On Tue, Nov 06, 2007 at 02:33:53AM -0800, akpm@linux-foundation.org wrote:
[mmotm.git] / arch / powerpc / include / asm / bitops.h
blob56f2f2ea56319fc13897e5a94647ae54f6fc5cd3
1 /*
2 * PowerPC atomic bit operations.
4 * Merged version by David Gibson <david@gibson.dropbear.id.au>.
5 * Based on ppc64 versions by: Dave Engebretsen, Todd Inglett, Don
6 * Reed, Pat McCarthy, Peter Bergner, Anton Blanchard. They
7 * originally took it from the ppc32 code.
9 * Within a word, bits are numbered LSB first. Lot's of places make
10 * this assumption by directly testing bits with (val & (1<<nr)).
11 * This can cause confusion for large (> 1 word) bitmaps on a
12 * big-endian system because, unlike little endian, the number of each
13 * bit depends on the word size.
15 * The bitop functions are defined to work on unsigned longs, so for a
16 * ppc64 system the bits end up numbered:
17 * |63..............0|127............64|191...........128|255...........196|
18 * and on ppc32:
19 * |31.....0|63....31|95....64|127...96|159..128|191..160|223..192|255..224|
21 * There are a few little-endian macros used mostly for filesystem
22 * bitmaps, these work on similar bit arrays layouts, but
23 * byte-oriented:
24 * |7...0|15...8|23...16|31...24|39...32|47...40|55...48|63...56|
26 * The main difference is that bit 3-5 (64b) or 3-4 (32b) in the bit
27 * number field needs to be reversed compared to the big-endian bit
28 * fields. This can be achieved by XOR with 0x38 (64b) or 0x18 (32b).
30 * This program is free software; you can redistribute it and/or
31 * modify it under the terms of the GNU General Public License
32 * as published by the Free Software Foundation; either version
33 * 2 of the License, or (at your option) any later version.
36 #ifndef _ASM_POWERPC_BITOPS_H
37 #define _ASM_POWERPC_BITOPS_H
39 #ifdef __KERNEL__
41 #ifndef _LINUX_BITOPS_H
42 #error only <linux/bitops.h> can be included directly
43 #endif
45 #include <linux/compiler.h>
46 #include <asm/asm-compat.h>
47 #include <asm/synch.h>
50 * clear_bit doesn't imply a memory barrier
52 #define smp_mb__before_clear_bit() smp_mb()
53 #define smp_mb__after_clear_bit() smp_mb()
55 #define BITOP_MASK(nr) (1UL << ((nr) % BITS_PER_LONG))
56 #define BITOP_WORD(nr) ((nr) / BITS_PER_LONG)
57 #define BITOP_LE_SWIZZLE ((BITS_PER_LONG-1) & ~0x7)
59 /* Macro for generating the ***_bits() functions */
60 #define DEFINE_BITOP(fn, op, prefix, postfix) \
61 static __inline__ void fn(unsigned long mask, \
62 volatile unsigned long *_p) \
63 { \
64 unsigned long old; \
65 unsigned long *p = (unsigned long *)_p; \
66 __asm__ __volatile__ ( \
67 prefix \
68 "1:" PPC_LLARX "%0,0,%3\n" \
69 stringify_in_c(op) "%0,%0,%2\n" \
70 PPC405_ERR77(0,%3) \
71 PPC_STLCX "%0,0,%3\n" \
72 "bne- 1b\n" \
73 postfix \
74 : "=&r" (old), "+m" (*p) \
75 : "r" (mask), "r" (p) \
76 : "cc", "memory"); \
79 DEFINE_BITOP(set_bits, or, "", "")
80 DEFINE_BITOP(clear_bits, andc, "", "")
81 DEFINE_BITOP(clear_bits_unlock, andc, LWSYNC_ON_SMP, "")
82 DEFINE_BITOP(change_bits, xor, "", "")
84 static __inline__ void set_bit(int nr, volatile unsigned long *addr)
86 set_bits(BITOP_MASK(nr), addr + BITOP_WORD(nr));
89 static __inline__ void clear_bit(int nr, volatile unsigned long *addr)
91 clear_bits(BITOP_MASK(nr), addr + BITOP_WORD(nr));
94 static __inline__ void clear_bit_unlock(int nr, volatile unsigned long *addr)
96 clear_bits_unlock(BITOP_MASK(nr), addr + BITOP_WORD(nr));
99 static __inline__ void change_bit(int nr, volatile unsigned long *addr)
101 change_bits(BITOP_MASK(nr), addr + BITOP_WORD(nr));
104 /* Like DEFINE_BITOP(), with changes to the arguments to 'op' and the output
105 * operands. */
106 #define DEFINE_TESTOP(fn, op, prefix, postfix) \
107 static __inline__ unsigned long fn( \
108 unsigned long mask, \
109 volatile unsigned long *_p) \
111 unsigned long old, t; \
112 unsigned long *p = (unsigned long *)_p; \
113 __asm__ __volatile__ ( \
114 prefix \
115 "1:" PPC_LLARX "%0,0,%3\n" \
116 stringify_in_c(op) "%1,%0,%2\n" \
117 PPC405_ERR77(0,%3) \
118 PPC_STLCX "%1,0,%3\n" \
119 "bne- 1b\n" \
120 postfix \
121 : "=&r" (old), "=&r" (t) \
122 : "r" (mask), "r" (p) \
123 : "cc", "memory"); \
124 return (old & mask); \
127 DEFINE_TESTOP(test_and_set_bits, or, LWSYNC_ON_SMP, ISYNC_ON_SMP)
128 DEFINE_TESTOP(test_and_set_bits_lock, or, "", ISYNC_ON_SMP)
129 DEFINE_TESTOP(test_and_clear_bits, andc, LWSYNC_ON_SMP, ISYNC_ON_SMP)
130 DEFINE_TESTOP(test_and_change_bits, xor, LWSYNC_ON_SMP, ISYNC_ON_SMP)
132 static __inline__ int test_and_set_bit(unsigned long nr,
133 volatile unsigned long *addr)
135 return test_and_set_bits(BITOP_MASK(nr), addr + BITOP_WORD(nr)) != 0;
138 static __inline__ int test_and_set_bit_lock(unsigned long nr,
139 volatile unsigned long *addr)
141 return test_and_set_bits_lock(BITOP_MASK(nr),
142 addr + BITOP_WORD(nr)) != 0;
145 static __inline__ int test_and_clear_bit(unsigned long nr,
146 volatile unsigned long *addr)
148 return test_and_clear_bits(BITOP_MASK(nr), addr + BITOP_WORD(nr)) != 0;
151 static __inline__ int test_and_change_bit(unsigned long nr,
152 volatile unsigned long *addr)
154 return test_and_change_bits(BITOP_MASK(nr), addr + BITOP_WORD(nr)) != 0;
157 #include <asm-generic/bitops/non-atomic.h>
159 static __inline__ void __clear_bit_unlock(int nr, volatile unsigned long *addr)
161 __asm__ __volatile__(LWSYNC_ON_SMP "" ::: "memory");
162 __clear_bit(nr, addr);
166 * Return the zero-based bit position (LE, not IBM bit numbering) of
167 * the most significant 1-bit in a double word.
169 static __inline__ __attribute__((const))
170 int __ilog2(unsigned long x)
172 int lz;
174 asm (PPC_CNTLZL "%0,%1" : "=r" (lz) : "r" (x));
175 return BITS_PER_LONG - 1 - lz;
178 static inline __attribute__((const))
179 int __ilog2_u32(u32 n)
181 int bit;
182 asm ("cntlzw %0,%1" : "=r" (bit) : "r" (n));
183 return 31 - bit;
186 #ifdef __powerpc64__
187 static inline __attribute__((const))
188 int __ilog2_u64(u64 n)
190 int bit;
191 asm ("cntlzd %0,%1" : "=r" (bit) : "r" (n));
192 return 63 - bit;
194 #endif
197 * Determines the bit position of the least significant 0 bit in the
198 * specified double word. The returned bit position will be
199 * zero-based, starting from the right side (63/31 - 0).
201 static __inline__ unsigned long ffz(unsigned long x)
203 /* no zero exists anywhere in the 8 byte area. */
204 if ((x = ~x) == 0)
205 return BITS_PER_LONG;
208 * Calculate the bit position of the least signficant '1' bit in x
209 * (since x has been changed this will actually be the least signficant
210 * '0' bit in * the original x). Note: (x & -x) gives us a mask that
211 * is the least significant * (RIGHT-most) 1-bit of the value in x.
213 return __ilog2(x & -x);
216 static __inline__ int __ffs(unsigned long x)
218 return __ilog2(x & -x);
222 * ffs: find first bit set. This is defined the same way as
223 * the libc and compiler builtin ffs routines, therefore
224 * differs in spirit from the above ffz (man ffs).
226 static __inline__ int ffs(int x)
228 unsigned long i = (unsigned long)x;
229 return __ilog2(i & -i) + 1;
233 * fls: find last (most-significant) bit set.
234 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
236 static __inline__ int fls(unsigned int x)
238 int lz;
240 asm ("cntlzw %0,%1" : "=r" (lz) : "r" (x));
241 return 32 - lz;
244 static __inline__ unsigned long __fls(unsigned long x)
246 return __ilog2(x);
250 * 64-bit can do this using one cntlzd (count leading zeroes doubleword)
251 * instruction; for 32-bit we use the generic version, which does two
252 * 32-bit fls calls.
254 #ifdef __powerpc64__
255 static __inline__ int fls64(__u64 x)
257 int lz;
259 asm ("cntlzd %0,%1" : "=r" (lz) : "r" (x));
260 return 64 - lz;
262 #else
263 #include <asm-generic/bitops/fls64.h>
264 #endif /* __powerpc64__ */
266 #include <asm-generic/bitops/hweight.h>
267 #include <asm-generic/bitops/find.h>
269 /* Little-endian versions */
271 static __inline__ int test_le_bit(unsigned long nr,
272 __const__ unsigned long *addr)
274 __const__ unsigned char *tmp = (__const__ unsigned char *) addr;
275 return (tmp[nr >> 3] >> (nr & 7)) & 1;
278 #define __set_le_bit(nr, addr) \
279 __set_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
280 #define __clear_le_bit(nr, addr) \
281 __clear_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
283 #define test_and_set_le_bit(nr, addr) \
284 test_and_set_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
285 #define test_and_clear_le_bit(nr, addr) \
286 test_and_clear_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
288 #define __test_and_set_le_bit(nr, addr) \
289 __test_and_set_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
290 #define __test_and_clear_le_bit(nr, addr) \
291 __test_and_clear_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
293 #define find_first_zero_le_bit(addr, size) generic_find_next_zero_le_bit((addr), (size), 0)
294 unsigned long generic_find_next_zero_le_bit(const unsigned long *addr,
295 unsigned long size, unsigned long offset);
297 unsigned long generic_find_next_le_bit(const unsigned long *addr,
298 unsigned long size, unsigned long offset);
299 /* Bitmap functions for the ext2 filesystem */
301 #define ext2_set_bit(nr,addr) \
302 __test_and_set_le_bit((nr), (unsigned long*)addr)
303 #define ext2_clear_bit(nr, addr) \
304 __test_and_clear_le_bit((nr), (unsigned long*)addr)
306 #define ext2_set_bit_atomic(lock, nr, addr) \
307 test_and_set_le_bit((nr), (unsigned long*)addr)
308 #define ext2_clear_bit_atomic(lock, nr, addr) \
309 test_and_clear_le_bit((nr), (unsigned long*)addr)
311 #define ext2_test_bit(nr, addr) test_le_bit((nr),(unsigned long*)addr)
313 #define ext2_find_first_zero_bit(addr, size) \
314 find_first_zero_le_bit((unsigned long*)addr, size)
315 #define ext2_find_next_zero_bit(addr, size, off) \
316 generic_find_next_zero_le_bit((unsigned long*)addr, size, off)
318 #define ext2_find_next_bit(addr, size, off) \
319 generic_find_next_le_bit((unsigned long *)addr, size, off)
320 /* Bitmap functions for the minix filesystem. */
322 #define minix_test_and_set_bit(nr,addr) \
323 __test_and_set_le_bit(nr, (unsigned long *)addr)
324 #define minix_set_bit(nr,addr) \
325 __set_le_bit(nr, (unsigned long *)addr)
326 #define minix_test_and_clear_bit(nr,addr) \
327 __test_and_clear_le_bit(nr, (unsigned long *)addr)
328 #define minix_test_bit(nr,addr) \
329 test_le_bit(nr, (unsigned long *)addr)
331 #define minix_find_first_zero_bit(addr,size) \
332 find_first_zero_le_bit((unsigned long *)addr, size)
334 #include <asm-generic/bitops/sched.h>
336 #endif /* __KERNEL__ */
338 #endif /* _ASM_POWERPC_BITOPS_H */