 return;
431 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
434 static inline void ept_sync_global(void)
436 if (cpu_has_vmx_invept_global())
437 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
440 static inline void ept_sync_context(u64 eptp)
442 if (enable_ept) {
443 if (cpu_has_vmx_invept_context())
444 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
445 else
446 ept_sync_global();
450 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
452 if (enable_ept) {
453 if (cpu_has_vmx_invept_individual_addr())
454 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
455 eptp, gpa);
456 else
457 ept_sync_context(eptp);
461 static unsigned long vmcs_readl(unsigned long field)
463 unsigned long value;
465 asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
466 : "=a"(value) : "d"(field) : "cc");
467 return value;
470 static u16 vmcs_read16(unsigned long field)
472 return vmcs_readl(field);
475 static u32 vmcs_read32(unsigned long field)
477 return vmcs_readl(field);
480 static u64 vmcs_read64(unsigned long field)
482 #ifdef CONFIG_X86_64
483 return vmcs_readl(field);
484 #else
485 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
486 #endif
489 static noinline void vmwrite_error(unsigned long field, unsigned long value)
491 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
492 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
493 dump_stack();
496 static void vmcs_writel(unsigned long field, unsigned long value)
498 u8 error;
500 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
501 : "=q"(error) : "a"(value), "d"(field) : "cc");
502 if (unlikely(error))
503 vmwrite_error(field, value);
506 static void vmcs_write16(unsigned long field, u16 value)
508 vmcs_writel(field, value);
511 static void vmcs_write32(unsigned long field, u32 value)
513 vmcs_writel(field, value);
516 static void vmcs_write64(unsigned long field, u64 value)
518 vmcs_writel(field, value);
519 #ifndef CONFIG_X86_64
520 asm volatile ("");
521 vmcs_writel(field+1, value >> 32);
522 #endif
525 static void vmcs_clear_bits(unsigned long field, u32 mask)
527 vmcs_writel(field, vmcs_readl(field) & ~mask);
530 static void vmcs_set_bits(unsigned long field, u32 mask)
532 vmcs_writel(field, vmcs_readl(field) | mask);
535 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
537 u32 eb;
539 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR);
540 if (!vcpu->fpu_active)
541 eb |= 1u << NM_VECTOR;
543 * Unconditionally intercept #DB so we can maintain dr6 without
544 * reading it every exit.
546 eb |= 1u << DB_VECTOR;
547 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
548 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
549 eb |= 1u << BP_VECTOR;
551 if (to_vmx(vcpu)->rmode.vm86_active)
552 eb = ~0;
553 if (enable_ept)
554 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
555 vmcs_write32(EXCEPTION_BITMAP, eb);
558 static void reload_tss(void)
561 * VT restores TR but not its size. Useless.
563 struct descriptor_table gdt;
564 struct desc_struct *descs;
566 kvm_get_gdt(&gdt);
567 descs = (void *)gdt.base;
568 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
569 load_TR_desc();
572 static void load_transition_efer(struct vcpu_vmx *vmx)
574 int efer_offset = vmx->msr_offset_efer;
575 u64 host_efer;
576 u64 guest_efer;
577 u64 ignore_bits;
579 if (efer_offset < 0)
580 return;
581 host_efer = vmx->host_msrs[efer_offset].data;
582 guest_efer = vmx->guest_msrs[efer_offset].data;
585 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
586 * outside long mode
588 ignore_bits = EFER_NX | EFER_SCE;
589 #ifdef CONFIG_X86_64
590 ignore_bits |= EFER_LMA | EFER_LME;
591 /* SCE is meaningful only in long mode on Intel */
592 if (guest_efer & EFER_LMA)
593 ignore_bits &= ~(u64)EFER_SCE;
594 #endif
595 if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
596 return;
598 vmx->host_state.guest_efer_loaded = 1;
599 guest_efer &= ~ignore_bits;
600 guest_efer |= host_efer & ignore_bits;
601 wrmsrl(MSR_EFER, guest_efer);
602 vmx->vcpu.stat.efer_reload++;
605 static void reload_host_efer(struct vcpu_vmx *vmx)
607 if (vmx->host_state.guest_efer_loaded) {
608 vmx->host_state.guest_efer_loaded = 0;
609 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
613 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
615 struct vcpu_vmx *vmx = to_vmx(vcpu);
617 if (vmx->host_state.loaded)
618 return;
620 vmx->host_state.loaded = 1;
622 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
623 * allow segment selectors with cpl > 0 or ti == 1.
625 vmx->host_state.ldt_sel = kvm_read_ldt();
626 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
627 vmx->host_state.fs_sel = kvm_read_fs();
628 if (!(vmx->host_state.fs_sel & 7)) {
629 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
630 vmx->host_state.fs_reload_needed = 0;
631 } else {
632 vmcs_write16(HOST_FS_SELECTOR, 0);
633 vmx->host_state.fs_reload_needed = 1;
635 vmx->host_state.gs_sel = kvm_read_gs();
636 if (!(vmx->host_state.gs_sel & 7))
637 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
638 else {
639 vmcs_write16(HOST_GS_SELECTOR, 0);
640 vmx->host_state.gs_ldt_reload_needed = 1;
643 #ifdef CONFIG_X86_64
644 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
645 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
646 #else
647 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
648 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
649 #endif
651 #ifdef CONFIG_X86_64
652 if (is_long_mode(&vmx->vcpu))
653 save_msrs(vmx->host_msrs +
654 vmx->msr_offset_kernel_gs_base, 1);
656 #endif
657 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
658 load_transition_efer(vmx);
661 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
663 unsigned long flags;
665 if (!vmx->host_state.loaded)
666 return;
668 ++vmx->vcpu.stat.host_state_reload;
669 vmx->host_state.loaded = 0;
670 if (vmx->host_state.fs_reload_needed)
671 kvm_load_fs(vmx->host_state.fs_sel);
672 if (vmx->host_state.gs_ldt_reload_needed) {
673 kvm_load_ldt(vmx->host_state.ldt_sel);
675 * If we have to reload gs, we must take care to
676 * preserve our gs base.
678 local_irq_save(flags);
679 kvm_load_gs(vmx->host_state.gs_sel);
680 #ifdef CONFIG_X86_64
681 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
682 #endif
683 local_irq_restore(flags);
685 reload_tss();
686 save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
687 load_msrs(vmx->host_msrs, vmx->save_nmsrs);
688 reload_host_efer(vmx);
691 static void vmx_load_host_state(struct vcpu_vmx *vmx)
693 preempt_disable();
694 __vmx_load_host_state(vmx);
695 preempt_enable();
699 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
700 * vcpu mutex is already taken.
702 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
704 struct vcpu_vmx *vmx = to_vmx(vcpu);
705 u64 phys_addr = __pa(vmx->vmcs);
706 u64 tsc_this, delta, new_offset;
708 if (vcpu->cpu != cpu) {
709 vcpu_clear(vmx);
710 kvm_migrate_timers(vcpu);
711 set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
712 local_irq_disable();
713 list_add(&vmx->local_vcpus_link,
714 &per_cpu(vcpus_on_cpu, cpu));
715 local_irq_enable();
718 if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
719 u8 error;
721 per_cpu(current_vmcs, cpu) = vmx->vmcs;
722 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
723 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
724 : "cc");
725 if (error)
726 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
727 vmx->vmcs, phys_addr);
730 if (vcpu->cpu != cpu) {
731 struct descriptor_table dt;
732 unsigned long sysenter_esp;
734 vcpu->cpu = cpu;
736 * Linux uses per-cpu TSS and GDT, so set these when switching
737 * processors.
739 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
740 kvm_get_gdt(&dt);
741 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
743 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
744 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
747 * Make sure the time stamp counter is monotonous.
749 rdtscll(tsc_this);
750 if (tsc_this < vcpu->arch.host_tsc) {
751 delta = vcpu->arch.host_tsc - tsc_this;
752 new_offset = vmcs_read64(TSC_OFFSET) + delta;
753 vmcs_write64(TSC_OFFSET, new_offset);
758 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
760 __vmx_load_host_state(to_vmx(vcpu));
763 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
765 if (vcpu->fpu_active)
766 return;
767 vcpu->fpu_active = 1;
768 vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
769 if (vcpu->arch.cr0 & X86_CR0_TS)
770 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
771 update_exception_bitmap(vcpu);
774 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
776 if (!vcpu->fpu_active)
777 return;
778 vcpu->fpu_active = 0;
779 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
780 update_exception_bitmap(vcpu);
783 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
785 unsigned long rflags;
787 rflags = vmcs_readl(GUEST_RFLAGS);
788 if (to_vmx(vcpu)->rmode.vm86_active)
789 rflags &= ~(unsigned long)(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
790 return rflags;
793 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
795 if (to_vmx(vcpu)->rmode.vm86_active)
796 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
797 vmcs_writel(GUEST_RFLAGS, rflags);
800 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
802 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
803 int ret = 0;
805 if (interruptibility & GUEST_INTR_STATE_STI)
806 ret |= X86_SHADOW_INT_STI;
807 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
808 ret |= X86_SHADOW_INT_MOV_SS;
810 return ret & mask;
813 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
815 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
816 u32 interruptibility = interruptibility_old;
818 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
820 if (mask & X86_SHADOW_INT_MOV_SS)
821 interruptibility |= GUEST_INTR_STATE_MOV_SS;
822 if (mask & X86_SHADOW_INT_STI)
823 interruptibility |= GUEST_INTR_STATE_STI;
825 if ((interruptibility != interruptibility_old))
826 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
829 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
831 unsigned long rip;
833 rip = kvm_rip_read(vcpu);
834 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
835 kvm_rip_write(vcpu, rip);
837 /* skipping an emulated instruction also counts */
838 vmx_set_interrupt_shadow(vcpu, 0);
841 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
842 bool has_error_code, u32 error_code)
844 struct vcpu_vmx *vmx = to_vmx(vcpu);
845 u32 intr_info = nr | INTR_INFO_VALID_MASK;
847 if (has_error_code) {
848 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
849 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
852 if (vmx->rmode.vm86_active) {
853 vmx->rmode.irq.pending = true;
854 vmx->rmode.irq.vector = nr;
855 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
856 if (kvm_exception_is_soft(nr))
857 vmx->rmode.irq.rip +=
858 vmx->vcpu.arch.event_exit_inst_len;
859 intr_info |= INTR_TYPE_SOFT_INTR;
860 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
861 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
862 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
863 return;
866 if (kvm_exception_is_soft(nr)) {
867 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
868 vmx->vcpu.arch.event_exit_inst_len);
869 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
870 } else
871 intr_info |= INTR_TYPE_HARD_EXCEPTION;
873 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
877 * Swap MSR entry in host/guest MSR entry array.
879 #ifdef CONFIG_X86_64
880 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
882 struct kvm_msr_entry tmp;
884 tmp = vmx->guest_msrs[to];
885 vmx->guest_msrs[to] = vmx->guest_msrs[from];
886 vmx->guest_msrs[from] = tmp;
887 tmp = vmx->host_msrs[to];
888 vmx->host_msrs[to] = vmx->host_msrs[from];
889 vmx->host_msrs[from] = tmp;
891 #endif
894 * Set up the vmcs to automatically save and restore system
895 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
896 * mode, as fiddling with msrs is very expensive.
898 static void setup_msrs(struct vcpu_vmx *vmx)
900 int save_nmsrs;
901 unsigned long *msr_bitmap;
903 vmx_load_host_state(vmx);
904 save_nmsrs = 0;
905 #ifdef CONFIG_X86_64
906 if (is_long_mode(&vmx->vcpu)) {
907 int index;
909 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
910 if (index >= 0)
911 move_msr_up(vmx, index, save_nmsrs++);
912 index = __find_msr_index(vmx, MSR_LSTAR);
913 if (index >= 0)
914 move_msr_up(vmx, index, save_nmsrs++);
915 index = __find_msr_index(vmx, MSR_CSTAR);
916 if (index >= 0)
917 move_msr_up(vmx, index, save_nmsrs++);
918 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
919 if (index >= 0)
920 move_msr_up(vmx, index, save_nmsrs++);
922 * MSR_K6_STAR is only needed on long mode guests, and only
923 * if efer.sce is enabled.
925 index = __find_msr_index(vmx, MSR_K6_STAR);
926 if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
927 move_msr_up(vmx, index, save_nmsrs++);
929 #endif
930 vmx->save_nmsrs = save_nmsrs;
932 #ifdef CONFIG_X86_64
933 vmx->msr_offset_kernel_gs_base =
934 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
935 #endif
936 vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
938 if (cpu_has_vmx_msr_bitmap()) {
939 if (is_long_mode(&vmx->vcpu))
940 msr_bitmap = vmx_msr_bitmap_longmode;
941 else
942 msr_bitmap = vmx_msr_bitmap_legacy;
944 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
949 * reads and returns guest's timestamp counter "register"
950 * guest_tsc = host_tsc + tsc_offset -- 21.3
952 static u64 guest_read_tsc(void)
954 u64 host_tsc, tsc_offset;
956 rdtscll(host_tsc);
957 tsc_offset = vmcs_read64(TSC_OFFSET);
958 return host_tsc + tsc_offset;
962 * writes 'guest_tsc' into guest's timestamp counter "register"
963 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
965 static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
967 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
971 * Reads an msr value (of 'msr_index') into 'pdata'.
972 * Returns 0 on success, non-0 otherwise.
973 * Assumes vcpu_load() was already called.
975 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
977 u64 data;
978 struct kvm_msr_entry *msr;
980 if (!pdata) {
981 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
982 return -EINVAL;
985 switch (msr_index) {
986 #ifdef CONFIG_X86_64
987 case MSR_FS_BASE:
988 data = vmcs_readl(GUEST_FS_BASE);
989 break;
990 case MSR_GS_BASE:
991 data = vmcs_readl(GUEST_GS_BASE);
992 break;
993 case MSR_EFER:
994 return kvm_get_msr_common(vcpu, msr_index, pdata);
995 #endif
996 case MSR_IA32_TSC:
997 data = guest_read_tsc();
998 break;
999 case MSR_IA32_SYSENTER_CS:
1000 data = vmcs_read32(GUEST_SYSENTER_CS);
1001 break;
1002 case MSR_IA32_SYSENTER_EIP:
1003 data = vmcs_readl(GUEST_SYSENTER_EIP);
1004 break;
1005 case MSR_IA32_SYSENTER_ESP:
1006 data = vmcs_readl(GUEST_SYSENTER_ESP);
1007 break;
1008 default:
1009 msr = find_msr_entry(to_vmx(vcpu), msr_index);
1010 if (msr) {
1011 vmx_load_host_state(to_vmx(vcpu));
1012 data = msr->data;
1013 break;
1015 return kvm_get_msr_common(vcpu, msr_index, pdata);
1018 *pdata = data;
1019 return 0;
1023 * Writes msr value into into the appropriate "register".
1024 * Returns 0 on success, non-0 otherwise.
1025 * Assumes vcpu_load() was already called.
1027 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1029 struct vcpu_vmx *vmx = to_vmx(vcpu);
1030 struct kvm_msr_entry *msr;
1031 u64 host_tsc;
1032 int ret = 0;
1034 switch (msr_index) {
1035 case MSR_EFER:
1036 vmx_load_host_state(vmx);
1037 ret = kvm_set_msr_common(vcpu, msr_index, data);
1038 break;
1039 #ifdef CONFIG_X86_64
1040 case MSR_FS_BASE:
1041 vmcs_writel(GUEST_FS_BASE, data);
1042 break;
1043 case MSR_GS_BASE:
1044 vmcs_writel(GUEST_GS_BASE, data);
1045 break;
1046 #endif
1047 case MSR_IA32_SYSENTER_CS:
1048 vmcs_write32(GUEST_SYSENTER_CS, data);
1049 break;
1050 case MSR_IA32_SYSENTER_EIP:
1051 vmcs_writel(GUEST_SYSENTER_EIP, data);
1052 break;
1053 case MSR_IA32_SYSENTER_ESP:
1054 vmcs_writel(GUEST_SYSENTER_ESP, data);
1055 break;
1056 case MSR_IA32_TSC:
1057 rdtscll(host_tsc);
1058 guest_write_tsc(data, host_tsc);
1059 break;
1060 case MSR_IA32_CR_PAT:
1061 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1062 vmcs_write64(GUEST_IA32_PAT, data);
1063 vcpu->arch.pat = data;
1064 break;
1066 /* Otherwise falls through to kvm_set_msr_common */
1067 default:
1068 msr = find_msr_entry(vmx, msr_index);
1069 if (msr) {
1070 vmx_load_host_state(vmx);
1071 msr->data = data;
1072 break;
1074 ret = kvm_set_msr_common(vcpu, msr_index, data);
1077 return ret;
1080 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1082 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
1083 switch (reg) {
1084 case VCPU_REGS_RSP:
1085 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
1086 break;
1087 case VCPU_REGS_RIP:
1088 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
1089 break;
1090 case VCPU_EXREG_PDPTR:
1091 if (enable_ept)
1092 ept_save_pdptrs(vcpu);
1093 break;
1094 default:
1095 break;
1099 static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1101 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1102 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
1103 else
1104 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
1106 update_exception_bitmap(vcpu);
1109 static __init int cpu_has_kvm_support(void)
1111 return cpu_has_vmx();
1114 static __init int vmx_disabled_by_bios(void)
1116 u64 msr;
1118 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1119 return (msr & (FEATURE_CONTROL_LOCKED |
1120 FEATURE_CONTROL_VMXON_ENABLED))
1121 == FEATURE_CONTROL_LOCKED;
1122 /* locked but not enabled */
1125 static int hardware_enable(void *garbage)
1127 int cpu = raw_smp_processor_id();
1128 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1129 u64 old;
1131 if (read_cr4() & X86_CR4_VMXE)
1132 return -EBUSY;
1134 INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1135 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1136 if ((old & (FEATURE_CONTROL_LOCKED |
1137 FEATURE_CONTROL_VMXON_ENABLED))
1138 != (FEATURE_CONTROL_LOCKED |
1139 FEATURE_CONTROL_VMXON_ENABLED))
1140 /* enable and lock */
1141 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
1142 FEATURE_CONTROL_LOCKED |
1143 FEATURE_CONTROL_VMXON_ENABLED);
1144 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1145 asm volatile (ASM_VMX_VMXON_RAX
1146 : : "a"(&phys_addr), "m"(phys_addr)
1147 : "memory", "cc");
1149 ept_sync_global();
1151 return 0;
1154 static void vmclear_local_vcpus(void)
1156 int cpu = raw_smp_processor_id();
1157 struct vcpu_vmx *vmx, *n;
1159 list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1160 local_vcpus_link)
1161 __vcpu_clear(vmx);
1165 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1166 * tricks.
1168 static void kvm_cpu_vmxoff(void)
1170 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1171 write_cr4(read_cr4() & ~X86_CR4_VMXE);
1174 static void hardware_disable(void *garbage)
1176 vmclear_local_vcpus();
1177 kvm_cpu_vmxoff();
1180 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1181 u32 msr, u32 *result)
1183 u32 vmx_msr_low, vmx_msr_high;
1184 u32 ctl = ctl_min | ctl_opt;
1186 rdmsr(msr, vmx_msr_low, vmx_msr_high);
1188 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1189 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
1191 /* Ensure minimum (required) set of control bits are supported. */
1192 if (ctl_min & ~ctl)
1193 return -EIO;
1195 *result = ctl;
1196 return 0;
1199 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1201 u32 vmx_msr_low, vmx_msr_high;
1202 u32 min, opt, min2, opt2;
1203 u32 _pin_based_exec_control = 0;
1204 u32 _cpu_based_exec_control = 0;
1205 u32 _cpu_based_2nd_exec_control = 0;
1206 u32 _vmexit_control = 0;
1207 u32 _vmentry_control = 0;
1209 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1210 opt = PIN_BASED_VIRTUAL_NMIS;
1211 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1212 &_pin_based_exec_control) < 0)
1213 return -EIO;
1215 min = CPU_BASED_HLT_EXITING |
1216 #ifdef CONFIG_X86_64
1217 CPU_BASED_CR8_LOAD_EXITING |
1218 CPU_BASED_CR8_STORE_EXITING |
1219 #endif
1220 CPU_BASED_CR3_LOAD_EXITING |
1221 CPU_BASED_CR3_STORE_EXITING |
1222 CPU_BASED_USE_IO_BITMAPS |
1223 CPU_BASED_MOV_DR_EXITING |
1224 CPU_BASED_USE_TSC_OFFSETING |
1225 CPU_BASED_INVLPG_EXITING;
1226 opt = CPU_BASED_TPR_SHADOW |
1227 CPU_BASED_USE_MSR_BITMAPS |
1228 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1229 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1230 &_cpu_based_exec_control) < 0)
1231 return -EIO;
1232 #ifdef CONFIG_X86_64
1233 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1234 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1235 ~CPU_BASED_CR8_STORE_EXITING;
1236 #endif
1237 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1238 min2 = 0;
1239 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1240 SECONDARY_EXEC_WBINVD_EXITING |
1241 SECONDARY_EXEC_ENABLE_VPID |
1242 SECONDARY_EXEC_ENABLE_EPT |
1243 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1244 if (adjust_vmx_controls(min2, opt2,
1245 MSR_IA32_VMX_PROCBASED_CTLS2,
1246 &_cpu_based_2nd_exec_control) < 0)
1247 return -EIO;
1249 #ifndef CONFIG_X86_64
1250 if (!(_cpu_based_2nd_exec_control &
1251 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1252 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1253 #endif
1254 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1255 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1256 enabled */
1257 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
1258 CPU_BASED_CR3_STORE_EXITING |
1259 CPU_BASED_INVLPG_EXITING);
1260 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1261 vmx_capability.ept, vmx_capability.vpid);
1264 min = 0;
1265 #ifdef CONFIG_X86_64
1266 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1267 #endif
1268 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1269 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1270 &_vmexit_control) < 0)
1271 return -EIO;
1273 min = 0;
1274 opt = VM_ENTRY_LOAD_IA32_PAT;
1275 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1276 &_vmentry_control) < 0)
1277 return -EIO;
1279 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1281 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1282 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1283 return -EIO;
1285 #ifdef CONFIG_X86_64
1286 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1287 if (vmx_msr_high & (1u<<16))
1288 return -EIO;
1289 #endif
1291 /* Require Write-Back (WB) memory type for VMCS accesses. */
1292 if (((vmx_msr_high >> 18) & 15) != 6)
1293 return -EIO;
1295 vmcs_conf->size = vmx_msr_high & 0x1fff;
1296 vmcs_conf->order = get_order(vmcs_config.size);
1297 vmcs_conf->revision_id = vmx_msr_low;
1299 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1300 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1301 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1302 vmcs_conf->vmexit_ctrl = _vmexit_control;
1303 vmcs_conf->vmentry_ctrl = _vmentry_control;
1305 return 0;
1308 static struct vmcs *alloc_vmcs_cpu(int cpu)
1310 int node = cpu_to_node(cpu);
1311 struct page *pages;
1312 struct vmcs *vmcs;
1314 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
1315 if (!pages)
1316 return NULL;
1317 vmcs = page_address(pages);
1318 memset(vmcs, 0, vmcs_config.size);
1319 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1320 return vmcs;
1323 static struct vmcs *alloc_vmcs(void)
1325 return alloc_vmcs_cpu(raw_smp_processor_id());
1328 static void free_vmcs(struct vmcs *vmcs)
1330 free_pages((unsigned long)vmcs, vmcs_config.order);
1333 static void free_kvm_area(void)
1335 int cpu;
1337 for_each_possible_cpu(cpu) {
1338 free_vmcs(per_cpu(vmxarea, cpu));
1339 per_cpu(vmxarea, cpu) = NULL;
1343 static __init int alloc_kvm_area(void)
1345 int cpu;
1347 for_each_possible_cpu(cpu) {
1348 struct vmcs *vmcs;
1350 vmcs = alloc_vmcs_cpu(cpu);
1351 if (!vmcs) {
1352 free_kvm_area();
1353 return -ENOMEM;
1356 per_cpu(vmxarea, cpu) = vmcs;
1358 return 0;
1361 static __init int hardware_setup(void)
1363 if (setup_vmcs_config(&vmcs_config) < 0)
1364 return -EIO;
1366 if (boot_cpu_has(X86_FEATURE_NX))
1367 kvm_enable_efer_bits(EFER_NX);
1369 if (!cpu_has_vmx_vpid())
1370 enable_vpid = 0;
1372 if (!cpu_has_vmx_ept()) {
1373 enable_ept = 0;
1374 enable_unrestricted_guest = 0;
1377 if (!cpu_has_vmx_unrestricted_guest())
1378 enable_unrestricted_guest = 0;
1380 if (!cpu_has_vmx_flexpriority())
1381 flexpriority_enabled = 0;
1383 if (!cpu_has_vmx_tpr_shadow())
1384 kvm_x86_ops->update_cr8_intercept = NULL;
1386 if (enable_ept && !cpu_has_vmx_ept_2m_page())
1387 kvm_disable_largepages();
1389 return alloc_kvm_area();
1392 static __exit void hardware_unsetup(void)
1394 free_kvm_area();
1397 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1399 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1401 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1402 vmcs_write16(sf->selector, save->selector);
1403 vmcs_writel(sf->base, save->base);
1404 vmcs_write32(sf->limit, save->limit);
1405 vmcs_write32(sf->ar_bytes, save->ar);
1406 } else {
1407 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1408 << AR_DPL_SHIFT;
1409 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1413 static void enter_pmode(struct kvm_vcpu *vcpu)
1415 unsigned long flags;
1416 struct vcpu_vmx *vmx = to_vmx(vcpu);
1418 vmx->emulation_required = 1;
1419 vmx->rmode.vm86_active = 0;
1421 vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
1422 vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
1423 vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
1425 flags = vmcs_readl(GUEST_RFLAGS);
1426 flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1427 flags |= (vmx->rmode.save_iopl << IOPL_SHIFT);
1428 vmcs_writel(GUEST_RFLAGS, flags);
1430 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1431 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1433 update_exception_bitmap(vcpu);
1435 if (emulate_invalid_guest_state)
1436 return;
1438 fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
1439 fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
1440 fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
1441 fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
1443 vmcs_write16(GUEST_SS_SELECTOR, 0);
1444 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1446 vmcs_write16(GUEST_CS_SELECTOR,
1447 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1448 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1451 static gva_t rmode_tss_base(struct kvm *kvm)
1453 if (!kvm->arch.tss_addr) {
1454 gfn_t base_gfn = kvm->memslots[0].base_gfn +
1455 kvm->memslots[0].npages - 3;
1456 return base_gfn << PAGE_SHIFT;
1458 return kvm->arch.tss_addr;
1461 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1463 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1465 save->selector = vmcs_read16(sf->selector);
1466 save->base = vmcs_readl(sf->base);
1467 save->limit = vmcs_read32(sf->limit);
1468 save->ar = vmcs_read32(sf->ar_bytes);
1469 vmcs_write16(sf->selector, save->base >> 4);
1470 vmcs_write32(sf->base, save->base & 0xfffff);
1471 vmcs_write32(sf->limit, 0xffff);
1472 vmcs_write32(sf->ar_bytes, 0xf3);
1475 static void enter_rmode(struct kvm_vcpu *vcpu)
1477 unsigned long flags;
1478 struct vcpu_vmx *vmx = to_vmx(vcpu);
1480 if (enable_unrestricted_guest)
1481 return;
1483 vmx->emulation_required = 1;
1484 vmx->rmode.vm86_active = 1;
1486 vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1487 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1489 vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1490 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1492 vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1493 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1495 flags = vmcs_readl(GUEST_RFLAGS);
1496 vmx->rmode.save_iopl
1497 = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1499 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1501 vmcs_writel(GUEST_RFLAGS, flags);
1502 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1503 update_exception_bitmap(vcpu);
1505 if (emulate_invalid_guest_state)
1506 goto continue_rmode;
1508 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1509 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1510 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1512 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1513 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1514 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1515 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1516 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1518 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
1519 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
1520 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
1521 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
1523 continue_rmode:
1524 kvm_mmu_reset_context(vcpu);
1525 init_rmode(vcpu->kvm);
1528 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1530 struct vcpu_vmx *vmx = to_vmx(vcpu);
1531 struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1533 vcpu->arch.shadow_efer = efer;
1534 if (!msr)
1535 return;
1536 if (efer & EFER_LMA) {
1537 vmcs_write32(VM_ENTRY_CONTROLS,
1538 vmcs_read32(VM_ENTRY_CONTROLS) |
1539 VM_ENTRY_IA32E_MODE);
1540 msr->data = efer;
1541 } else {
1542 vmcs_write32(VM_ENTRY_CONTROLS,
1543 vmcs_read32(VM_ENTRY_CONTROLS) &
1544 ~VM_ENTRY_IA32E_MODE);
1546 msr->data = efer & ~EFER_LME;
1548 setup_msrs(vmx);
1551 #ifdef CONFIG_X86_64
1553 static void enter_lmode(struct kvm_vcpu *vcpu)
1555 u32 guest_tr_ar;
1557 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1558 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1559 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1560 __func__);
1561 vmcs_write32(GUEST_TR_AR_BYTES,
1562 (guest_tr_ar & ~AR_TYPE_MASK)
1563 | AR_TYPE_BUSY_64_TSS);
1565 vcpu->arch.shadow_efer |= EFER_LMA;
1566 vmx_set_efer(vcpu, vcpu->arch.shadow_efer);
1569 static void exit_lmode(struct kvm_vcpu *vcpu)
1571 vcpu->arch.shadow_efer &= ~EFER_LMA;
1573 vmcs_write32(VM_ENTRY_CONTROLS,
1574 vmcs_read32(VM_ENTRY_CONTROLS)
1575 & ~VM_ENTRY_IA32E_MODE);
1578 #endif
1580 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1582 vpid_sync_vcpu_all(to_vmx(vcpu));
1583 if (enable_ept)
1584 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1587 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1589 vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
1590 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1593 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1595 if (!test_bit(VCPU_EXREG_PDPTR,
1596 (unsigned long *)&vcpu->arch.regs_dirty))
1597 return;
1599 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1600 vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
1601 vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
1602 vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
1603 vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
1607 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
1609 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1610 vcpu->arch.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
1611 vcpu->arch.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
1612 vcpu->arch.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
1613 vcpu->arch.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
1616 __set_bit(VCPU_EXREG_PDPTR,
1617 (unsigned long *)&vcpu->arch.regs_avail);
1618 __set_bit(VCPU_EXREG_PDPTR,
1619 (unsigned long *)&vcpu->arch.regs_dirty);
1622 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1624 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1625 unsigned long cr0,
1626 struct kvm_vcpu *vcpu)
1628 if (!(cr0 & X86_CR0_PG)) {
1629 /* From paging/starting to nonpaging */
1630 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1631 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1632 (CPU_BASED_CR3_LOAD_EXITING |
1633 CPU_BASED_CR3_STORE_EXITING));
1634 vcpu->arch.cr0 = cr0;
1635 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1636 } else if (!is_paging(vcpu)) {
1637 /* From nonpaging to paging */
1638 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1639 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1640 ~(CPU_BASED_CR3_LOAD_EXITING |
1641 CPU_BASED_CR3_STORE_EXITING));
1642 vcpu->arch.cr0 = cr0;
1643 vmx_set_cr4(vcpu, vcpu->arch.cr4);
1646 if (!(cr0 & X86_CR0_WP))
1647 *hw_cr0 &= ~X86_CR0_WP;
1650 static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
1651 struct kvm_vcpu *vcpu)
1653 if (!is_paging(vcpu)) {
1654 *hw_cr4 &= ~X86_CR4_PAE;
1655 *hw_cr4 |= X86_CR4_PSE;
1656 } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
1657 *hw_cr4 &= ~X86_CR4_PAE;
1660 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1662 struct vcpu_vmx *vmx = to_vmx(vcpu);
1663 unsigned long hw_cr0;
1665 if (enable_unrestricted_guest)
1666 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
1667 | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
1668 else
1669 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
1671 vmx_fpu_deactivate(vcpu);
1673 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
1674 enter_pmode(vcpu);
1676 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
1677 enter_rmode(vcpu);
1679 #ifdef CONFIG_X86_64
1680 if (vcpu->arch.shadow_efer & EFER_LME) {
1681 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1682 enter_lmode(vcpu);
1683 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1684 exit_lmode(vcpu);
1686 #endif
1688 if (enable_ept)
1689 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1691 vmcs_writel(CR0_READ_SHADOW, cr0);
1692 vmcs_writel(GUEST_CR0, hw_cr0);
1693 vcpu->arch.cr0 = cr0;
1695 if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1696 vmx_fpu_activate(vcpu);
1699 static u64 construct_eptp(unsigned long root_hpa)
1701 u64 eptp;
1703 /* TODO write the value reading from MSR */
1704 eptp = VMX_EPT_DEFAULT_MT |
1705 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
1706 eptp |= (root_hpa & PAGE_MASK);
1708 return eptp;
1711 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1713 unsigned long guest_cr3;
1714 u64 eptp;
1716 guest_cr3 = cr3;
1717 if (enable_ept) {
1718 eptp = construct_eptp(cr3);
1719 vmcs_write64(EPT_POINTER, eptp);
1720 guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
1721 vcpu->kvm->arch.ept_identity_map_addr;
1724 vmx_flush_tlb(vcpu);
1725 vmcs_writel(GUEST_CR3, guest_cr3);
1726 if (vcpu->arch.cr0 & X86_CR0_PE)
1727 vmx_fpu_deactivate(vcpu);
1730 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1732 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
1733 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1735 vcpu->arch.cr4 = cr4;
1736 if (enable_ept)
1737 ept_update_paging_mode_cr4(&hw_cr4, vcpu);
1739 vmcs_writel(CR4_READ_SHADOW, cr4);
1740 vmcs_writel(GUEST_CR4, hw_cr4);
1743 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1745 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1747 return vmcs_readl(sf->base);
1750 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1751 struct kvm_segment *var, int seg)
1753 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1754 u32 ar;
1756 var->base = vmcs_readl(sf->base);
1757 var->limit = vmcs_read32(sf->limit);
1758 var->selector = vmcs_read16(sf->selector);
1759 ar = vmcs_read32(sf->ar_bytes);
1760 if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
1761 ar = 0;
1762 var->type = ar & 15;
1763 var->s = (ar >> 4) & 1;
1764 var->dpl = (ar >> 5) & 3;
1765 var->present = (ar >> 7) & 1;
1766 var->avl = (ar >> 12) & 1;
1767 var->l = (ar >> 13) & 1;
1768 var->db = (ar >> 14) & 1;
1769 var->g = (ar >> 15) & 1;
1770 var->unusable = (ar >> 16) & 1;
1773 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
1775 if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
1776 return 0;
1778 if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
1779 return 3;
1781 return vmcs_read16(GUEST_CS_SELECTOR) & 3;
1784 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1786 u32 ar;
1788 if (var->unusable)
1789 ar = 1 << 16;
1790 else {
1791 ar = var->type & 15;
1792 ar |= (var->s & 1) << 4;
1793 ar |= (var->dpl & 3) << 5;
1794 ar |= (var->present & 1) << 7;
1795 ar |= (var->avl & 1) << 12;
1796 ar |= (var->l & 1) << 13;
1797 ar |= (var->db & 1) << 14;
1798 ar |= (var->g & 1) << 15;
1800 if (ar == 0) /* a 0 value means unusable */
1801 ar = AR_UNUSABLE_MASK;
1803 return ar;
1806 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1807 struct kvm_segment *var, int seg)
1809 struct vcpu_vmx *vmx = to_vmx(vcpu);
1810 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1811 u32 ar;
1813 if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
1814 vmx->rmode.tr.selector = var->selector;
1815 vmx->rmode.tr.base = var->base;
1816 vmx->rmode.tr.limit = var->limit;
1817 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
1818 return;
1820 vmcs_writel(sf->base, var->base);
1821 vmcs_write32(sf->limit, var->limit);
1822 vmcs_write16(sf->selector, var->selector);
1823 if (vmx->rmode.vm86_active && var->s) {
1825 * Hack real-mode segments into vm86 compatibility.
1827 if (var->base == 0xffff0000 && var->selector == 0xf000)
1828 vmcs_writel(sf->base, 0xf0000);
1829 ar = 0xf3;
1830 } else
1831 ar = vmx_segment_access_rights(var);
1834 * Fix the "Accessed" bit in AR field of segment registers for older
1835 * qemu binaries.
1836 * IA32 arch specifies that at the time of processor reset the
1837 * "Accessed" bit in the AR field of segment registers is 1. And qemu
1838 * is setting it to 0 in the usedland code. This causes invalid guest
1839 * state vmexit when "unrestricted guest" mode is turned on.
1840 * Fix for this setup issue in cpu_reset is being pushed in the qemu
1841 * tree. Newer qemu binaries with that qemu fix would not need this
1842 * kvm hack.
1844 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
1845 ar |= 0x1; /* Accessed */
1847 vmcs_write32(sf->ar_bytes, ar);
1850 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1852 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1854 *db = (ar >> 14) & 1;
1855 *l = (ar >> 13) & 1;
1858 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1860 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1861 dt->base = vmcs_readl(GUEST_IDTR_BASE);
1864 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1866 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1867 vmcs_writel(GUEST_IDTR_BASE, dt->base);
1870 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1872 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1873 dt->base = vmcs_readl(GUEST_GDTR_BASE);
1876 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1878 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1879 vmcs_writel(GUEST_GDTR_BASE, dt->base);
1882 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
1884 struct kvm_segment var;
1885 u32 ar;
1887 vmx_get_segment(vcpu, &var, seg);
1888 ar = vmx_segment_access_rights(&var);
1890 if (var.base != (var.selector << 4))
1891 return false;
1892 if (var.limit != 0xffff)
1893 return false;
1894 if (ar != 0xf3)
1895 return false;
1897 return true;
1900 static bool code_segment_valid(struct kvm_vcpu *vcpu)
1902 struct kvm_segment cs;
1903 unsigned int cs_rpl;
1905 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
1906 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
1908 if (cs.unusable)
1909 return false;
1910 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
1911 return false;
1912 if (!cs.s)
1913 return false;
1914 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
1915 if (cs.dpl > cs_rpl)
1916 return false;
1917 } else {
1918 if (cs.dpl != cs_rpl)
1919 return false;
1921 if (!cs.present)
1922 return false;
1924 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
1925 return true;
1928 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
1930 struct kvm_segment ss;
1931 unsigned int ss_rpl;
1933 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
1934 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
1936 if (ss.unusable)
1937 return true;
1938 if (ss.type != 3 && ss.type != 7)
1939 return false;
1940 if (!ss.s)
1941 return false;
1942 if (ss.dpl != ss_rpl) /* DPL != RPL */
1943 return false;
1944 if (!ss.present)
1945 return false;
1947 return true;
1950 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
1952 struct kvm_segment var;
1953 unsigned int rpl;
1955 vmx_get_segment(vcpu, &var, seg);
1956 rpl = var.selector & SELECTOR_RPL_MASK;
1958 if (var.unusable)
1959 return true;
1960 if (!var.s)
1961 return false;
1962 if (!var.present)
1963 return false;
1964 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
1965 if (var.dpl < rpl) /* DPL < RPL */
1966 return false;
1969 /* TODO: Add other members to kvm_segment_field to allow checking for other access
1970 * rights flags
1972 return true;
1975 static bool tr_valid(struct kvm_vcpu *vcpu)
1977 struct kvm_segment tr;
1979 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
1981 if (tr.unusable)
1982 return false;
1983 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
1984 return false;
1985 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
1986 return false;
1987 if (!tr.present)
1988 return false;
1990 return true;
1993 static bool ldtr_valid(struct kvm_vcpu *vcpu)
1995 struct kvm_segment ldtr;
1997 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
1999 if (ldtr.unusable)
2000 return true;
2001 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
2002 return false;
2003 if (ldtr.type != 2)
2004 return false;
2005 if (!ldtr.present)
2006 return false;
2008 return true;
2011 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
2013 struct kvm_segment cs, ss;
2015 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2016 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2018 return ((cs.selector & SELECTOR_RPL_MASK) ==
2019 (ss.selector & SELECTOR_RPL_MASK));
2023 * Check if guest state is valid. Returns true if valid, false if
2024 * not.
2025 * We assume that registers are always usable
2027 static bool guest_state_valid(struct kvm_vcpu *vcpu)
2029 /* real mode guest state checks */
2030 if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
2031 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
2032 return false;
2033 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
2034 return false;
2035 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
2036 return false;
2037 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
2038 return false;
2039 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
2040 return false;
2041 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
2042 return false;
2043 } else {
2044 /* protected mode guest state checks */
2045 if (!cs_ss_rpl_check(vcpu))
2046 return false;
2047 if (!code_segment_valid(vcpu))
2048 return false;
2049 if (!stack_segment_valid(vcpu))
2050 return false;
2051 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
2052 return false;
2053 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
2054 return false;
2055 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
2056 return false;
2057 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
2058 return false;
2059 if (!tr_valid(vcpu))
2060 return false;
2061 if (!ldtr_valid(vcpu))
2062 return false;
2064 /* TODO:
2065 * - Add checks on RIP
2066 * - Add checks on RFLAGS
2069 return true;
2072 static int init_rmode_tss(struct kvm *kvm)
2074 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
2075 u16 data = 0;
2076 int ret = 0;
2077 int r;
2079 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2080 if (r < 0)
2081 goto out;
2082 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
2083 r = kvm_write_guest_page(kvm, fn++, &data,
2084 TSS_IOPB_BASE_OFFSET, sizeof(u16));
2085 if (r < 0)
2086 goto out;
2087 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
2088 if (r < 0)
2089 goto out;
2090 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2091 if (r < 0)
2092 goto out;
2093 data = ~0;
2094 r = kvm_write_guest_page(kvm, fn, &data,
2095 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
2096 sizeof(u8));
2097 if (r < 0)
2098 goto out;
2100 ret = 1;
2101 out:
2102 return ret;
2105 static int init_rmode_identity_map(struct kvm *kvm)
2107 int i, r, ret;
2108 pfn_t identity_map_pfn;
2109 u32 tmp;
2111 if (!enable_ept)
2112 return 1;
2113 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
2114 printk(KERN_ERR "EPT: identity-mapping pagetable "
2115 "haven't been allocated!\n");
2116 return 0;
2118 if (likely(kvm->arch.ept_identity_pagetable_done))
2119 return 1;
2120 ret = 0;
2121 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
2122 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
2123 if (r < 0)
2124 goto out;
2125 /* Set up identity-mapping pagetable for EPT in real mode */
2126 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
2127 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
2128 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
2129 r = kvm_write_guest_page(kvm, identity_map_pfn,
2130 &tmp, i * sizeof(tmp), sizeof(tmp));
2131 if (r < 0)
2132 goto out;
2134 kvm->arch.ept_identity_pagetable_done = true;
2135 ret = 1;
2136 out:
2137 return ret;
2140 static void seg_setup(int seg)
2142 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2143 unsigned int ar;
2145 vmcs_write16(sf->selector, 0);
2146 vmcs_writel(sf->base, 0);
2147 vmcs_write32(sf->limit, 0xffff);
2148 if (enable_unrestricted_guest) {
2149 ar = 0x93;
2150 if (seg == VCPU_SREG_CS)
2151 ar |= 0x08; /* code segment */
2152 } else
2153 ar = 0xf3;
2155 vmcs_write32(sf->ar_bytes, ar);
2158 static int alloc_apic_access_page(struct kvm *kvm)
2160 struct kvm_userspace_memory_region kvm_userspace_mem;
2161 int r = 0;
2163 down_write(&kvm->slots_lock);
2164 if (kvm->arch.apic_access_page)
2165 goto out;
2166 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
2167 kvm_userspace_mem.flags = 0;
2168 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
2169 kvm_userspace_mem.memory_size = PAGE_SIZE;
2170 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2171 if (r)
2172 goto out;
2174 kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
2175 out:
2176 up_write(&kvm->slots_lock);
2177 return r;
2180 static int alloc_identity_pagetable(struct kvm *kvm)
2182 struct kvm_userspace_memory_region kvm_userspace_mem;
2183 int r = 0;
2185 down_write(&kvm->slots_lock);
2186 if (kvm->arch.ept_identity_pagetable)
2187 goto out;
2188 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
2189 kvm_userspace_mem.flags = 0;
2190 kvm_userspace_mem.guest_phys_addr =
2191 kvm->arch.ept_identity_map_addr;
2192 kvm_userspace_mem.memory_size = PAGE_SIZE;
2193 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2194 if (r)
2195 goto out;
2197 kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
2198 kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
2199 out:
2200 up_write(&kvm->slots_lock);
2201 return r;
2204 static void allocate_vpid(struct vcpu_vmx *vmx)
2206 int vpid;
2208 vmx->vpid = 0;
2209 if (!enable_vpid)
2210 return;
2211 spin_lock(&vmx_vpid_lock);
2212 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
2213 if (vpid < VMX_NR_VPIDS) {
2214 vmx->vpid = vpid;
2215 __set_bit(vpid, vmx_vpid_bitmap);
2217 spin_unlock(&vmx_vpid_lock);
2220 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
2222 int f = sizeof(unsigned long);
2224 if (!cpu_has_vmx_msr_bitmap())
2225 return;
2228 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2229 * have the write-low and read-high bitmap offsets the wrong way round.
2230 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2232 if (msr <= 0x1fff) {
2233 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
2234 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
2235 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2236 msr &= 0x1fff;
2237 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
2238 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
2242 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
2244 if (!longmode_only)
2245 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
2246 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
2250 * Sets up the vmcs for emulated real mode.
2252 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
2254 u32 host_sysenter_cs, msr_low, msr_high;
2255 u32 junk;
2256 u64 host_pat, tsc_this, tsc_base;
2257 unsigned long a;
2258 struct descriptor_table dt;
2259 int i;
2260 unsigned long kvm_vmx_return;
2261 u32 exec_control;
2263 /* I/O */
2264 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
2265 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
2267 if (cpu_has_vmx_msr_bitmap())
2268 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
2270 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
2272 /* Control */
2273 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
2274 vmcs_config.pin_based_exec_ctrl);
2276 exec_control = vmcs_config.cpu_based_exec_ctrl;
2277 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
2278 exec_control &= ~CPU_BASED_TPR_SHADOW;
2279 #ifdef CONFIG_X86_64
2280 exec_control |= CPU_BASED_CR8_STORE_EXITING |
2281 CPU_BASED_CR8_LOAD_EXITING;
2282 #endif
2284 if (!enable_ept)
2285 exec_control |= CPU_BASED_CR3_STORE_EXITING |
2286 CPU_BASED_CR3_LOAD_EXITING |
2287 CPU_BASED_INVLPG_EXITING;
2288 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2290 if (cpu_has_secondary_exec_ctrls()) {
2291 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
2292 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2293 exec_control &=
2294 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2295 if (vmx->vpid == 0)
2296 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
2297 if (!enable_ept)
2298 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
2299 if (!enable_unrestricted_guest)
2300 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2301 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2304 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
2305 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
2306 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
2308 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
2309 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
2310 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
2312 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
2313 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2314 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2315 vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
2316 vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
2317 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2318 #ifdef CONFIG_X86_64
2319 rdmsrl(MSR_FS_BASE, a);
2320 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
2321 rdmsrl(MSR_GS_BASE, a);
2322 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
2323 #else
2324 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
2325 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
2326 #endif
2328 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
2330 kvm_get_idt(&dt);
2331 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
2333 asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
2334 vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
2335 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2336 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2337 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2339 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
2340 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
2341 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
2342 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
2343 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
2344 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
2346 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
2347 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2348 host_pat = msr_low | ((u64) msr_high << 32);
2349 vmcs_write64(HOST_IA32_PAT, host_pat);
2351 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2352 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2353 host_pat = msr_low | ((u64) msr_high << 32);
2354 /* Write the default value follow host pat */
2355 vmcs_write64(GUEST_IA32_PAT, host_pat);
2356 /* Keep arch.pat sync with GUEST_IA32_PAT */
2357 vmx->vcpu.arch.pat = host_pat;
2360 for (i = 0; i < NR_VMX_MSR; ++i) {
2361 u32 index = vmx_msr_index[i];
2362 u32 data_low, data_high;
2363 u64 data;
2364 int j = vmx->nmsrs;
2366 if (rdmsr_safe(index, &data_low, &data_high) < 0)
2367 continue;
2368 if (wrmsr_safe(index, data_low, data_high) < 0)
2369 continue;
2370 data = data_low | ((u64)data_high << 32);
2371 vmx->host_msrs[j].index = index;
2372 vmx->host_msrs[j].reserved = 0;
2373 vmx->host_msrs[j].data = data;
2374 vmx->guest_msrs[j] = vmx->host_msrs[j];
2375 ++vmx->nmsrs;
2378 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
2380 /* 22.2.1, 20.8.1 */
2381 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
2383 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
2384 vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
2386 tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
2387 rdtscll(tsc_this);
2388 if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
2389 tsc_base = tsc_this;
2391 guest_write_tsc(0, tsc_base);
2393 return 0;
2396 static int init_rmode(struct kvm *kvm)
2398 if (!init_rmode_tss(kvm))
2399 return 0;
2400 if (!init_rmode_identity_map(kvm))
2401 return 0;
2402 return 1;
2405 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2407 struct vcpu_vmx *vmx = to_vmx(vcpu);
2408 u64 msr;
2409 int ret;
2411 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
2412 down_read(&vcpu->kvm->slots_lock);
2413 if (!init_rmode(vmx->vcpu.kvm)) {
2414 ret = -ENOMEM;
2415 goto out;
2418 vmx->rmode.vm86_active = 0;
2420 vmx->soft_vnmi_blocked = 0;
2422 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2423 kvm_set_cr8(&vmx->vcpu, 0);
2424 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2425 if (kvm_vcpu_is_bsp(&vmx->vcpu))
2426 msr |= MSR_IA32_APICBASE_BSP;
2427 kvm_set_apic_base(&vmx->vcpu, msr);
2429 fx_init(&vmx->vcpu);
2431 seg_setup(VCPU_SREG_CS);
2433 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2434 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
2436 if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
2437 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2438 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2439 } else {
2440 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2441 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2444 seg_setup(VCPU_SREG_DS);
2445 seg_setup(VCPU_SREG_ES);
2446 seg_setup(VCPU_SREG_FS);
2447 seg_setup(VCPU_SREG_GS);
2448 seg_setup(VCPU_SREG_SS);
2450 vmcs_write16(GUEST_TR_SELECTOR, 0);
2451 vmcs_writel(GUEST_TR_BASE, 0);
2452 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2453 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2455 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2456 vmcs_writel(GUEST_LDTR_BASE, 0);
2457 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2458 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2460 vmcs_write32(GUEST_SYSENTER_CS, 0);
2461 vmcs_writel(GUEST_SYSENTER_ESP, 0);
2462 vmcs_writel(GUEST_SYSENTER_EIP, 0);
2464 vmcs_writel(GUEST_RFLAGS, 0x02);
2465 if (kvm_vcpu_is_bsp(&vmx->vcpu))
2466 kvm_rip_write(vcpu, 0xfff0);
2467 else
2468 kvm_rip_write(vcpu, 0);
2469 kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
2471 vmcs_writel(GUEST_DR7, 0x400);
2473 vmcs_writel(GUEST_GDTR_BASE, 0);
2474 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2476 vmcs_writel(GUEST_IDTR_BASE, 0);
2477 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2479 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
2480 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2481 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2483 /* Special registers */
2484 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2486 setup_msrs(vmx);
2488 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
2490 if (cpu_has_vmx_tpr_shadow()) {
2491 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2492 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2493 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2494 page_to_phys(vmx->vcpu.arch.apic->regs_page));
2495 vmcs_write32(TPR_THRESHOLD, 0);
2498 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2499 vmcs_write64(APIC_ACCESS_ADDR,
2500 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2502 if (vmx->vpid != 0)
2503 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2505 vmx->vcpu.arch.cr0 = 0x60000010;
2506 vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
2507 vmx_set_cr4(&vmx->vcpu, 0);
2508 vmx_set_efer(&vmx->vcpu, 0);
2509 vmx_fpu_activate(&vmx->vcpu);
2510 update_exception_bitmap(&vmx->vcpu);
2512 vpid_sync_vcpu_all(vmx);
2514 ret = 0;
2516 /* HACK: Don't enable emulation on guest boot/reset */
2517 vmx->emulation_required = 0;
2519 out:
2520 up_read(&vcpu->kvm->slots_lock);
2521 return ret;
2524 static void enable_irq_window(struct kvm_vcpu *vcpu)
2526 u32 cpu_based_vm_exec_control;
2528 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2529 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2530 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2533 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2535 u32 cpu_based_vm_exec_control;
2537 if (!cpu_has_virtual_nmis()) {
2538 enable_irq_window(vcpu);
2539 return;
2542 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2543 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
2544 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2547 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
2549 struct vcpu_vmx *vmx = to_vmx(vcpu);
2550 uint32_t intr;
2551 int irq = vcpu->arch.interrupt.nr;
2553 trace_kvm_inj_virq(irq);
2555 ++vcpu->stat.irq_injections;
2556 if (vmx->rmode.vm86_active) {
2557 vmx->rmode.irq.pending = true;
2558 vmx->rmode.irq.vector = irq;
2559 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2560 if (vcpu->arch.interrupt.soft)
2561 vmx->rmode.irq.rip +=
2562 vmx->vcpu.arch.event_exit_inst_len;
2563 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2564 irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
2565 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2566 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2567 return;
2569 intr = irq | INTR_INFO_VALID_MASK;
2570 if (vcpu->arch.interrupt.soft) {
2571 intr |= INTR_TYPE_SOFT_INTR;
2572 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2573 vmx->vcpu.arch.event_exit_inst_len);
2574 } else
2575 intr |= INTR_TYPE_EXT_INTR;
2576 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
2579 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
2581 struct vcpu_vmx *vmx = to_vmx(vcpu);
2583 if (!cpu_has_virtual_nmis()) {
2585 * Tracking the NMI-blocked state in software is built upon
2586 * finding the next open IRQ window. This, in turn, depends on
2587 * well-behaving guests: They have to keep IRQs disabled at
2588 * least as long as the NMI handler runs. Otherwise we may
2589 * cause NMI nesting, maybe breaking the guest. But as this is
2590 * highly unlikely, we can live with the residual risk.
2592 vmx->soft_vnmi_blocked = 1;
2593 vmx->vnmi_blocked_time = 0;
2596 ++vcpu->stat.nmi_injections;
2597 if (vmx->rmode.vm86_active) {
2598 vmx->rmode.irq.pending = true;
2599 vmx->rmode.irq.vector = NMI_VECTOR;
2600 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2601 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2602 NMI_VECTOR | INTR_TYPE_SOFT_INTR |
2603 INTR_INFO_VALID_MASK);
2604 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2605 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2606 return;
2608 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2609 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
2612 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
2614 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
2615 return 0;
2617 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2618 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS |
2619 GUEST_INTR_STATE_NMI));
2622 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
2624 return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2625 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2626 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
2629 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2631 int ret;
2632 struct kvm_userspace_memory_region tss_mem = {
2633 .slot = TSS_PRIVATE_MEMSLOT,
2634 .guest_phys_addr = addr,
2635 .memory_size = PAGE_SIZE * 3,
2636 .flags = 0,
2639 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
2640 if (ret)
2641 return ret;
2642 kvm->arch.tss_addr = addr;
2643 return 0;
2646 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
2647 int vec, u32 err_code)
2650 * Instruction with address size override prefix opcode 0x67
2651 * Cause the #SS fault with 0 error code in VM86 mode.
2653 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
2654 if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE)
2655 return 1;
2657 * Forward all other exceptions that are valid in real mode.
2658 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
2659 * the required debugging infrastructure rework.
2661 switch (vec) {
2662 case DB_VECTOR:
2663 if (vcpu->guest_debug &
2664 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
2665 return 0;
2666 kvm_queue_exception(vcpu, vec);
2667 return 1;
2668 case BP_VECTOR:
2669 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2670 return 0;
2671 /* fall through */
2672 case DE_VECTOR:
2673 case OF_VECTOR:
2674 case BR_VECTOR:
2675 case UD_VECTOR:
2676 case DF_VECTOR:
2677 case SS_VECTOR:
2678 case GP_VECTOR:
2679 case MF_VECTOR:
2680 kvm_queue_exception(vcpu, vec);
2681 return 1;
2683 return 0;
2687 * Trigger machine check on the host. We assume all the MSRs are already set up
2688 * by the CPU and that we still run on the same CPU as the MCE occurred on.
2689 * We pass a fake environment to the machine check handler because we want
2690 * the guest to be always treated like user space, no matter what context
2691 * it used internally.
2693 static void kvm_machine_check(void)
2695 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
2696 struct pt_regs regs = {
2697 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
2698 .flags = X86_EFLAGS_IF,
2701 do_machine_check(&regs, 0);
2702 #endif
2705 static int handle_machine_check(struct kvm_vcpu *vcpu)
2707 /* already handled by vcpu_run */
2708 return 1;
2711 static int handle_exception(struct kvm_vcpu *vcpu)
2713 struct vcpu_vmx *vmx = to_vmx(vcpu);
2714 struct kvm_run *kvm_run = vcpu->run;
2715 u32 intr_info, ex_no, error_code;
2716 unsigned long cr2, rip, dr6;
2717 u32 vect_info;
2718 enum emulation_result er;
2720 vect_info = vmx->idt_vectoring_info;
2721 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2723 if (is_machine_check(intr_info))
2724 return handle_machine_check(vcpu);
2726 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
2727 !is_page_fault(intr_info))
2728 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
2729 "intr info 0x%x\n", __func__, vect_info, intr_info);
2731 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
2732 return 1; /* already handled by vmx_vcpu_run() */
2734 if (is_no_device(intr_info)) {
2735 vmx_fpu_activate(vcpu);
2736 return 1;
2739 if (is_invalid_opcode(intr_info)) {
2740 er = emulate_instruction(vcpu, 0, 0, EMULTYPE_TRAP_UD);
2741 if (er != EMULATE_DONE)
2742 kvm_queue_exception(vcpu, UD_VECTOR);
2743 return 1;
2746 error_code = 0;
2747 rip = kvm_rip_read(vcpu);
2748 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
2749 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
2750 if (is_page_fault(intr_info)) {
2751 /* EPT won't cause page fault directly */
2752 if (enable_ept)
2753 BUG();
2754 cr2 = vmcs_readl(EXIT_QUALIFICATION);
2755 trace_kvm_page_fault(cr2, error_code);
2757 if (kvm_event_needs_reinjection(vcpu))
2758 kvm_mmu_unprotect_page_virt(vcpu, cr2);
2759 return kvm_mmu_page_fault(vcpu, cr2, error_code);
2762 if (vmx->rmode.vm86_active &&
2763 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
2764 error_code)) {
2765 if (vcpu->arch.halt_request) {
2766 vcpu->arch.halt_request = 0;
2767 return kvm_emulate_halt(vcpu);
2769 return 1;
2772 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
2773 switch (ex_no) {
2774 case DB_VECTOR:
2775 dr6 = vmcs_readl(EXIT_QUALIFICATION);
2776 if (!(vcpu->guest_debug &
2777 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
2778 vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
2779 kvm_queue_exception(vcpu, DB_VECTOR);
2780 return 1;
2782 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
2783 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
2784 /* fall through */
2785 case BP_VECTOR:
2786 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2787 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
2788 kvm_run->debug.arch.exception = ex_no;
2789 break;
2790 default:
2791 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
2792 kvm_run->ex.exception = ex_no;
2793 kvm_run->ex.error_code = error_code;
2794 break;
2796 return 0;
2799 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
2801 ++vcpu->stat.irq_exits;
2802 return 1;
2805 static int handle_triple_fault(struct kvm_vcpu *vcpu)
2807 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
2808 return 0;
2811 static int handle_io(struct kvm_vcpu *vcpu)
2813 unsigned long exit_qualification;
2814 int size, in, string;
2815 unsigned port;
2817 ++vcpu->stat.io_exits;
2818 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2819 string = (exit_qualification & 16) != 0;
2821 if (string) {
2822 if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DO_MMIO)
2823 return 0;
2824 return 1;
2827 size = (exit_qualification & 7) + 1;
2828 in = (exit_qualification & 8) != 0;
2829 port = exit_qualification >> 16;
2831 skip_emulated_instruction(vcpu);
2832 return kvm_emulate_pio(vcpu, in, size, port);
2835 static void
2836 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2839 * Patch in the VMCALL instruction:
2841 hypercall[0] = 0x0f;
2842 hypercall[1] = 0x01;
2843 hypercall[2] = 0xc1;
2846 static int handle_cr(struct kvm_vcpu *vcpu)
2848 unsigned long exit_qualification, val;
2849 int cr;
2850 int reg;
2852 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2853 cr = exit_qualification & 15;
2854 reg = (exit_qualification >> 8) & 15;
2855 switch ((exit_qualification >> 4) & 3) {
2856 case 0: /* mov to cr */
2857 val = kvm_register_read(vcpu, reg);
2858 trace_kvm_cr_write(cr, val);
2859 switch (cr) {
2860 case 0:
2861 kvm_set_cr0(vcpu, val);
2862 skip_emulated_instruction(vcpu);
2863 return 1;
2864 case 3:
2865 kvm_set_cr3(vcpu, val);
2866 skip_emulated_instruction(vcpu);
2867 return 1;
2868 case 4:
2869 kvm_set_cr4(vcpu, val);
2870 skip_emulated_instruction(vcpu);
2871 return 1;
2872 case 8: {
2873 u8 cr8_prev = kvm_get_cr8(vcpu);
2874 u8 cr8 = kvm_register_read(vcpu, reg);
2875 kvm_set_cr8(vcpu, cr8);
2876 skip_emulated_instruction(vcpu);
2877 if (irqchip_in_kernel(vcpu->kvm))
2878 return 1;
2879 if (cr8_prev <= cr8)
2880 return 1;
2881 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2882 return 0;
2885 break;
2886 case 2: /* clts */
2887 vmx_fpu_deactivate(vcpu);
2888 vcpu->arch.cr0 &= ~X86_CR0_TS;
2889 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2890 vmx_fpu_activate(vcpu);
2891 skip_emulated_instruction(vcpu);
2892 return 1;
2893 case 1: /*mov from cr*/
2894 switch (cr) {
2895 case 3:
2896 kvm_register_write(vcpu, reg, vcpu->arch.cr3);
2897 trace_kvm_cr_read(cr, vcpu->arch.cr3);
2898 skip_emulated_instruction(vcpu);
2899 return 1;
2900 case 8:
2901 val = kvm_get_cr8(vcpu);
2902 kvm_register_write(vcpu, reg, val);
2903 trace_kvm_cr_read(cr, val);
2904 skip_emulated_instruction(vcpu);
2905 return 1;
2907 break;
2908 case 3: /* lmsw */
2909 kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
2911 skip_emulated_instruction(vcpu);
2912 return 1;
2913 default:
2914 break;
2916 vcpu->run->exit_reason = 0;
2917 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
2918 (int)(exit_qualification >> 4) & 3, cr);
2919 return 0;
2922 static int handle_dr(struct kvm_vcpu *vcpu)
2924 unsigned long exit_qualification;
2925 unsigned long val;
2926 int dr, reg;
2928 if (!kvm_require_cpl(vcpu, 0))
2929 return 1;
2930 dr = vmcs_readl(GUEST_DR7);
2931 if (dr & DR7_GD) {
2933 * As the vm-exit takes precedence over the debug trap, we
2934 * need to emulate the latter, either for the host or the
2935 * guest debugging itself.
2937 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
2938 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
2939 vcpu->run->debug.arch.dr7 = dr;
2940 vcpu->run->debug.arch.pc =
2941 vmcs_readl(GUEST_CS_BASE) +
2942 vmcs_readl(GUEST_RIP);
2943 vcpu->run->debug.arch.exception = DB_VECTOR;
2944 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
2945 return 0;
2946 } else {
2947 vcpu->arch.dr7 &= ~DR7_GD;
2948 vcpu->arch.dr6 |= DR6_BD;
2949 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
2950 kvm_queue_exception(vcpu, DB_VECTOR);
2951 return 1;
2955 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2956 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
2957 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
2958 if (exit_qualification & TYPE_MOV_FROM_DR) {
2959 switch (dr) {
2960 case 0 ... 3:
2961 val = vcpu->arch.db[dr];
2962 break;
2963 case 6:
2964 val = vcpu->arch.dr6;
2965 break;
2966 case 7:
2967 val = vcpu->arch.dr7;
2968 break;
2969 default:
2970 val = 0;
2972 kvm_register_write(vcpu, reg, val);
2973 } else {
2974 val = vcpu->arch.regs[reg];
2975 switch (dr) {
2976 case 0 ... 3:
2977 vcpu->arch.db[dr] = val;
2978 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
2979 vcpu->arch.eff_db[dr] = val;
2980 break;
2981 case 4 ... 5:
2982 if (vcpu->arch.cr4 & X86_CR4_DE)
2983 kvm_queue_exception(vcpu, UD_VECTOR);
2984 break;
2985 case 6:
2986 if (val & 0xffffffff00000000ULL) {
2987 kvm_queue_exception(vcpu, GP_VECTOR);
2988 break;
2990 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
2991 break;
2992 case 7:
2993 if (val & 0xffffffff00000000ULL) {
2994 kvm_queue_exception(vcpu, GP_VECTOR);
2995 break;
2997 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
2998 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
2999 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
3000 vcpu->arch.switch_db_regs =
3001 (val & DR7_BP_EN_MASK);
3003 break;
3006 skip_emulated_instruction(vcpu);
3007 return 1;
3010 static int handle_cpuid(struct kvm_vcpu *vcpu)
3012 kvm_emulate_cpuid(vcpu);
3013 return 1;
3016 static int handle_rdmsr(struct kvm_vcpu *vcpu)
3018 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3019 u64 data;
3021 if (vmx_get_msr(vcpu, ecx, &data)) {
3022 kvm_inject_gp(vcpu, 0);
3023 return 1;
3026 trace_kvm_msr_read(ecx, data);
3028 /* FIXME: handling of bits 32:63 of rax, rdx */
3029 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
3030 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
3031 skip_emulated_instruction(vcpu);
3032 return 1;
3035 static int handle_wrmsr(struct kvm_vcpu *vcpu)
3037 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3038 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
3039 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3041 trace_kvm_msr_write(ecx, data);
3043 if (vmx_set_msr(vcpu, ecx, data) != 0) {
3044 kvm_inject_gp(vcpu, 0);
3045 return 1;
3048 skip_emulated_instruction(vcpu);
3049 return 1;
3052 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
3054 return 1;
3057 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
3059 u32 cpu_based_vm_exec_control;
3061 /* clear pending irq */
3062 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3063 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
3064 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3066 ++vcpu->stat.irq_window_exits;
3069 * If the user space waits to inject interrupts, exit as soon as
3070 * possible
3072 if (!irqchip_in_kernel(vcpu->kvm) &&
3073 vcpu->run->request_interrupt_window &&
3074 !kvm_cpu_has_interrupt(vcpu)) {
3075 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3076 return 0;
3078 return 1;
3081 static int handle_halt(struct kvm_vcpu *vcpu)
3083 skip_emulated_instruction(vcpu);
3084 return kvm_emulate_halt(vcpu);
3087 static int handle_vmcall(struct kvm_vcpu *vcpu)
3089 skip_emulated_instruction(vcpu);
3090 kvm_emulate_hypercall(vcpu);
3091 return 1;
3094 static int handle_vmx_insn(struct kvm_vcpu *vcpu)
3096 kvm_queue_exception(vcpu, UD_VECTOR);
3097 return 1;
3100 static int handle_invlpg(struct kvm_vcpu *vcpu)
3102 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3104 kvm_mmu_invlpg(vcpu, exit_qualification);
3105 skip_emulated_instruction(vcpu);
3106 return 1;
3109 static int handle_wbinvd(struct kvm_vcpu *vcpu)
3111 skip_emulated_instruction(vcpu);
3112 /* TODO: Add support for VT-d/pass-through device */
3113 return 1;
3116 static int handle_apic_access(struct kvm_vcpu *vcpu)
3118 unsigned long exit_qualification;
3119 enum emulation_result er;
3120 unsigned long offset;
3122 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3123 offset = exit_qualification & 0xffful;
3125 er = emulate_instruction(vcpu, 0, 0, 0);
3127 if (er != EMULATE_DONE) {
3128 printk(KERN_ERR
3129 "Fail to handle apic access vmexit! Offset is 0x%lx\n",
3130 offset);
3131 return -ENOEXEC;
3133 return 1;
3136 static int handle_task_switch(struct kvm_vcpu *vcpu)
3138 struct vcpu_vmx *vmx = to_vmx(vcpu);
3139 unsigned long exit_qualification;
3140 u16 tss_selector;
3141 int reason, type, idt_v;
3143 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
3144 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
3146 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3148 reason = (u32)exit_qualification >> 30;
3149 if (reason == TASK_SWITCH_GATE && idt_v) {
3150 switch (type) {
3151 case INTR_TYPE_NMI_INTR:
3152 vcpu->arch.nmi_injected = false;
3153 if (cpu_has_virtual_nmis())
3154 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3155 GUEST_INTR_STATE_NMI);
3156 break;
3157 case INTR_TYPE_EXT_INTR:
3158 case INTR_TYPE_SOFT_INTR:
3159 kvm_clear_interrupt_queue(vcpu);
3160 break;
3161 case INTR_TYPE_HARD_EXCEPTION:
3162 case INTR_TYPE_SOFT_EXCEPTION:
3163 kvm_clear_exception_queue(vcpu);
3164 break;
3165 default:
3166 break;
3169 tss_selector = exit_qualification;
3171 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
3172 type != INTR_TYPE_EXT_INTR &&
3173 type != INTR_TYPE_NMI_INTR))
3174 skip_emulated_instruction(vcpu);
3176 if (!kvm_task_switch(vcpu, tss_selector, reason))
3177 return 0;
3179 /* clear all local breakpoint enable flags */
3180 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
3183 * TODO: What about debug traps on tss switch?
3184 * Are we supposed to inject them and update dr6?
3187 return 1;
3190 static int handle_ept_violation(struct kvm_vcpu *vcpu)
3192 unsigned long exit_qualification;
3193 gpa_t gpa;
3194 int gla_validity;
3196 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3198 if (exit_qualification & (1 << 6)) {
3199 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
3200 return -EINVAL;
3203 gla_validity = (exit_qualification >> 7) & 0x3;
3204 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
3205 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
3206 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
3207 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
3208 vmcs_readl(GUEST_LINEAR_ADDRESS));
3209 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
3210 (long unsigned int)exit_qualification);
3211 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3212 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
3213 return 0;
3216 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3217 trace_kvm_page_fault(gpa, exit_qualification);
3218 return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
3221 static u64 ept_rsvd_mask(u64 spte, int level)
3223 int i;
3224 u64 mask = 0;
3226 for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
3227 mask |= (1ULL << i);
3229 if (level > 2)
3230 /* bits 7:3 reserved */
3231 mask |= 0xf8;
3232 else if (level == 2) {
3233 if (spte & (1ULL << 7))
3234 /* 2MB ref, bits 20:12 reserved */
3235 mask |= 0x1ff000;
3236 else
3237 /* bits 6:3 reserved */
3238 mask |= 0x78;
3241 return mask;
3244 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
3245 int level)
3247 printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
3249 /* 010b (write-only) */
3250 WARN_ON((spte & 0x7) == 0x2);
3252 /* 110b (write/execute) */
3253 WARN_ON((spte & 0x7) == 0x6);
3255 /* 100b (execute-only) and value not supported by logical processor */
3256 if (!cpu_has_vmx_ept_execute_only())
3257 WARN_ON((spte & 0x7) == 0x4);
3259 /* not 000b */
3260 if ((spte & 0x7)) {
3261 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
3263 if (rsvd_bits != 0) {
3264 printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
3265 __func__, rsvd_bits);
3266 WARN_ON(1);
3269 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
3270 u64 ept_mem_type = (spte & 0x38) >> 3;
3272 if (ept_mem_type == 2 || ept_mem_type == 3 ||
3273 ept_mem_type == 7) {
3274 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
3275 __func__, ept_mem_type);
3276 WARN_ON(1);
3282 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
3284 u64 sptes[4];
3285 int nr_sptes, i;
3286 gpa_t gpa;
3288 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3290 printk(KERN_ERR "EPT: Misconfiguration.\n");
3291 printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
3293 nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
3295 for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
3296 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
3298 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3299 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
3301 return 0;
3304 static int handle_nmi_window(struct kvm_vcpu *vcpu)
3306 u32 cpu_based_vm_exec_control;
3308 /* clear pending NMI */
3309 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3310 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
3311 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3312 ++vcpu->stat.nmi_window_exits;
3314 return 1;
3317 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
3319 struct vcpu_vmx *vmx = to_vmx(vcpu);
3320 enum emulation_result err = EMULATE_DONE;
3321 int ret = 1;
3323 while (!guest_state_valid(vcpu)) {
3324 err = emulate_instruction(vcpu, 0, 0, 0);
3326 if (err == EMULATE_DO_MMIO) {
3327 ret = 0;
3328 goto out;
3331 if (err != EMULATE_DONE) {
3332 kvm_report_emulation_failure(vcpu, "emulation failure");
3333 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3334 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3335 ret = 0;
3336 goto out;
3339 if (signal_pending(current))
3340 goto out;
3341 if (need_resched())
3342 schedule();
3345 vmx->emulation_required = 0;
3346 out:
3347 return ret;
3351 * The exit handlers return 1 if the exit was handled fully and guest execution
3352 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
3353 * to be done to userspace and return 0.
3355 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3356 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
3357 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
3358 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
3359 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
3360 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
3361 [EXIT_REASON_CR_ACCESS] = handle_cr,
3362 [EXIT_REASON_DR_ACCESS] = handle_dr,
3363 [EXIT_REASON_CPUID] = handle_cpuid,
3364 [EXIT_REASON_MSR_READ] = handle_rdmsr,
3365 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
3366 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
3367 [EXIT_REASON_HLT] = handle_halt,
3368 [EXIT_REASON_INVLPG] = handle_invlpg,
3369 [EXIT_REASON_VMCALL] = handle_vmcall,
3370 [EXIT_REASON_VMCLEAR] = handle_vmx_insn,
3371 [EXIT_REASON_VMLAUNCH] = handle_vmx_insn,
3372 [EXIT_REASON_VMPTRLD] = handle_vmx_insn,
3373 [EXIT_REASON_VMPTRST] = handle_vmx_insn,
3374 [EXIT_REASON_VMREAD] = handle_vmx_insn,
3375 [EXIT_REASON_VMRESUME] = handle_vmx_insn,
3376 [EXIT_REASON_VMWRITE] = handle_vmx_insn,
3377 [EXIT_REASON_VMOFF] = handle_vmx_insn,
3378 [EXIT_REASON_VMON] = handle_vmx_insn,
3379 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
3380 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
3381 [EXIT_REASON_WBINVD] = handle_wbinvd,
3382 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
3383 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
3384 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
3385 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
3388 static const int kvm_vmx_max_exit_handlers =
3389 ARRAY_SIZE(kvm_vmx_exit_handlers);
3392 * The guest has exited. See if we can fix it or if we need userspace
3393 * assistance.
3395 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
3397 struct vcpu_vmx *vmx = to_vmx(vcpu);
3398 u32 exit_reason = vmx->exit_reason;
3399 u32 vectoring_info = vmx->idt_vectoring_info;
3401 trace_kvm_exit(exit_reason, kvm_rip_read(vcpu));
3403 /* If guest state is invalid, start emulating */
3404 if (vmx->emulation_required && emulate_invalid_guest_state)
3405 return handle_invalid_guest_state(vcpu);
3407 /* Access CR3 don't cause VMExit in paging mode, so we need
3408 * to sync with guest real CR3. */
3409 if (enable_ept && is_paging(vcpu))
3410 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3412 if (unlikely(vmx->fail)) {
3413 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3414 vcpu->run->fail_entry.hardware_entry_failure_reason
3415 = vmcs_read32(VM_INSTRUCTION_ERROR);
3416 return 0;
3419 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
3420 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
3421 exit_reason != EXIT_REASON_EPT_VIOLATION &&
3422 exit_reason != EXIT_REASON_TASK_SWITCH))
3423 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
3424 "(0x%x) and exit reason is 0x%x\n",
3425 __func__, vectoring_info, exit_reason);
3427 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
3428 if (vmx_interrupt_allowed(vcpu)) {
3429 vmx->soft_vnmi_blocked = 0;
3430 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
3431 vcpu->arch.nmi_pending) {
3433 * This CPU don't support us in finding the end of an
3434 * NMI-blocked window if the guest runs with IRQs
3435 * disabled. So we pull the trigger after 1 s of
3436 * futile waiting, but inform the user about this.
3438 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
3439 "state on VCPU %d after 1 s timeout\n",
3440 __func__, vcpu->vcpu_id);
3441 vmx->soft_vnmi_blocked = 0;
3445 if (exit_reason < kvm_vmx_max_exit_handlers
3446 && kvm_vmx_exit_handlers[exit_reason])
3447 return kvm_vmx_exit_handlers[exit_reason](vcpu);
3448 else {
3449 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3450 vcpu->run->hw.hardware_exit_reason = exit_reason;
3452 return 0;
3455 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3457 if (irr == -1 || tpr < irr) {
3458 vmcs_write32(TPR_THRESHOLD, 0);
3459 return;
3462 vmcs_write32(TPR_THRESHOLD, irr);
3465 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
3467 u32 exit_intr_info;
3468 u32 idt_vectoring_info = vmx->idt_vectoring_info;
3469 bool unblock_nmi;
3470 u8 vector;
3471 int type;
3472 bool idtv_info_valid;
3474 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3476 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
3478 /* Handle machine checks before interrupts are enabled */
3479 if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
3480 || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
3481 && is_machine_check(exit_intr_info)))
3482 kvm_machine_check();
3484 /* We need to handle NMIs before interrupts are enabled */
3485 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
3486 (exit_intr_info & INTR_INFO_VALID_MASK))
3487 asm("int $2");
3489 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
3491 if (cpu_has_virtual_nmis()) {
3492 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
3493 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
3495 * SDM 3: 27.7.1.2 (September 2008)
3496 * Re-set bit "block by NMI" before VM entry if vmexit caused by
3497 * a guest IRET fault.
3498 * SDM 3: 23.2.2 (September 2008)
3499 * Bit 12 is undefined in any of the following cases:
3500 * If the VM exit sets the valid bit in the IDT-vectoring
3501 * information field.
3502 * If the VM exit is due to a double fault.
3504 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
3505 vector != DF_VECTOR && !idtv_info_valid)
3506 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3507 GUEST_INTR_STATE_NMI);
3508 } else if (unlikely(vmx->soft_vnmi_blocked))
3509 vmx->vnmi_blocked_time +=
3510 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
3512 vmx->vcpu.arch.nmi_injected = false;
3513 kvm_clear_exception_queue(&vmx->vcpu);
3514 kvm_clear_interrupt_queue(&vmx->vcpu);
3516 if (!idtv_info_valid)
3517 return;
3519 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
3520 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
3522 switch (type) {
3523 case INTR_TYPE_NMI_INTR:
3524 vmx->vcpu.arch.nmi_injected = true;
3526 * SDM 3: 27.7.1.2 (September 2008)
3527 * Clear bit "block by NMI" before VM entry if a NMI
3528 * delivery faulted.
3530 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3531 GUEST_INTR_STATE_NMI);
3532 break;
3533 case INTR_TYPE_SOFT_EXCEPTION:
3534 vmx->vcpu.arch.event_exit_inst_len =
3535 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3536 /* fall through */
3537 case INTR_TYPE_HARD_EXCEPTION:
3538 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
3539 u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
3540 kvm_queue_exception_e(&vmx->vcpu, vector, err);
3541 } else
3542 kvm_queue_exception(&vmx->vcpu, vector);
3543 break;
3544 case INTR_TYPE_SOFT_INTR:
3545 vmx->vcpu.arch.event_exit_inst_len =
3546 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3547 /* fall through */
3548 case INTR_TYPE_EXT_INTR:
3549 kvm_queue_interrupt(&vmx->vcpu, vector,
3550 type == INTR_TYPE_SOFT_INTR);
3551 break;
3552 default:
3553 break;
3558 * Failure to inject an interrupt should give us the information
3559 * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
3560 * when fetching the interrupt redirection bitmap in the real-mode
3561 * tss, this doesn't happen. So we do it ourselves.
3563 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
3565 vmx->rmode.irq.pending = 0;
3566 if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
3567 return;
3568 kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
3569 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
3570 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
3571 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
3572 return;
3574 vmx->idt_vectoring_info =
3575 VECTORING_INFO_VALID_MASK
3576 | INTR_TYPE_EXT_INTR
3577 | vmx->rmode.irq.vector;
3580 #ifdef CONFIG_X86_64
3581 #define R "r"
3582 #define Q "q"
3583 #else
3584 #define R "e"
3585 #define Q "l"
3586 #endif
3588 static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
3590 struct vcpu_vmx *vmx = to_vmx(vcpu);
3592 if (enable_ept && is_paging(vcpu)) {
3593 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3594 ept_load_pdptrs(vcpu);
3596 /* Record the guest's net vcpu time for enforced NMI injections. */
3597 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
3598 vmx->entry_time = ktime_get();
3600 /* Don't enter VMX if guest state is invalid, let the exit handler
3601 start emulation until we arrive back to a valid state */
3602 if (vmx->emulation_required && emulate_invalid_guest_state)
3603 return;
3605 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
3606 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
3607 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
3608 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
3610 /* When single-stepping over STI and MOV SS, we must clear the
3611 * corresponding interruptibility bits in the guest state. Otherwise
3612 * vmentry fails as it then expects bit 14 (BS) in pending debug
3613 * exceptions being set, but that's not correct for the guest debugging
3614 * case. */
3615 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3616 vmx_set_interrupt_shadow(vcpu, 0);
3619 * Loading guest fpu may have cleared host cr0.ts
3621 vmcs_writel(HOST_CR0, read_cr0());
3623 if (vcpu->arch.switch_db_regs)
3624 set_debugreg(vcpu->arch.dr6, 6);
3626 asm(
3627 /* Store host registers */
3628 "push %%"R"dx; push %%"R"bp;"
3629 "push %%"R"cx \n\t"
3630 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
3631 "je 1f \n\t"
3632 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
3633 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
3634 "1: \n\t"
3635 /* Reload cr2 if changed */
3636 "mov %c[cr2](%0), %%"R"ax \n\t"
3637 "mov %%cr2, %%"R"dx \n\t"
3638 "cmp %%"R"ax, %%"R"dx \n\t"
3639 "je 2f \n\t"
3640 "mov %%"R"ax, %%cr2 \n\t"
3641 "2: \n\t"
3642 /* Check if vmlaunch of vmresume is needed */
3643 "cmpl $0, %c[launched](%0) \n\t"
3644 /* Load guest registers. Don't clobber flags. */
3645 "mov %c[rax](%0), %%"R"ax \n\t"
3646 "mov %c[rbx](%0), %%"R"bx \n\t"
3647 "mov %c[rdx](%0), %%"R"dx \n\t"
3648 "mov %c[rsi](%0), %%"R"si \n\t"
3649 "mov %c[rdi](%0), %%"R"di \n\t"
3650 "mov %c[rbp](%0), %%"R"bp \n\t"
3651 #ifdef CONFIG_X86_64
3652 "mov %c[r8](%0), %%r8 \n\t"
3653 "mov %c[r9](%0), %%r9 \n\t"
3654 "mov %c[r10](%0), %%r10 \n\t"
3655 "mov %c[r11](%0), %%r11 \n\t"
3656 "mov %c[r12](%0), %%r12 \n\t"
3657 "mov %c[r13](%0), %%r13 \n\t"
3658 "mov %c[r14](%0), %%r14 \n\t"
3659 "mov %c[r15](%0), %%r15 \n\t"
3660 #endif
3661 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
3663 /* Enter guest mode */
3664 "jne .Llaunched \n\t"
3665 __ex(ASM_VMX_VMLAUNCH) "\n\t"
3666 "jmp .Lkvm_vmx_return \n\t"
3667 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
3668 ".Lkvm_vmx_return: "
3669 /* Save guest registers, load host registers, keep flags */
3670 "xchg %0, (%%"R"sp) \n\t"
3671 "mov %%"R"ax, %c[rax](%0) \n\t"
3672 "mov %%"R"bx, %c[rbx](%0) \n\t"
3673 "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
3674 "mov %%"R"dx, %c[rdx](%0) \n\t"
3675 "mov %%"R"si, %c[rsi](%0) \n\t"
3676 "mov %%"R"di, %c[rdi](%0) \n\t"
3677 "mov %%"R"bp, %c[rbp](%0) \n\t"
3678 #ifdef CONFIG_X86_64
3679 "mov %%r8, %c[r8](%0) \n\t"
3680 "mov %%r9, %c[r9](%0) \n\t"
3681 "mov %%r10, %c[r10](%0) \n\t"
3682 "mov %%r11, %c[r11](%0) \n\t"
3683 "mov %%r12, %c[r12](%0) \n\t"
3684 "mov %%r13, %c[r13](%0) \n\t"
3685 "mov %%r14, %c[r14](%0) \n\t"
3686 "mov %%r15, %c[r15](%0) \n\t"
3687 #endif
3688 "mov %%cr2, %%"R"ax \n\t"
3689 "mov %%"R"ax, %c[cr2](%0) \n\t"
3691 "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
3692 "setbe %c[fail](%0) \n\t"
3693 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
3694 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
3695 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
3696 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
3697 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
3698 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
3699 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
3700 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
3701 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
3702 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
3703 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
3704 #ifdef CONFIG_X86_64
3705 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
3706 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
3707 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
3708 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
3709 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
3710 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
3711 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
3712 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
3713 #endif
3714 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
3715 : "cc", "memory"
3716 , R"bx", R"di", R"si"
3717 #ifdef CONFIG_X86_64
3718 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
3719 #endif
3722 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
3723 | (1 << VCPU_EXREG_PDPTR));
3724 vcpu->arch.regs_dirty = 0;
3726 if (vcpu->arch.switch_db_regs)
3727 get_debugreg(vcpu->arch.dr6, 6);
3729 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
3730 if (vmx->rmode.irq.pending)
3731 fixup_rmode_irq(vmx);
3733 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
3734 vmx->launched = 1;
3736 vmx_complete_interrupts(vmx);
3739 #undef R
3740 #undef Q
3742 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
3744 struct vcpu_vmx *vmx = to_vmx(vcpu);
3746 if (vmx->vmcs) {
3747 vcpu_clear(vmx);
3748 free_vmcs(vmx->vmcs);
3749 vmx->vmcs = NULL;
3753 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
3755 struct vcpu_vmx *vmx = to_vmx(vcpu);
3757 spin_lock(&vmx_vpid_lock);
3758 if (vmx->vpid != 0)
3759 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3760 spin_unlock(&vmx_vpid_lock);
3761 vmx_free_vmcs(vcpu);
3762 kfree(vmx->host_msrs);
3763 kfree(vmx->guest_msrs);
3764 kvm_vcpu_uninit(vcpu);
3765 kmem_cache_free(kvm_vcpu_cache, vmx);
3768 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
3770 int err;
3771 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3772 int cpu;
3774 if (!vmx)
3775 return ERR_PTR(-ENOMEM);
3777 allocate_vpid(vmx);
3779 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
3780 if (err)
3781 goto free_vcpu;
3783 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3784 if (!vmx->guest_msrs) {
3785 err = -ENOMEM;
3786 goto uninit_vcpu;
3789 vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3790 if (!vmx->host_msrs)
3791 goto free_guest_msrs;
3793 vmx->vmcs = alloc_vmcs();
3794 if (!vmx->vmcs)
3795 goto free_msrs;
3797 vmcs_clear(vmx->vmcs);
3799 cpu = get_cpu();
3800 vmx_vcpu_load(&vmx->vcpu, cpu);
3801 err = vmx_vcpu_setup(vmx);
3802 vmx_vcpu_put(&vmx->vcpu);
3803 put_cpu();
3804 if (err)
3805 goto free_vmcs;
3806 if (vm_need_virtualize_apic_accesses(kvm))
3807 if (alloc_apic_access_page(kvm) != 0)
3808 goto free_vmcs;
3810 if (enable_ept) {
3811 if (!kvm->arch.ept_identity_map_addr)
3812 kvm->arch.ept_identity_map_addr =
3813 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3814 if (alloc_identity_pagetable(kvm) != 0)
3815 goto free_vmcs;
3818 return &vmx->vcpu;
3820 free_vmcs:
3821 free_vmcs(vmx->vmcs);
3822 free_msrs:
3823 kfree(vmx->host_msrs);
3824 free_guest_msrs:
3825 kfree(vmx->guest_msrs);
3826 uninit_vcpu:
3827 kvm_vcpu_uninit(&vmx->vcpu);
3828 free_vcpu:
3829 kmem_cache_free(kvm_vcpu_cache, vmx);
3830 return ERR_PTR(err);
3833 static void __init vmx_check_processor_compat(void *rtn)
3835 struct vmcs_config vmcs_conf;
3837 *(int *)rtn = 0;
3838 if (setup_vmcs_config(&vmcs_conf) < 0)
3839 *(int *)rtn = -EIO;
3840 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
3841 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
3842 smp_processor_id());
3843 *(int *)rtn = -EIO;
3847 static int get_ept_level(void)
3849 return VMX_EPT_DEFAULT_GAW + 1;
3852 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3854 u64 ret;
3856 /* For VT-d and EPT combination
3857 * 1. MMIO: always map as UC
3858 * 2. EPT with VT-d:
3859 * a. VT-d without snooping control feature: can't guarantee the
3860 * result, try to trust guest.
3861 * b. VT-d with snooping control feature: snooping control feature of
3862 * VT-d engine can guarantee the cache correctness. Just set it
3863 * to WB to keep consistent with host. So the same as item 3.
3864 * 3. EPT without VT-d: always map as WB and set IGMT=1 to keep
3865 * consistent with host MTRR
3867 if (is_mmio)
3868 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
3869 else if (vcpu->kvm->arch.iommu_domain &&
3870 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
3871 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
3872 VMX_EPT_MT_EPTE_SHIFT;
3873 else
3874 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
3875 | VMX_EPT_IGMT_BIT;
3877 return ret;
3880 static const struct trace_print_flags vmx_exit_reasons_str[] = {
3881 { EXIT_REASON_EXCEPTION_NMI, "exception" },
3882 { EXIT_REASON_EXTERNAL_INTERRUPT, "ext_irq" },
3883 { EXIT_REASON_TRIPLE_FAULT, "triple_fault" },
3884 { EXIT_REASON_NMI_WINDOW, "nmi_window" },
3885 { EXIT_REASON_IO_INSTRUCTION, "io_instruction" },
3886 { EXIT_REASON_CR_ACCESS, "cr_access" },
3887 { EXIT_REASON_DR_ACCESS, "dr_access" },
3888 { EXIT_REASON_CPUID, "cpuid" },
3889 { EXIT_REASON_MSR_READ, "rdmsr" },
3890 { EXIT_REASON_MSR_WRITE, "wrmsr" },
3891 { EXIT_REASON_PENDING_INTERRUPT, "interrupt_window" },
3892 { EXIT_REASON_HLT, "halt" },
3893 { EXIT_REASON_INVLPG, "invlpg" },
3894 { EXIT_REASON_VMCALL, "hypercall" },
3895 { EXIT_REASON_TPR_BELOW_THRESHOLD, "tpr_below_thres" },
3896 { EXIT_REASON_APIC_ACCESS, "apic_access" },
3897 { EXIT_REASON_WBINVD, "wbinvd" },
3898 { EXIT_REASON_TASK_SWITCH, "task_switch" },
3899 { EXIT_REASON_EPT_VIOLATION, "ept_violation" },
3900 { -1, NULL }
3903 static bool vmx_gb_page_enable(void)
3905 return false;
3908 static struct kvm_x86_ops vmx_x86_ops = {
3909 .cpu_has_kvm_support = cpu_has_kvm_support,
3910 .disabled_by_bios = vmx_disabled_by_bios,
3911 .hardware_setup = hardware_setup,
3912 .hardware_unsetup = hardware_unsetup,
3913 .check_processor_compatibility = vmx_check_processor_compat,
3914 .hardware_enable = hardware_enable,
3915 .hardware_disable = hardware_disable,
3916 .cpu_has_accelerated_tpr = report_flexpriority,
3918 .vcpu_create = vmx_create_vcpu,
3919 .vcpu_free = vmx_free_vcpu,
3920 .vcpu_reset = vmx_vcpu_reset,
3922 .prepare_guest_switch = vmx_save_host_state,
3923 .vcpu_load = vmx_vcpu_load,
3924 .vcpu_put = vmx_vcpu_put,
3926 .set_guest_debug = set_guest_debug,
3927 .get_msr = vmx_get_msr,
3928 .set_msr = vmx_set_msr,
3929 .get_segment_base = vmx_get_segment_base,
3930 .get_segment = vmx_get_segment,
3931 .set_segment = vmx_set_segment,
3932 .get_cpl = vmx_get_cpl,
3933 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
3934 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
3935 .set_cr0 = vmx_set_cr0,
3936 .set_cr3 = vmx_set_cr3,
3937 .set_cr4 = vmx_set_cr4,
3938 .set_efer = vmx_set_efer,
3939 .get_idt = vmx_get_idt,
3940 .set_idt = vmx_set_idt,
3941 .get_gdt = vmx_get_gdt,
3942 .set_gdt = vmx_set_gdt,
3943 .cache_reg = vmx_cache_reg,
3944 .get_rflags = vmx_get_rflags,
3945 .set_rflags = vmx_set_rflags,
3947 .tlb_flush = vmx_flush_tlb,
3949 .run = vmx_vcpu_run,
3950 .handle_exit = vmx_handle_exit,
3951 .skip_emulated_instruction = skip_emulated_instruction,
3952 .set_interrupt_shadow = vmx_set_interrupt_shadow,
3953 .get_interrupt_shadow = vmx_get_interrupt_shadow,
3954 .patch_hypercall = vmx_patch_hypercall,
3955 .set_irq = vmx_inject_irq,
3956 .set_nmi = vmx_inject_nmi,
3957 .queue_exception = vmx_queue_exception,
3958 .interrupt_allowed = vmx_interrupt_allowed,
3959 .nmi_allowed = vmx_nmi_allowed,
3960 .enable_nmi_window = enable_nmi_window,
3961 .enable_irq_window = enable_irq_window,
3962 .update_cr8_intercept = update_cr8_intercept,
3964 .set_tss_addr = vmx_set_tss_addr,
3965 .get_tdp_level = get_ept_level,
3966 .get_mt_mask = vmx_get_mt_mask,
3968 .exit_reasons_str = vmx_exit_reasons_str,
3969 .gb_page_enable = vmx_gb_page_enable,
3972 static int __init vmx_init(void)
3974 int r;
3976 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
3977 if (!vmx_io_bitmap_a)
3978 return -ENOMEM;
3980 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
3981 if (!vmx_io_bitmap_b) {
3982 r = -ENOMEM;
3983 goto out;
3986 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
3987 if (!vmx_msr_bitmap_legacy) {
3988 r = -ENOMEM;
3989 goto out1;
3992 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
3993 if (!vmx_msr_bitmap_longmode) {
3994 r = -ENOMEM;
3995 goto out2;
3999 * Allow direct access to the PC debug port (it is often used for I/O
4000 * delays, but the vmexits simply slow things down).
4002 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
4003 clear_bit(0x80, vmx_io_bitmap_a);
4005 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
4007 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
4008 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
4010 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
4012 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
4013 if (r)
4014 goto out3;
4016 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
4017 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
4018 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
4019 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
4020 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
4021 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
4023 if (enable_ept) {
4024 bypass_guest_pf = 0;
4025 kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
4026 VMX_EPT_WRITABLE_MASK);
4027 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
4028 VMX_EPT_EXECUTABLE_MASK);
4029 kvm_enable_tdp();
4030 } else
4031 kvm_disable_tdp();
4033 if (bypass_guest_pf)
4034 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
4036 return 0;
4038 out3:
4039 free_page((unsigned long)vmx_msr_bitmap_longmode);
4040 out2:
4041 free_page((unsigned long)vmx_msr_bitmap_legacy);
4042 out1:
4043 free_page((unsigned long)vmx_io_bitmap_b);
4044 out:
4045 free_page((unsigned long)vmx_io_bitmap_a);
4046 return r;
4049 static void __exit vmx_exit(void)
4051 free_page((unsigned long)vmx_msr_bitmap_legacy);
4052 free_page((unsigned long)vmx_msr_bitmap_longmode);
4053 free_page((unsigned long)vmx_io_bitmap_b);
4054 free_page((unsigned long)vmx_io_bitmap_a);
4056 kvm_exit();
4059 module_init(vmx_init)
4060 module_exit(vmx_exit)