1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
24 #include <linux/pagemap.h>
25 #include <linux/smp.h>
26 #include <linux/page-flags.h>
27 #include <linux/backing-dev.h>
28 #include <linux/bit_spinlock.h>
29 #include <linux/rcupdate.h>
30 #include <linux/limits.h>
31 #include <linux/mutex.h>
32 #include <linux/rbtree.h>
33 #include <linux/slab.h>
34 #include <linux/swap.h>
35 #include <linux/spinlock.h>
37 #include <linux/seq_file.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mm_inline.h>
40 #include <linux/page_cgroup.h>
41 #include <linux/cpu.h>
44 #include <asm/uaccess.h>
46 struct cgroup_subsys mem_cgroup_subsys __read_mostly
;
47 #define MEM_CGROUP_RECLAIM_RETRIES 5
48 struct mem_cgroup
*root_mem_cgroup __read_mostly
;
50 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
51 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
52 int do_swap_account __read_mostly
;
53 static int really_do_swap_account __initdata
= 1; /* for remember boot option*/
55 #define do_swap_account (0)
58 static DEFINE_MUTEX(memcg_tasklist
); /* can be hold under cgroup_mutex */
59 #define SOFTLIMIT_EVENTS_THRESH (1000)
62 * Statistics for memory cgroup.
64 enum mem_cgroup_stat_index
{
66 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
68 MEM_CGROUP_STAT_CACHE
, /* # of pages charged as cache */
69 MEM_CGROUP_STAT_RSS
, /* # of pages charged as anon rss */
70 MEM_CGROUP_STAT_MAPPED_FILE
, /* # of pages charged as file rss */
71 MEM_CGROUP_STAT_PGPGIN_COUNT
, /* # of pages paged in */
72 MEM_CGROUP_STAT_PGPGOUT_COUNT
, /* # of pages paged out */
73 MEM_CGROUP_STAT_EVENTS
, /* sum of pagein + pageout for internal use */
74 MEM_CGROUP_STAT_SWAPOUT
, /* # of pages, swapped out */
76 MEM_CGROUP_STAT_NSTATS
,
79 struct mem_cgroup_stat_cpu
{
80 s64 count
[MEM_CGROUP_STAT_NSTATS
];
81 } ____cacheline_aligned_in_smp
;
83 struct mem_cgroup_stat
{
84 struct mem_cgroup_stat_cpu cpustat
[0];
88 __mem_cgroup_stat_reset_safe(struct mem_cgroup_stat_cpu
*stat
,
89 enum mem_cgroup_stat_index idx
)
95 __mem_cgroup_stat_read_local(struct mem_cgroup_stat_cpu
*stat
,
96 enum mem_cgroup_stat_index idx
)
98 return stat
->count
[idx
];
102 * For accounting under irq disable, no need for increment preempt count.
104 static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu
*stat
,
105 enum mem_cgroup_stat_index idx
, int val
)
107 stat
->count
[idx
] += val
;
110 static s64
mem_cgroup_read_stat(struct mem_cgroup_stat
*stat
,
111 enum mem_cgroup_stat_index idx
)
115 for_each_possible_cpu(cpu
)
116 ret
+= stat
->cpustat
[cpu
].count
[idx
];
120 static s64
mem_cgroup_local_usage(struct mem_cgroup_stat
*stat
)
124 ret
= mem_cgroup_read_stat(stat
, MEM_CGROUP_STAT_CACHE
);
125 ret
+= mem_cgroup_read_stat(stat
, MEM_CGROUP_STAT_RSS
);
130 * per-zone information in memory controller.
132 struct mem_cgroup_per_zone
{
134 * spin_lock to protect the per cgroup LRU
136 struct list_head lists
[NR_LRU_LISTS
];
137 unsigned long count
[NR_LRU_LISTS
];
139 struct zone_reclaim_stat reclaim_stat
;
140 struct rb_node tree_node
; /* RB tree node */
141 unsigned long long usage_in_excess
;/* Set to the value by which */
142 /* the soft limit is exceeded*/
144 struct mem_cgroup
*mem
; /* Back pointer, we cannot */
145 /* use container_of */
147 /* Macro for accessing counter */
148 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
150 struct mem_cgroup_per_node
{
151 struct mem_cgroup_per_zone zoneinfo
[MAX_NR_ZONES
];
154 struct mem_cgroup_lru_info
{
155 struct mem_cgroup_per_node
*nodeinfo
[MAX_NUMNODES
];
159 * Cgroups above their limits are maintained in a RB-Tree, independent of
160 * their hierarchy representation
163 struct mem_cgroup_tree_per_zone
{
164 struct rb_root rb_root
;
168 struct mem_cgroup_tree_per_node
{
169 struct mem_cgroup_tree_per_zone rb_tree_per_zone
[MAX_NR_ZONES
];
172 struct mem_cgroup_tree
{
173 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
176 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
179 * The memory controller data structure. The memory controller controls both
180 * page cache and RSS per cgroup. We would eventually like to provide
181 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
182 * to help the administrator determine what knobs to tune.
184 * TODO: Add a water mark for the memory controller. Reclaim will begin when
185 * we hit the water mark. May be even add a low water mark, such that
186 * no reclaim occurs from a cgroup at it's low water mark, this is
187 * a feature that will be implemented much later in the future.
190 struct cgroup_subsys_state css
;
192 * the counter to account for memory usage
194 struct res_counter res
;
196 * the counter to account for mem+swap usage.
198 struct res_counter memsw
;
200 * Per cgroup active and inactive list, similar to the
201 * per zone LRU lists.
203 struct mem_cgroup_lru_info info
;
206 protect against reclaim related member.
208 spinlock_t reclaim_param_lock
;
210 int prev_priority
; /* for recording reclaim priority */
213 * While reclaiming in a hiearchy, we cache the last child we
216 int last_scanned_child
;
218 * Should the accounting and control be hierarchical, per subtree?
221 unsigned long last_oom_jiffies
;
224 unsigned int swappiness
;
226 /* set when res.limit == memsw.limit */
227 bool memsw_is_minimum
;
230 * statistics. This must be placed at the end of memcg.
232 struct mem_cgroup_stat stat
;
236 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
237 * limit reclaim to prevent infinite loops, if they ever occur.
239 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
240 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
243 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
244 MEM_CGROUP_CHARGE_TYPE_MAPPED
,
245 MEM_CGROUP_CHARGE_TYPE_SHMEM
, /* used by page migration of shmem */
246 MEM_CGROUP_CHARGE_TYPE_FORCE
, /* used by force_empty */
247 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
248 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
252 /* only for here (for easy reading.) */
253 #define PCGF_CACHE (1UL << PCG_CACHE)
254 #define PCGF_USED (1UL << PCG_USED)
255 #define PCGF_LOCK (1UL << PCG_LOCK)
256 /* Not used, but added here for completeness */
257 #define PCGF_ACCT (1UL << PCG_ACCT)
259 /* for encoding cft->private value on file */
262 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
263 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
264 #define MEMFILE_ATTR(val) ((val) & 0xffff)
267 * Reclaim flags for mem_cgroup_hierarchical_reclaim
269 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
270 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
271 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
272 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
273 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
274 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
276 static void mem_cgroup_get(struct mem_cgroup
*mem
);
277 static void mem_cgroup_put(struct mem_cgroup
*mem
);
278 static struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*mem
);
279 static void drain_all_stock_async(void);
281 static struct mem_cgroup_per_zone
*
282 mem_cgroup_zoneinfo(struct mem_cgroup
*mem
, int nid
, int zid
)
284 return &mem
->info
.nodeinfo
[nid
]->zoneinfo
[zid
];
287 static struct mem_cgroup_per_zone
*
288 page_cgroup_zoneinfo(struct page_cgroup
*pc
)
290 struct mem_cgroup
*mem
= pc
->mem_cgroup
;
291 int nid
= page_cgroup_nid(pc
);
292 int zid
= page_cgroup_zid(pc
);
297 return mem_cgroup_zoneinfo(mem
, nid
, zid
);
300 static struct mem_cgroup_tree_per_zone
*
301 soft_limit_tree_node_zone(int nid
, int zid
)
303 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
306 static struct mem_cgroup_tree_per_zone
*
307 soft_limit_tree_from_page(struct page
*page
)
309 int nid
= page_to_nid(page
);
310 int zid
= page_zonenum(page
);
312 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
316 __mem_cgroup_insert_exceeded(struct mem_cgroup
*mem
,
317 struct mem_cgroup_per_zone
*mz
,
318 struct mem_cgroup_tree_per_zone
*mctz
,
319 unsigned long long new_usage_in_excess
)
321 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
322 struct rb_node
*parent
= NULL
;
323 struct mem_cgroup_per_zone
*mz_node
;
328 mz
->usage_in_excess
= new_usage_in_excess
;
329 if (!mz
->usage_in_excess
)
333 mz_node
= rb_entry(parent
, struct mem_cgroup_per_zone
,
335 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
)
338 * We can't avoid mem cgroups that are over their soft
339 * limit by the same amount
341 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
344 rb_link_node(&mz
->tree_node
, parent
, p
);
345 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
350 __mem_cgroup_remove_exceeded(struct mem_cgroup
*mem
,
351 struct mem_cgroup_per_zone
*mz
,
352 struct mem_cgroup_tree_per_zone
*mctz
)
356 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
361 mem_cgroup_remove_exceeded(struct mem_cgroup
*mem
,
362 struct mem_cgroup_per_zone
*mz
,
363 struct mem_cgroup_tree_per_zone
*mctz
)
365 spin_lock(&mctz
->lock
);
366 __mem_cgroup_remove_exceeded(mem
, mz
, mctz
);
367 spin_unlock(&mctz
->lock
);
370 static bool mem_cgroup_soft_limit_check(struct mem_cgroup
*mem
)
375 struct mem_cgroup_stat_cpu
*cpustat
;
378 cpustat
= &mem
->stat
.cpustat
[cpu
];
379 val
= __mem_cgroup_stat_read_local(cpustat
, MEM_CGROUP_STAT_EVENTS
);
380 if (unlikely(val
> SOFTLIMIT_EVENTS_THRESH
)) {
381 __mem_cgroup_stat_reset_safe(cpustat
, MEM_CGROUP_STAT_EVENTS
);
388 static void mem_cgroup_update_tree(struct mem_cgroup
*mem
, struct page
*page
)
390 unsigned long long excess
;
391 struct mem_cgroup_per_zone
*mz
;
392 struct mem_cgroup_tree_per_zone
*mctz
;
393 int nid
= page_to_nid(page
);
394 int zid
= page_zonenum(page
);
395 mctz
= soft_limit_tree_from_page(page
);
398 * Necessary to update all ancestors when hierarchy is used.
399 * because their event counter is not touched.
401 for (; mem
; mem
= parent_mem_cgroup(mem
)) {
402 mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
403 excess
= res_counter_soft_limit_excess(&mem
->res
);
405 * We have to update the tree if mz is on RB-tree or
406 * mem is over its softlimit.
408 if (excess
|| mz
->on_tree
) {
409 spin_lock(&mctz
->lock
);
410 /* if on-tree, remove it */
412 __mem_cgroup_remove_exceeded(mem
, mz
, mctz
);
414 * Insert again. mz->usage_in_excess will be updated.
415 * If excess is 0, no tree ops.
417 __mem_cgroup_insert_exceeded(mem
, mz
, mctz
, excess
);
418 spin_unlock(&mctz
->lock
);
423 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*mem
)
426 struct mem_cgroup_per_zone
*mz
;
427 struct mem_cgroup_tree_per_zone
*mctz
;
429 for_each_node_state(node
, N_POSSIBLE
) {
430 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
431 mz
= mem_cgroup_zoneinfo(mem
, node
, zone
);
432 mctz
= soft_limit_tree_node_zone(node
, zone
);
433 mem_cgroup_remove_exceeded(mem
, mz
, mctz
);
438 static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup
*mem
)
440 return res_counter_soft_limit_excess(&mem
->res
) >> PAGE_SHIFT
;
443 static struct mem_cgroup_per_zone
*
444 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
446 struct rb_node
*rightmost
= NULL
;
447 struct mem_cgroup_per_zone
*mz
;
451 rightmost
= rb_last(&mctz
->rb_root
);
453 goto done
; /* Nothing to reclaim from */
455 mz
= rb_entry(rightmost
, struct mem_cgroup_per_zone
, tree_node
);
457 * Remove the node now but someone else can add it back,
458 * we will to add it back at the end of reclaim to its correct
459 * position in the tree.
461 __mem_cgroup_remove_exceeded(mz
->mem
, mz
, mctz
);
462 if (!res_counter_soft_limit_excess(&mz
->mem
->res
) ||
463 !css_tryget(&mz
->mem
->css
))
469 static struct mem_cgroup_per_zone
*
470 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
472 struct mem_cgroup_per_zone
*mz
;
474 spin_lock(&mctz
->lock
);
475 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
476 spin_unlock(&mctz
->lock
);
480 static void mem_cgroup_swap_statistics(struct mem_cgroup
*mem
,
483 int val
= (charge
) ? 1 : -1;
484 struct mem_cgroup_stat
*stat
= &mem
->stat
;
485 struct mem_cgroup_stat_cpu
*cpustat
;
488 cpustat
= &stat
->cpustat
[cpu
];
489 __mem_cgroup_stat_add_safe(cpustat
, MEM_CGROUP_STAT_SWAPOUT
, val
);
493 static void mem_cgroup_charge_statistics(struct mem_cgroup
*mem
,
494 struct page_cgroup
*pc
,
497 int val
= (charge
) ? 1 : -1;
498 struct mem_cgroup_stat
*stat
= &mem
->stat
;
499 struct mem_cgroup_stat_cpu
*cpustat
;
502 cpustat
= &stat
->cpustat
[cpu
];
503 if (PageCgroupCache(pc
))
504 __mem_cgroup_stat_add_safe(cpustat
, MEM_CGROUP_STAT_CACHE
, val
);
506 __mem_cgroup_stat_add_safe(cpustat
, MEM_CGROUP_STAT_RSS
, val
);
509 __mem_cgroup_stat_add_safe(cpustat
,
510 MEM_CGROUP_STAT_PGPGIN_COUNT
, 1);
512 __mem_cgroup_stat_add_safe(cpustat
,
513 MEM_CGROUP_STAT_PGPGOUT_COUNT
, 1);
514 __mem_cgroup_stat_add_safe(cpustat
, MEM_CGROUP_STAT_EVENTS
, 1);
518 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup
*mem
,
522 struct mem_cgroup_per_zone
*mz
;
525 for_each_online_node(nid
)
526 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
527 mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
528 total
+= MEM_CGROUP_ZSTAT(mz
, idx
);
533 static struct mem_cgroup
*mem_cgroup_from_cont(struct cgroup
*cont
)
535 return container_of(cgroup_subsys_state(cont
,
536 mem_cgroup_subsys_id
), struct mem_cgroup
,
540 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
543 * mm_update_next_owner() may clear mm->owner to NULL
544 * if it races with swapoff, page migration, etc.
545 * So this can be called with p == NULL.
550 return container_of(task_subsys_state(p
, mem_cgroup_subsys_id
),
551 struct mem_cgroup
, css
);
554 static struct mem_cgroup
*try_get_mem_cgroup_from_mm(struct mm_struct
*mm
)
556 struct mem_cgroup
*mem
= NULL
;
561 * Because we have no locks, mm->owner's may be being moved to other
562 * cgroup. We use css_tryget() here even if this looks
563 * pessimistic (rather than adding locks here).
567 mem
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
570 } while (!css_tryget(&mem
->css
));
576 * Call callback function against all cgroup under hierarchy tree.
578 static int mem_cgroup_walk_tree(struct mem_cgroup
*root
, void *data
,
579 int (*func
)(struct mem_cgroup
*, void *))
581 int found
, ret
, nextid
;
582 struct cgroup_subsys_state
*css
;
583 struct mem_cgroup
*mem
;
585 if (!root
->use_hierarchy
)
586 return (*func
)(root
, data
);
594 css
= css_get_next(&mem_cgroup_subsys
, nextid
, &root
->css
,
596 if (css
&& css_tryget(css
))
597 mem
= container_of(css
, struct mem_cgroup
, css
);
601 ret
= (*func
)(mem
, data
);
605 } while (!ret
&& css
);
610 static inline bool mem_cgroup_is_root(struct mem_cgroup
*mem
)
612 return (mem
== root_mem_cgroup
);
616 * Following LRU functions are allowed to be used without PCG_LOCK.
617 * Operations are called by routine of global LRU independently from memcg.
618 * What we have to take care of here is validness of pc->mem_cgroup.
620 * Changes to pc->mem_cgroup happens when
623 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
624 * It is added to LRU before charge.
625 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
626 * When moving account, the page is not on LRU. It's isolated.
629 void mem_cgroup_del_lru_list(struct page
*page
, enum lru_list lru
)
631 struct page_cgroup
*pc
;
632 struct mem_cgroup_per_zone
*mz
;
634 if (mem_cgroup_disabled())
636 pc
= lookup_page_cgroup(page
);
637 /* can happen while we handle swapcache. */
638 if (!TestClearPageCgroupAcctLRU(pc
))
640 VM_BUG_ON(!pc
->mem_cgroup
);
642 * We don't check PCG_USED bit. It's cleared when the "page" is finally
643 * removed from global LRU.
645 mz
= page_cgroup_zoneinfo(pc
);
646 MEM_CGROUP_ZSTAT(mz
, lru
) -= 1;
647 if (mem_cgroup_is_root(pc
->mem_cgroup
))
649 VM_BUG_ON(list_empty(&pc
->lru
));
650 list_del_init(&pc
->lru
);
654 void mem_cgroup_del_lru(struct page
*page
)
656 mem_cgroup_del_lru_list(page
, page_lru(page
));
659 void mem_cgroup_rotate_lru_list(struct page
*page
, enum lru_list lru
)
661 struct mem_cgroup_per_zone
*mz
;
662 struct page_cgroup
*pc
;
664 if (mem_cgroup_disabled())
667 pc
= lookup_page_cgroup(page
);
669 * Used bit is set without atomic ops but after smp_wmb().
670 * For making pc->mem_cgroup visible, insert smp_rmb() here.
673 /* unused or root page is not rotated. */
674 if (!PageCgroupUsed(pc
) || mem_cgroup_is_root(pc
->mem_cgroup
))
676 mz
= page_cgroup_zoneinfo(pc
);
677 list_move(&pc
->lru
, &mz
->lists
[lru
]);
680 void mem_cgroup_add_lru_list(struct page
*page
, enum lru_list lru
)
682 struct page_cgroup
*pc
;
683 struct mem_cgroup_per_zone
*mz
;
685 if (mem_cgroup_disabled())
687 pc
= lookup_page_cgroup(page
);
688 VM_BUG_ON(PageCgroupAcctLRU(pc
));
690 * Used bit is set without atomic ops but after smp_wmb().
691 * For making pc->mem_cgroup visible, insert smp_rmb() here.
694 if (!PageCgroupUsed(pc
))
697 mz
= page_cgroup_zoneinfo(pc
);
698 MEM_CGROUP_ZSTAT(mz
, lru
) += 1;
699 SetPageCgroupAcctLRU(pc
);
700 if (mem_cgroup_is_root(pc
->mem_cgroup
))
702 list_add(&pc
->lru
, &mz
->lists
[lru
]);
706 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
707 * lru because the page may.be reused after it's fully uncharged (because of
708 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
709 * it again. This function is only used to charge SwapCache. It's done under
710 * lock_page and expected that zone->lru_lock is never held.
712 static void mem_cgroup_lru_del_before_commit_swapcache(struct page
*page
)
715 struct zone
*zone
= page_zone(page
);
716 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
718 spin_lock_irqsave(&zone
->lru_lock
, flags
);
720 * Forget old LRU when this page_cgroup is *not* used. This Used bit
721 * is guarded by lock_page() because the page is SwapCache.
723 if (!PageCgroupUsed(pc
))
724 mem_cgroup_del_lru_list(page
, page_lru(page
));
725 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
728 static void mem_cgroup_lru_add_after_commit_swapcache(struct page
*page
)
731 struct zone
*zone
= page_zone(page
);
732 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
734 spin_lock_irqsave(&zone
->lru_lock
, flags
);
735 /* link when the page is linked to LRU but page_cgroup isn't */
736 if (PageLRU(page
) && !PageCgroupAcctLRU(pc
))
737 mem_cgroup_add_lru_list(page
, page_lru(page
));
738 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
742 void mem_cgroup_move_lists(struct page
*page
,
743 enum lru_list from
, enum lru_list to
)
745 if (mem_cgroup_disabled())
747 mem_cgroup_del_lru_list(page
, from
);
748 mem_cgroup_add_lru_list(page
, to
);
751 int task_in_mem_cgroup(struct task_struct
*task
, const struct mem_cgroup
*mem
)
754 struct mem_cgroup
*curr
= NULL
;
758 curr
= try_get_mem_cgroup_from_mm(task
->mm
);
763 if (curr
->use_hierarchy
)
764 ret
= css_is_ancestor(&curr
->css
, &mem
->css
);
772 * prev_priority control...this will be used in memory reclaim path.
774 int mem_cgroup_get_reclaim_priority(struct mem_cgroup
*mem
)
778 spin_lock(&mem
->reclaim_param_lock
);
779 prev_priority
= mem
->prev_priority
;
780 spin_unlock(&mem
->reclaim_param_lock
);
782 return prev_priority
;
785 void mem_cgroup_note_reclaim_priority(struct mem_cgroup
*mem
, int priority
)
787 spin_lock(&mem
->reclaim_param_lock
);
788 if (priority
< mem
->prev_priority
)
789 mem
->prev_priority
= priority
;
790 spin_unlock(&mem
->reclaim_param_lock
);
793 void mem_cgroup_record_reclaim_priority(struct mem_cgroup
*mem
, int priority
)
795 spin_lock(&mem
->reclaim_param_lock
);
796 mem
->prev_priority
= priority
;
797 spin_unlock(&mem
->reclaim_param_lock
);
800 static int calc_inactive_ratio(struct mem_cgroup
*memcg
, unsigned long *present_pages
)
802 unsigned long active
;
803 unsigned long inactive
;
805 unsigned long inactive_ratio
;
807 inactive
= mem_cgroup_get_local_zonestat(memcg
, LRU_INACTIVE_ANON
);
808 active
= mem_cgroup_get_local_zonestat(memcg
, LRU_ACTIVE_ANON
);
810 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
812 inactive_ratio
= int_sqrt(10 * gb
);
817 present_pages
[0] = inactive
;
818 present_pages
[1] = active
;
821 return inactive_ratio
;
824 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup
*memcg
)
826 unsigned long active
;
827 unsigned long inactive
;
828 unsigned long present_pages
[2];
829 unsigned long inactive_ratio
;
831 inactive_ratio
= calc_inactive_ratio(memcg
, present_pages
);
833 inactive
= present_pages
[0];
834 active
= present_pages
[1];
836 if (inactive
* inactive_ratio
< active
)
842 int mem_cgroup_inactive_file_is_low(struct mem_cgroup
*memcg
)
844 unsigned long active
;
845 unsigned long inactive
;
847 inactive
= mem_cgroup_get_local_zonestat(memcg
, LRU_INACTIVE_FILE
);
848 active
= mem_cgroup_get_local_zonestat(memcg
, LRU_ACTIVE_FILE
);
850 return (active
> inactive
);
853 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup
*memcg
,
857 int nid
= zone
->zone_pgdat
->node_id
;
858 int zid
= zone_idx(zone
);
859 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
861 return MEM_CGROUP_ZSTAT(mz
, lru
);
864 struct zone_reclaim_stat
*mem_cgroup_get_reclaim_stat(struct mem_cgroup
*memcg
,
867 int nid
= zone
->zone_pgdat
->node_id
;
868 int zid
= zone_idx(zone
);
869 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
871 return &mz
->reclaim_stat
;
874 struct zone_reclaim_stat
*
875 mem_cgroup_get_reclaim_stat_from_page(struct page
*page
)
877 struct page_cgroup
*pc
;
878 struct mem_cgroup_per_zone
*mz
;
880 if (mem_cgroup_disabled())
883 pc
= lookup_page_cgroup(page
);
885 * Used bit is set without atomic ops but after smp_wmb().
886 * For making pc->mem_cgroup visible, insert smp_rmb() here.
889 if (!PageCgroupUsed(pc
))
892 mz
= page_cgroup_zoneinfo(pc
);
896 return &mz
->reclaim_stat
;
899 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan
,
900 struct list_head
*dst
,
901 unsigned long *scanned
, int order
,
902 int mode
, struct zone
*z
,
903 struct mem_cgroup
*mem_cont
,
904 int active
, int file
)
906 unsigned long nr_taken
= 0;
910 struct list_head
*src
;
911 struct page_cgroup
*pc
, *tmp
;
912 int nid
= z
->zone_pgdat
->node_id
;
913 int zid
= zone_idx(z
);
914 struct mem_cgroup_per_zone
*mz
;
915 int lru
= LRU_FILE
* file
+ active
;
919 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
920 src
= &mz
->lists
[lru
];
923 list_for_each_entry_safe_reverse(pc
, tmp
, src
, lru
) {
924 if (scan
>= nr_to_scan
)
928 if (unlikely(!PageCgroupUsed(pc
)))
930 if (unlikely(!PageLRU(page
)))
934 ret
= __isolate_lru_page(page
, mode
, file
);
937 list_move(&page
->lru
, dst
);
938 mem_cgroup_del_lru(page
);
942 /* we don't affect global LRU but rotate in our LRU */
943 mem_cgroup_rotate_lru_list(page
, page_lru(page
));
954 #define mem_cgroup_from_res_counter(counter, member) \
955 container_of(counter, struct mem_cgroup, member)
957 static bool mem_cgroup_check_under_limit(struct mem_cgroup
*mem
)
959 if (do_swap_account
) {
960 if (res_counter_check_under_limit(&mem
->res
) &&
961 res_counter_check_under_limit(&mem
->memsw
))
964 if (res_counter_check_under_limit(&mem
->res
))
969 static unsigned int get_swappiness(struct mem_cgroup
*memcg
)
971 struct cgroup
*cgrp
= memcg
->css
.cgroup
;
972 unsigned int swappiness
;
975 if (cgrp
->parent
== NULL
)
976 return vm_swappiness
;
978 spin_lock(&memcg
->reclaim_param_lock
);
979 swappiness
= memcg
->swappiness
;
980 spin_unlock(&memcg
->reclaim_param_lock
);
985 static int mem_cgroup_count_children_cb(struct mem_cgroup
*mem
, void *data
)
993 * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
994 * @memcg: The memory cgroup that went over limit
995 * @p: Task that is going to be killed
997 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1000 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1002 struct cgroup
*task_cgrp
;
1003 struct cgroup
*mem_cgrp
;
1005 * Need a buffer in BSS, can't rely on allocations. The code relies
1006 * on the assumption that OOM is serialized for memory controller.
1007 * If this assumption is broken, revisit this code.
1009 static char memcg_name
[PATH_MAX
];
1018 mem_cgrp
= memcg
->css
.cgroup
;
1019 task_cgrp
= task_cgroup(p
, mem_cgroup_subsys_id
);
1021 ret
= cgroup_path(task_cgrp
, memcg_name
, PATH_MAX
);
1024 * Unfortunately, we are unable to convert to a useful name
1025 * But we'll still print out the usage information
1032 printk(KERN_INFO
"Task in %s killed", memcg_name
);
1035 ret
= cgroup_path(mem_cgrp
, memcg_name
, PATH_MAX
);
1043 * Continues from above, so we don't need an KERN_ level
1045 printk(KERN_CONT
" as a result of limit of %s\n", memcg_name
);
1048 printk(KERN_INFO
"memory: usage %llukB, limit %llukB, failcnt %llu\n",
1049 res_counter_read_u64(&memcg
->res
, RES_USAGE
) >> 10,
1050 res_counter_read_u64(&memcg
->res
, RES_LIMIT
) >> 10,
1051 res_counter_read_u64(&memcg
->res
, RES_FAILCNT
));
1052 printk(KERN_INFO
"memory+swap: usage %llukB, limit %llukB, "
1054 res_counter_read_u64(&memcg
->memsw
, RES_USAGE
) >> 10,
1055 res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
) >> 10,
1056 res_counter_read_u64(&memcg
->memsw
, RES_FAILCNT
));
1060 * This function returns the number of memcg under hierarchy tree. Returns
1061 * 1(self count) if no children.
1063 static int mem_cgroup_count_children(struct mem_cgroup
*mem
)
1066 mem_cgroup_walk_tree(mem
, &num
, mem_cgroup_count_children_cb
);
1071 * Visit the first child (need not be the first child as per the ordering
1072 * of the cgroup list, since we track last_scanned_child) of @mem and use
1073 * that to reclaim free pages from.
1075 static struct mem_cgroup
*
1076 mem_cgroup_select_victim(struct mem_cgroup
*root_mem
)
1078 struct mem_cgroup
*ret
= NULL
;
1079 struct cgroup_subsys_state
*css
;
1082 if (!root_mem
->use_hierarchy
) {
1083 css_get(&root_mem
->css
);
1089 nextid
= root_mem
->last_scanned_child
+ 1;
1090 css
= css_get_next(&mem_cgroup_subsys
, nextid
, &root_mem
->css
,
1092 if (css
&& css_tryget(css
))
1093 ret
= container_of(css
, struct mem_cgroup
, css
);
1096 /* Updates scanning parameter */
1097 spin_lock(&root_mem
->reclaim_param_lock
);
1099 /* this means start scan from ID:1 */
1100 root_mem
->last_scanned_child
= 0;
1102 root_mem
->last_scanned_child
= found
;
1103 spin_unlock(&root_mem
->reclaim_param_lock
);
1110 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1111 * we reclaimed from, so that we don't end up penalizing one child extensively
1112 * based on its position in the children list.
1114 * root_mem is the original ancestor that we've been reclaim from.
1116 * We give up and return to the caller when we visit root_mem twice.
1117 * (other groups can be removed while we're walking....)
1119 * If shrink==true, for avoiding to free too much, this returns immedieately.
1121 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup
*root_mem
,
1124 unsigned long reclaim_options
)
1126 struct mem_cgroup
*victim
;
1129 bool noswap
= reclaim_options
& MEM_CGROUP_RECLAIM_NOSWAP
;
1130 bool shrink
= reclaim_options
& MEM_CGROUP_RECLAIM_SHRINK
;
1131 bool check_soft
= reclaim_options
& MEM_CGROUP_RECLAIM_SOFT
;
1132 unsigned long excess
= mem_cgroup_get_excess(root_mem
);
1134 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1135 if (root_mem
->memsw_is_minimum
)
1139 victim
= mem_cgroup_select_victim(root_mem
);
1140 if (victim
== root_mem
) {
1143 drain_all_stock_async();
1146 * If we have not been able to reclaim
1147 * anything, it might because there are
1148 * no reclaimable pages under this hierarchy
1150 if (!check_soft
|| !total
) {
1151 css_put(&victim
->css
);
1155 * We want to do more targetted reclaim.
1156 * excess >> 2 is not to excessive so as to
1157 * reclaim too much, nor too less that we keep
1158 * coming back to reclaim from this cgroup
1160 if (total
>= (excess
>> 2) ||
1161 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
)) {
1162 css_put(&victim
->css
);
1167 if (!mem_cgroup_local_usage(&victim
->stat
)) {
1168 /* this cgroup's local usage == 0 */
1169 css_put(&victim
->css
);
1172 /* we use swappiness of local cgroup */
1174 ret
= mem_cgroup_shrink_node_zone(victim
, gfp_mask
,
1175 noswap
, get_swappiness(victim
), zone
,
1176 zone
->zone_pgdat
->node_id
);
1178 ret
= try_to_free_mem_cgroup_pages(victim
, gfp_mask
,
1179 noswap
, get_swappiness(victim
));
1180 css_put(&victim
->css
);
1182 * At shrinking usage, we can't check we should stop here or
1183 * reclaim more. It's depends on callers. last_scanned_child
1184 * will work enough for keeping fairness under tree.
1190 if (res_counter_check_under_soft_limit(&root_mem
->res
))
1192 } else if (mem_cgroup_check_under_limit(root_mem
))
1198 bool mem_cgroup_oom_called(struct task_struct
*task
)
1201 struct mem_cgroup
*mem
;
1202 struct mm_struct
*mm
;
1208 mem
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
1209 if (mem
&& time_before(jiffies
, mem
->last_oom_jiffies
+ HZ
/10))
1215 static int record_last_oom_cb(struct mem_cgroup
*mem
, void *data
)
1217 mem
->last_oom_jiffies
= jiffies
;
1221 static void record_last_oom(struct mem_cgroup
*mem
)
1223 mem_cgroup_walk_tree(mem
, NULL
, record_last_oom_cb
);
1227 * Currently used to update mapped file statistics, but the routine can be
1228 * generalized to update other statistics as well.
1230 void mem_cgroup_update_mapped_file_stat(struct page
*page
, int val
)
1232 struct mem_cgroup
*mem
;
1233 struct mem_cgroup_stat
*stat
;
1234 struct mem_cgroup_stat_cpu
*cpustat
;
1236 struct page_cgroup
*pc
;
1238 if (!page_is_file_cache(page
))
1241 pc
= lookup_page_cgroup(page
);
1245 lock_page_cgroup(pc
);
1246 mem
= pc
->mem_cgroup
;
1250 if (!PageCgroupUsed(pc
))
1254 * Preemption is already disabled, we don't need get_cpu()
1256 cpu
= smp_processor_id();
1258 cpustat
= &stat
->cpustat
[cpu
];
1260 __mem_cgroup_stat_add_safe(cpustat
, MEM_CGROUP_STAT_MAPPED_FILE
, val
);
1262 unlock_page_cgroup(pc
);
1266 * size of first charge trial. "32" comes from vmscan.c's magic value.
1267 * TODO: maybe necessary to use big numbers in big irons.
1269 #define CHARGE_SIZE (32 * PAGE_SIZE)
1270 struct memcg_stock_pcp
{
1271 struct mem_cgroup
*cached
; /* this never be root cgroup */
1273 struct work_struct work
;
1275 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
1276 static atomic_t memcg_drain_count
;
1279 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1280 * from local stock and true is returned. If the stock is 0 or charges from a
1281 * cgroup which is not current target, returns false. This stock will be
1284 static bool consume_stock(struct mem_cgroup
*mem
)
1286 struct memcg_stock_pcp
*stock
;
1289 stock
= &get_cpu_var(memcg_stock
);
1290 if (mem
== stock
->cached
&& stock
->charge
)
1291 stock
->charge
-= PAGE_SIZE
;
1292 else /* need to call res_counter_charge */
1294 put_cpu_var(memcg_stock
);
1299 * Returns stocks cached in percpu to res_counter and reset cached information.
1301 static void drain_stock(struct memcg_stock_pcp
*stock
)
1303 struct mem_cgroup
*old
= stock
->cached
;
1305 if (stock
->charge
) {
1306 res_counter_uncharge(&old
->res
, stock
->charge
);
1307 if (do_swap_account
)
1308 res_counter_uncharge(&old
->memsw
, stock
->charge
);
1310 stock
->cached
= NULL
;
1315 * This must be called under preempt disabled or must be called by
1316 * a thread which is pinned to local cpu.
1318 static void drain_local_stock(struct work_struct
*dummy
)
1320 struct memcg_stock_pcp
*stock
= &__get_cpu_var(memcg_stock
);
1325 * Cache charges(val) which is from res_counter, to local per_cpu area.
1326 * This will be consumed by consumt_stock() function, later.
1328 static void refill_stock(struct mem_cgroup
*mem
, int val
)
1330 struct memcg_stock_pcp
*stock
= &get_cpu_var(memcg_stock
);
1332 if (stock
->cached
!= mem
) { /* reset if necessary */
1334 stock
->cached
= mem
;
1336 stock
->charge
+= val
;
1337 put_cpu_var(memcg_stock
);
1341 * Tries to drain stocked charges in other cpus. This function is asynchronous
1342 * and just put a work per cpu for draining localy on each cpu. Caller can
1343 * expects some charges will be back to res_counter later but cannot wait for
1346 static void drain_all_stock_async(void)
1349 /* This function is for scheduling "drain" in asynchronous way.
1350 * The result of "drain" is not directly handled by callers. Then,
1351 * if someone is calling drain, we don't have to call drain more.
1352 * Anyway, work_pending() will catch if there is a race. We just do
1355 if (atomic_read(&memcg_drain_count
))
1357 /* Notify other cpus that system-wide "drain" is running */
1358 atomic_inc(&memcg_drain_count
);
1360 for_each_online_cpu(cpu
) {
1361 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
1362 if (work_pending(&stock
->work
))
1364 INIT_WORK(&stock
->work
, drain_local_stock
);
1365 schedule_work_on(cpu
, &stock
->work
);
1368 atomic_dec(&memcg_drain_count
);
1369 /* We don't wait for flush_work */
1372 /* This is a synchronous drain interface. */
1373 static void drain_all_stock_sync(void)
1375 /* called when force_empty is called */
1376 atomic_inc(&memcg_drain_count
);
1377 schedule_on_each_cpu(drain_local_stock
);
1378 atomic_dec(&memcg_drain_count
);
1381 static int __cpuinit
memcg_stock_cpu_callback(struct notifier_block
*nb
,
1382 unsigned long action
,
1385 int cpu
= (unsigned long)hcpu
;
1386 struct memcg_stock_pcp
*stock
;
1388 if (action
!= CPU_DEAD
)
1390 stock
= &per_cpu(memcg_stock
, cpu
);
1396 * Unlike exported interface, "oom" parameter is added. if oom==true,
1397 * oom-killer can be invoked.
1399 static int __mem_cgroup_try_charge(struct mm_struct
*mm
,
1400 gfp_t gfp_mask
, struct mem_cgroup
**memcg
,
1401 bool oom
, struct page
*page
)
1403 struct mem_cgroup
*mem
, *mem_over_limit
;
1404 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
1405 struct res_counter
*fail_res
;
1406 int csize
= CHARGE_SIZE
;
1408 if (unlikely(test_thread_flag(TIF_MEMDIE
))) {
1409 /* Don't account this! */
1415 * We always charge the cgroup the mm_struct belongs to.
1416 * The mm_struct's mem_cgroup changes on task migration if the
1417 * thread group leader migrates. It's possible that mm is not
1418 * set, if so charge the init_mm (happens for pagecache usage).
1422 mem
= try_get_mem_cgroup_from_mm(mm
);
1430 VM_BUG_ON(css_is_removed(&mem
->css
));
1431 if (mem_cgroup_is_root(mem
))
1436 unsigned long flags
= 0;
1438 if (consume_stock(mem
))
1441 ret
= res_counter_charge(&mem
->res
, csize
, &fail_res
);
1443 if (!do_swap_account
)
1445 ret
= res_counter_charge(&mem
->memsw
, csize
, &fail_res
);
1448 /* mem+swap counter fails */
1449 res_counter_uncharge(&mem
->res
, csize
);
1450 flags
|= MEM_CGROUP_RECLAIM_NOSWAP
;
1451 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
,
1454 /* mem counter fails */
1455 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
,
1458 /* reduce request size and retry */
1459 if (csize
> PAGE_SIZE
) {
1463 if (!(gfp_mask
& __GFP_WAIT
))
1466 ret
= mem_cgroup_hierarchical_reclaim(mem_over_limit
, NULL
,
1472 * try_to_free_mem_cgroup_pages() might not give us a full
1473 * picture of reclaim. Some pages are reclaimed and might be
1474 * moved to swap cache or just unmapped from the cgroup.
1475 * Check the limit again to see if the reclaim reduced the
1476 * current usage of the cgroup before giving up
1479 if (mem_cgroup_check_under_limit(mem_over_limit
))
1482 if (!nr_retries
--) {
1484 mutex_lock(&memcg_tasklist
);
1485 mem_cgroup_out_of_memory(mem_over_limit
, gfp_mask
);
1486 mutex_unlock(&memcg_tasklist
);
1487 record_last_oom(mem_over_limit
);
1492 if (csize
> PAGE_SIZE
)
1493 refill_stock(mem
, csize
- PAGE_SIZE
);
1496 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
1497 * if they exceeds softlimit.
1499 if (mem_cgroup_soft_limit_check(mem
))
1500 mem_cgroup_update_tree(mem
, page
);
1509 * A helper function to get mem_cgroup from ID. must be called under
1510 * rcu_read_lock(). The caller must check css_is_removed() or some if
1511 * it's concern. (dropping refcnt from swap can be called against removed
1514 static struct mem_cgroup
*mem_cgroup_lookup(unsigned short id
)
1516 struct cgroup_subsys_state
*css
;
1518 /* ID 0 is unused ID */
1521 css
= css_lookup(&mem_cgroup_subsys
, id
);
1524 return container_of(css
, struct mem_cgroup
, css
);
1527 static struct mem_cgroup
*try_get_mem_cgroup_from_swapcache(struct page
*page
)
1529 struct mem_cgroup
*mem
;
1530 struct page_cgroup
*pc
;
1534 VM_BUG_ON(!PageLocked(page
));
1536 if (!PageSwapCache(page
))
1539 pc
= lookup_page_cgroup(page
);
1540 lock_page_cgroup(pc
);
1541 if (PageCgroupUsed(pc
)) {
1542 mem
= pc
->mem_cgroup
;
1543 if (mem
&& !css_tryget(&mem
->css
))
1546 ent
.val
= page_private(page
);
1547 id
= lookup_swap_cgroup(ent
);
1549 mem
= mem_cgroup_lookup(id
);
1550 if (mem
&& !css_tryget(&mem
->css
))
1554 unlock_page_cgroup(pc
);
1559 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1560 * USED state. If already USED, uncharge and return.
1563 static void __mem_cgroup_commit_charge(struct mem_cgroup
*mem
,
1564 struct page_cgroup
*pc
,
1565 enum charge_type ctype
)
1567 /* try_charge() can return NULL to *memcg, taking care of it. */
1571 lock_page_cgroup(pc
);
1572 if (unlikely(PageCgroupUsed(pc
))) {
1573 unlock_page_cgroup(pc
);
1574 if (!mem_cgroup_is_root(mem
)) {
1575 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
1576 if (do_swap_account
)
1577 res_counter_uncharge(&mem
->memsw
, PAGE_SIZE
);
1583 pc
->mem_cgroup
= mem
;
1585 * We access a page_cgroup asynchronously without lock_page_cgroup().
1586 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
1587 * is accessed after testing USED bit. To make pc->mem_cgroup visible
1588 * before USED bit, we need memory barrier here.
1589 * See mem_cgroup_add_lru_list(), etc.
1593 case MEM_CGROUP_CHARGE_TYPE_CACHE
:
1594 case MEM_CGROUP_CHARGE_TYPE_SHMEM
:
1595 SetPageCgroupCache(pc
);
1596 SetPageCgroupUsed(pc
);
1598 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
1599 ClearPageCgroupCache(pc
);
1600 SetPageCgroupUsed(pc
);
1606 mem_cgroup_charge_statistics(mem
, pc
, true);
1608 unlock_page_cgroup(pc
);
1612 * mem_cgroup_move_account - move account of the page
1613 * @pc: page_cgroup of the page.
1614 * @from: mem_cgroup which the page is moved from.
1615 * @to: mem_cgroup which the page is moved to. @from != @to.
1617 * The caller must confirm following.
1618 * - page is not on LRU (isolate_page() is useful.)
1620 * returns 0 at success,
1621 * returns -EBUSY when lock is busy or "pc" is unstable.
1623 * This function does "uncharge" from old cgroup but doesn't do "charge" to
1624 * new cgroup. It should be done by a caller.
1627 static int mem_cgroup_move_account(struct page_cgroup
*pc
,
1628 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
1630 struct mem_cgroup_per_zone
*from_mz
, *to_mz
;
1635 struct mem_cgroup_stat
*stat
;
1636 struct mem_cgroup_stat_cpu
*cpustat
;
1638 VM_BUG_ON(from
== to
);
1639 VM_BUG_ON(PageLRU(pc
->page
));
1641 nid
= page_cgroup_nid(pc
);
1642 zid
= page_cgroup_zid(pc
);
1643 from_mz
= mem_cgroup_zoneinfo(from
, nid
, zid
);
1644 to_mz
= mem_cgroup_zoneinfo(to
, nid
, zid
);
1646 if (!trylock_page_cgroup(pc
))
1649 if (!PageCgroupUsed(pc
))
1652 if (pc
->mem_cgroup
!= from
)
1655 if (!mem_cgroup_is_root(from
))
1656 res_counter_uncharge(&from
->res
, PAGE_SIZE
);
1657 mem_cgroup_charge_statistics(from
, pc
, false);
1660 if (page_is_file_cache(page
) && page_mapped(page
)) {
1661 cpu
= smp_processor_id();
1662 /* Update mapped_file data for mem_cgroup "from" */
1664 cpustat
= &stat
->cpustat
[cpu
];
1665 __mem_cgroup_stat_add_safe(cpustat
, MEM_CGROUP_STAT_MAPPED_FILE
,
1668 /* Update mapped_file data for mem_cgroup "to" */
1670 cpustat
= &stat
->cpustat
[cpu
];
1671 __mem_cgroup_stat_add_safe(cpustat
, MEM_CGROUP_STAT_MAPPED_FILE
,
1675 if (do_swap_account
&& !mem_cgroup_is_root(from
))
1676 res_counter_uncharge(&from
->memsw
, PAGE_SIZE
);
1677 css_put(&from
->css
);
1680 pc
->mem_cgroup
= to
;
1681 mem_cgroup_charge_statistics(to
, pc
, true);
1684 unlock_page_cgroup(pc
);
1686 * We charges against "to" which may not have any tasks. Then, "to"
1687 * can be under rmdir(). But in current implementation, caller of
1688 * this function is just force_empty() and it's garanteed that
1689 * "to" is never removed. So, we don't check rmdir status here.
1695 * move charges to its parent.
1698 static int mem_cgroup_move_parent(struct page_cgroup
*pc
,
1699 struct mem_cgroup
*child
,
1702 struct page
*page
= pc
->page
;
1703 struct cgroup
*cg
= child
->css
.cgroup
;
1704 struct cgroup
*pcg
= cg
->parent
;
1705 struct mem_cgroup
*parent
;
1713 parent
= mem_cgroup_from_cont(pcg
);
1716 ret
= __mem_cgroup_try_charge(NULL
, gfp_mask
, &parent
, false, page
);
1720 if (!get_page_unless_zero(page
)) {
1725 ret
= isolate_lru_page(page
);
1730 ret
= mem_cgroup_move_account(pc
, child
, parent
);
1732 putback_lru_page(page
);
1735 /* drop extra refcnt by try_charge() */
1736 css_put(&parent
->css
);
1743 /* drop extra refcnt by try_charge() */
1744 css_put(&parent
->css
);
1745 /* uncharge if move fails */
1746 if (!mem_cgroup_is_root(parent
)) {
1747 res_counter_uncharge(&parent
->res
, PAGE_SIZE
);
1748 if (do_swap_account
)
1749 res_counter_uncharge(&parent
->memsw
, PAGE_SIZE
);
1755 * Charge the memory controller for page usage.
1757 * 0 if the charge was successful
1758 * < 0 if the cgroup is over its limit
1760 static int mem_cgroup_charge_common(struct page
*page
, struct mm_struct
*mm
,
1761 gfp_t gfp_mask
, enum charge_type ctype
,
1762 struct mem_cgroup
*memcg
)
1764 struct mem_cgroup
*mem
;
1765 struct page_cgroup
*pc
;
1768 pc
= lookup_page_cgroup(page
);
1769 /* can happen at boot */
1775 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, &mem
, true, page
);
1779 __mem_cgroup_commit_charge(mem
, pc
, ctype
);
1783 int mem_cgroup_newpage_charge(struct page
*page
,
1784 struct mm_struct
*mm
, gfp_t gfp_mask
)
1786 if (mem_cgroup_disabled())
1788 if (PageCompound(page
))
1791 * If already mapped, we don't have to account.
1792 * If page cache, page->mapping has address_space.
1793 * But page->mapping may have out-of-use anon_vma pointer,
1794 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1797 if (page_mapped(page
) || (page
->mapping
&& !PageAnon(page
)))
1801 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
1802 MEM_CGROUP_CHARGE_TYPE_MAPPED
, NULL
);
1806 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
1807 enum charge_type ctype
);
1809 int mem_cgroup_cache_charge(struct page
*page
, struct mm_struct
*mm
,
1812 struct mem_cgroup
*mem
= NULL
;
1815 if (mem_cgroup_disabled())
1817 if (PageCompound(page
))
1820 * Corner case handling. This is called from add_to_page_cache()
1821 * in usual. But some FS (shmem) precharges this page before calling it
1822 * and call add_to_page_cache() with GFP_NOWAIT.
1824 * For GFP_NOWAIT case, the page may be pre-charged before calling
1825 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1826 * charge twice. (It works but has to pay a bit larger cost.)
1827 * And when the page is SwapCache, it should take swap information
1828 * into account. This is under lock_page() now.
1830 if (!(gfp_mask
& __GFP_WAIT
)) {
1831 struct page_cgroup
*pc
;
1834 pc
= lookup_page_cgroup(page
);
1837 lock_page_cgroup(pc
);
1838 if (PageCgroupUsed(pc
)) {
1839 unlock_page_cgroup(pc
);
1842 unlock_page_cgroup(pc
);
1845 if (unlikely(!mm
&& !mem
))
1848 if (page_is_file_cache(page
))
1849 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
1850 MEM_CGROUP_CHARGE_TYPE_CACHE
, NULL
);
1853 if (PageSwapCache(page
)) {
1854 ret
= mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, &mem
);
1856 __mem_cgroup_commit_charge_swapin(page
, mem
,
1857 MEM_CGROUP_CHARGE_TYPE_SHMEM
);
1859 ret
= mem_cgroup_charge_common(page
, mm
, gfp_mask
,
1860 MEM_CGROUP_CHARGE_TYPE_SHMEM
, mem
);
1866 * While swap-in, try_charge -> commit or cancel, the page is locked.
1867 * And when try_charge() successfully returns, one refcnt to memcg without
1868 * struct page_cgroup is acquired. This refcnt will be consumed by
1869 * "commit()" or removed by "cancel()"
1871 int mem_cgroup_try_charge_swapin(struct mm_struct
*mm
,
1873 gfp_t mask
, struct mem_cgroup
**ptr
)
1875 struct mem_cgroup
*mem
;
1878 if (mem_cgroup_disabled())
1881 if (!do_swap_account
)
1884 * A racing thread's fault, or swapoff, may have already updated
1885 * the pte, and even removed page from swap cache: return success
1886 * to go on to do_swap_page()'s pte_same() test, which should fail.
1888 if (!PageSwapCache(page
))
1890 mem
= try_get_mem_cgroup_from_swapcache(page
);
1894 ret
= __mem_cgroup_try_charge(NULL
, mask
, ptr
, true, page
);
1895 /* drop extra refcnt from tryget */
1901 return __mem_cgroup_try_charge(mm
, mask
, ptr
, true, page
);
1905 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
1906 enum charge_type ctype
)
1908 struct page_cgroup
*pc
;
1910 if (mem_cgroup_disabled())
1914 cgroup_exclude_rmdir(&ptr
->css
);
1915 pc
= lookup_page_cgroup(page
);
1916 mem_cgroup_lru_del_before_commit_swapcache(page
);
1917 __mem_cgroup_commit_charge(ptr
, pc
, ctype
);
1918 mem_cgroup_lru_add_after_commit_swapcache(page
);
1920 * Now swap is on-memory. This means this page may be
1921 * counted both as mem and swap....double count.
1922 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1923 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1924 * may call delete_from_swap_cache() before reach here.
1926 if (do_swap_account
&& PageSwapCache(page
)) {
1927 swp_entry_t ent
= {.val
= page_private(page
)};
1929 struct mem_cgroup
*memcg
;
1931 id
= swap_cgroup_record(ent
, 0);
1933 memcg
= mem_cgroup_lookup(id
);
1936 * This recorded memcg can be obsolete one. So, avoid
1937 * calling css_tryget
1939 if (!mem_cgroup_is_root(memcg
))
1940 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
1941 mem_cgroup_swap_statistics(memcg
, false);
1942 mem_cgroup_put(memcg
);
1947 * At swapin, we may charge account against cgroup which has no tasks.
1948 * So, rmdir()->pre_destroy() can be called while we do this charge.
1949 * In that case, we need to call pre_destroy() again. check it here.
1951 cgroup_release_and_wakeup_rmdir(&ptr
->css
);
1954 void mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
)
1956 __mem_cgroup_commit_charge_swapin(page
, ptr
,
1957 MEM_CGROUP_CHARGE_TYPE_MAPPED
);
1960 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup
*mem
)
1962 if (mem_cgroup_disabled())
1966 if (!mem_cgroup_is_root(mem
)) {
1967 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
1968 if (do_swap_account
)
1969 res_counter_uncharge(&mem
->memsw
, PAGE_SIZE
);
1975 __do_uncharge(struct mem_cgroup
*mem
, const enum charge_type ctype
)
1977 struct memcg_batch_info
*batch
= NULL
;
1978 bool uncharge_memsw
= true;
1979 /* If swapout, usage of swap doesn't decrease */
1980 if (!do_swap_account
|| ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
)
1981 uncharge_memsw
= false;
1983 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
1984 * In those cases, all pages freed continously can be expected to be in
1985 * the same cgroup and we have chance to coalesce uncharges.
1986 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
1987 * because we want to do uncharge as soon as possible.
1989 if (!current
->memcg_batch
.do_batch
|| test_thread_flag(TIF_MEMDIE
))
1990 goto direct_uncharge
;
1992 batch
= ¤t
->memcg_batch
;
1994 * In usual, we do css_get() when we remember memcg pointer.
1995 * But in this case, we keep res->usage until end of a series of
1996 * uncharges. Then, it's ok to ignore memcg's refcnt.
2001 * In typical case, batch->memcg == mem. This means we can
2002 * merge a series of uncharges to an uncharge of res_counter.
2003 * If not, we uncharge res_counter ony by one.
2005 if (batch
->memcg
!= mem
)
2006 goto direct_uncharge
;
2007 /* remember freed charge and uncharge it later */
2008 batch
->bytes
+= PAGE_SIZE
;
2010 batch
->memsw_bytes
+= PAGE_SIZE
;
2013 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
2015 res_counter_uncharge(&mem
->memsw
, PAGE_SIZE
);
2020 * uncharge if !page_mapped(page)
2022 static struct mem_cgroup
*
2023 __mem_cgroup_uncharge_common(struct page
*page
, enum charge_type ctype
)
2025 struct page_cgroup
*pc
;
2026 struct mem_cgroup
*mem
= NULL
;
2027 struct mem_cgroup_per_zone
*mz
;
2029 if (mem_cgroup_disabled())
2032 if (PageSwapCache(page
))
2036 * Check if our page_cgroup is valid
2038 pc
= lookup_page_cgroup(page
);
2039 if (unlikely(!pc
|| !PageCgroupUsed(pc
)))
2042 lock_page_cgroup(pc
);
2044 mem
= pc
->mem_cgroup
;
2046 if (!PageCgroupUsed(pc
))
2050 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
2051 case MEM_CGROUP_CHARGE_TYPE_DROP
:
2052 if (page_mapped(page
))
2055 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT
:
2056 if (!PageAnon(page
)) { /* Shared memory */
2057 if (page
->mapping
&& !page_is_file_cache(page
))
2059 } else if (page_mapped(page
)) /* Anon */
2066 if (!mem_cgroup_is_root(mem
))
2067 __do_uncharge(mem
, ctype
);
2068 if (ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
)
2069 mem_cgroup_swap_statistics(mem
, true);
2070 mem_cgroup_charge_statistics(mem
, pc
, false);
2072 ClearPageCgroupUsed(pc
);
2074 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2075 * freed from LRU. This is safe because uncharged page is expected not
2076 * to be reused (freed soon). Exception is SwapCache, it's handled by
2077 * special functions.
2080 mz
= page_cgroup_zoneinfo(pc
);
2081 unlock_page_cgroup(pc
);
2083 if (mem_cgroup_soft_limit_check(mem
))
2084 mem_cgroup_update_tree(mem
, page
);
2085 /* at swapout, this memcg will be accessed to record to swap */
2086 if (ctype
!= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
)
2092 unlock_page_cgroup(pc
);
2096 void mem_cgroup_uncharge_page(struct page
*page
)
2099 if (page_mapped(page
))
2101 if (page
->mapping
&& !PageAnon(page
))
2103 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_MAPPED
);
2106 void mem_cgroup_uncharge_cache_page(struct page
*page
)
2108 VM_BUG_ON(page_mapped(page
));
2109 VM_BUG_ON(page
->mapping
);
2110 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_CACHE
);
2114 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2115 * In that cases, pages are freed continuously and we can expect pages
2116 * are in the same memcg. All these calls itself limits the number of
2117 * pages freed at once, then uncharge_start/end() is called properly.
2118 * This may be called prural(2) times in a context,
2121 void mem_cgroup_uncharge_start(void)
2123 current
->memcg_batch
.do_batch
++;
2124 /* We can do nest. */
2125 if (current
->memcg_batch
.do_batch
== 1) {
2126 current
->memcg_batch
.memcg
= NULL
;
2127 current
->memcg_batch
.bytes
= 0;
2128 current
->memcg_batch
.memsw_bytes
= 0;
2132 void mem_cgroup_uncharge_end(void)
2134 struct memcg_batch_info
*batch
= ¤t
->memcg_batch
;
2136 if (!batch
->do_batch
)
2140 if (batch
->do_batch
) /* If stacked, do nothing. */
2146 * This "batch->memcg" is valid without any css_get/put etc...
2147 * bacause we hide charges behind us.
2150 res_counter_uncharge(&batch
->memcg
->res
, batch
->bytes
);
2151 if (batch
->memsw_bytes
)
2152 res_counter_uncharge(&batch
->memcg
->memsw
, batch
->memsw_bytes
);
2153 /* forget this pointer (for sanity check) */
2154 batch
->memcg
= NULL
;
2159 * called after __delete_from_swap_cache() and drop "page" account.
2160 * memcg information is recorded to swap_cgroup of "ent"
2163 mem_cgroup_uncharge_swapcache(struct page
*page
, swp_entry_t ent
, bool swapout
)
2165 struct mem_cgroup
*memcg
;
2166 int ctype
= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
;
2168 if (!swapout
) /* this was a swap cache but the swap is unused ! */
2169 ctype
= MEM_CGROUP_CHARGE_TYPE_DROP
;
2171 memcg
= __mem_cgroup_uncharge_common(page
, ctype
);
2173 /* record memcg information */
2174 if (do_swap_account
&& swapout
&& memcg
) {
2175 swap_cgroup_record(ent
, css_id(&memcg
->css
));
2176 mem_cgroup_get(memcg
);
2178 if (swapout
&& memcg
)
2179 css_put(&memcg
->css
);
2183 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2185 * called from swap_entry_free(). remove record in swap_cgroup and
2186 * uncharge "memsw" account.
2188 void mem_cgroup_uncharge_swap(swp_entry_t ent
)
2190 struct mem_cgroup
*memcg
;
2193 if (!do_swap_account
)
2196 id
= swap_cgroup_record(ent
, 0);
2198 memcg
= mem_cgroup_lookup(id
);
2201 * We uncharge this because swap is freed.
2202 * This memcg can be obsolete one. We avoid calling css_tryget
2204 if (!mem_cgroup_is_root(memcg
))
2205 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
2206 mem_cgroup_swap_statistics(memcg
, false);
2207 mem_cgroup_put(memcg
);
2214 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2217 int mem_cgroup_prepare_migration(struct page
*page
, struct mem_cgroup
**ptr
)
2219 struct page_cgroup
*pc
;
2220 struct mem_cgroup
*mem
= NULL
;
2223 if (mem_cgroup_disabled())
2226 pc
= lookup_page_cgroup(page
);
2227 lock_page_cgroup(pc
);
2228 if (PageCgroupUsed(pc
)) {
2229 mem
= pc
->mem_cgroup
;
2232 unlock_page_cgroup(pc
);
2235 ret
= __mem_cgroup_try_charge(NULL
, GFP_KERNEL
, &mem
, false,
2243 /* remove redundant charge if migration failed*/
2244 void mem_cgroup_end_migration(struct mem_cgroup
*mem
,
2245 struct page
*oldpage
, struct page
*newpage
)
2247 struct page
*target
, *unused
;
2248 struct page_cgroup
*pc
;
2249 enum charge_type ctype
;
2253 cgroup_exclude_rmdir(&mem
->css
);
2254 /* at migration success, oldpage->mapping is NULL. */
2255 if (oldpage
->mapping
) {
2263 if (PageAnon(target
))
2264 ctype
= MEM_CGROUP_CHARGE_TYPE_MAPPED
;
2265 else if (page_is_file_cache(target
))
2266 ctype
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
2268 ctype
= MEM_CGROUP_CHARGE_TYPE_SHMEM
;
2270 /* unused page is not on radix-tree now. */
2272 __mem_cgroup_uncharge_common(unused
, ctype
);
2274 pc
= lookup_page_cgroup(target
);
2276 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
2277 * So, double-counting is effectively avoided.
2279 __mem_cgroup_commit_charge(mem
, pc
, ctype
);
2282 * Both of oldpage and newpage are still under lock_page().
2283 * Then, we don't have to care about race in radix-tree.
2284 * But we have to be careful that this page is unmapped or not.
2286 * There is a case for !page_mapped(). At the start of
2287 * migration, oldpage was mapped. But now, it's zapped.
2288 * But we know *target* page is not freed/reused under us.
2289 * mem_cgroup_uncharge_page() does all necessary checks.
2291 if (ctype
== MEM_CGROUP_CHARGE_TYPE_MAPPED
)
2292 mem_cgroup_uncharge_page(target
);
2294 * At migration, we may charge account against cgroup which has no tasks
2295 * So, rmdir()->pre_destroy() can be called while we do this charge.
2296 * In that case, we need to call pre_destroy() again. check it here.
2298 cgroup_release_and_wakeup_rmdir(&mem
->css
);
2302 * A call to try to shrink memory usage on charge failure at shmem's swapin.
2303 * Calling hierarchical_reclaim is not enough because we should update
2304 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2305 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2306 * not from the memcg which this page would be charged to.
2307 * try_charge_swapin does all of these works properly.
2309 int mem_cgroup_shmem_charge_fallback(struct page
*page
,
2310 struct mm_struct
*mm
,
2313 struct mem_cgroup
*mem
= NULL
;
2316 if (mem_cgroup_disabled())
2319 ret
= mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, &mem
);
2321 mem_cgroup_cancel_charge_swapin(mem
); /* it does !mem check */
2326 static DEFINE_MUTEX(set_limit_mutex
);
2328 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
2329 unsigned long long val
)
2335 int children
= mem_cgroup_count_children(memcg
);
2336 u64 curusage
, oldusage
;
2339 * For keeping hierarchical_reclaim simple, how long we should retry
2340 * is depends on callers. We set our retry-count to be function
2341 * of # of children which we should visit in this loop.
2343 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
* children
;
2345 oldusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
2347 while (retry_count
) {
2348 if (signal_pending(current
)) {
2353 * Rather than hide all in some function, I do this in
2354 * open coded manner. You see what this really does.
2355 * We have to guarantee mem->res.limit < mem->memsw.limit.
2357 mutex_lock(&set_limit_mutex
);
2358 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
2359 if (memswlimit
< val
) {
2361 mutex_unlock(&set_limit_mutex
);
2364 ret
= res_counter_set_limit(&memcg
->res
, val
);
2366 if (memswlimit
== val
)
2367 memcg
->memsw_is_minimum
= true;
2369 memcg
->memsw_is_minimum
= false;
2371 mutex_unlock(&set_limit_mutex
);
2376 progress
= mem_cgroup_hierarchical_reclaim(memcg
, NULL
,
2378 MEM_CGROUP_RECLAIM_SHRINK
);
2379 curusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
2380 /* Usage is reduced ? */
2381 if (curusage
>= oldusage
)
2384 oldusage
= curusage
;
2390 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
2391 unsigned long long val
)
2394 u64 memlimit
, oldusage
, curusage
;
2395 int children
= mem_cgroup_count_children(memcg
);
2398 /* see mem_cgroup_resize_res_limit */
2399 retry_count
= children
* MEM_CGROUP_RECLAIM_RETRIES
;
2400 oldusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
2401 while (retry_count
) {
2402 if (signal_pending(current
)) {
2407 * Rather than hide all in some function, I do this in
2408 * open coded manner. You see what this really does.
2409 * We have to guarantee mem->res.limit < mem->memsw.limit.
2411 mutex_lock(&set_limit_mutex
);
2412 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
2413 if (memlimit
> val
) {
2415 mutex_unlock(&set_limit_mutex
);
2418 ret
= res_counter_set_limit(&memcg
->memsw
, val
);
2420 if (memlimit
== val
)
2421 memcg
->memsw_is_minimum
= true;
2423 memcg
->memsw_is_minimum
= false;
2425 mutex_unlock(&set_limit_mutex
);
2430 mem_cgroup_hierarchical_reclaim(memcg
, NULL
, GFP_KERNEL
,
2431 MEM_CGROUP_RECLAIM_NOSWAP
|
2432 MEM_CGROUP_RECLAIM_SHRINK
);
2433 curusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
2434 /* Usage is reduced ? */
2435 if (curusage
>= oldusage
)
2438 oldusage
= curusage
;
2443 unsigned long mem_cgroup_soft_limit_reclaim(struct zone
*zone
, int order
,
2444 gfp_t gfp_mask
, int nid
,
2447 unsigned long nr_reclaimed
= 0;
2448 struct mem_cgroup_per_zone
*mz
, *next_mz
= NULL
;
2449 unsigned long reclaimed
;
2451 struct mem_cgroup_tree_per_zone
*mctz
;
2452 unsigned long long excess
;
2457 mctz
= soft_limit_tree_node_zone(nid
, zid
);
2459 * This loop can run a while, specially if mem_cgroup's continuously
2460 * keep exceeding their soft limit and putting the system under
2467 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
2471 reclaimed
= mem_cgroup_hierarchical_reclaim(mz
->mem
, zone
,
2473 MEM_CGROUP_RECLAIM_SOFT
);
2474 nr_reclaimed
+= reclaimed
;
2475 spin_lock(&mctz
->lock
);
2478 * If we failed to reclaim anything from this memory cgroup
2479 * it is time to move on to the next cgroup
2485 * Loop until we find yet another one.
2487 * By the time we get the soft_limit lock
2488 * again, someone might have aded the
2489 * group back on the RB tree. Iterate to
2490 * make sure we get a different mem.
2491 * mem_cgroup_largest_soft_limit_node returns
2492 * NULL if no other cgroup is present on
2496 __mem_cgroup_largest_soft_limit_node(mctz
);
2497 if (next_mz
== mz
) {
2498 css_put(&next_mz
->mem
->css
);
2500 } else /* next_mz == NULL or other memcg */
2504 __mem_cgroup_remove_exceeded(mz
->mem
, mz
, mctz
);
2505 excess
= res_counter_soft_limit_excess(&mz
->mem
->res
);
2507 * One school of thought says that we should not add
2508 * back the node to the tree if reclaim returns 0.
2509 * But our reclaim could return 0, simply because due
2510 * to priority we are exposing a smaller subset of
2511 * memory to reclaim from. Consider this as a longer
2514 /* If excess == 0, no tree ops */
2515 __mem_cgroup_insert_exceeded(mz
->mem
, mz
, mctz
, excess
);
2516 spin_unlock(&mctz
->lock
);
2517 css_put(&mz
->mem
->css
);
2520 * Could not reclaim anything and there are no more
2521 * mem cgroups to try or we seem to be looping without
2522 * reclaiming anything.
2524 if (!nr_reclaimed
&&
2526 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
2528 } while (!nr_reclaimed
);
2530 css_put(&next_mz
->mem
->css
);
2531 return nr_reclaimed
;
2535 * This routine traverse page_cgroup in given list and drop them all.
2536 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
2538 static int mem_cgroup_force_empty_list(struct mem_cgroup
*mem
,
2539 int node
, int zid
, enum lru_list lru
)
2542 struct mem_cgroup_per_zone
*mz
;
2543 struct page_cgroup
*pc
, *busy
;
2544 unsigned long flags
, loop
;
2545 struct list_head
*list
;
2548 zone
= &NODE_DATA(node
)->node_zones
[zid
];
2549 mz
= mem_cgroup_zoneinfo(mem
, node
, zid
);
2550 list
= &mz
->lists
[lru
];
2552 loop
= MEM_CGROUP_ZSTAT(mz
, lru
);
2553 /* give some margin against EBUSY etc...*/
2558 spin_lock_irqsave(&zone
->lru_lock
, flags
);
2559 if (list_empty(list
)) {
2560 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
2563 pc
= list_entry(list
->prev
, struct page_cgroup
, lru
);
2565 list_move(&pc
->lru
, list
);
2567 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
2570 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
2572 ret
= mem_cgroup_move_parent(pc
, mem
, GFP_KERNEL
);
2576 if (ret
== -EBUSY
|| ret
== -EINVAL
) {
2577 /* found lock contention or "pc" is obsolete. */
2584 if (!ret
&& !list_empty(list
))
2590 * make mem_cgroup's charge to be 0 if there is no task.
2591 * This enables deleting this mem_cgroup.
2593 static int mem_cgroup_force_empty(struct mem_cgroup
*mem
, bool free_all
)
2596 int node
, zid
, shrink
;
2597 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2598 struct cgroup
*cgrp
= mem
->css
.cgroup
;
2603 /* should free all ? */
2607 while (mem
->res
.usage
> 0) {
2609 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
))
2612 if (signal_pending(current
))
2614 /* This is for making all *used* pages to be on LRU. */
2615 lru_add_drain_all();
2616 drain_all_stock_sync();
2618 for_each_node_state(node
, N_HIGH_MEMORY
) {
2619 for (zid
= 0; !ret
&& zid
< MAX_NR_ZONES
; zid
++) {
2622 ret
= mem_cgroup_force_empty_list(mem
,
2631 /* it seems parent cgroup doesn't have enough mem */
2642 /* returns EBUSY if there is a task or if we come here twice. */
2643 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
) || shrink
) {
2647 /* we call try-to-free pages for make this cgroup empty */
2648 lru_add_drain_all();
2649 /* try to free all pages in this cgroup */
2651 while (nr_retries
&& mem
->res
.usage
> 0) {
2654 if (signal_pending(current
)) {
2658 progress
= try_to_free_mem_cgroup_pages(mem
, GFP_KERNEL
,
2659 false, get_swappiness(mem
));
2662 /* maybe some writeback is necessary */
2663 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
2668 /* try move_account...there may be some *locked* pages. */
2675 int mem_cgroup_force_empty_write(struct cgroup
*cont
, unsigned int event
)
2677 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont
), true);
2681 static u64
mem_cgroup_hierarchy_read(struct cgroup
*cont
, struct cftype
*cft
)
2683 return mem_cgroup_from_cont(cont
)->use_hierarchy
;
2686 static int mem_cgroup_hierarchy_write(struct cgroup
*cont
, struct cftype
*cft
,
2690 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
2691 struct cgroup
*parent
= cont
->parent
;
2692 struct mem_cgroup
*parent_mem
= NULL
;
2695 parent_mem
= mem_cgroup_from_cont(parent
);
2699 * If parent's use_hiearchy is set, we can't make any modifications
2700 * in the child subtrees. If it is unset, then the change can
2701 * occur, provided the current cgroup has no children.
2703 * For the root cgroup, parent_mem is NULL, we allow value to be
2704 * set if there are no children.
2706 if ((!parent_mem
|| !parent_mem
->use_hierarchy
) &&
2707 (val
== 1 || val
== 0)) {
2708 if (list_empty(&cont
->children
))
2709 mem
->use_hierarchy
= val
;
2719 struct mem_cgroup_idx_data
{
2721 enum mem_cgroup_stat_index idx
;
2725 mem_cgroup_get_idx_stat(struct mem_cgroup
*mem
, void *data
)
2727 struct mem_cgroup_idx_data
*d
= data
;
2728 d
->val
+= mem_cgroup_read_stat(&mem
->stat
, d
->idx
);
2733 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup
*mem
,
2734 enum mem_cgroup_stat_index idx
, s64
*val
)
2736 struct mem_cgroup_idx_data d
;
2739 mem_cgroup_walk_tree(mem
, &d
, mem_cgroup_get_idx_stat
);
2743 static u64
mem_cgroup_read(struct cgroup
*cont
, struct cftype
*cft
)
2745 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
2749 type
= MEMFILE_TYPE(cft
->private);
2750 name
= MEMFILE_ATTR(cft
->private);
2753 if (name
== RES_USAGE
&& mem_cgroup_is_root(mem
)) {
2754 mem_cgroup_get_recursive_idx_stat(mem
,
2755 MEM_CGROUP_STAT_CACHE
, &idx_val
);
2757 mem_cgroup_get_recursive_idx_stat(mem
,
2758 MEM_CGROUP_STAT_RSS
, &idx_val
);
2762 val
= res_counter_read_u64(&mem
->res
, name
);
2765 if (name
== RES_USAGE
&& mem_cgroup_is_root(mem
)) {
2766 mem_cgroup_get_recursive_idx_stat(mem
,
2767 MEM_CGROUP_STAT_CACHE
, &idx_val
);
2769 mem_cgroup_get_recursive_idx_stat(mem
,
2770 MEM_CGROUP_STAT_RSS
, &idx_val
);
2772 mem_cgroup_get_recursive_idx_stat(mem
,
2773 MEM_CGROUP_STAT_SWAPOUT
, &idx_val
);
2776 val
= res_counter_read_u64(&mem
->memsw
, name
);
2785 * The user of this function is...
2788 static int mem_cgroup_write(struct cgroup
*cont
, struct cftype
*cft
,
2791 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
2793 unsigned long long val
;
2796 type
= MEMFILE_TYPE(cft
->private);
2797 name
= MEMFILE_ATTR(cft
->private);
2800 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
2804 /* This function does all necessary parse...reuse it */
2805 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
2809 ret
= mem_cgroup_resize_limit(memcg
, val
);
2811 ret
= mem_cgroup_resize_memsw_limit(memcg
, val
);
2813 case RES_SOFT_LIMIT
:
2814 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
2818 * For memsw, soft limits are hard to implement in terms
2819 * of semantics, for now, we support soft limits for
2820 * control without swap
2823 ret
= res_counter_set_soft_limit(&memcg
->res
, val
);
2828 ret
= -EINVAL
; /* should be BUG() ? */
2834 static void memcg_get_hierarchical_limit(struct mem_cgroup
*memcg
,
2835 unsigned long long *mem_limit
, unsigned long long *memsw_limit
)
2837 struct cgroup
*cgroup
;
2838 unsigned long long min_limit
, min_memsw_limit
, tmp
;
2840 min_limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
2841 min_memsw_limit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
2842 cgroup
= memcg
->css
.cgroup
;
2843 if (!memcg
->use_hierarchy
)
2846 while (cgroup
->parent
) {
2847 cgroup
= cgroup
->parent
;
2848 memcg
= mem_cgroup_from_cont(cgroup
);
2849 if (!memcg
->use_hierarchy
)
2851 tmp
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
2852 min_limit
= min(min_limit
, tmp
);
2853 tmp
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
2854 min_memsw_limit
= min(min_memsw_limit
, tmp
);
2857 *mem_limit
= min_limit
;
2858 *memsw_limit
= min_memsw_limit
;
2862 static int mem_cgroup_reset(struct cgroup
*cont
, unsigned int event
)
2864 struct mem_cgroup
*mem
;
2867 mem
= mem_cgroup_from_cont(cont
);
2868 type
= MEMFILE_TYPE(event
);
2869 name
= MEMFILE_ATTR(event
);
2873 res_counter_reset_max(&mem
->res
);
2875 res_counter_reset_max(&mem
->memsw
);
2879 res_counter_reset_failcnt(&mem
->res
);
2881 res_counter_reset_failcnt(&mem
->memsw
);
2889 /* For read statistics */
2905 struct mcs_total_stat
{
2906 s64 stat
[NR_MCS_STAT
];
2912 } memcg_stat_strings
[NR_MCS_STAT
] = {
2913 {"cache", "total_cache"},
2914 {"rss", "total_rss"},
2915 {"mapped_file", "total_mapped_file"},
2916 {"pgpgin", "total_pgpgin"},
2917 {"pgpgout", "total_pgpgout"},
2918 {"swap", "total_swap"},
2919 {"inactive_anon", "total_inactive_anon"},
2920 {"active_anon", "total_active_anon"},
2921 {"inactive_file", "total_inactive_file"},
2922 {"active_file", "total_active_file"},
2923 {"unevictable", "total_unevictable"}
2927 static int mem_cgroup_get_local_stat(struct mem_cgroup
*mem
, void *data
)
2929 struct mcs_total_stat
*s
= data
;
2933 val
= mem_cgroup_read_stat(&mem
->stat
, MEM_CGROUP_STAT_CACHE
);
2934 s
->stat
[MCS_CACHE
] += val
* PAGE_SIZE
;
2935 val
= mem_cgroup_read_stat(&mem
->stat
, MEM_CGROUP_STAT_RSS
);
2936 s
->stat
[MCS_RSS
] += val
* PAGE_SIZE
;
2937 val
= mem_cgroup_read_stat(&mem
->stat
, MEM_CGROUP_STAT_MAPPED_FILE
);
2938 s
->stat
[MCS_MAPPED_FILE
] += val
* PAGE_SIZE
;
2939 val
= mem_cgroup_read_stat(&mem
->stat
, MEM_CGROUP_STAT_PGPGIN_COUNT
);
2940 s
->stat
[MCS_PGPGIN
] += val
;
2941 val
= mem_cgroup_read_stat(&mem
->stat
, MEM_CGROUP_STAT_PGPGOUT_COUNT
);
2942 s
->stat
[MCS_PGPGOUT
] += val
;
2943 if (do_swap_account
) {
2944 val
= mem_cgroup_read_stat(&mem
->stat
, MEM_CGROUP_STAT_SWAPOUT
);
2945 s
->stat
[MCS_SWAP
] += val
* PAGE_SIZE
;
2949 val
= mem_cgroup_get_local_zonestat(mem
, LRU_INACTIVE_ANON
);
2950 s
->stat
[MCS_INACTIVE_ANON
] += val
* PAGE_SIZE
;
2951 val
= mem_cgroup_get_local_zonestat(mem
, LRU_ACTIVE_ANON
);
2952 s
->stat
[MCS_ACTIVE_ANON
] += val
* PAGE_SIZE
;
2953 val
= mem_cgroup_get_local_zonestat(mem
, LRU_INACTIVE_FILE
);
2954 s
->stat
[MCS_INACTIVE_FILE
] += val
* PAGE_SIZE
;
2955 val
= mem_cgroup_get_local_zonestat(mem
, LRU_ACTIVE_FILE
);
2956 s
->stat
[MCS_ACTIVE_FILE
] += val
* PAGE_SIZE
;
2957 val
= mem_cgroup_get_local_zonestat(mem
, LRU_UNEVICTABLE
);
2958 s
->stat
[MCS_UNEVICTABLE
] += val
* PAGE_SIZE
;
2963 mem_cgroup_get_total_stat(struct mem_cgroup
*mem
, struct mcs_total_stat
*s
)
2965 mem_cgroup_walk_tree(mem
, s
, mem_cgroup_get_local_stat
);
2968 static int mem_control_stat_show(struct cgroup
*cont
, struct cftype
*cft
,
2969 struct cgroup_map_cb
*cb
)
2971 struct mem_cgroup
*mem_cont
= mem_cgroup_from_cont(cont
);
2972 struct mcs_total_stat mystat
;
2975 memset(&mystat
, 0, sizeof(mystat
));
2976 mem_cgroup_get_local_stat(mem_cont
, &mystat
);
2978 for (i
= 0; i
< NR_MCS_STAT
; i
++) {
2979 if (i
== MCS_SWAP
&& !do_swap_account
)
2981 cb
->fill(cb
, memcg_stat_strings
[i
].local_name
, mystat
.stat
[i
]);
2984 /* Hierarchical information */
2986 unsigned long long limit
, memsw_limit
;
2987 memcg_get_hierarchical_limit(mem_cont
, &limit
, &memsw_limit
);
2988 cb
->fill(cb
, "hierarchical_memory_limit", limit
);
2989 if (do_swap_account
)
2990 cb
->fill(cb
, "hierarchical_memsw_limit", memsw_limit
);
2993 memset(&mystat
, 0, sizeof(mystat
));
2994 mem_cgroup_get_total_stat(mem_cont
, &mystat
);
2995 for (i
= 0; i
< NR_MCS_STAT
; i
++) {
2996 if (i
== MCS_SWAP
&& !do_swap_account
)
2998 cb
->fill(cb
, memcg_stat_strings
[i
].total_name
, mystat
.stat
[i
]);
3001 #ifdef CONFIG_DEBUG_VM
3002 cb
->fill(cb
, "inactive_ratio", calc_inactive_ratio(mem_cont
, NULL
));
3006 struct mem_cgroup_per_zone
*mz
;
3007 unsigned long recent_rotated
[2] = {0, 0};
3008 unsigned long recent_scanned
[2] = {0, 0};
3010 for_each_online_node(nid
)
3011 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
3012 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
3014 recent_rotated
[0] +=
3015 mz
->reclaim_stat
.recent_rotated
[0];
3016 recent_rotated
[1] +=
3017 mz
->reclaim_stat
.recent_rotated
[1];
3018 recent_scanned
[0] +=
3019 mz
->reclaim_stat
.recent_scanned
[0];
3020 recent_scanned
[1] +=
3021 mz
->reclaim_stat
.recent_scanned
[1];
3023 cb
->fill(cb
, "recent_rotated_anon", recent_rotated
[0]);
3024 cb
->fill(cb
, "recent_rotated_file", recent_rotated
[1]);
3025 cb
->fill(cb
, "recent_scanned_anon", recent_scanned
[0]);
3026 cb
->fill(cb
, "recent_scanned_file", recent_scanned
[1]);
3033 static u64
mem_cgroup_swappiness_read(struct cgroup
*cgrp
, struct cftype
*cft
)
3035 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
3037 return get_swappiness(memcg
);
3040 static int mem_cgroup_swappiness_write(struct cgroup
*cgrp
, struct cftype
*cft
,
3043 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
3044 struct mem_cgroup
*parent
;
3049 if (cgrp
->parent
== NULL
)
3052 parent
= mem_cgroup_from_cont(cgrp
->parent
);
3056 /* If under hierarchy, only empty-root can set this value */
3057 if ((parent
->use_hierarchy
) ||
3058 (memcg
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
3063 spin_lock(&memcg
->reclaim_param_lock
);
3064 memcg
->swappiness
= val
;
3065 spin_unlock(&memcg
->reclaim_param_lock
);
3073 static struct cftype mem_cgroup_files
[] = {
3075 .name
= "usage_in_bytes",
3076 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
3077 .read_u64
= mem_cgroup_read
,
3080 .name
= "max_usage_in_bytes",
3081 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
3082 .trigger
= mem_cgroup_reset
,
3083 .read_u64
= mem_cgroup_read
,
3086 .name
= "limit_in_bytes",
3087 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
3088 .write_string
= mem_cgroup_write
,
3089 .read_u64
= mem_cgroup_read
,
3092 .name
= "soft_limit_in_bytes",
3093 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
3094 .write_string
= mem_cgroup_write
,
3095 .read_u64
= mem_cgroup_read
,
3099 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
3100 .trigger
= mem_cgroup_reset
,
3101 .read_u64
= mem_cgroup_read
,
3105 .read_map
= mem_control_stat_show
,
3108 .name
= "force_empty",
3109 .trigger
= mem_cgroup_force_empty_write
,
3112 .name
= "use_hierarchy",
3113 .write_u64
= mem_cgroup_hierarchy_write
,
3114 .read_u64
= mem_cgroup_hierarchy_read
,
3117 .name
= "swappiness",
3118 .read_u64
= mem_cgroup_swappiness_read
,
3119 .write_u64
= mem_cgroup_swappiness_write
,
3123 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3124 static struct cftype memsw_cgroup_files
[] = {
3126 .name
= "memsw.usage_in_bytes",
3127 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
3128 .read_u64
= mem_cgroup_read
,
3131 .name
= "memsw.max_usage_in_bytes",
3132 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
3133 .trigger
= mem_cgroup_reset
,
3134 .read_u64
= mem_cgroup_read
,
3137 .name
= "memsw.limit_in_bytes",
3138 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
3139 .write_string
= mem_cgroup_write
,
3140 .read_u64
= mem_cgroup_read
,
3143 .name
= "memsw.failcnt",
3144 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
3145 .trigger
= mem_cgroup_reset
,
3146 .read_u64
= mem_cgroup_read
,
3150 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
3152 if (!do_swap_account
)
3154 return cgroup_add_files(cont
, ss
, memsw_cgroup_files
,
3155 ARRAY_SIZE(memsw_cgroup_files
));
3158 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
3164 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
3166 struct mem_cgroup_per_node
*pn
;
3167 struct mem_cgroup_per_zone
*mz
;
3169 int zone
, tmp
= node
;
3171 * This routine is called against possible nodes.
3172 * But it's BUG to call kmalloc() against offline node.
3174 * TODO: this routine can waste much memory for nodes which will
3175 * never be onlined. It's better to use memory hotplug callback
3178 if (!node_state(node
, N_NORMAL_MEMORY
))
3180 pn
= kmalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
3184 mem
->info
.nodeinfo
[node
] = pn
;
3185 memset(pn
, 0, sizeof(*pn
));
3187 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
3188 mz
= &pn
->zoneinfo
[zone
];
3190 INIT_LIST_HEAD(&mz
->lists
[l
]);
3191 mz
->usage_in_excess
= 0;
3192 mz
->on_tree
= false;
3198 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
3200 kfree(mem
->info
.nodeinfo
[node
]);
3203 static int mem_cgroup_size(void)
3205 int cpustat_size
= nr_cpu_ids
* sizeof(struct mem_cgroup_stat_cpu
);
3206 return sizeof(struct mem_cgroup
) + cpustat_size
;
3209 static struct mem_cgroup
*mem_cgroup_alloc(void)
3211 struct mem_cgroup
*mem
;
3212 int size
= mem_cgroup_size();
3214 if (size
< PAGE_SIZE
)
3215 mem
= kmalloc(size
, GFP_KERNEL
);
3217 mem
= vmalloc(size
);
3220 memset(mem
, 0, size
);
3225 * At destroying mem_cgroup, references from swap_cgroup can remain.
3226 * (scanning all at force_empty is too costly...)
3228 * Instead of clearing all references at force_empty, we remember
3229 * the number of reference from swap_cgroup and free mem_cgroup when
3230 * it goes down to 0.
3232 * Removal of cgroup itself succeeds regardless of refs from swap.
3235 static void __mem_cgroup_free(struct mem_cgroup
*mem
)
3239 mem_cgroup_remove_from_trees(mem
);
3240 free_css_id(&mem_cgroup_subsys
, &mem
->css
);
3242 for_each_node_state(node
, N_POSSIBLE
)
3243 free_mem_cgroup_per_zone_info(mem
, node
);
3245 if (mem_cgroup_size() < PAGE_SIZE
)
3251 static void mem_cgroup_get(struct mem_cgroup
*mem
)
3253 atomic_inc(&mem
->refcnt
);
3256 static void mem_cgroup_put(struct mem_cgroup
*mem
)
3258 if (atomic_dec_and_test(&mem
->refcnt
)) {
3259 struct mem_cgroup
*parent
= parent_mem_cgroup(mem
);
3260 __mem_cgroup_free(mem
);
3262 mem_cgroup_put(parent
);
3267 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
3269 static struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*mem
)
3271 if (!mem
->res
.parent
)
3273 return mem_cgroup_from_res_counter(mem
->res
.parent
, res
);
3276 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3277 static void __init
enable_swap_cgroup(void)
3279 if (!mem_cgroup_disabled() && really_do_swap_account
)
3280 do_swap_account
= 1;
3283 static void __init
enable_swap_cgroup(void)
3288 static int mem_cgroup_soft_limit_tree_init(void)
3290 struct mem_cgroup_tree_per_node
*rtpn
;
3291 struct mem_cgroup_tree_per_zone
*rtpz
;
3292 int tmp
, node
, zone
;
3294 for_each_node_state(node
, N_POSSIBLE
) {
3296 if (!node_state(node
, N_NORMAL_MEMORY
))
3298 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
, tmp
);
3302 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
3304 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
3305 rtpz
= &rtpn
->rb_tree_per_zone
[zone
];
3306 rtpz
->rb_root
= RB_ROOT
;
3307 spin_lock_init(&rtpz
->lock
);
3313 static struct cgroup_subsys_state
* __ref
3314 mem_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
3316 struct mem_cgroup
*mem
, *parent
;
3317 long error
= -ENOMEM
;
3320 mem
= mem_cgroup_alloc();
3322 return ERR_PTR(error
);
3324 for_each_node_state(node
, N_POSSIBLE
)
3325 if (alloc_mem_cgroup_per_zone_info(mem
, node
))
3329 if (cont
->parent
== NULL
) {
3330 enable_swap_cgroup();
3332 root_mem_cgroup
= mem
;
3333 if (mem_cgroup_soft_limit_tree_init())
3335 hotcpu_notifier(memcg_stock_cpu_callback
, 0);
3338 parent
= mem_cgroup_from_cont(cont
->parent
);
3339 mem
->use_hierarchy
= parent
->use_hierarchy
;
3342 if (parent
&& parent
->use_hierarchy
) {
3343 res_counter_init(&mem
->res
, &parent
->res
);
3344 res_counter_init(&mem
->memsw
, &parent
->memsw
);
3346 * We increment refcnt of the parent to ensure that we can
3347 * safely access it on res_counter_charge/uncharge.
3348 * This refcnt will be decremented when freeing this
3349 * mem_cgroup(see mem_cgroup_put).
3351 mem_cgroup_get(parent
);
3353 res_counter_init(&mem
->res
, NULL
);
3354 res_counter_init(&mem
->memsw
, NULL
);
3356 mem
->last_scanned_child
= 0;
3357 spin_lock_init(&mem
->reclaim_param_lock
);
3360 mem
->swappiness
= get_swappiness(parent
);
3361 atomic_set(&mem
->refcnt
, 1);
3364 __mem_cgroup_free(mem
);
3365 root_mem_cgroup
= NULL
;
3366 return ERR_PTR(error
);
3369 static int mem_cgroup_pre_destroy(struct cgroup_subsys
*ss
,
3370 struct cgroup
*cont
)
3372 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
3374 return mem_cgroup_force_empty(mem
, false);
3377 static void mem_cgroup_destroy(struct cgroup_subsys
*ss
,
3378 struct cgroup
*cont
)
3380 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
3382 mem_cgroup_put(mem
);
3385 static int mem_cgroup_populate(struct cgroup_subsys
*ss
,
3386 struct cgroup
*cont
)
3390 ret
= cgroup_add_files(cont
, ss
, mem_cgroup_files
,
3391 ARRAY_SIZE(mem_cgroup_files
));
3394 ret
= register_memsw_files(cont
, ss
);
3398 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
3399 struct cgroup
*cont
,
3400 struct cgroup
*old_cont
,
3401 struct task_struct
*p
,
3404 mutex_lock(&memcg_tasklist
);
3406 * FIXME: It's better to move charges of this process from old
3407 * memcg to new memcg. But it's just on TODO-List now.
3409 mutex_unlock(&memcg_tasklist
);
3412 struct cgroup_subsys mem_cgroup_subsys
= {
3414 .subsys_id
= mem_cgroup_subsys_id
,
3415 .create
= mem_cgroup_create
,
3416 .pre_destroy
= mem_cgroup_pre_destroy
,
3417 .destroy
= mem_cgroup_destroy
,
3418 .populate
= mem_cgroup_populate
,
3419 .attach
= mem_cgroup_move_task
,
3424 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3426 static int __init
disable_swap_account(char *s
)
3428 really_do_swap_account
= 0;
3431 __setup("noswapaccount", disable_swap_account
);