2 * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
4 * Author: Mike Lavender, mike@steroidmicros.com
6 * Copyright (c) 2005, Intec Automation Inc.
8 * Some parts are based on lart.c by Abraham Van Der Merwe
10 * Cleaned up and generalized based on mtd_dataflash.c
12 * This code is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/device.h>
21 #include <linux/interrupt.h>
22 #include <linux/mutex.h>
23 #include <linux/math64.h>
24 #include <linux/sched.h>
26 #include <linux/mtd/mtd.h>
27 #include <linux/mtd/partitions.h>
29 #include <linux/spi/spi.h>
30 #include <linux/spi/flash.h>
33 #define FLASH_PAGESIZE 256
36 #define OPCODE_WREN 0x06 /* Write enable */
37 #define OPCODE_RDSR 0x05 /* Read status register */
38 #define OPCODE_WRSR 0x01 /* Write status register 1 byte */
39 #define OPCODE_NORM_READ 0x03 /* Read data bytes (low frequency) */
40 #define OPCODE_FAST_READ 0x0b /* Read data bytes (high frequency) */
41 #define OPCODE_PP 0x02 /* Page program (up to 256 bytes) */
42 #define OPCODE_BE_4K 0x20 /* Erase 4KiB block */
43 #define OPCODE_BE_32K 0x52 /* Erase 32KiB block */
44 #define OPCODE_CHIP_ERASE 0xc7 /* Erase whole flash chip */
45 #define OPCODE_SE 0xd8 /* Sector erase (usually 64KiB) */
46 #define OPCODE_RDID 0x9f /* Read JEDEC ID */
48 /* Used for SST flashes only. */
49 #define OPCODE_BP 0x02 /* Byte program */
50 #define OPCODE_WRDI 0x04 /* Write disable */
51 #define OPCODE_AAI_WP 0xad /* Auto address increment word program */
53 /* Status Register bits. */
54 #define SR_WIP 1 /* Write in progress */
55 #define SR_WEL 2 /* Write enable latch */
56 /* meaning of other SR_* bits may differ between vendors */
57 #define SR_BP0 4 /* Block protect 0 */
58 #define SR_BP1 8 /* Block protect 1 */
59 #define SR_BP2 0x10 /* Block protect 2 */
60 #define SR_SRWD 0x80 /* SR write protect */
62 /* Define max times to check status register before we give up. */
63 #define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */
66 #ifdef CONFIG_M25PXX_USE_FAST_READ
67 #define OPCODE_READ OPCODE_FAST_READ
68 #define FAST_READ_DUMMY_BYTE 1
70 #define OPCODE_READ OPCODE_NORM_READ
71 #define FAST_READ_DUMMY_BYTE 0
74 /****************************************************************************/
77 struct spi_device
*spi
;
80 unsigned partitioned
:1;
82 u8 command
[CMD_SIZE
+ FAST_READ_DUMMY_BYTE
];
85 static inline struct m25p
*mtd_to_m25p(struct mtd_info
*mtd
)
87 return container_of(mtd
, struct m25p
, mtd
);
90 /****************************************************************************/
93 * Internal helper functions
97 * Read the status register, returning its value in the location
98 * Return the status register value.
99 * Returns negative if error occurred.
101 static int read_sr(struct m25p
*flash
)
104 u8 code
= OPCODE_RDSR
;
107 retval
= spi_write_then_read(flash
->spi
, &code
, 1, &val
, 1);
110 dev_err(&flash
->spi
->dev
, "error %d reading SR\n",
119 * Write status register 1 byte
120 * Returns negative if error occurred.
122 static int write_sr(struct m25p
*flash
, u8 val
)
124 flash
->command
[0] = OPCODE_WRSR
;
125 flash
->command
[1] = val
;
127 return spi_write(flash
->spi
, flash
->command
, 2);
131 * Set write enable latch with Write Enable command.
132 * Returns negative if error occurred.
134 static inline int write_enable(struct m25p
*flash
)
136 u8 code
= OPCODE_WREN
;
138 return spi_write_then_read(flash
->spi
, &code
, 1, NULL
, 0);
142 * Send write disble instruction to the chip.
144 static inline int write_disable(struct m25p
*flash
)
146 u8 code
= OPCODE_WRDI
;
148 return spi_write_then_read(flash
->spi
, &code
, 1, NULL
, 0);
152 * Service routine to read status register until ready, or timeout occurs.
153 * Returns non-zero if error.
155 static int wait_till_ready(struct m25p
*flash
)
157 unsigned long deadline
;
160 deadline
= jiffies
+ MAX_READY_WAIT_JIFFIES
;
163 if ((sr
= read_sr(flash
)) < 0)
165 else if (!(sr
& SR_WIP
))
170 } while (!time_after_eq(jiffies
, deadline
));
176 * Erase the whole flash memory
178 * Returns 0 if successful, non-zero otherwise.
180 static int erase_chip(struct m25p
*flash
)
182 DEBUG(MTD_DEBUG_LEVEL3
, "%s: %s %lldKiB\n",
183 dev_name(&flash
->spi
->dev
), __func__
,
184 (long long)(flash
->mtd
.size
>> 10));
186 /* Wait until finished previous write command. */
187 if (wait_till_ready(flash
))
190 /* Send write enable, then erase commands. */
193 /* Set up command buffer. */
194 flash
->command
[0] = OPCODE_CHIP_ERASE
;
196 spi_write(flash
->spi
, flash
->command
, 1);
202 * Erase one sector of flash memory at offset ``offset'' which is any
203 * address within the sector which should be erased.
205 * Returns 0 if successful, non-zero otherwise.
207 static int erase_sector(struct m25p
*flash
, u32 offset
)
209 DEBUG(MTD_DEBUG_LEVEL3
, "%s: %s %dKiB at 0x%08x\n",
210 dev_name(&flash
->spi
->dev
), __func__
,
211 flash
->mtd
.erasesize
/ 1024, offset
);
213 /* Wait until finished previous write command. */
214 if (wait_till_ready(flash
))
217 /* Send write enable, then erase commands. */
220 /* Set up command buffer. */
221 flash
->command
[0] = flash
->erase_opcode
;
222 flash
->command
[1] = offset
>> 16;
223 flash
->command
[2] = offset
>> 8;
224 flash
->command
[3] = offset
;
226 spi_write(flash
->spi
, flash
->command
, CMD_SIZE
);
231 /****************************************************************************/
238 * Erase an address range on the flash chip. The address range may extend
239 * one or more erase sectors. Return an error is there is a problem erasing.
241 static int m25p80_erase(struct mtd_info
*mtd
, struct erase_info
*instr
)
243 struct m25p
*flash
= mtd_to_m25p(mtd
);
247 DEBUG(MTD_DEBUG_LEVEL2
, "%s: %s %s 0x%llx, len %lld\n",
248 dev_name(&flash
->spi
->dev
), __func__
, "at",
249 (long long)instr
->addr
, (long long)instr
->len
);
252 if (instr
->addr
+ instr
->len
> flash
->mtd
.size
)
254 div_u64_rem(instr
->len
, mtd
->erasesize
, &rem
);
261 mutex_lock(&flash
->lock
);
263 /* whole-chip erase? */
264 if (len
== flash
->mtd
.size
) {
265 if (erase_chip(flash
)) {
266 instr
->state
= MTD_ERASE_FAILED
;
267 mutex_unlock(&flash
->lock
);
271 /* REVISIT in some cases we could speed up erasing large regions
272 * by using OPCODE_SE instead of OPCODE_BE_4K. We may have set up
273 * to use "small sector erase", but that's not always optimal.
276 /* "sector"-at-a-time erase */
279 if (erase_sector(flash
, addr
)) {
280 instr
->state
= MTD_ERASE_FAILED
;
281 mutex_unlock(&flash
->lock
);
285 addr
+= mtd
->erasesize
;
286 len
-= mtd
->erasesize
;
290 mutex_unlock(&flash
->lock
);
292 instr
->state
= MTD_ERASE_DONE
;
293 mtd_erase_callback(instr
);
299 * Read an address range from the flash chip. The address range
300 * may be any size provided it is within the physical boundaries.
302 static int m25p80_read(struct mtd_info
*mtd
, loff_t from
, size_t len
,
303 size_t *retlen
, u_char
*buf
)
305 struct m25p
*flash
= mtd_to_m25p(mtd
);
306 struct spi_transfer t
[2];
307 struct spi_message m
;
309 DEBUG(MTD_DEBUG_LEVEL2
, "%s: %s %s 0x%08x, len %zd\n",
310 dev_name(&flash
->spi
->dev
), __func__
, "from",
317 if (from
+ len
> flash
->mtd
.size
)
320 spi_message_init(&m
);
321 memset(t
, 0, (sizeof t
));
324 * OPCODE_FAST_READ (if available) is faster.
325 * Should add 1 byte DUMMY_BYTE.
327 t
[0].tx_buf
= flash
->command
;
328 t
[0].len
= CMD_SIZE
+ FAST_READ_DUMMY_BYTE
;
329 spi_message_add_tail(&t
[0], &m
);
333 spi_message_add_tail(&t
[1], &m
);
335 /* Byte count starts at zero. */
339 mutex_lock(&flash
->lock
);
341 /* Wait till previous write/erase is done. */
342 if (wait_till_ready(flash
)) {
343 /* REVISIT status return?? */
344 mutex_unlock(&flash
->lock
);
348 /* FIXME switch to OPCODE_FAST_READ. It's required for higher
349 * clocks; and at this writing, every chip this driver handles
350 * supports that opcode.
353 /* Set up the write data buffer. */
354 flash
->command
[0] = OPCODE_READ
;
355 flash
->command
[1] = from
>> 16;
356 flash
->command
[2] = from
>> 8;
357 flash
->command
[3] = from
;
359 spi_sync(flash
->spi
, &m
);
361 *retlen
= m
.actual_length
- CMD_SIZE
- FAST_READ_DUMMY_BYTE
;
363 mutex_unlock(&flash
->lock
);
369 * Write an address range to the flash chip. Data must be written in
370 * FLASH_PAGESIZE chunks. The address range may be any size provided
371 * it is within the physical boundaries.
373 static int m25p80_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
374 size_t *retlen
, const u_char
*buf
)
376 struct m25p
*flash
= mtd_to_m25p(mtd
);
377 u32 page_offset
, page_size
;
378 struct spi_transfer t
[2];
379 struct spi_message m
;
381 DEBUG(MTD_DEBUG_LEVEL2
, "%s: %s %s 0x%08x, len %zd\n",
382 dev_name(&flash
->spi
->dev
), __func__
, "to",
392 if (to
+ len
> flash
->mtd
.size
)
395 spi_message_init(&m
);
396 memset(t
, 0, (sizeof t
));
398 t
[0].tx_buf
= flash
->command
;
400 spi_message_add_tail(&t
[0], &m
);
403 spi_message_add_tail(&t
[1], &m
);
405 mutex_lock(&flash
->lock
);
407 /* Wait until finished previous write command. */
408 if (wait_till_ready(flash
)) {
409 mutex_unlock(&flash
->lock
);
415 /* Set up the opcode in the write buffer. */
416 flash
->command
[0] = OPCODE_PP
;
417 flash
->command
[1] = to
>> 16;
418 flash
->command
[2] = to
>> 8;
419 flash
->command
[3] = to
;
421 /* what page do we start with? */
422 page_offset
= to
% FLASH_PAGESIZE
;
424 /* do all the bytes fit onto one page? */
425 if (page_offset
+ len
<= FLASH_PAGESIZE
) {
428 spi_sync(flash
->spi
, &m
);
430 *retlen
= m
.actual_length
- CMD_SIZE
;
434 /* the size of data remaining on the first page */
435 page_size
= FLASH_PAGESIZE
- page_offset
;
437 t
[1].len
= page_size
;
438 spi_sync(flash
->spi
, &m
);
440 *retlen
= m
.actual_length
- CMD_SIZE
;
442 /* write everything in PAGESIZE chunks */
443 for (i
= page_size
; i
< len
; i
+= page_size
) {
445 if (page_size
> FLASH_PAGESIZE
)
446 page_size
= FLASH_PAGESIZE
;
448 /* write the next page to flash */
449 flash
->command
[1] = (to
+ i
) >> 16;
450 flash
->command
[2] = (to
+ i
) >> 8;
451 flash
->command
[3] = (to
+ i
);
453 t
[1].tx_buf
= buf
+ i
;
454 t
[1].len
= page_size
;
456 wait_till_ready(flash
);
460 spi_sync(flash
->spi
, &m
);
463 *retlen
+= m
.actual_length
- CMD_SIZE
;
467 mutex_unlock(&flash
->lock
);
472 static int sst_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
473 size_t *retlen
, const u_char
*buf
)
475 struct m25p
*flash
= mtd_to_m25p(mtd
);
476 struct spi_transfer t
[2];
477 struct spi_message m
;
488 if (to
+ len
> flash
->mtd
.size
)
491 spi_message_init(&m
);
492 memset(t
, 0, (sizeof t
));
494 t
[0].tx_buf
= flash
->command
;
496 spi_message_add_tail(&t
[0], &m
);
499 spi_message_add_tail(&t
[1], &m
);
501 mutex_lock(&flash
->lock
);
503 /* Wait until finished previous write command. */
504 ret
= wait_till_ready(flash
);
511 /* Start write from odd address. */
513 flash
->command
[0] = OPCODE_BP
;
514 flash
->command
[1] = to
>> 16;
515 flash
->command
[2] = to
>> 8;
516 flash
->command
[3] = to
;
518 /* write one byte. */
520 spi_sync(flash
->spi
, &m
);
521 ret
= wait_till_ready(flash
);
524 *retlen
+= m
.actual_length
- CMD_SIZE
;
528 flash
->command
[0] = OPCODE_AAI_WP
;
529 flash
->command
[1] = to
>> 16;
530 flash
->command
[2] = to
>> 8;
531 flash
->command
[3] = to
;
533 /* Write out most of the data here. */
535 for (; actual
< len
- 1; actual
+= 2) {
537 /* write two bytes. */
539 t
[1].tx_buf
= buf
+ actual
;
541 spi_sync(flash
->spi
, &m
);
542 ret
= wait_till_ready(flash
);
545 *retlen
+= m
.actual_length
- cmd_sz
;
549 write_disable(flash
);
550 ret
= wait_till_ready(flash
);
554 /* Write out trailing byte if it exists. */
557 flash
->command
[0] = OPCODE_BP
;
558 flash
->command
[1] = to
>> 16;
559 flash
->command
[2] = to
>> 8;
560 flash
->command
[3] = to
;
563 t
[1].tx_buf
= buf
+ actual
;
565 spi_sync(flash
->spi
, &m
);
566 ret
= wait_till_ready(flash
);
569 *retlen
+= m
.actual_length
- CMD_SIZE
;
570 write_disable(flash
);
574 mutex_unlock(&flash
->lock
);
578 /****************************************************************************/
581 * SPI device driver setup and teardown
587 /* JEDEC id zero means "no ID" (most older chips); otherwise it has
588 * a high byte of zero plus three data bytes: the manufacturer id,
589 * then a two byte device id.
594 /* The size listed here is what works with OPCODE_SE, which isn't
595 * necessarily called a "sector" by the vendor.
597 unsigned sector_size
;
601 #define SECT_4K 0x01 /* OPCODE_BE_4K works uniformly */
605 /* NOTE: double check command sets and memory organization when you add
606 * more flash chips. This current list focusses on newer chips, which
607 * have been converging on command sets which including JEDEC ID.
609 static struct flash_info __devinitdata m25p_data
[] = {
611 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
612 { "at25fs010", 0x1f6601, 0, 32 * 1024, 4, SECT_4K
, },
613 { "at25fs040", 0x1f6604, 0, 64 * 1024, 8, SECT_4K
, },
615 { "at25df041a", 0x1f4401, 0, 64 * 1024, 8, SECT_4K
, },
616 { "at25df641", 0x1f4800, 0, 64 * 1024, 128, SECT_4K
, },
618 { "at26f004", 0x1f0400, 0, 64 * 1024, 8, SECT_4K
, },
619 { "at26df081a", 0x1f4501, 0, 64 * 1024, 16, SECT_4K
, },
620 { "at26df161a", 0x1f4601, 0, 64 * 1024, 32, SECT_4K
, },
621 { "at26df321", 0x1f4701, 0, 64 * 1024, 64, SECT_4K
, },
624 { "mx25l3205d", 0xc22016, 0, 64 * 1024, 64, },
625 { "mx25l6405d", 0xc22017, 0, 64 * 1024, 128, },
626 { "mx25l12805d", 0xc22018, 0, 64 * 1024, 256, },
627 { "mx25l12855e", 0xc22618, 0, 64 * 1024, 256, },
629 /* Spansion -- single (large) sector size only, at least
630 * for the chips listed here (without boot sectors).
632 { "s25sl004a", 0x010212, 0, 64 * 1024, 8, },
633 { "s25sl008a", 0x010213, 0, 64 * 1024, 16, },
634 { "s25sl016a", 0x010214, 0, 64 * 1024, 32, },
635 { "s25sl032a", 0x010215, 0, 64 * 1024, 64, },
636 { "s25sl064a", 0x010216, 0, 64 * 1024, 128, },
637 { "s25sl12800", 0x012018, 0x0300, 256 * 1024, 64, },
638 { "s25sl12801", 0x012018, 0x0301, 64 * 1024, 256, },
639 { "s25fl129p0", 0x012018, 0x4d00, 256 * 1024, 64, },
640 { "s25fl129p1", 0x012018, 0x4d01, 64 * 1024, 256, },
642 /* SST -- large erase sizes are "overlays", "sectors" are 4K */
643 { "sst25vf040b", 0xbf258d, 0, 64 * 1024, 8, SECT_4K
, },
644 { "sst25vf080b", 0xbf258e, 0, 64 * 1024, 16, SECT_4K
, },
645 { "sst25vf016b", 0xbf2541, 0, 64 * 1024, 32, SECT_4K
, },
646 { "sst25vf032b", 0xbf254a, 0, 64 * 1024, 64, SECT_4K
, },
647 { "sst25wf512", 0xbf2501, 0, 64 * 1024, 1, SECT_4K
, },
648 { "sst25wf010", 0xbf2502, 0, 64 * 1024, 2, SECT_4K
, },
649 { "sst25wf020", 0xbf2503, 0, 64 * 1024, 4, SECT_4K
, },
650 { "sst25wf040", 0xbf2504, 0, 64 * 1024, 8, SECT_4K
, },
652 /* ST Microelectronics -- newer production may have feature updates */
653 { "m25p05", 0x202010, 0, 32 * 1024, 2, },
654 { "m25p10", 0x202011, 0, 32 * 1024, 4, },
655 { "m25p20", 0x202012, 0, 64 * 1024, 4, },
656 { "m25p40", 0x202013, 0, 64 * 1024, 8, },
657 { "m25p80", 0, 0, 64 * 1024, 16, },
658 { "m25p16", 0x202015, 0, 64 * 1024, 32, },
659 { "m25p32", 0x202016, 0, 64 * 1024, 64, },
660 { "m25p64", 0x202017, 0, 64 * 1024, 128, },
661 { "m25p128", 0x202018, 0, 256 * 1024, 64, },
663 { "m45pe10", 0x204011, 0, 64 * 1024, 2, },
664 { "m45pe80", 0x204014, 0, 64 * 1024, 16, },
665 { "m45pe16", 0x204015, 0, 64 * 1024, 32, },
667 { "m25pe80", 0x208014, 0, 64 * 1024, 16, },
668 { "m25pe16", 0x208015, 0, 64 * 1024, 32, SECT_4K
, },
670 /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
671 { "w25x10", 0xef3011, 0, 64 * 1024, 2, SECT_4K
, },
672 { "w25x20", 0xef3012, 0, 64 * 1024, 4, SECT_4K
, },
673 { "w25x40", 0xef3013, 0, 64 * 1024, 8, SECT_4K
, },
674 { "w25x80", 0xef3014, 0, 64 * 1024, 16, SECT_4K
, },
675 { "w25x16", 0xef3015, 0, 64 * 1024, 32, SECT_4K
, },
676 { "w25x32", 0xef3016, 0, 64 * 1024, 64, SECT_4K
, },
677 { "w25x64", 0xef3017, 0, 64 * 1024, 128, SECT_4K
, },
680 static struct flash_info
*__devinit
jedec_probe(struct spi_device
*spi
)
683 u8 code
= OPCODE_RDID
;
687 struct flash_info
*info
;
689 /* JEDEC also defines an optional "extended device information"
690 * string for after vendor-specific data, after the three bytes
691 * we use here. Supporting some chips might require using it.
693 tmp
= spi_write_then_read(spi
, &code
, 1, id
, 5);
695 DEBUG(MTD_DEBUG_LEVEL0
, "%s: error %d reading JEDEC ID\n",
696 dev_name(&spi
->dev
), tmp
);
705 ext_jedec
= id
[3] << 8 | id
[4];
707 for (tmp
= 0, info
= m25p_data
;
708 tmp
< ARRAY_SIZE(m25p_data
);
710 if (info
->jedec_id
== jedec
) {
711 if (info
->ext_id
!= 0 && info
->ext_id
!= ext_jedec
)
716 dev_err(&spi
->dev
, "unrecognized JEDEC id %06x\n", jedec
);
722 * board specific setup should have ensured the SPI clock used here
723 * matches what the READ command supports, at least until this driver
724 * understands FAST_READ (for clocks over 25 MHz).
726 static int __devinit
m25p_probe(struct spi_device
*spi
)
728 struct flash_platform_data
*data
;
730 struct flash_info
*info
;
733 /* Platform data helps sort out which chip type we have, as
734 * well as how this board partitions it. If we don't have
735 * a chip ID, try the JEDEC id commands; they'll work for most
736 * newer chips, even if we don't recognize the particular chip.
738 data
= spi
->dev
.platform_data
;
739 if (data
&& data
->type
) {
740 for (i
= 0, info
= m25p_data
;
741 i
< ARRAY_SIZE(m25p_data
);
743 if (strcmp(data
->type
, info
->name
) == 0)
747 /* unrecognized chip? */
748 if (i
== ARRAY_SIZE(m25p_data
)) {
749 DEBUG(MTD_DEBUG_LEVEL0
, "%s: unrecognized id %s\n",
750 dev_name(&spi
->dev
), data
->type
);
753 /* recognized; is that chip really what's there? */
754 } else if (info
->jedec_id
) {
755 struct flash_info
*chip
= jedec_probe(spi
);
757 if (!chip
|| chip
!= info
) {
758 dev_warn(&spi
->dev
, "found %s, expected %s\n",
759 chip
? chip
->name
: "UNKNOWN",
765 info
= jedec_probe(spi
);
770 flash
= kzalloc(sizeof *flash
, GFP_KERNEL
);
775 mutex_init(&flash
->lock
);
776 dev_set_drvdata(&spi
->dev
, flash
);
779 * Atmel and SST serial flash tend to power
780 * up with the software protection bits set
783 if (info
->jedec_id
>> 16 == 0x1f ||
784 info
->jedec_id
>> 16 == 0xbf) {
789 if (data
&& data
->name
)
790 flash
->mtd
.name
= data
->name
;
792 flash
->mtd
.name
= dev_name(&spi
->dev
);
794 flash
->mtd
.type
= MTD_NORFLASH
;
795 flash
->mtd
.writesize
= 1;
796 flash
->mtd
.flags
= MTD_CAP_NORFLASH
;
797 flash
->mtd
.size
= info
->sector_size
* info
->n_sectors
;
798 flash
->mtd
.erase
= m25p80_erase
;
799 flash
->mtd
.read
= m25p80_read
;
801 /* sst flash chips use AAI word program */
802 if (info
->jedec_id
>> 16 == 0xbf)
803 flash
->mtd
.write
= sst_write
;
805 flash
->mtd
.write
= m25p80_write
;
807 /* prefer "small sector" erase if possible */
808 if (info
->flags
& SECT_4K
) {
809 flash
->erase_opcode
= OPCODE_BE_4K
;
810 flash
->mtd
.erasesize
= 4096;
812 flash
->erase_opcode
= OPCODE_SE
;
813 flash
->mtd
.erasesize
= info
->sector_size
;
816 flash
->mtd
.dev
.parent
= &spi
->dev
;
818 dev_info(&spi
->dev
, "%s (%lld Kbytes)\n", info
->name
,
819 (long long)flash
->mtd
.size
>> 10);
821 DEBUG(MTD_DEBUG_LEVEL2
,
822 "mtd .name = %s, .size = 0x%llx (%lldMiB) "
823 ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
825 (long long)flash
->mtd
.size
, (long long)(flash
->mtd
.size
>> 20),
826 flash
->mtd
.erasesize
, flash
->mtd
.erasesize
/ 1024,
827 flash
->mtd
.numeraseregions
);
829 if (flash
->mtd
.numeraseregions
)
830 for (i
= 0; i
< flash
->mtd
.numeraseregions
; i
++)
831 DEBUG(MTD_DEBUG_LEVEL2
,
832 "mtd.eraseregions[%d] = { .offset = 0x%llx, "
833 ".erasesize = 0x%.8x (%uKiB), "
834 ".numblocks = %d }\n",
835 i
, (long long)flash
->mtd
.eraseregions
[i
].offset
,
836 flash
->mtd
.eraseregions
[i
].erasesize
,
837 flash
->mtd
.eraseregions
[i
].erasesize
/ 1024,
838 flash
->mtd
.eraseregions
[i
].numblocks
);
841 /* partitions should match sector boundaries; and it may be good to
842 * use readonly partitions for writeprotected sectors (BP2..BP0).
844 if (mtd_has_partitions()) {
845 struct mtd_partition
*parts
= NULL
;
848 if (mtd_has_cmdlinepart()) {
849 static const char *part_probes
[]
850 = { "cmdlinepart", NULL
, };
852 nr_parts
= parse_mtd_partitions(&flash
->mtd
,
853 part_probes
, &parts
, 0);
856 if (nr_parts
<= 0 && data
&& data
->parts
) {
858 nr_parts
= data
->nr_parts
;
862 for (i
= 0; i
< nr_parts
; i
++) {
863 DEBUG(MTD_DEBUG_LEVEL2
, "partitions[%d] = "
864 "{.name = %s, .offset = 0x%llx, "
865 ".size = 0x%llx (%lldKiB) }\n",
867 (long long)parts
[i
].offset
,
868 (long long)parts
[i
].size
,
869 (long long)(parts
[i
].size
>> 10));
871 flash
->partitioned
= 1;
872 return add_mtd_partitions(&flash
->mtd
, parts
, nr_parts
);
874 } else if (data
&& data
->nr_parts
)
875 dev_warn(&spi
->dev
, "ignoring %d default partitions on %s\n",
876 data
->nr_parts
, data
->name
);
878 return add_mtd_device(&flash
->mtd
) == 1 ? -ENODEV
: 0;
882 static int __devexit
m25p_remove(struct spi_device
*spi
)
884 struct m25p
*flash
= dev_get_drvdata(&spi
->dev
);
887 /* Clean up MTD stuff. */
888 if (mtd_has_partitions() && flash
->partitioned
)
889 status
= del_mtd_partitions(&flash
->mtd
);
891 status
= del_mtd_device(&flash
->mtd
);
898 static struct spi_driver m25p80_driver
= {
901 .bus
= &spi_bus_type
,
902 .owner
= THIS_MODULE
,
905 .remove
= __devexit_p(m25p_remove
),
907 /* REVISIT: many of these chips have deep power-down modes, which
908 * should clearly be entered on suspend() to minimize power use.
909 * And also when they're otherwise idle...
914 static int __init
m25p80_init(void)
916 return spi_register_driver(&m25p80_driver
);
920 static void __exit
m25p80_exit(void)
922 spi_unregister_driver(&m25p80_driver
);
926 module_init(m25p80_init
);
927 module_exit(m25p80_exit
);
929 MODULE_LICENSE("GPL");
930 MODULE_AUTHOR("Mike Lavender");
931 MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");