On Tue, Nov 06, 2007 at 02:33:53AM -0800, akpm@linux-foundation.org wrote:
[mmotm.git] / drivers / net / 3c59x.c
blob0f1622765fc35f6157fd5b47c36b37cfc2879694
1 /* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
2 /*
3 Written 1996-1999 by Donald Becker.
5 This software may be used and distributed according to the terms
6 of the GNU General Public License, incorporated herein by reference.
8 This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
9 Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
10 and the EtherLink XL 3c900 and 3c905 cards.
12 Problem reports and questions should be directed to
13 vortex@scyld.com
15 The author may be reached as becker@scyld.com, or C/O
16 Scyld Computing Corporation
17 410 Severn Ave., Suite 210
18 Annapolis MD 21403
23 * FIXME: This driver _could_ support MTU changing, but doesn't. See Don's hamachi.c implementation
24 * as well as other drivers
26 * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
27 * due to dead code elimination. There will be some performance benefits from this due to
28 * elimination of all the tests and reduced cache footprint.
32 #define DRV_NAME "3c59x"
36 /* A few values that may be tweaked. */
37 /* Keep the ring sizes a power of two for efficiency. */
38 #define TX_RING_SIZE 16
39 #define RX_RING_SIZE 32
40 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
42 /* "Knobs" that adjust features and parameters. */
43 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
44 Setting to > 1512 effectively disables this feature. */
45 #ifndef __arm__
46 static int rx_copybreak = 200;
47 #else
48 /* ARM systems perform better by disregarding the bus-master
49 transfer capability of these cards. -- rmk */
50 static int rx_copybreak = 1513;
51 #endif
52 /* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
53 static const int mtu = 1500;
54 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
55 static int max_interrupt_work = 32;
56 /* Tx timeout interval (millisecs) */
57 static int watchdog = 5000;
59 /* Allow aggregation of Tx interrupts. Saves CPU load at the cost
60 * of possible Tx stalls if the system is blocking interrupts
61 * somewhere else. Undefine this to disable.
63 #define tx_interrupt_mitigation 1
65 /* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
66 #define vortex_debug debug
67 #ifdef VORTEX_DEBUG
68 static int vortex_debug = VORTEX_DEBUG;
69 #else
70 static int vortex_debug = 1;
71 #endif
73 #include <linux/module.h>
74 #include <linux/kernel.h>
75 #include <linux/string.h>
76 #include <linux/timer.h>
77 #include <linux/errno.h>
78 #include <linux/in.h>
79 #include <linux/ioport.h>
80 #include <linux/slab.h>
81 #include <linux/interrupt.h>
82 #include <linux/pci.h>
83 #include <linux/mii.h>
84 #include <linux/init.h>
85 #include <linux/netdevice.h>
86 #include <linux/etherdevice.h>
87 #include <linux/skbuff.h>
88 #include <linux/ethtool.h>
89 #include <linux/highmem.h>
90 #include <linux/eisa.h>
91 #include <linux/bitops.h>
92 #include <linux/jiffies.h>
93 #include <asm/irq.h> /* For nr_irqs only. */
94 #include <asm/io.h>
95 #include <asm/uaccess.h>
97 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
98 This is only in the support-all-kernels source code. */
100 #define RUN_AT(x) (jiffies + (x))
102 #include <linux/delay.h>
105 static const char version[] __devinitconst =
106 DRV_NAME ": Donald Becker and others.\n";
108 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
109 MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver ");
110 MODULE_LICENSE("GPL");
113 /* Operational parameter that usually are not changed. */
115 /* The Vortex size is twice that of the original EtherLinkIII series: the
116 runtime register window, window 1, is now always mapped in.
117 The Boomerang size is twice as large as the Vortex -- it has additional
118 bus master control registers. */
119 #define VORTEX_TOTAL_SIZE 0x20
120 #define BOOMERANG_TOTAL_SIZE 0x40
122 /* Set iff a MII transceiver on any interface requires mdio preamble.
123 This only set with the original DP83840 on older 3c905 boards, so the extra
124 code size of a per-interface flag is not worthwhile. */
125 static char mii_preamble_required;
127 #define PFX DRV_NAME ": "
132 Theory of Operation
134 I. Board Compatibility
136 This device driver is designed for the 3Com FastEtherLink and FastEtherLink
137 XL, 3Com's PCI to 10/100baseT adapters. It also works with the 10Mbs
138 versions of the FastEtherLink cards. The supported product IDs are
139 3c590, 3c592, 3c595, 3c597, 3c900, 3c905
141 The related ISA 3c515 is supported with a separate driver, 3c515.c, included
142 with the kernel source or available from
143 cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
145 II. Board-specific settings
147 PCI bus devices are configured by the system at boot time, so no jumpers
148 need to be set on the board. The system BIOS should be set to assign the
149 PCI INTA signal to an otherwise unused system IRQ line.
151 The EEPROM settings for media type and forced-full-duplex are observed.
152 The EEPROM media type should be left at the default "autoselect" unless using
153 10base2 or AUI connections which cannot be reliably detected.
155 III. Driver operation
157 The 3c59x series use an interface that's very similar to the previous 3c5x9
158 series. The primary interface is two programmed-I/O FIFOs, with an
159 alternate single-contiguous-region bus-master transfer (see next).
161 The 3c900 "Boomerang" series uses a full-bus-master interface with separate
162 lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
163 DEC Tulip and Intel Speedo3. The first chip version retains a compatible
164 programmed-I/O interface that has been removed in 'B' and subsequent board
165 revisions.
167 One extension that is advertised in a very large font is that the adapters
168 are capable of being bus masters. On the Vortex chip this capability was
169 only for a single contiguous region making it far less useful than the full
170 bus master capability. There is a significant performance impact of taking
171 an extra interrupt or polling for the completion of each transfer, as well
172 as difficulty sharing the single transfer engine between the transmit and
173 receive threads. Using DMA transfers is a win only with large blocks or
174 with the flawed versions of the Intel Orion motherboard PCI controller.
176 The Boomerang chip's full-bus-master interface is useful, and has the
177 currently-unused advantages over other similar chips that queued transmit
178 packets may be reordered and receive buffer groups are associated with a
179 single frame.
181 With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
182 Rather than a fixed intermediate receive buffer, this scheme allocates
183 full-sized skbuffs as receive buffers. The value RX_COPYBREAK is used as
184 the copying breakpoint: it is chosen to trade-off the memory wasted by
185 passing the full-sized skbuff to the queue layer for all frames vs. the
186 copying cost of copying a frame to a correctly-sized skbuff.
188 IIIC. Synchronization
189 The driver runs as two independent, single-threaded flows of control. One
190 is the send-packet routine, which enforces single-threaded use by the
191 dev->tbusy flag. The other thread is the interrupt handler, which is single
192 threaded by the hardware and other software.
194 IV. Notes
196 Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
197 3c590, 3c595, and 3c900 boards.
198 The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
199 the EISA version is called "Demon". According to Terry these names come
200 from rides at the local amusement park.
202 The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
203 This driver only supports ethernet packets because of the skbuff allocation
204 limit of 4K.
207 /* This table drives the PCI probe routines. It's mostly boilerplate in all
208 of the drivers, and will likely be provided by some future kernel.
210 enum pci_flags_bit {
211 PCI_USES_MASTER=4,
214 enum { IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
215 EEPROM_8BIT=0x10, /* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
216 HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
217 INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
218 EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
219 EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
221 enum vortex_chips {
222 CH_3C590 = 0,
223 CH_3C592,
224 CH_3C597,
225 CH_3C595_1,
226 CH_3C595_2,
228 CH_3C595_3,
229 CH_3C900_1,
230 CH_3C900_2,
231 CH_3C900_3,
232 CH_3C900_4,
234 CH_3C900_5,
235 CH_3C900B_FL,
236 CH_3C905_1,
237 CH_3C905_2,
238 CH_3C905B_TX,
239 CH_3C905B_1,
241 CH_3C905B_2,
242 CH_3C905B_FX,
243 CH_3C905C,
244 CH_3C9202,
245 CH_3C980,
246 CH_3C9805,
248 CH_3CSOHO100_TX,
249 CH_3C555,
250 CH_3C556,
251 CH_3C556B,
252 CH_3C575,
254 CH_3C575_1,
255 CH_3CCFE575,
256 CH_3CCFE575CT,
257 CH_3CCFE656,
258 CH_3CCFEM656,
260 CH_3CCFEM656_1,
261 CH_3C450,
262 CH_3C920,
263 CH_3C982A,
264 CH_3C982B,
266 CH_905BT4,
267 CH_920B_EMB_WNM,
271 /* note: this array directly indexed by above enums, and MUST
272 * be kept in sync with both the enums above, and the PCI device
273 * table below
275 static struct vortex_chip_info {
276 const char *name;
277 int flags;
278 int drv_flags;
279 int io_size;
280 } vortex_info_tbl[] __devinitdata = {
281 {"3c590 Vortex 10Mbps",
282 PCI_USES_MASTER, IS_VORTEX, 32, },
283 {"3c592 EISA 10Mbps Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */
284 PCI_USES_MASTER, IS_VORTEX, 32, },
285 {"3c597 EISA Fast Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */
286 PCI_USES_MASTER, IS_VORTEX, 32, },
287 {"3c595 Vortex 100baseTx",
288 PCI_USES_MASTER, IS_VORTEX, 32, },
289 {"3c595 Vortex 100baseT4",
290 PCI_USES_MASTER, IS_VORTEX, 32, },
292 {"3c595 Vortex 100base-MII",
293 PCI_USES_MASTER, IS_VORTEX, 32, },
294 {"3c900 Boomerang 10baseT",
295 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
296 {"3c900 Boomerang 10Mbps Combo",
297 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
298 {"3c900 Cyclone 10Mbps TPO", /* AKPM: from Don's 0.99M */
299 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
300 {"3c900 Cyclone 10Mbps Combo",
301 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
303 {"3c900 Cyclone 10Mbps TPC", /* AKPM: from Don's 0.99M */
304 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
305 {"3c900B-FL Cyclone 10base-FL",
306 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
307 {"3c905 Boomerang 100baseTx",
308 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
309 {"3c905 Boomerang 100baseT4",
310 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
311 {"3C905B-TX Fast Etherlink XL PCI",
312 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
313 {"3c905B Cyclone 100baseTx",
314 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
316 {"3c905B Cyclone 10/100/BNC",
317 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
318 {"3c905B-FX Cyclone 100baseFx",
319 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
320 {"3c905C Tornado",
321 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
322 {"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
323 PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
324 {"3c980 Cyclone",
325 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
327 {"3c980C Python-T",
328 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
329 {"3cSOHO100-TX Hurricane",
330 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
331 {"3c555 Laptop Hurricane",
332 PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
333 {"3c556 Laptop Tornado",
334 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
335 HAS_HWCKSM, 128, },
336 {"3c556B Laptop Hurricane",
337 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
338 WNO_XCVR_PWR|HAS_HWCKSM, 128, },
340 {"3c575 [Megahertz] 10/100 LAN CardBus",
341 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
342 {"3c575 Boomerang CardBus",
343 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
344 {"3CCFE575BT Cyclone CardBus",
345 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
346 INVERT_LED_PWR|HAS_HWCKSM, 128, },
347 {"3CCFE575CT Tornado CardBus",
348 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
349 MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
350 {"3CCFE656 Cyclone CardBus",
351 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
352 INVERT_LED_PWR|HAS_HWCKSM, 128, },
354 {"3CCFEM656B Cyclone+Winmodem CardBus",
355 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
356 INVERT_LED_PWR|HAS_HWCKSM, 128, },
357 {"3CXFEM656C Tornado+Winmodem CardBus", /* From pcmcia-cs-3.1.5 */
358 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
359 MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
360 {"3c450 HomePNA Tornado", /* AKPM: from Don's 0.99Q */
361 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
362 {"3c920 Tornado",
363 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
364 {"3c982 Hydra Dual Port A",
365 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
367 {"3c982 Hydra Dual Port B",
368 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
369 {"3c905B-T4",
370 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
371 {"3c920B-EMB-WNM Tornado",
372 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
374 {NULL,}, /* NULL terminated list. */
378 static struct pci_device_id vortex_pci_tbl[] = {
379 { 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
380 { 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
381 { 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
382 { 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
383 { 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
385 { 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
386 { 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
387 { 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
388 { 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
389 { 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
391 { 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
392 { 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
393 { 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
394 { 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
395 { 0x10B7, 0x9054, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_TX },
396 { 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
398 { 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
399 { 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
400 { 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
401 { 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
402 { 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
403 { 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
405 { 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
406 { 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
407 { 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
408 { 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
409 { 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
411 { 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
412 { 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
413 { 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
414 { 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
415 { 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
417 { 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
418 { 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
419 { 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
420 { 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
421 { 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
423 { 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
424 { 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
426 {0,} /* 0 terminated list. */
428 MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
431 /* Operational definitions.
432 These are not used by other compilation units and thus are not
433 exported in a ".h" file.
435 First the windows. There are eight register windows, with the command
436 and status registers available in each.
438 #define EL3WINDOW(win_num) iowrite16(SelectWindow + (win_num), ioaddr + EL3_CMD)
439 #define EL3_CMD 0x0e
440 #define EL3_STATUS 0x0e
442 /* The top five bits written to EL3_CMD are a command, the lower
443 11 bits are the parameter, if applicable.
444 Note that 11 parameters bits was fine for ethernet, but the new chip
445 can handle FDDI length frames (~4500 octets) and now parameters count
446 32-bit 'Dwords' rather than octets. */
448 enum vortex_cmd {
449 TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
450 RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
451 UpStall = 6<<11, UpUnstall = (6<<11)+1,
452 DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
453 RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
454 FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
455 SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
456 SetTxThreshold = 18<<11, SetTxStart = 19<<11,
457 StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
458 StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
460 /* The SetRxFilter command accepts the following classes: */
461 enum RxFilter {
462 RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
464 /* Bits in the general status register. */
465 enum vortex_status {
466 IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
467 TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
468 IntReq = 0x0040, StatsFull = 0x0080,
469 DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
470 DMAInProgress = 1<<11, /* DMA controller is still busy.*/
471 CmdInProgress = 1<<12, /* EL3_CMD is still busy.*/
474 /* Register window 1 offsets, the window used in normal operation.
475 On the Vortex this window is always mapped at offsets 0x10-0x1f. */
476 enum Window1 {
477 TX_FIFO = 0x10, RX_FIFO = 0x10, RxErrors = 0x14,
478 RxStatus = 0x18, Timer=0x1A, TxStatus = 0x1B,
479 TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
481 enum Window0 {
482 Wn0EepromCmd = 10, /* Window 0: EEPROM command register. */
483 Wn0EepromData = 12, /* Window 0: EEPROM results register. */
484 IntrStatus=0x0E, /* Valid in all windows. */
486 enum Win0_EEPROM_bits {
487 EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
488 EEPROM_EWENB = 0x30, /* Enable erasing/writing for 10 msec. */
489 EEPROM_EWDIS = 0x00, /* Disable EWENB before 10 msec timeout. */
491 /* EEPROM locations. */
492 enum eeprom_offset {
493 PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
494 EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
495 NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
496 DriverTune=13, Checksum=15};
498 enum Window2 { /* Window 2. */
499 Wn2_ResetOptions=12,
501 enum Window3 { /* Window 3: MAC/config bits. */
502 Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
505 #define BFEXT(value, offset, bitcount) \
506 ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
508 #define BFINS(lhs, rhs, offset, bitcount) \
509 (((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) | \
510 (((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
512 #define RAM_SIZE(v) BFEXT(v, 0, 3)
513 #define RAM_WIDTH(v) BFEXT(v, 3, 1)
514 #define RAM_SPEED(v) BFEXT(v, 4, 2)
515 #define ROM_SIZE(v) BFEXT(v, 6, 2)
516 #define RAM_SPLIT(v) BFEXT(v, 16, 2)
517 #define XCVR(v) BFEXT(v, 20, 4)
518 #define AUTOSELECT(v) BFEXT(v, 24, 1)
520 enum Window4 { /* Window 4: Xcvr/media bits. */
521 Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
523 enum Win4_Media_bits {
524 Media_SQE = 0x0008, /* Enable SQE error counting for AUI. */
525 Media_10TP = 0x00C0, /* Enable link beat and jabber for 10baseT. */
526 Media_Lnk = 0x0080, /* Enable just link beat for 100TX/100FX. */
527 Media_LnkBeat = 0x0800,
529 enum Window7 { /* Window 7: Bus Master control. */
530 Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
531 Wn7_MasterStatus = 12,
533 /* Boomerang bus master control registers. */
534 enum MasterCtrl {
535 PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
536 TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
539 /* The Rx and Tx descriptor lists.
540 Caution Alpha hackers: these types are 32 bits! Note also the 8 byte
541 alignment contraint on tx_ring[] and rx_ring[]. */
542 #define LAST_FRAG 0x80000000 /* Last Addr/Len pair in descriptor. */
543 #define DN_COMPLETE 0x00010000 /* This packet has been downloaded */
544 struct boom_rx_desc {
545 __le32 next; /* Last entry points to 0. */
546 __le32 status;
547 __le32 addr; /* Up to 63 addr/len pairs possible. */
548 __le32 length; /* Set LAST_FRAG to indicate last pair. */
550 /* Values for the Rx status entry. */
551 enum rx_desc_status {
552 RxDComplete=0x00008000, RxDError=0x4000,
553 /* See boomerang_rx() for actual error bits */
554 IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
555 IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
558 #ifdef MAX_SKB_FRAGS
559 #define DO_ZEROCOPY 1
560 #else
561 #define DO_ZEROCOPY 0
562 #endif
564 struct boom_tx_desc {
565 __le32 next; /* Last entry points to 0. */
566 __le32 status; /* bits 0:12 length, others see below. */
567 #if DO_ZEROCOPY
568 struct {
569 __le32 addr;
570 __le32 length;
571 } frag[1+MAX_SKB_FRAGS];
572 #else
573 __le32 addr;
574 __le32 length;
575 #endif
578 /* Values for the Tx status entry. */
579 enum tx_desc_status {
580 CRCDisable=0x2000, TxDComplete=0x8000,
581 AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
582 TxIntrUploaded=0x80000000, /* IRQ when in FIFO, but maybe not sent. */
585 /* Chip features we care about in vp->capabilities, read from the EEPROM. */
586 enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
588 struct vortex_extra_stats {
589 unsigned long tx_deferred;
590 unsigned long tx_max_collisions;
591 unsigned long tx_multiple_collisions;
592 unsigned long tx_single_collisions;
593 unsigned long rx_bad_ssd;
596 struct vortex_private {
597 /* The Rx and Tx rings should be quad-word-aligned. */
598 struct boom_rx_desc* rx_ring;
599 struct boom_tx_desc* tx_ring;
600 dma_addr_t rx_ring_dma;
601 dma_addr_t tx_ring_dma;
602 /* The addresses of transmit- and receive-in-place skbuffs. */
603 struct sk_buff* rx_skbuff[RX_RING_SIZE];
604 struct sk_buff* tx_skbuff[TX_RING_SIZE];
605 unsigned int cur_rx, cur_tx; /* The next free ring entry */
606 unsigned int dirty_rx, dirty_tx; /* The ring entries to be free()ed. */
607 struct vortex_extra_stats xstats; /* NIC-specific extra stats */
608 struct sk_buff *tx_skb; /* Packet being eaten by bus master ctrl. */
609 dma_addr_t tx_skb_dma; /* Allocated DMA address for bus master ctrl DMA. */
611 /* PCI configuration space information. */
612 struct device *gendev;
613 void __iomem *ioaddr; /* IO address space */
614 void __iomem *cb_fn_base; /* CardBus function status addr space. */
616 /* Some values here only for performance evaluation and path-coverage */
617 int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
618 int card_idx;
620 /* The remainder are related to chip state, mostly media selection. */
621 struct timer_list timer; /* Media selection timer. */
622 struct timer_list rx_oom_timer; /* Rx skb allocation retry timer */
623 int options; /* User-settable misc. driver options. */
624 unsigned int media_override:4, /* Passed-in media type. */
625 default_media:4, /* Read from the EEPROM/Wn3_Config. */
626 full_duplex:1, autoselect:1,
627 bus_master:1, /* Vortex can only do a fragment bus-m. */
628 full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang */
629 flow_ctrl:1, /* Use 802.3x flow control (PAUSE only) */
630 partner_flow_ctrl:1, /* Partner supports flow control */
631 has_nway:1,
632 enable_wol:1, /* Wake-on-LAN is enabled */
633 pm_state_valid:1, /* pci_dev->saved_config_space has sane contents */
634 open:1,
635 medialock:1,
636 large_frames:1; /* accept large frames */
637 int drv_flags;
638 u16 status_enable;
639 u16 intr_enable;
640 u16 available_media; /* From Wn3_Options. */
641 u16 capabilities, info1, info2; /* Various, from EEPROM. */
642 u16 advertising; /* NWay media advertisement */
643 unsigned char phys[2]; /* MII device addresses. */
644 u16 deferred; /* Resend these interrupts when we
645 * bale from the ISR */
646 u16 io_size; /* Size of PCI region (for release_region) */
647 spinlock_t lock; /* Serialise access to device & its vortex_private */
648 struct mii_if_info mii; /* MII lib hooks/info */
651 #ifdef CONFIG_PCI
652 #define DEVICE_PCI(dev) (((dev)->bus == &pci_bus_type) ? to_pci_dev((dev)) : NULL)
653 #else
654 #define DEVICE_PCI(dev) NULL
655 #endif
657 #define VORTEX_PCI(vp) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL)
659 #ifdef CONFIG_EISA
660 #define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
661 #else
662 #define DEVICE_EISA(dev) NULL
663 #endif
665 #define VORTEX_EISA(vp) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL)
667 /* The action to take with a media selection timer tick.
668 Note that we deviate from the 3Com order by checking 10base2 before AUI.
670 enum xcvr_types {
671 XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
672 XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
675 static const struct media_table {
676 char *name;
677 unsigned int media_bits:16, /* Bits to set in Wn4_Media register. */
678 mask:8, /* The transceiver-present bit in Wn3_Config.*/
679 next:8; /* The media type to try next. */
680 int wait; /* Time before we check media status. */
681 } media_tbl[] = {
682 { "10baseT", Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
683 { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
684 { "undefined", 0, 0x80, XCVR_10baseT, 10000},
685 { "10base2", 0, 0x10, XCVR_AUI, (1*HZ)/10},
686 { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
687 { "100baseFX", Media_Lnk, 0x04, XCVR_MII, (14*HZ)/10},
688 { "MII", 0, 0x41, XCVR_10baseT, 3*HZ },
689 { "undefined", 0, 0x01, XCVR_10baseT, 10000},
690 { "Autonegotiate", 0, 0x41, XCVR_10baseT, 3*HZ},
691 { "MII-External", 0, 0x41, XCVR_10baseT, 3*HZ },
692 { "Default", 0, 0xFF, XCVR_10baseT, 10000},
695 static struct {
696 const char str[ETH_GSTRING_LEN];
697 } ethtool_stats_keys[] = {
698 { "tx_deferred" },
699 { "tx_max_collisions" },
700 { "tx_multiple_collisions" },
701 { "tx_single_collisions" },
702 { "rx_bad_ssd" },
705 /* number of ETHTOOL_GSTATS u64's */
706 #define VORTEX_NUM_STATS 5
708 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
709 int chip_idx, int card_idx);
710 static int vortex_up(struct net_device *dev);
711 static void vortex_down(struct net_device *dev, int final);
712 static int vortex_open(struct net_device *dev);
713 static void mdio_sync(void __iomem *ioaddr, int bits);
714 static int mdio_read(struct net_device *dev, int phy_id, int location);
715 static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
716 static void vortex_timer(unsigned long arg);
717 static void rx_oom_timer(unsigned long arg);
718 static netdev_tx_t vortex_start_xmit(struct sk_buff *skb,
719 struct net_device *dev);
720 static netdev_tx_t boomerang_start_xmit(struct sk_buff *skb,
721 struct net_device *dev);
722 static int vortex_rx(struct net_device *dev);
723 static int boomerang_rx(struct net_device *dev);
724 static irqreturn_t vortex_interrupt(int irq, void *dev_id);
725 static irqreturn_t boomerang_interrupt(int irq, void *dev_id);
726 static int vortex_close(struct net_device *dev);
727 static void dump_tx_ring(struct net_device *dev);
728 static void update_stats(void __iomem *ioaddr, struct net_device *dev);
729 static struct net_device_stats *vortex_get_stats(struct net_device *dev);
730 static void set_rx_mode(struct net_device *dev);
731 #ifdef CONFIG_PCI
732 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
733 #endif
734 static void vortex_tx_timeout(struct net_device *dev);
735 static void acpi_set_WOL(struct net_device *dev);
736 static const struct ethtool_ops vortex_ethtool_ops;
737 static void set_8021q_mode(struct net_device *dev, int enable);
739 /* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
740 /* Option count limit only -- unlimited interfaces are supported. */
741 #define MAX_UNITS 8
742 static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 };
743 static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
744 static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
745 static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
746 static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
747 static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
748 static int global_options = -1;
749 static int global_full_duplex = -1;
750 static int global_enable_wol = -1;
751 static int global_use_mmio = -1;
753 /* Variables to work-around the Compaq PCI BIOS32 problem. */
754 static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
755 static struct net_device *compaq_net_device;
757 static int vortex_cards_found;
759 module_param(debug, int, 0);
760 module_param(global_options, int, 0);
761 module_param_array(options, int, NULL, 0);
762 module_param(global_full_duplex, int, 0);
763 module_param_array(full_duplex, int, NULL, 0);
764 module_param_array(hw_checksums, int, NULL, 0);
765 module_param_array(flow_ctrl, int, NULL, 0);
766 module_param(global_enable_wol, int, 0);
767 module_param_array(enable_wol, int, NULL, 0);
768 module_param(rx_copybreak, int, 0);
769 module_param(max_interrupt_work, int, 0);
770 module_param(compaq_ioaddr, int, 0);
771 module_param(compaq_irq, int, 0);
772 module_param(compaq_device_id, int, 0);
773 module_param(watchdog, int, 0);
774 module_param(global_use_mmio, int, 0);
775 module_param_array(use_mmio, int, NULL, 0);
776 MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
777 MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
778 MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
779 MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
780 MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset");
781 MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
782 MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
783 MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
784 MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset");
785 MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
786 MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
787 MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
788 MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
789 MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
790 MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
791 MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset");
792 MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)");
794 #ifdef CONFIG_NET_POLL_CONTROLLER
795 static void poll_vortex(struct net_device *dev)
797 struct vortex_private *vp = netdev_priv(dev);
798 unsigned long flags;
799 local_irq_save(flags);
800 (vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev);
801 local_irq_restore(flags);
803 #endif
805 #ifdef CONFIG_PM
807 static int vortex_suspend(struct device *dev)
809 struct pci_dev *pdev = to_pci_dev(dev);
810 struct net_device *ndev = pci_get_drvdata(pdev);
812 if (!ndev || !netif_running(ndev))
813 return 0;
815 netif_device_detach(ndev);
816 vortex_down(ndev, 1);
818 return 0;
821 static int vortex_resume(struct device *dev)
823 struct pci_dev *pdev = to_pci_dev(dev);
824 struct net_device *ndev = pci_get_drvdata(pdev);
825 int err;
827 if (!ndev || !netif_running(ndev))
828 return 0;
830 err = vortex_up(ndev);
831 if (err)
832 return err;
834 netif_device_attach(ndev);
836 return 0;
839 static struct dev_pm_ops vortex_pm_ops = {
840 .suspend = vortex_suspend,
841 .resume = vortex_resume,
842 .freeze = vortex_suspend,
843 .thaw = vortex_resume,
844 .poweroff = vortex_suspend,
845 .restore = vortex_resume,
848 #define VORTEX_PM_OPS (&vortex_pm_ops)
850 #else /* !CONFIG_PM */
852 #define VORTEX_PM_OPS NULL
854 #endif /* !CONFIG_PM */
856 #ifdef CONFIG_EISA
857 static struct eisa_device_id vortex_eisa_ids[] = {
858 { "TCM5920", CH_3C592 },
859 { "TCM5970", CH_3C597 },
860 { "" }
862 MODULE_DEVICE_TABLE(eisa, vortex_eisa_ids);
864 static int __init vortex_eisa_probe(struct device *device)
866 void __iomem *ioaddr;
867 struct eisa_device *edev;
869 edev = to_eisa_device(device);
871 if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME))
872 return -EBUSY;
874 ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE);
876 if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12,
877 edev->id.driver_data, vortex_cards_found)) {
878 release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
879 return -ENODEV;
882 vortex_cards_found++;
884 return 0;
887 static int __devexit vortex_eisa_remove(struct device *device)
889 struct eisa_device *edev;
890 struct net_device *dev;
891 struct vortex_private *vp;
892 void __iomem *ioaddr;
894 edev = to_eisa_device(device);
895 dev = eisa_get_drvdata(edev);
897 if (!dev) {
898 pr_err("vortex_eisa_remove called for Compaq device!\n");
899 BUG();
902 vp = netdev_priv(dev);
903 ioaddr = vp->ioaddr;
905 unregister_netdev(dev);
906 iowrite16(TotalReset|0x14, ioaddr + EL3_CMD);
907 release_region(dev->base_addr, VORTEX_TOTAL_SIZE);
909 free_netdev(dev);
910 return 0;
913 static struct eisa_driver vortex_eisa_driver = {
914 .id_table = vortex_eisa_ids,
915 .driver = {
916 .name = "3c59x",
917 .probe = vortex_eisa_probe,
918 .remove = __devexit_p(vortex_eisa_remove)
922 #endif /* CONFIG_EISA */
924 /* returns count found (>= 0), or negative on error */
925 static int __init vortex_eisa_init(void)
927 int eisa_found = 0;
928 int orig_cards_found = vortex_cards_found;
930 #ifdef CONFIG_EISA
931 int err;
933 err = eisa_driver_register (&vortex_eisa_driver);
934 if (!err) {
936 * Because of the way EISA bus is probed, we cannot assume
937 * any device have been found when we exit from
938 * eisa_driver_register (the bus root driver may not be
939 * initialized yet). So we blindly assume something was
940 * found, and let the sysfs magic happend...
942 eisa_found = 1;
944 #endif
946 /* Special code to work-around the Compaq PCI BIOS32 problem. */
947 if (compaq_ioaddr) {
948 vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE),
949 compaq_irq, compaq_device_id, vortex_cards_found++);
952 return vortex_cards_found - orig_cards_found + eisa_found;
955 /* returns count (>= 0), or negative on error */
956 static int __devinit vortex_init_one(struct pci_dev *pdev,
957 const struct pci_device_id *ent)
959 int rc, unit, pci_bar;
960 struct vortex_chip_info *vci;
961 void __iomem *ioaddr;
963 /* wake up and enable device */
964 rc = pci_enable_device(pdev);
965 if (rc < 0)
966 return rc;
968 rc = pci_request_regions(pdev, "3c59x");
969 if (rc < 0) {
970 pci_disable_device(pdev);
971 return rc;
974 unit = vortex_cards_found;
976 if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) {
977 /* Determine the default if the user didn't override us */
978 vci = &vortex_info_tbl[ent->driver_data];
979 pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0;
980 } else if (unit < MAX_UNITS && use_mmio[unit] >= 0)
981 pci_bar = use_mmio[unit] ? 1 : 0;
982 else
983 pci_bar = global_use_mmio ? 1 : 0;
985 ioaddr = pci_iomap(pdev, pci_bar, 0);
986 if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */
987 ioaddr = pci_iomap(pdev, 0, 0);
989 rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq,
990 ent->driver_data, unit);
991 if (rc < 0) {
992 pci_release_regions(pdev);
993 pci_disable_device(pdev);
994 return rc;
997 vortex_cards_found++;
999 return rc;
1002 static const struct net_device_ops boomrang_netdev_ops = {
1003 .ndo_open = vortex_open,
1004 .ndo_stop = vortex_close,
1005 .ndo_start_xmit = boomerang_start_xmit,
1006 .ndo_tx_timeout = vortex_tx_timeout,
1007 .ndo_get_stats = vortex_get_stats,
1008 #ifdef CONFIG_PCI
1009 .ndo_do_ioctl = vortex_ioctl,
1010 #endif
1011 .ndo_set_multicast_list = set_rx_mode,
1012 .ndo_change_mtu = eth_change_mtu,
1013 .ndo_set_mac_address = eth_mac_addr,
1014 .ndo_validate_addr = eth_validate_addr,
1015 #ifdef CONFIG_NET_POLL_CONTROLLER
1016 .ndo_poll_controller = poll_vortex,
1017 #endif
1020 static const struct net_device_ops vortex_netdev_ops = {
1021 .ndo_open = vortex_open,
1022 .ndo_stop = vortex_close,
1023 .ndo_start_xmit = vortex_start_xmit,
1024 .ndo_tx_timeout = vortex_tx_timeout,
1025 .ndo_get_stats = vortex_get_stats,
1026 #ifdef CONFIG_PCI
1027 .ndo_do_ioctl = vortex_ioctl,
1028 #endif
1029 .ndo_set_multicast_list = set_rx_mode,
1030 .ndo_change_mtu = eth_change_mtu,
1031 .ndo_set_mac_address = eth_mac_addr,
1032 .ndo_validate_addr = eth_validate_addr,
1033 #ifdef CONFIG_NET_POLL_CONTROLLER
1034 .ndo_poll_controller = poll_vortex,
1035 #endif
1039 * Start up the PCI/EISA device which is described by *gendev.
1040 * Return 0 on success.
1042 * NOTE: pdev can be NULL, for the case of a Compaq device
1044 static int __devinit vortex_probe1(struct device *gendev,
1045 void __iomem *ioaddr, int irq,
1046 int chip_idx, int card_idx)
1048 struct vortex_private *vp;
1049 int option;
1050 unsigned int eeprom[0x40], checksum = 0; /* EEPROM contents */
1051 int i, step;
1052 struct net_device *dev;
1053 static int printed_version;
1054 int retval, print_info;
1055 struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1056 const char *print_name = "3c59x";
1057 struct pci_dev *pdev = NULL;
1058 struct eisa_device *edev = NULL;
1060 if (!printed_version) {
1061 pr_info("%s", version);
1062 printed_version = 1;
1065 if (gendev) {
1066 if ((pdev = DEVICE_PCI(gendev))) {
1067 print_name = pci_name(pdev);
1070 if ((edev = DEVICE_EISA(gendev))) {
1071 print_name = dev_name(&edev->dev);
1075 dev = alloc_etherdev(sizeof(*vp));
1076 retval = -ENOMEM;
1077 if (!dev) {
1078 pr_err(PFX "unable to allocate etherdev, aborting\n");
1079 goto out;
1081 SET_NETDEV_DEV(dev, gendev);
1082 vp = netdev_priv(dev);
1084 option = global_options;
1086 /* The lower four bits are the media type. */
1087 if (dev->mem_start) {
1089 * The 'options' param is passed in as the third arg to the
1090 * LILO 'ether=' argument for non-modular use
1092 option = dev->mem_start;
1094 else if (card_idx < MAX_UNITS) {
1095 if (options[card_idx] >= 0)
1096 option = options[card_idx];
1099 if (option > 0) {
1100 if (option & 0x8000)
1101 vortex_debug = 7;
1102 if (option & 0x4000)
1103 vortex_debug = 2;
1104 if (option & 0x0400)
1105 vp->enable_wol = 1;
1108 print_info = (vortex_debug > 1);
1109 if (print_info)
1110 pr_info("See Documentation/networking/vortex.txt\n");
1112 pr_info("%s: 3Com %s %s at %p.\n",
1113 print_name,
1114 pdev ? "PCI" : "EISA",
1115 vci->name,
1116 ioaddr);
1118 dev->base_addr = (unsigned long)ioaddr;
1119 dev->irq = irq;
1120 dev->mtu = mtu;
1121 vp->ioaddr = ioaddr;
1122 vp->large_frames = mtu > 1500;
1123 vp->drv_flags = vci->drv_flags;
1124 vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1125 vp->io_size = vci->io_size;
1126 vp->card_idx = card_idx;
1128 /* module list only for Compaq device */
1129 if (gendev == NULL) {
1130 compaq_net_device = dev;
1133 /* PCI-only startup logic */
1134 if (pdev) {
1135 /* enable bus-mastering if necessary */
1136 if (vci->flags & PCI_USES_MASTER)
1137 pci_set_master(pdev);
1139 if (vci->drv_flags & IS_VORTEX) {
1140 u8 pci_latency;
1141 u8 new_latency = 248;
1143 /* Check the PCI latency value. On the 3c590 series the latency timer
1144 must be set to the maximum value to avoid data corruption that occurs
1145 when the timer expires during a transfer. This bug exists the Vortex
1146 chip only. */
1147 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1148 if (pci_latency < new_latency) {
1149 pr_info("%s: Overriding PCI latency timer (CFLT) setting of %d, new value is %d.\n",
1150 print_name, pci_latency, new_latency);
1151 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1156 spin_lock_init(&vp->lock);
1157 vp->gendev = gendev;
1158 vp->mii.dev = dev;
1159 vp->mii.mdio_read = mdio_read;
1160 vp->mii.mdio_write = mdio_write;
1161 vp->mii.phy_id_mask = 0x1f;
1162 vp->mii.reg_num_mask = 0x1f;
1164 /* Makes sure rings are at least 16 byte aligned. */
1165 vp->rx_ring = pci_alloc_consistent(pdev,
1166 sizeof(struct boom_rx_desc) * RX_RING_SIZE +
1167 sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1168 &vp->rx_ring_dma);
1169 retval = -ENOMEM;
1170 if (!vp->rx_ring)
1171 goto free_device;
1173 vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1174 vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1176 /* if we are a PCI driver, we store info in pdev->driver_data
1177 * instead of a module list */
1178 if (pdev)
1179 pci_set_drvdata(pdev, dev);
1180 if (edev)
1181 eisa_set_drvdata(edev, dev);
1183 vp->media_override = 7;
1184 if (option >= 0) {
1185 vp->media_override = ((option & 7) == 2) ? 0 : option & 15;
1186 if (vp->media_override != 7)
1187 vp->medialock = 1;
1188 vp->full_duplex = (option & 0x200) ? 1 : 0;
1189 vp->bus_master = (option & 16) ? 1 : 0;
1192 if (global_full_duplex > 0)
1193 vp->full_duplex = 1;
1194 if (global_enable_wol > 0)
1195 vp->enable_wol = 1;
1197 if (card_idx < MAX_UNITS) {
1198 if (full_duplex[card_idx] > 0)
1199 vp->full_duplex = 1;
1200 if (flow_ctrl[card_idx] > 0)
1201 vp->flow_ctrl = 1;
1202 if (enable_wol[card_idx] > 0)
1203 vp->enable_wol = 1;
1206 vp->mii.force_media = vp->full_duplex;
1207 vp->options = option;
1208 /* Read the station address from the EEPROM. */
1209 EL3WINDOW(0);
1211 int base;
1213 if (vci->drv_flags & EEPROM_8BIT)
1214 base = 0x230;
1215 else if (vci->drv_flags & EEPROM_OFFSET)
1216 base = EEPROM_Read + 0x30;
1217 else
1218 base = EEPROM_Read;
1220 for (i = 0; i < 0x40; i++) {
1221 int timer;
1222 iowrite16(base + i, ioaddr + Wn0EepromCmd);
1223 /* Pause for at least 162 us. for the read to take place. */
1224 for (timer = 10; timer >= 0; timer--) {
1225 udelay(162);
1226 if ((ioread16(ioaddr + Wn0EepromCmd) & 0x8000) == 0)
1227 break;
1229 eeprom[i] = ioread16(ioaddr + Wn0EepromData);
1232 for (i = 0; i < 0x18; i++)
1233 checksum ^= eeprom[i];
1234 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1235 if (checksum != 0x00) { /* Grrr, needless incompatible change 3Com. */
1236 while (i < 0x21)
1237 checksum ^= eeprom[i++];
1238 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1240 if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1241 pr_cont(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1242 for (i = 0; i < 3; i++)
1243 ((__be16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]);
1244 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1245 if (print_info)
1246 pr_cont(" %pM", dev->dev_addr);
1247 /* Unfortunately an all zero eeprom passes the checksum and this
1248 gets found in the wild in failure cases. Crypto is hard 8) */
1249 if (!is_valid_ether_addr(dev->dev_addr)) {
1250 retval = -EINVAL;
1251 pr_err("*** EEPROM MAC address is invalid.\n");
1252 goto free_ring; /* With every pack */
1254 EL3WINDOW(2);
1255 for (i = 0; i < 6; i++)
1256 iowrite8(dev->dev_addr[i], ioaddr + i);
1258 if (print_info)
1259 pr_cont(", IRQ %d\n", dev->irq);
1260 /* Tell them about an invalid IRQ. */
1261 if (dev->irq <= 0 || dev->irq >= nr_irqs)
1262 pr_warning(" *** Warning: IRQ %d is unlikely to work! ***\n",
1263 dev->irq);
1265 EL3WINDOW(4);
1266 step = (ioread8(ioaddr + Wn4_NetDiag) & 0x1e) >> 1;
1267 if (print_info) {
1268 pr_info(" product code %02x%02x rev %02x.%d date %02d-%02d-%02d\n",
1269 eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1270 step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1274 if (pdev && vci->drv_flags & HAS_CB_FNS) {
1275 unsigned short n;
1277 vp->cb_fn_base = pci_iomap(pdev, 2, 0);
1278 if (!vp->cb_fn_base) {
1279 retval = -ENOMEM;
1280 goto free_ring;
1283 if (print_info) {
1284 pr_info("%s: CardBus functions mapped %16.16llx->%p\n",
1285 print_name,
1286 (unsigned long long)pci_resource_start(pdev, 2),
1287 vp->cb_fn_base);
1289 EL3WINDOW(2);
1291 n = ioread16(ioaddr + Wn2_ResetOptions) & ~0x4010;
1292 if (vp->drv_flags & INVERT_LED_PWR)
1293 n |= 0x10;
1294 if (vp->drv_flags & INVERT_MII_PWR)
1295 n |= 0x4000;
1296 iowrite16(n, ioaddr + Wn2_ResetOptions);
1297 if (vp->drv_flags & WNO_XCVR_PWR) {
1298 EL3WINDOW(0);
1299 iowrite16(0x0800, ioaddr);
1303 /* Extract our information from the EEPROM data. */
1304 vp->info1 = eeprom[13];
1305 vp->info2 = eeprom[15];
1306 vp->capabilities = eeprom[16];
1308 if (vp->info1 & 0x8000) {
1309 vp->full_duplex = 1;
1310 if (print_info)
1311 pr_info("Full duplex capable\n");
1315 static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1316 unsigned int config;
1317 EL3WINDOW(3);
1318 vp->available_media = ioread16(ioaddr + Wn3_Options);
1319 if ((vp->available_media & 0xff) == 0) /* Broken 3c916 */
1320 vp->available_media = 0x40;
1321 config = ioread32(ioaddr + Wn3_Config);
1322 if (print_info) {
1323 pr_debug(" Internal config register is %4.4x, transceivers %#x.\n",
1324 config, ioread16(ioaddr + Wn3_Options));
1325 pr_info(" %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1326 8 << RAM_SIZE(config),
1327 RAM_WIDTH(config) ? "word" : "byte",
1328 ram_split[RAM_SPLIT(config)],
1329 AUTOSELECT(config) ? "autoselect/" : "",
1330 XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1331 media_tbl[XCVR(config)].name);
1333 vp->default_media = XCVR(config);
1334 if (vp->default_media == XCVR_NWAY)
1335 vp->has_nway = 1;
1336 vp->autoselect = AUTOSELECT(config);
1339 if (vp->media_override != 7) {
1340 pr_info("%s: Media override to transceiver type %d (%s).\n",
1341 print_name, vp->media_override,
1342 media_tbl[vp->media_override].name);
1343 dev->if_port = vp->media_override;
1344 } else
1345 dev->if_port = vp->default_media;
1347 if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1348 dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1349 int phy, phy_idx = 0;
1350 EL3WINDOW(4);
1351 mii_preamble_required++;
1352 if (vp->drv_flags & EXTRA_PREAMBLE)
1353 mii_preamble_required++;
1354 mdio_sync(ioaddr, 32);
1355 mdio_read(dev, 24, MII_BMSR);
1356 for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1357 int mii_status, phyx;
1360 * For the 3c905CX we look at index 24 first, because it bogusly
1361 * reports an external PHY at all indices
1363 if (phy == 0)
1364 phyx = 24;
1365 else if (phy <= 24)
1366 phyx = phy - 1;
1367 else
1368 phyx = phy;
1369 mii_status = mdio_read(dev, phyx, MII_BMSR);
1370 if (mii_status && mii_status != 0xffff) {
1371 vp->phys[phy_idx++] = phyx;
1372 if (print_info) {
1373 pr_info(" MII transceiver found at address %d, status %4x.\n",
1374 phyx, mii_status);
1376 if ((mii_status & 0x0040) == 0)
1377 mii_preamble_required++;
1380 mii_preamble_required--;
1381 if (phy_idx == 0) {
1382 pr_warning(" ***WARNING*** No MII transceivers found!\n");
1383 vp->phys[0] = 24;
1384 } else {
1385 vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE);
1386 if (vp->full_duplex) {
1387 /* Only advertise the FD media types. */
1388 vp->advertising &= ~0x02A0;
1389 mdio_write(dev, vp->phys[0], 4, vp->advertising);
1392 vp->mii.phy_id = vp->phys[0];
1395 if (vp->capabilities & CapBusMaster) {
1396 vp->full_bus_master_tx = 1;
1397 if (print_info) {
1398 pr_info(" Enabling bus-master transmits and %s receives.\n",
1399 (vp->info2 & 1) ? "early" : "whole-frame" );
1401 vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1402 vp->bus_master = 0; /* AKPM: vortex only */
1405 /* The 3c59x-specific entries in the device structure. */
1406 if (vp->full_bus_master_tx) {
1407 dev->netdev_ops = &boomrang_netdev_ops;
1408 /* Actually, it still should work with iommu. */
1409 if (card_idx < MAX_UNITS &&
1410 ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) ||
1411 hw_checksums[card_idx] == 1)) {
1412 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1414 } else
1415 dev->netdev_ops = &vortex_netdev_ops;
1417 if (print_info) {
1418 pr_info("%s: scatter/gather %sabled. h/w checksums %sabled\n",
1419 print_name,
1420 (dev->features & NETIF_F_SG) ? "en":"dis",
1421 (dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1424 dev->ethtool_ops = &vortex_ethtool_ops;
1425 dev->watchdog_timeo = (watchdog * HZ) / 1000;
1427 if (pdev) {
1428 vp->pm_state_valid = 1;
1429 pci_save_state(VORTEX_PCI(vp));
1430 acpi_set_WOL(dev);
1432 retval = register_netdev(dev);
1433 if (retval == 0)
1434 return 0;
1436 free_ring:
1437 pci_free_consistent(pdev,
1438 sizeof(struct boom_rx_desc) * RX_RING_SIZE +
1439 sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1440 vp->rx_ring,
1441 vp->rx_ring_dma);
1442 free_device:
1443 free_netdev(dev);
1444 pr_err(PFX "vortex_probe1 fails. Returns %d\n", retval);
1445 out:
1446 return retval;
1449 static void
1450 issue_and_wait(struct net_device *dev, int cmd)
1452 struct vortex_private *vp = netdev_priv(dev);
1453 void __iomem *ioaddr = vp->ioaddr;
1454 int i;
1456 iowrite16(cmd, ioaddr + EL3_CMD);
1457 for (i = 0; i < 2000; i++) {
1458 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
1459 return;
1462 /* OK, that didn't work. Do it the slow way. One second */
1463 for (i = 0; i < 100000; i++) {
1464 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) {
1465 if (vortex_debug > 1)
1466 pr_info("%s: command 0x%04x took %d usecs\n",
1467 dev->name, cmd, i * 10);
1468 return;
1470 udelay(10);
1472 pr_err("%s: command 0x%04x did not complete! Status=0x%x\n",
1473 dev->name, cmd, ioread16(ioaddr + EL3_STATUS));
1476 static void
1477 vortex_set_duplex(struct net_device *dev)
1479 struct vortex_private *vp = netdev_priv(dev);
1480 void __iomem *ioaddr = vp->ioaddr;
1482 pr_info("%s: setting %s-duplex.\n",
1483 dev->name, (vp->full_duplex) ? "full" : "half");
1485 EL3WINDOW(3);
1486 /* Set the full-duplex bit. */
1487 iowrite16(((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1488 (vp->large_frames ? 0x40 : 0) |
1489 ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ?
1490 0x100 : 0),
1491 ioaddr + Wn3_MAC_Ctrl);
1494 static void vortex_check_media(struct net_device *dev, unsigned int init)
1496 struct vortex_private *vp = netdev_priv(dev);
1497 unsigned int ok_to_print = 0;
1499 if (vortex_debug > 3)
1500 ok_to_print = 1;
1502 if (mii_check_media(&vp->mii, ok_to_print, init)) {
1503 vp->full_duplex = vp->mii.full_duplex;
1504 vortex_set_duplex(dev);
1505 } else if (init) {
1506 vortex_set_duplex(dev);
1510 static int
1511 vortex_up(struct net_device *dev)
1513 struct vortex_private *vp = netdev_priv(dev);
1514 void __iomem *ioaddr = vp->ioaddr;
1515 unsigned int config;
1516 int i, mii_reg1, mii_reg5, err = 0;
1518 if (VORTEX_PCI(vp)) {
1519 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */
1520 if (vp->pm_state_valid)
1521 pci_restore_state(VORTEX_PCI(vp));
1522 err = pci_enable_device(VORTEX_PCI(vp));
1523 if (err) {
1524 pr_warning("%s: Could not enable device\n",
1525 dev->name);
1526 goto err_out;
1530 /* Before initializing select the active media port. */
1531 EL3WINDOW(3);
1532 config = ioread32(ioaddr + Wn3_Config);
1534 if (vp->media_override != 7) {
1535 pr_info("%s: Media override to transceiver %d (%s).\n",
1536 dev->name, vp->media_override,
1537 media_tbl[vp->media_override].name);
1538 dev->if_port = vp->media_override;
1539 } else if (vp->autoselect) {
1540 if (vp->has_nway) {
1541 if (vortex_debug > 1)
1542 pr_info("%s: using NWAY device table, not %d\n",
1543 dev->name, dev->if_port);
1544 dev->if_port = XCVR_NWAY;
1545 } else {
1546 /* Find first available media type, starting with 100baseTx. */
1547 dev->if_port = XCVR_100baseTx;
1548 while (! (vp->available_media & media_tbl[dev->if_port].mask))
1549 dev->if_port = media_tbl[dev->if_port].next;
1550 if (vortex_debug > 1)
1551 pr_info("%s: first available media type: %s\n",
1552 dev->name, media_tbl[dev->if_port].name);
1554 } else {
1555 dev->if_port = vp->default_media;
1556 if (vortex_debug > 1)
1557 pr_info("%s: using default media %s\n",
1558 dev->name, media_tbl[dev->if_port].name);
1561 init_timer(&vp->timer);
1562 vp->timer.expires = RUN_AT(media_tbl[dev->if_port].wait);
1563 vp->timer.data = (unsigned long)dev;
1564 vp->timer.function = vortex_timer; /* timer handler */
1565 add_timer(&vp->timer);
1567 init_timer(&vp->rx_oom_timer);
1568 vp->rx_oom_timer.data = (unsigned long)dev;
1569 vp->rx_oom_timer.function = rx_oom_timer;
1571 if (vortex_debug > 1)
1572 pr_debug("%s: Initial media type %s.\n",
1573 dev->name, media_tbl[dev->if_port].name);
1575 vp->full_duplex = vp->mii.force_media;
1576 config = BFINS(config, dev->if_port, 20, 4);
1577 if (vortex_debug > 6)
1578 pr_debug("vortex_up(): writing 0x%x to InternalConfig\n", config);
1579 iowrite32(config, ioaddr + Wn3_Config);
1581 if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1582 EL3WINDOW(4);
1583 mii_reg1 = mdio_read(dev, vp->phys[0], MII_BMSR);
1584 mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA);
1585 vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0);
1586 vp->mii.full_duplex = vp->full_duplex;
1588 vortex_check_media(dev, 1);
1590 else
1591 vortex_set_duplex(dev);
1593 issue_and_wait(dev, TxReset);
1595 * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1597 issue_and_wait(dev, RxReset|0x04);
1600 iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1602 if (vortex_debug > 1) {
1603 EL3WINDOW(4);
1604 pr_debug("%s: vortex_up() irq %d media status %4.4x.\n",
1605 dev->name, dev->irq, ioread16(ioaddr + Wn4_Media));
1608 /* Set the station address and mask in window 2 each time opened. */
1609 EL3WINDOW(2);
1610 for (i = 0; i < 6; i++)
1611 iowrite8(dev->dev_addr[i], ioaddr + i);
1612 for (; i < 12; i+=2)
1613 iowrite16(0, ioaddr + i);
1615 if (vp->cb_fn_base) {
1616 unsigned short n = ioread16(ioaddr + Wn2_ResetOptions) & ~0x4010;
1617 if (vp->drv_flags & INVERT_LED_PWR)
1618 n |= 0x10;
1619 if (vp->drv_flags & INVERT_MII_PWR)
1620 n |= 0x4000;
1621 iowrite16(n, ioaddr + Wn2_ResetOptions);
1624 if (dev->if_port == XCVR_10base2)
1625 /* Start the thinnet transceiver. We should really wait 50ms...*/
1626 iowrite16(StartCoax, ioaddr + EL3_CMD);
1627 if (dev->if_port != XCVR_NWAY) {
1628 EL3WINDOW(4);
1629 iowrite16((ioread16(ioaddr + Wn4_Media) & ~(Media_10TP|Media_SQE)) |
1630 media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media);
1633 /* Switch to the stats window, and clear all stats by reading. */
1634 iowrite16(StatsDisable, ioaddr + EL3_CMD);
1635 EL3WINDOW(6);
1636 for (i = 0; i < 10; i++)
1637 ioread8(ioaddr + i);
1638 ioread16(ioaddr + 10);
1639 ioread16(ioaddr + 12);
1640 /* New: On the Vortex we must also clear the BadSSD counter. */
1641 EL3WINDOW(4);
1642 ioread8(ioaddr + 12);
1643 /* ..and on the Boomerang we enable the extra statistics bits. */
1644 iowrite16(0x0040, ioaddr + Wn4_NetDiag);
1646 /* Switch to register set 7 for normal use. */
1647 EL3WINDOW(7);
1649 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1650 vp->cur_rx = vp->dirty_rx = 0;
1651 /* Initialize the RxEarly register as recommended. */
1652 iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1653 iowrite32(0x0020, ioaddr + PktStatus);
1654 iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr);
1656 if (vp->full_bus_master_tx) { /* Boomerang bus master Tx. */
1657 vp->cur_tx = vp->dirty_tx = 0;
1658 if (vp->drv_flags & IS_BOOMERANG)
1659 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1660 /* Clear the Rx, Tx rings. */
1661 for (i = 0; i < RX_RING_SIZE; i++) /* AKPM: this is done in vortex_open, too */
1662 vp->rx_ring[i].status = 0;
1663 for (i = 0; i < TX_RING_SIZE; i++)
1664 vp->tx_skbuff[i] = NULL;
1665 iowrite32(0, ioaddr + DownListPtr);
1667 /* Set receiver mode: presumably accept b-case and phys addr only. */
1668 set_rx_mode(dev);
1669 /* enable 802.1q tagged frames */
1670 set_8021q_mode(dev, 1);
1671 iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1673 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1674 iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1675 /* Allow status bits to be seen. */
1676 vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1677 (vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1678 (vp->full_bus_master_rx ? UpComplete : RxComplete) |
1679 (vp->bus_master ? DMADone : 0);
1680 vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1681 (vp->full_bus_master_rx ? 0 : RxComplete) |
1682 StatsFull | HostError | TxComplete | IntReq
1683 | (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1684 iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1685 /* Ack all pending events, and set active indicator mask. */
1686 iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1687 ioaddr + EL3_CMD);
1688 iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1689 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */
1690 iowrite32(0x8000, vp->cb_fn_base + 4);
1691 netif_start_queue (dev);
1692 err_out:
1693 return err;
1696 static int
1697 vortex_open(struct net_device *dev)
1699 struct vortex_private *vp = netdev_priv(dev);
1700 int i;
1701 int retval;
1703 /* Use the now-standard shared IRQ implementation. */
1704 if ((retval = request_irq(dev->irq, vp->full_bus_master_rx ?
1705 &boomerang_interrupt : &vortex_interrupt, IRQF_SHARED, dev->name, dev))) {
1706 pr_err("%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1707 goto err;
1710 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1711 if (vortex_debug > 2)
1712 pr_debug("%s: Filling in the Rx ring.\n", dev->name);
1713 for (i = 0; i < RX_RING_SIZE; i++) {
1714 struct sk_buff *skb;
1715 vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1716 vp->rx_ring[i].status = 0; /* Clear complete bit. */
1717 vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1719 skb = __netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN,
1720 GFP_KERNEL);
1721 vp->rx_skbuff[i] = skb;
1722 if (skb == NULL)
1723 break; /* Bad news! */
1725 skb_reserve(skb, NET_IP_ALIGN); /* Align IP on 16 byte boundaries */
1726 vp->rx_ring[i].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
1728 if (i != RX_RING_SIZE) {
1729 int j;
1730 pr_emerg("%s: no memory for rx ring\n", dev->name);
1731 for (j = 0; j < i; j++) {
1732 if (vp->rx_skbuff[j]) {
1733 dev_kfree_skb(vp->rx_skbuff[j]);
1734 vp->rx_skbuff[j] = NULL;
1737 retval = -ENOMEM;
1738 goto err_free_irq;
1740 /* Wrap the ring. */
1741 vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1744 retval = vortex_up(dev);
1745 if (!retval)
1746 goto out;
1748 err_free_irq:
1749 free_irq(dev->irq, dev);
1750 err:
1751 if (vortex_debug > 1)
1752 pr_err("%s: vortex_open() fails: returning %d\n", dev->name, retval);
1753 out:
1754 return retval;
1757 static void
1758 vortex_timer(unsigned long data)
1760 struct net_device *dev = (struct net_device *)data;
1761 struct vortex_private *vp = netdev_priv(dev);
1762 void __iomem *ioaddr = vp->ioaddr;
1763 int next_tick = 60*HZ;
1764 int ok = 0;
1765 int media_status, old_window;
1767 if (vortex_debug > 2) {
1768 pr_debug("%s: Media selection timer tick happened, %s.\n",
1769 dev->name, media_tbl[dev->if_port].name);
1770 pr_debug("dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1773 disable_irq_lockdep(dev->irq);
1774 old_window = ioread16(ioaddr + EL3_CMD) >> 13;
1775 EL3WINDOW(4);
1776 media_status = ioread16(ioaddr + Wn4_Media);
1777 switch (dev->if_port) {
1778 case XCVR_10baseT: case XCVR_100baseTx: case XCVR_100baseFx:
1779 if (media_status & Media_LnkBeat) {
1780 netif_carrier_on(dev);
1781 ok = 1;
1782 if (vortex_debug > 1)
1783 pr_debug("%s: Media %s has link beat, %x.\n",
1784 dev->name, media_tbl[dev->if_port].name, media_status);
1785 } else {
1786 netif_carrier_off(dev);
1787 if (vortex_debug > 1) {
1788 pr_debug("%s: Media %s has no link beat, %x.\n",
1789 dev->name, media_tbl[dev->if_port].name, media_status);
1792 break;
1793 case XCVR_MII: case XCVR_NWAY:
1795 ok = 1;
1796 /* Interrupts are already disabled */
1797 spin_lock(&vp->lock);
1798 vortex_check_media(dev, 0);
1799 spin_unlock(&vp->lock);
1801 break;
1802 default: /* Other media types handled by Tx timeouts. */
1803 if (vortex_debug > 1)
1804 pr_debug("%s: Media %s has no indication, %x.\n",
1805 dev->name, media_tbl[dev->if_port].name, media_status);
1806 ok = 1;
1809 if (!netif_carrier_ok(dev))
1810 next_tick = 5*HZ;
1812 if (vp->medialock)
1813 goto leave_media_alone;
1815 if (!ok) {
1816 unsigned int config;
1818 do {
1819 dev->if_port = media_tbl[dev->if_port].next;
1820 } while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1821 if (dev->if_port == XCVR_Default) { /* Go back to default. */
1822 dev->if_port = vp->default_media;
1823 if (vortex_debug > 1)
1824 pr_debug("%s: Media selection failing, using default %s port.\n",
1825 dev->name, media_tbl[dev->if_port].name);
1826 } else {
1827 if (vortex_debug > 1)
1828 pr_debug("%s: Media selection failed, now trying %s port.\n",
1829 dev->name, media_tbl[dev->if_port].name);
1830 next_tick = media_tbl[dev->if_port].wait;
1832 iowrite16((media_status & ~(Media_10TP|Media_SQE)) |
1833 media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media);
1835 EL3WINDOW(3);
1836 config = ioread32(ioaddr + Wn3_Config);
1837 config = BFINS(config, dev->if_port, 20, 4);
1838 iowrite32(config, ioaddr + Wn3_Config);
1840 iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1841 ioaddr + EL3_CMD);
1842 if (vortex_debug > 1)
1843 pr_debug("wrote 0x%08x to Wn3_Config\n", config);
1844 /* AKPM: FIXME: Should reset Rx & Tx here. P60 of 3c90xc.pdf */
1847 leave_media_alone:
1848 if (vortex_debug > 2)
1849 pr_debug("%s: Media selection timer finished, %s.\n",
1850 dev->name, media_tbl[dev->if_port].name);
1852 EL3WINDOW(old_window);
1853 enable_irq_lockdep(dev->irq);
1854 mod_timer(&vp->timer, RUN_AT(next_tick));
1855 if (vp->deferred)
1856 iowrite16(FakeIntr, ioaddr + EL3_CMD);
1857 return;
1860 static void vortex_tx_timeout(struct net_device *dev)
1862 struct vortex_private *vp = netdev_priv(dev);
1863 void __iomem *ioaddr = vp->ioaddr;
1865 pr_err("%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
1866 dev->name, ioread8(ioaddr + TxStatus),
1867 ioread16(ioaddr + EL3_STATUS));
1868 EL3WINDOW(4);
1869 pr_err(" diagnostics: net %04x media %04x dma %08x fifo %04x\n",
1870 ioread16(ioaddr + Wn4_NetDiag),
1871 ioread16(ioaddr + Wn4_Media),
1872 ioread32(ioaddr + PktStatus),
1873 ioread16(ioaddr + Wn4_FIFODiag));
1874 /* Slight code bloat to be user friendly. */
1875 if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88)
1876 pr_err("%s: Transmitter encountered 16 collisions --"
1877 " network cable problem?\n", dev->name);
1878 if (ioread16(ioaddr + EL3_STATUS) & IntLatch) {
1879 pr_err("%s: Interrupt posted but not delivered --"
1880 " IRQ blocked by another device?\n", dev->name);
1881 /* Bad idea here.. but we might as well handle a few events. */
1884 * Block interrupts because vortex_interrupt does a bare spin_lock()
1886 unsigned long flags;
1887 local_irq_save(flags);
1888 if (vp->full_bus_master_tx)
1889 boomerang_interrupt(dev->irq, dev);
1890 else
1891 vortex_interrupt(dev->irq, dev);
1892 local_irq_restore(flags);
1896 if (vortex_debug > 0)
1897 dump_tx_ring(dev);
1899 issue_and_wait(dev, TxReset);
1901 dev->stats.tx_errors++;
1902 if (vp->full_bus_master_tx) {
1903 pr_debug("%s: Resetting the Tx ring pointer.\n", dev->name);
1904 if (vp->cur_tx - vp->dirty_tx > 0 && ioread32(ioaddr + DownListPtr) == 0)
1905 iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
1906 ioaddr + DownListPtr);
1907 if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE)
1908 netif_wake_queue (dev);
1909 if (vp->drv_flags & IS_BOOMERANG)
1910 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
1911 iowrite16(DownUnstall, ioaddr + EL3_CMD);
1912 } else {
1913 dev->stats.tx_dropped++;
1914 netif_wake_queue(dev);
1917 /* Issue Tx Enable */
1918 iowrite16(TxEnable, ioaddr + EL3_CMD);
1919 dev->trans_start = jiffies;
1921 /* Switch to register set 7 for normal use. */
1922 EL3WINDOW(7);
1926 * Handle uncommon interrupt sources. This is a separate routine to minimize
1927 * the cache impact.
1929 static void
1930 vortex_error(struct net_device *dev, int status)
1932 struct vortex_private *vp = netdev_priv(dev);
1933 void __iomem *ioaddr = vp->ioaddr;
1934 int do_tx_reset = 0, reset_mask = 0;
1935 unsigned char tx_status = 0;
1937 if (vortex_debug > 2) {
1938 pr_err("%s: vortex_error(), status=0x%x\n", dev->name, status);
1941 if (status & TxComplete) { /* Really "TxError" for us. */
1942 tx_status = ioread8(ioaddr + TxStatus);
1943 /* Presumably a tx-timeout. We must merely re-enable. */
1944 if (vortex_debug > 2
1945 || (tx_status != 0x88 && vortex_debug > 0)) {
1946 pr_err("%s: Transmit error, Tx status register %2.2x.\n",
1947 dev->name, tx_status);
1948 if (tx_status == 0x82) {
1949 pr_err("Probably a duplex mismatch. See "
1950 "Documentation/networking/vortex.txt\n");
1952 dump_tx_ring(dev);
1954 if (tx_status & 0x14) dev->stats.tx_fifo_errors++;
1955 if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
1956 if (tx_status & 0x08) vp->xstats.tx_max_collisions++;
1957 iowrite8(0, ioaddr + TxStatus);
1958 if (tx_status & 0x30) { /* txJabber or txUnderrun */
1959 do_tx_reset = 1;
1960 } else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET)) { /* maxCollisions */
1961 do_tx_reset = 1;
1962 reset_mask = 0x0108; /* Reset interface logic, but not download logic */
1963 } else { /* Merely re-enable the transmitter. */
1964 iowrite16(TxEnable, ioaddr + EL3_CMD);
1968 if (status & RxEarly) { /* Rx early is unused. */
1969 vortex_rx(dev);
1970 iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD);
1972 if (status & StatsFull) { /* Empty statistics. */
1973 static int DoneDidThat;
1974 if (vortex_debug > 4)
1975 pr_debug("%s: Updating stats.\n", dev->name);
1976 update_stats(ioaddr, dev);
1977 /* HACK: Disable statistics as an interrupt source. */
1978 /* This occurs when we have the wrong media type! */
1979 if (DoneDidThat == 0 &&
1980 ioread16(ioaddr + EL3_STATUS) & StatsFull) {
1981 pr_warning("%s: Updating statistics failed, disabling "
1982 "stats as an interrupt source.\n", dev->name);
1983 EL3WINDOW(5);
1984 iowrite16(SetIntrEnb | (ioread16(ioaddr + 10) & ~StatsFull), ioaddr + EL3_CMD);
1985 vp->intr_enable &= ~StatsFull;
1986 EL3WINDOW(7);
1987 DoneDidThat++;
1990 if (status & IntReq) { /* Restore all interrupt sources. */
1991 iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1992 iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1994 if (status & HostError) {
1995 u16 fifo_diag;
1996 EL3WINDOW(4);
1997 fifo_diag = ioread16(ioaddr + Wn4_FIFODiag);
1998 pr_err("%s: Host error, FIFO diagnostic register %4.4x.\n",
1999 dev->name, fifo_diag);
2000 /* Adapter failure requires Tx/Rx reset and reinit. */
2001 if (vp->full_bus_master_tx) {
2002 int bus_status = ioread32(ioaddr + PktStatus);
2003 /* 0x80000000 PCI master abort. */
2004 /* 0x40000000 PCI target abort. */
2005 if (vortex_debug)
2006 pr_err("%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
2008 /* In this case, blow the card away */
2009 /* Must not enter D3 or we can't legally issue the reset! */
2010 vortex_down(dev, 0);
2011 issue_and_wait(dev, TotalReset | 0xff);
2012 vortex_up(dev); /* AKPM: bug. vortex_up() assumes that the rx ring is full. It may not be. */
2013 } else if (fifo_diag & 0x0400)
2014 do_tx_reset = 1;
2015 if (fifo_diag & 0x3000) {
2016 /* Reset Rx fifo and upload logic */
2017 issue_and_wait(dev, RxReset|0x07);
2018 /* Set the Rx filter to the current state. */
2019 set_rx_mode(dev);
2020 /* enable 802.1q VLAN tagged frames */
2021 set_8021q_mode(dev, 1);
2022 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2023 iowrite16(AckIntr | HostError, ioaddr + EL3_CMD);
2027 if (do_tx_reset) {
2028 issue_and_wait(dev, TxReset|reset_mask);
2029 iowrite16(TxEnable, ioaddr + EL3_CMD);
2030 if (!vp->full_bus_master_tx)
2031 netif_wake_queue(dev);
2035 static netdev_tx_t
2036 vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2038 struct vortex_private *vp = netdev_priv(dev);
2039 void __iomem *ioaddr = vp->ioaddr;
2041 /* Put out the doubleword header... */
2042 iowrite32(skb->len, ioaddr + TX_FIFO);
2043 if (vp->bus_master) {
2044 /* Set the bus-master controller to transfer the packet. */
2045 int len = (skb->len + 3) & ~3;
2046 iowrite32(vp->tx_skb_dma = pci_map_single(VORTEX_PCI(vp), skb->data, len, PCI_DMA_TODEVICE),
2047 ioaddr + Wn7_MasterAddr);
2048 iowrite16(len, ioaddr + Wn7_MasterLen);
2049 vp->tx_skb = skb;
2050 iowrite16(StartDMADown, ioaddr + EL3_CMD);
2051 /* netif_wake_queue() will be called at the DMADone interrupt. */
2052 } else {
2053 /* ... and the packet rounded to a doubleword. */
2054 iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2055 dev_kfree_skb (skb);
2056 if (ioread16(ioaddr + TxFree) > 1536) {
2057 netif_start_queue (dev); /* AKPM: redundant? */
2058 } else {
2059 /* Interrupt us when the FIFO has room for max-sized packet. */
2060 netif_stop_queue(dev);
2061 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2065 dev->trans_start = jiffies;
2067 /* Clear the Tx status stack. */
2069 int tx_status;
2070 int i = 32;
2072 while (--i > 0 && (tx_status = ioread8(ioaddr + TxStatus)) > 0) {
2073 if (tx_status & 0x3C) { /* A Tx-disabling error occurred. */
2074 if (vortex_debug > 2)
2075 pr_debug("%s: Tx error, status %2.2x.\n",
2076 dev->name, tx_status);
2077 if (tx_status & 0x04) dev->stats.tx_fifo_errors++;
2078 if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
2079 if (tx_status & 0x30) {
2080 issue_and_wait(dev, TxReset);
2082 iowrite16(TxEnable, ioaddr + EL3_CMD);
2084 iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2087 return NETDEV_TX_OK;
2090 static netdev_tx_t
2091 boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2093 struct vortex_private *vp = netdev_priv(dev);
2094 void __iomem *ioaddr = vp->ioaddr;
2095 /* Calculate the next Tx descriptor entry. */
2096 int entry = vp->cur_tx % TX_RING_SIZE;
2097 struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2098 unsigned long flags;
2100 if (vortex_debug > 6) {
2101 pr_debug("boomerang_start_xmit()\n");
2102 pr_debug("%s: Trying to send a packet, Tx index %d.\n",
2103 dev->name, vp->cur_tx);
2106 if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2107 if (vortex_debug > 0)
2108 pr_warning("%s: BUG! Tx Ring full, refusing to send buffer.\n",
2109 dev->name);
2110 netif_stop_queue(dev);
2111 return NETDEV_TX_BUSY;
2114 vp->tx_skbuff[entry] = skb;
2116 vp->tx_ring[entry].next = 0;
2117 #if DO_ZEROCOPY
2118 if (skb->ip_summed != CHECKSUM_PARTIAL)
2119 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2120 else
2121 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2123 if (!skb_shinfo(skb)->nr_frags) {
2124 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2125 skb->len, PCI_DMA_TODEVICE));
2126 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2127 } else {
2128 int i;
2130 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2131 skb->len-skb->data_len, PCI_DMA_TODEVICE));
2132 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len-skb->data_len);
2134 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2135 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2137 vp->tx_ring[entry].frag[i+1].addr =
2138 cpu_to_le32(pci_map_single(VORTEX_PCI(vp),
2139 (void*)page_address(frag->page) + frag->page_offset,
2140 frag->size, PCI_DMA_TODEVICE));
2142 if (i == skb_shinfo(skb)->nr_frags-1)
2143 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(frag->size|LAST_FRAG);
2144 else
2145 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(frag->size);
2148 #else
2149 vp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, PCI_DMA_TODEVICE));
2150 vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2151 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2152 #endif
2154 spin_lock_irqsave(&vp->lock, flags);
2155 /* Wait for the stall to complete. */
2156 issue_and_wait(dev, DownStall);
2157 prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2158 if (ioread32(ioaddr + DownListPtr) == 0) {
2159 iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2160 vp->queued_packet++;
2163 vp->cur_tx++;
2164 if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2165 netif_stop_queue (dev);
2166 } else { /* Clear previous interrupt enable. */
2167 #if defined(tx_interrupt_mitigation)
2168 /* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2169 * were selected, this would corrupt DN_COMPLETE. No?
2171 prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2172 #endif
2174 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2175 spin_unlock_irqrestore(&vp->lock, flags);
2176 dev->trans_start = jiffies;
2177 return NETDEV_TX_OK;
2180 /* The interrupt handler does all of the Rx thread work and cleans up
2181 after the Tx thread. */
2184 * This is the ISR for the vortex series chips.
2185 * full_bus_master_tx == 0 && full_bus_master_rx == 0
2188 static irqreturn_t
2189 vortex_interrupt(int irq, void *dev_id)
2191 struct net_device *dev = dev_id;
2192 struct vortex_private *vp = netdev_priv(dev);
2193 void __iomem *ioaddr;
2194 int status;
2195 int work_done = max_interrupt_work;
2196 int handled = 0;
2198 ioaddr = vp->ioaddr;
2199 spin_lock(&vp->lock);
2201 status = ioread16(ioaddr + EL3_STATUS);
2203 if (vortex_debug > 6)
2204 pr_debug("vortex_interrupt(). status=0x%4x\n", status);
2206 if ((status & IntLatch) == 0)
2207 goto handler_exit; /* No interrupt: shared IRQs cause this */
2208 handled = 1;
2210 if (status & IntReq) {
2211 status |= vp->deferred;
2212 vp->deferred = 0;
2215 if (status == 0xffff) /* h/w no longer present (hotplug)? */
2216 goto handler_exit;
2218 if (vortex_debug > 4)
2219 pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2220 dev->name, status, ioread8(ioaddr + Timer));
2222 do {
2223 if (vortex_debug > 5)
2224 pr_debug("%s: In interrupt loop, status %4.4x.\n",
2225 dev->name, status);
2226 if (status & RxComplete)
2227 vortex_rx(dev);
2229 if (status & TxAvailable) {
2230 if (vortex_debug > 5)
2231 pr_debug(" TX room bit was handled.\n");
2232 /* There's room in the FIFO for a full-sized packet. */
2233 iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2234 netif_wake_queue (dev);
2237 if (status & DMADone) {
2238 if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) {
2239 iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2240 pci_unmap_single(VORTEX_PCI(vp), vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, PCI_DMA_TODEVICE);
2241 dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2242 if (ioread16(ioaddr + TxFree) > 1536) {
2244 * AKPM: FIXME: I don't think we need this. If the queue was stopped due to
2245 * insufficient FIFO room, the TxAvailable test will succeed and call
2246 * netif_wake_queue()
2248 netif_wake_queue(dev);
2249 } else { /* Interrupt when FIFO has room for max-sized packet. */
2250 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2251 netif_stop_queue(dev);
2255 /* Check for all uncommon interrupts at once. */
2256 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2257 if (status == 0xffff)
2258 break;
2259 vortex_error(dev, status);
2262 if (--work_done < 0) {
2263 pr_warning("%s: Too much work in interrupt, status %4.4x.\n",
2264 dev->name, status);
2265 /* Disable all pending interrupts. */
2266 do {
2267 vp->deferred |= status;
2268 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2269 ioaddr + EL3_CMD);
2270 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2271 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2272 /* The timer will reenable interrupts. */
2273 mod_timer(&vp->timer, jiffies + 1*HZ);
2274 break;
2276 /* Acknowledge the IRQ. */
2277 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2278 } while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2280 if (vortex_debug > 4)
2281 pr_debug("%s: exiting interrupt, status %4.4x.\n",
2282 dev->name, status);
2283 handler_exit:
2284 spin_unlock(&vp->lock);
2285 return IRQ_RETVAL(handled);
2289 * This is the ISR for the boomerang series chips.
2290 * full_bus_master_tx == 1 && full_bus_master_rx == 1
2293 static irqreturn_t
2294 boomerang_interrupt(int irq, void *dev_id)
2296 struct net_device *dev = dev_id;
2297 struct vortex_private *vp = netdev_priv(dev);
2298 void __iomem *ioaddr;
2299 int status;
2300 int work_done = max_interrupt_work;
2302 ioaddr = vp->ioaddr;
2305 * It seems dopey to put the spinlock this early, but we could race against vortex_tx_timeout
2306 * and boomerang_start_xmit
2308 spin_lock(&vp->lock);
2310 status = ioread16(ioaddr + EL3_STATUS);
2312 if (vortex_debug > 6)
2313 pr_debug("boomerang_interrupt. status=0x%4x\n", status);
2315 if ((status & IntLatch) == 0)
2316 goto handler_exit; /* No interrupt: shared IRQs can cause this */
2318 if (status == 0xffff) { /* h/w no longer present (hotplug)? */
2319 if (vortex_debug > 1)
2320 pr_debug("boomerang_interrupt(1): status = 0xffff\n");
2321 goto handler_exit;
2324 if (status & IntReq) {
2325 status |= vp->deferred;
2326 vp->deferred = 0;
2329 if (vortex_debug > 4)
2330 pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2331 dev->name, status, ioread8(ioaddr + Timer));
2332 do {
2333 if (vortex_debug > 5)
2334 pr_debug("%s: In interrupt loop, status %4.4x.\n",
2335 dev->name, status);
2336 if (status & UpComplete) {
2337 iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD);
2338 if (vortex_debug > 5)
2339 pr_debug("boomerang_interrupt->boomerang_rx\n");
2340 boomerang_rx(dev);
2343 if (status & DownComplete) {
2344 unsigned int dirty_tx = vp->dirty_tx;
2346 iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD);
2347 while (vp->cur_tx - dirty_tx > 0) {
2348 int entry = dirty_tx % TX_RING_SIZE;
2349 #if 1 /* AKPM: the latter is faster, but cyclone-only */
2350 if (ioread32(ioaddr + DownListPtr) ==
2351 vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2352 break; /* It still hasn't been processed. */
2353 #else
2354 if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2355 break; /* It still hasn't been processed. */
2356 #endif
2358 if (vp->tx_skbuff[entry]) {
2359 struct sk_buff *skb = vp->tx_skbuff[entry];
2360 #if DO_ZEROCOPY
2361 int i;
2362 for (i=0; i<=skb_shinfo(skb)->nr_frags; i++)
2363 pci_unmap_single(VORTEX_PCI(vp),
2364 le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2365 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2366 PCI_DMA_TODEVICE);
2367 #else
2368 pci_unmap_single(VORTEX_PCI(vp),
2369 le32_to_cpu(vp->tx_ring[entry].addr), skb->len, PCI_DMA_TODEVICE);
2370 #endif
2371 dev_kfree_skb_irq(skb);
2372 vp->tx_skbuff[entry] = NULL;
2373 } else {
2374 pr_debug("boomerang_interrupt: no skb!\n");
2376 /* dev->stats.tx_packets++; Counted below. */
2377 dirty_tx++;
2379 vp->dirty_tx = dirty_tx;
2380 if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2381 if (vortex_debug > 6)
2382 pr_debug("boomerang_interrupt: wake queue\n");
2383 netif_wake_queue (dev);
2387 /* Check for all uncommon interrupts at once. */
2388 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2389 vortex_error(dev, status);
2391 if (--work_done < 0) {
2392 pr_warning("%s: Too much work in interrupt, status %4.4x.\n",
2393 dev->name, status);
2394 /* Disable all pending interrupts. */
2395 do {
2396 vp->deferred |= status;
2397 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2398 ioaddr + EL3_CMD);
2399 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2400 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2401 /* The timer will reenable interrupts. */
2402 mod_timer(&vp->timer, jiffies + 1*HZ);
2403 break;
2405 /* Acknowledge the IRQ. */
2406 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2407 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */
2408 iowrite32(0x8000, vp->cb_fn_base + 4);
2410 } while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch);
2412 if (vortex_debug > 4)
2413 pr_debug("%s: exiting interrupt, status %4.4x.\n",
2414 dev->name, status);
2415 handler_exit:
2416 spin_unlock(&vp->lock);
2417 return IRQ_HANDLED;
2420 static int vortex_rx(struct net_device *dev)
2422 struct vortex_private *vp = netdev_priv(dev);
2423 void __iomem *ioaddr = vp->ioaddr;
2424 int i;
2425 short rx_status;
2427 if (vortex_debug > 5)
2428 pr_debug("vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2429 ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus));
2430 while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) {
2431 if (rx_status & 0x4000) { /* Error, update stats. */
2432 unsigned char rx_error = ioread8(ioaddr + RxErrors);
2433 if (vortex_debug > 2)
2434 pr_debug(" Rx error: status %2.2x.\n", rx_error);
2435 dev->stats.rx_errors++;
2436 if (rx_error & 0x01) dev->stats.rx_over_errors++;
2437 if (rx_error & 0x02) dev->stats.rx_length_errors++;
2438 if (rx_error & 0x04) dev->stats.rx_frame_errors++;
2439 if (rx_error & 0x08) dev->stats.rx_crc_errors++;
2440 if (rx_error & 0x10) dev->stats.rx_length_errors++;
2441 } else {
2442 /* The packet length: up to 4.5K!. */
2443 int pkt_len = rx_status & 0x1fff;
2444 struct sk_buff *skb;
2446 skb = dev_alloc_skb(pkt_len + 5);
2447 if (vortex_debug > 4)
2448 pr_debug("Receiving packet size %d status %4.4x.\n",
2449 pkt_len, rx_status);
2450 if (skb != NULL) {
2451 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2452 /* 'skb_put()' points to the start of sk_buff data area. */
2453 if (vp->bus_master &&
2454 ! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2455 dma_addr_t dma = pci_map_single(VORTEX_PCI(vp), skb_put(skb, pkt_len),
2456 pkt_len, PCI_DMA_FROMDEVICE);
2457 iowrite32(dma, ioaddr + Wn7_MasterAddr);
2458 iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2459 iowrite16(StartDMAUp, ioaddr + EL3_CMD);
2460 while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)
2462 pci_unmap_single(VORTEX_PCI(vp), dma, pkt_len, PCI_DMA_FROMDEVICE);
2463 } else {
2464 ioread32_rep(ioaddr + RX_FIFO,
2465 skb_put(skb, pkt_len),
2466 (pkt_len + 3) >> 2);
2468 iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2469 skb->protocol = eth_type_trans(skb, dev);
2470 netif_rx(skb);
2471 dev->stats.rx_packets++;
2472 /* Wait a limited time to go to next packet. */
2473 for (i = 200; i >= 0; i--)
2474 if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
2475 break;
2476 continue;
2477 } else if (vortex_debug > 0)
2478 pr_notice("%s: No memory to allocate a sk_buff of size %d.\n",
2479 dev->name, pkt_len);
2480 dev->stats.rx_dropped++;
2482 issue_and_wait(dev, RxDiscard);
2485 return 0;
2488 static int
2489 boomerang_rx(struct net_device *dev)
2491 struct vortex_private *vp = netdev_priv(dev);
2492 int entry = vp->cur_rx % RX_RING_SIZE;
2493 void __iomem *ioaddr = vp->ioaddr;
2494 int rx_status;
2495 int rx_work_limit = vp->dirty_rx + RX_RING_SIZE - vp->cur_rx;
2497 if (vortex_debug > 5)
2498 pr_debug("boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS));
2500 while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2501 if (--rx_work_limit < 0)
2502 break;
2503 if (rx_status & RxDError) { /* Error, update stats. */
2504 unsigned char rx_error = rx_status >> 16;
2505 if (vortex_debug > 2)
2506 pr_debug(" Rx error: status %2.2x.\n", rx_error);
2507 dev->stats.rx_errors++;
2508 if (rx_error & 0x01) dev->stats.rx_over_errors++;
2509 if (rx_error & 0x02) dev->stats.rx_length_errors++;
2510 if (rx_error & 0x04) dev->stats.rx_frame_errors++;
2511 if (rx_error & 0x08) dev->stats.rx_crc_errors++;
2512 if (rx_error & 0x10) dev->stats.rx_length_errors++;
2513 } else {
2514 /* The packet length: up to 4.5K!. */
2515 int pkt_len = rx_status & 0x1fff;
2516 struct sk_buff *skb;
2517 dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2519 if (vortex_debug > 4)
2520 pr_debug("Receiving packet size %d status %4.4x.\n",
2521 pkt_len, rx_status);
2523 /* Check if the packet is long enough to just accept without
2524 copying to a properly sized skbuff. */
2525 if (pkt_len < rx_copybreak && (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
2526 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2527 pci_dma_sync_single_for_cpu(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2528 /* 'skb_put()' points to the start of sk_buff data area. */
2529 memcpy(skb_put(skb, pkt_len),
2530 vp->rx_skbuff[entry]->data,
2531 pkt_len);
2532 pci_dma_sync_single_for_device(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2533 vp->rx_copy++;
2534 } else {
2535 /* Pass up the skbuff already on the Rx ring. */
2536 skb = vp->rx_skbuff[entry];
2537 vp->rx_skbuff[entry] = NULL;
2538 skb_put(skb, pkt_len);
2539 pci_unmap_single(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2540 vp->rx_nocopy++;
2542 skb->protocol = eth_type_trans(skb, dev);
2543 { /* Use hardware checksum info. */
2544 int csum_bits = rx_status & 0xee000000;
2545 if (csum_bits &&
2546 (csum_bits == (IPChksumValid | TCPChksumValid) ||
2547 csum_bits == (IPChksumValid | UDPChksumValid))) {
2548 skb->ip_summed = CHECKSUM_UNNECESSARY;
2549 vp->rx_csumhits++;
2552 netif_rx(skb);
2553 dev->stats.rx_packets++;
2555 entry = (++vp->cur_rx) % RX_RING_SIZE;
2557 /* Refill the Rx ring buffers. */
2558 for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) {
2559 struct sk_buff *skb;
2560 entry = vp->dirty_rx % RX_RING_SIZE;
2561 if (vp->rx_skbuff[entry] == NULL) {
2562 skb = netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN);
2563 if (skb == NULL) {
2564 static unsigned long last_jif;
2565 if (time_after(jiffies, last_jif + 10 * HZ)) {
2566 pr_warning("%s: memory shortage\n", dev->name);
2567 last_jif = jiffies;
2569 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)
2570 mod_timer(&vp->rx_oom_timer, RUN_AT(HZ * 1));
2571 break; /* Bad news! */
2574 skb_reserve(skb, NET_IP_ALIGN);
2575 vp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
2576 vp->rx_skbuff[entry] = skb;
2578 vp->rx_ring[entry].status = 0; /* Clear complete bit. */
2579 iowrite16(UpUnstall, ioaddr + EL3_CMD);
2581 return 0;
2585 * If we've hit a total OOM refilling the Rx ring we poll once a second
2586 * for some memory. Otherwise there is no way to restart the rx process.
2588 static void
2589 rx_oom_timer(unsigned long arg)
2591 struct net_device *dev = (struct net_device *)arg;
2592 struct vortex_private *vp = netdev_priv(dev);
2594 spin_lock_irq(&vp->lock);
2595 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE) /* This test is redundant, but makes me feel good */
2596 boomerang_rx(dev);
2597 if (vortex_debug > 1) {
2598 pr_debug("%s: rx_oom_timer %s\n", dev->name,
2599 ((vp->cur_rx - vp->dirty_rx) != RX_RING_SIZE) ? "succeeded" : "retrying");
2601 spin_unlock_irq(&vp->lock);
2604 static void
2605 vortex_down(struct net_device *dev, int final_down)
2607 struct vortex_private *vp = netdev_priv(dev);
2608 void __iomem *ioaddr = vp->ioaddr;
2610 netif_stop_queue (dev);
2612 del_timer_sync(&vp->rx_oom_timer);
2613 del_timer_sync(&vp->timer);
2615 /* Turn off statistics ASAP. We update dev->stats below. */
2616 iowrite16(StatsDisable, ioaddr + EL3_CMD);
2618 /* Disable the receiver and transmitter. */
2619 iowrite16(RxDisable, ioaddr + EL3_CMD);
2620 iowrite16(TxDisable, ioaddr + EL3_CMD);
2622 /* Disable receiving 802.1q tagged frames */
2623 set_8021q_mode(dev, 0);
2625 if (dev->if_port == XCVR_10base2)
2626 /* Turn off thinnet power. Green! */
2627 iowrite16(StopCoax, ioaddr + EL3_CMD);
2629 iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2631 update_stats(ioaddr, dev);
2632 if (vp->full_bus_master_rx)
2633 iowrite32(0, ioaddr + UpListPtr);
2634 if (vp->full_bus_master_tx)
2635 iowrite32(0, ioaddr + DownListPtr);
2637 if (final_down && VORTEX_PCI(vp)) {
2638 vp->pm_state_valid = 1;
2639 pci_save_state(VORTEX_PCI(vp));
2640 acpi_set_WOL(dev);
2644 static int
2645 vortex_close(struct net_device *dev)
2647 struct vortex_private *vp = netdev_priv(dev);
2648 void __iomem *ioaddr = vp->ioaddr;
2649 int i;
2651 if (netif_device_present(dev))
2652 vortex_down(dev, 1);
2654 if (vortex_debug > 1) {
2655 pr_debug("%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2656 dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus));
2657 pr_debug("%s: vortex close stats: rx_nocopy %d rx_copy %d"
2658 " tx_queued %d Rx pre-checksummed %d.\n",
2659 dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2662 #if DO_ZEROCOPY
2663 if (vp->rx_csumhits &&
2664 (vp->drv_flags & HAS_HWCKSM) == 0 &&
2665 (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) {
2666 pr_warning("%s supports hardware checksums, and we're not using them!\n", dev->name);
2668 #endif
2670 free_irq(dev->irq, dev);
2672 if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2673 for (i = 0; i < RX_RING_SIZE; i++)
2674 if (vp->rx_skbuff[i]) {
2675 pci_unmap_single( VORTEX_PCI(vp), le32_to_cpu(vp->rx_ring[i].addr),
2676 PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2677 dev_kfree_skb(vp->rx_skbuff[i]);
2678 vp->rx_skbuff[i] = NULL;
2681 if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2682 for (i = 0; i < TX_RING_SIZE; i++) {
2683 if (vp->tx_skbuff[i]) {
2684 struct sk_buff *skb = vp->tx_skbuff[i];
2685 #if DO_ZEROCOPY
2686 int k;
2688 for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2689 pci_unmap_single(VORTEX_PCI(vp),
2690 le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2691 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2692 PCI_DMA_TODEVICE);
2693 #else
2694 pci_unmap_single(VORTEX_PCI(vp), le32_to_cpu(vp->tx_ring[i].addr), skb->len, PCI_DMA_TODEVICE);
2695 #endif
2696 dev_kfree_skb(skb);
2697 vp->tx_skbuff[i] = NULL;
2702 return 0;
2705 static void
2706 dump_tx_ring(struct net_device *dev)
2708 if (vortex_debug > 0) {
2709 struct vortex_private *vp = netdev_priv(dev);
2710 void __iomem *ioaddr = vp->ioaddr;
2712 if (vp->full_bus_master_tx) {
2713 int i;
2714 int stalled = ioread32(ioaddr + PktStatus) & 0x04; /* Possible racy. But it's only debug stuff */
2716 pr_err(" Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2717 vp->full_bus_master_tx,
2718 vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2719 vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2720 pr_err(" Transmit list %8.8x vs. %p.\n",
2721 ioread32(ioaddr + DownListPtr),
2722 &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2723 issue_and_wait(dev, DownStall);
2724 for (i = 0; i < TX_RING_SIZE; i++) {
2725 unsigned int length;
2727 #if DO_ZEROCOPY
2728 length = le32_to_cpu(vp->tx_ring[i].frag[0].length);
2729 #else
2730 length = le32_to_cpu(vp->tx_ring[i].length);
2731 #endif
2732 pr_err(" %d: @%p length %8.8x status %8.8x\n",
2733 i, &vp->tx_ring[i], length,
2734 le32_to_cpu(vp->tx_ring[i].status));
2736 if (!stalled)
2737 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2742 static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2744 struct vortex_private *vp = netdev_priv(dev);
2745 void __iomem *ioaddr = vp->ioaddr;
2746 unsigned long flags;
2748 if (netif_device_present(dev)) { /* AKPM: Used to be netif_running */
2749 spin_lock_irqsave (&vp->lock, flags);
2750 update_stats(ioaddr, dev);
2751 spin_unlock_irqrestore (&vp->lock, flags);
2753 return &dev->stats;
2756 /* Update statistics.
2757 Unlike with the EL3 we need not worry about interrupts changing
2758 the window setting from underneath us, but we must still guard
2759 against a race condition with a StatsUpdate interrupt updating the
2760 table. This is done by checking that the ASM (!) code generated uses
2761 atomic updates with '+='.
2763 static void update_stats(void __iomem *ioaddr, struct net_device *dev)
2765 struct vortex_private *vp = netdev_priv(dev);
2766 int old_window = ioread16(ioaddr + EL3_CMD);
2768 if (old_window == 0xffff) /* Chip suspended or ejected. */
2769 return;
2770 /* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2771 /* Switch to the stats window, and read everything. */
2772 EL3WINDOW(6);
2773 dev->stats.tx_carrier_errors += ioread8(ioaddr + 0);
2774 dev->stats.tx_heartbeat_errors += ioread8(ioaddr + 1);
2775 dev->stats.tx_window_errors += ioread8(ioaddr + 4);
2776 dev->stats.rx_fifo_errors += ioread8(ioaddr + 5);
2777 dev->stats.tx_packets += ioread8(ioaddr + 6);
2778 dev->stats.tx_packets += (ioread8(ioaddr + 9)&0x30) << 4;
2779 /* Rx packets */ ioread8(ioaddr + 7); /* Must read to clear */
2780 /* Don't bother with register 9, an extension of registers 6&7.
2781 If we do use the 6&7 values the atomic update assumption above
2782 is invalid. */
2783 dev->stats.rx_bytes += ioread16(ioaddr + 10);
2784 dev->stats.tx_bytes += ioread16(ioaddr + 12);
2785 /* Extra stats for get_ethtool_stats() */
2786 vp->xstats.tx_multiple_collisions += ioread8(ioaddr + 2);
2787 vp->xstats.tx_single_collisions += ioread8(ioaddr + 3);
2788 vp->xstats.tx_deferred += ioread8(ioaddr + 8);
2789 EL3WINDOW(4);
2790 vp->xstats.rx_bad_ssd += ioread8(ioaddr + 12);
2792 dev->stats.collisions = vp->xstats.tx_multiple_collisions
2793 + vp->xstats.tx_single_collisions
2794 + vp->xstats.tx_max_collisions;
2797 u8 up = ioread8(ioaddr + 13);
2798 dev->stats.rx_bytes += (up & 0x0f) << 16;
2799 dev->stats.tx_bytes += (up & 0xf0) << 12;
2802 EL3WINDOW(old_window >> 13);
2803 return;
2806 static int vortex_nway_reset(struct net_device *dev)
2808 struct vortex_private *vp = netdev_priv(dev);
2809 void __iomem *ioaddr = vp->ioaddr;
2810 unsigned long flags;
2811 int rc;
2813 spin_lock_irqsave(&vp->lock, flags);
2814 EL3WINDOW(4);
2815 rc = mii_nway_restart(&vp->mii);
2816 spin_unlock_irqrestore(&vp->lock, flags);
2817 return rc;
2820 static int vortex_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2822 struct vortex_private *vp = netdev_priv(dev);
2823 void __iomem *ioaddr = vp->ioaddr;
2824 unsigned long flags;
2825 int rc;
2827 spin_lock_irqsave(&vp->lock, flags);
2828 EL3WINDOW(4);
2829 rc = mii_ethtool_gset(&vp->mii, cmd);
2830 spin_unlock_irqrestore(&vp->lock, flags);
2831 return rc;
2834 static int vortex_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2836 struct vortex_private *vp = netdev_priv(dev);
2837 void __iomem *ioaddr = vp->ioaddr;
2838 unsigned long flags;
2839 int rc;
2841 spin_lock_irqsave(&vp->lock, flags);
2842 EL3WINDOW(4);
2843 rc = mii_ethtool_sset(&vp->mii, cmd);
2844 spin_unlock_irqrestore(&vp->lock, flags);
2845 return rc;
2848 static u32 vortex_get_msglevel(struct net_device *dev)
2850 return vortex_debug;
2853 static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
2855 vortex_debug = dbg;
2858 static int vortex_get_sset_count(struct net_device *dev, int sset)
2860 switch (sset) {
2861 case ETH_SS_STATS:
2862 return VORTEX_NUM_STATS;
2863 default:
2864 return -EOPNOTSUPP;
2868 static void vortex_get_ethtool_stats(struct net_device *dev,
2869 struct ethtool_stats *stats, u64 *data)
2871 struct vortex_private *vp = netdev_priv(dev);
2872 void __iomem *ioaddr = vp->ioaddr;
2873 unsigned long flags;
2875 spin_lock_irqsave(&vp->lock, flags);
2876 update_stats(ioaddr, dev);
2877 spin_unlock_irqrestore(&vp->lock, flags);
2879 data[0] = vp->xstats.tx_deferred;
2880 data[1] = vp->xstats.tx_max_collisions;
2881 data[2] = vp->xstats.tx_multiple_collisions;
2882 data[3] = vp->xstats.tx_single_collisions;
2883 data[4] = vp->xstats.rx_bad_ssd;
2887 static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2889 switch (stringset) {
2890 case ETH_SS_STATS:
2891 memcpy(data, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
2892 break;
2893 default:
2894 WARN_ON(1);
2895 break;
2899 static void vortex_get_drvinfo(struct net_device *dev,
2900 struct ethtool_drvinfo *info)
2902 struct vortex_private *vp = netdev_priv(dev);
2904 strcpy(info->driver, DRV_NAME);
2905 if (VORTEX_PCI(vp)) {
2906 strcpy(info->bus_info, pci_name(VORTEX_PCI(vp)));
2907 } else {
2908 if (VORTEX_EISA(vp))
2909 strcpy(info->bus_info, dev_name(vp->gendev));
2910 else
2911 sprintf(info->bus_info, "EISA 0x%lx %d",
2912 dev->base_addr, dev->irq);
2916 static const struct ethtool_ops vortex_ethtool_ops = {
2917 .get_drvinfo = vortex_get_drvinfo,
2918 .get_strings = vortex_get_strings,
2919 .get_msglevel = vortex_get_msglevel,
2920 .set_msglevel = vortex_set_msglevel,
2921 .get_ethtool_stats = vortex_get_ethtool_stats,
2922 .get_sset_count = vortex_get_sset_count,
2923 .get_settings = vortex_get_settings,
2924 .set_settings = vortex_set_settings,
2925 .get_link = ethtool_op_get_link,
2926 .nway_reset = vortex_nway_reset,
2929 #ifdef CONFIG_PCI
2931 * Must power the device up to do MDIO operations
2933 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2935 int err;
2936 struct vortex_private *vp = netdev_priv(dev);
2937 void __iomem *ioaddr = vp->ioaddr;
2938 unsigned long flags;
2939 pci_power_t state = 0;
2941 if(VORTEX_PCI(vp))
2942 state = VORTEX_PCI(vp)->current_state;
2944 /* The kernel core really should have pci_get_power_state() */
2946 if(state != 0)
2947 pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
2948 spin_lock_irqsave(&vp->lock, flags);
2949 EL3WINDOW(4);
2950 err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
2951 spin_unlock_irqrestore(&vp->lock, flags);
2952 if(state != 0)
2953 pci_set_power_state(VORTEX_PCI(vp), state);
2955 return err;
2957 #endif
2960 /* Pre-Cyclone chips have no documented multicast filter, so the only
2961 multicast setting is to receive all multicast frames. At least
2962 the chip has a very clean way to set the mode, unlike many others. */
2963 static void set_rx_mode(struct net_device *dev)
2965 struct vortex_private *vp = netdev_priv(dev);
2966 void __iomem *ioaddr = vp->ioaddr;
2967 int new_mode;
2969 if (dev->flags & IFF_PROMISC) {
2970 if (vortex_debug > 3)
2971 pr_notice("%s: Setting promiscuous mode.\n", dev->name);
2972 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
2973 } else if ((dev->mc_list) || (dev->flags & IFF_ALLMULTI)) {
2974 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
2975 } else
2976 new_mode = SetRxFilter | RxStation | RxBroadcast;
2978 iowrite16(new_mode, ioaddr + EL3_CMD);
2981 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
2982 /* Setup the card so that it can receive frames with an 802.1q VLAN tag.
2983 Note that this must be done after each RxReset due to some backwards
2984 compatibility logic in the Cyclone and Tornado ASICs */
2986 /* The Ethernet Type used for 802.1q tagged frames */
2987 #define VLAN_ETHER_TYPE 0x8100
2989 static void set_8021q_mode(struct net_device *dev, int enable)
2991 struct vortex_private *vp = netdev_priv(dev);
2992 void __iomem *ioaddr = vp->ioaddr;
2993 int old_window = ioread16(ioaddr + EL3_CMD);
2994 int mac_ctrl;
2996 if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
2997 /* cyclone and tornado chipsets can recognize 802.1q
2998 * tagged frames and treat them correctly */
3000 int max_pkt_size = dev->mtu+14; /* MTU+Ethernet header */
3001 if (enable)
3002 max_pkt_size += 4; /* 802.1Q VLAN tag */
3004 EL3WINDOW(3);
3005 iowrite16(max_pkt_size, ioaddr+Wn3_MaxPktSize);
3007 /* set VlanEtherType to let the hardware checksumming
3008 treat tagged frames correctly */
3009 EL3WINDOW(7);
3010 iowrite16(VLAN_ETHER_TYPE, ioaddr+Wn7_VlanEtherType);
3011 } else {
3012 /* on older cards we have to enable large frames */
3014 vp->large_frames = dev->mtu > 1500 || enable;
3016 EL3WINDOW(3);
3017 mac_ctrl = ioread16(ioaddr+Wn3_MAC_Ctrl);
3018 if (vp->large_frames)
3019 mac_ctrl |= 0x40;
3020 else
3021 mac_ctrl &= ~0x40;
3022 iowrite16(mac_ctrl, ioaddr+Wn3_MAC_Ctrl);
3025 EL3WINDOW(old_window);
3027 #else
3029 static void set_8021q_mode(struct net_device *dev, int enable)
3034 #endif
3036 /* MII transceiver control section.
3037 Read and write the MII registers using software-generated serial
3038 MDIO protocol. See the MII specifications or DP83840A data sheet
3039 for details. */
3041 /* The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
3042 met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3043 "overclocking" issues. */
3044 #define mdio_delay() ioread32(mdio_addr)
3046 #define MDIO_SHIFT_CLK 0x01
3047 #define MDIO_DIR_WRITE 0x04
3048 #define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3049 #define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3050 #define MDIO_DATA_READ 0x02
3051 #define MDIO_ENB_IN 0x00
3053 /* Generate the preamble required for initial synchronization and
3054 a few older transceivers. */
3055 static void mdio_sync(void __iomem *ioaddr, int bits)
3057 void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3059 /* Establish sync by sending at least 32 logic ones. */
3060 while (-- bits >= 0) {
3061 iowrite16(MDIO_DATA_WRITE1, mdio_addr);
3062 mdio_delay();
3063 iowrite16(MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK, mdio_addr);
3064 mdio_delay();
3068 static int mdio_read(struct net_device *dev, int phy_id, int location)
3070 int i;
3071 struct vortex_private *vp = netdev_priv(dev);
3072 void __iomem *ioaddr = vp->ioaddr;
3073 int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3074 unsigned int retval = 0;
3075 void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3077 if (mii_preamble_required)
3078 mdio_sync(ioaddr, 32);
3080 /* Shift the read command bits out. */
3081 for (i = 14; i >= 0; i--) {
3082 int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3083 iowrite16(dataval, mdio_addr);
3084 mdio_delay();
3085 iowrite16(dataval | MDIO_SHIFT_CLK, mdio_addr);
3086 mdio_delay();
3088 /* Read the two transition, 16 data, and wire-idle bits. */
3089 for (i = 19; i > 0; i--) {
3090 iowrite16(MDIO_ENB_IN, mdio_addr);
3091 mdio_delay();
3092 retval = (retval << 1) | ((ioread16(mdio_addr) & MDIO_DATA_READ) ? 1 : 0);
3093 iowrite16(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
3094 mdio_delay();
3096 return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3099 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3101 struct vortex_private *vp = netdev_priv(dev);
3102 void __iomem *ioaddr = vp->ioaddr;
3103 int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3104 void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3105 int i;
3107 if (mii_preamble_required)
3108 mdio_sync(ioaddr, 32);
3110 /* Shift the command bits out. */
3111 for (i = 31; i >= 0; i--) {
3112 int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3113 iowrite16(dataval, mdio_addr);
3114 mdio_delay();
3115 iowrite16(dataval | MDIO_SHIFT_CLK, mdio_addr);
3116 mdio_delay();
3118 /* Leave the interface idle. */
3119 for (i = 1; i >= 0; i--) {
3120 iowrite16(MDIO_ENB_IN, mdio_addr);
3121 mdio_delay();
3122 iowrite16(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
3123 mdio_delay();
3125 return;
3128 /* ACPI: Advanced Configuration and Power Interface. */
3129 /* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
3130 static void acpi_set_WOL(struct net_device *dev)
3132 struct vortex_private *vp = netdev_priv(dev);
3133 void __iomem *ioaddr = vp->ioaddr;
3135 device_set_wakeup_enable(vp->gendev, vp->enable_wol);
3137 if (vp->enable_wol) {
3138 /* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3139 EL3WINDOW(7);
3140 iowrite16(2, ioaddr + 0x0c);
3141 /* The RxFilter must accept the WOL frames. */
3142 iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3143 iowrite16(RxEnable, ioaddr + EL3_CMD);
3145 if (pci_enable_wake(VORTEX_PCI(vp), PCI_D3hot, 1)) {
3146 pr_info("%s: WOL not supported.\n", pci_name(VORTEX_PCI(vp)));
3148 vp->enable_wol = 0;
3149 return;
3152 /* Change the power state to D3; RxEnable doesn't take effect. */
3153 pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3158 static void __devexit vortex_remove_one(struct pci_dev *pdev)
3160 struct net_device *dev = pci_get_drvdata(pdev);
3161 struct vortex_private *vp;
3163 if (!dev) {
3164 pr_err("vortex_remove_one called for Compaq device!\n");
3165 BUG();
3168 vp = netdev_priv(dev);
3170 if (vp->cb_fn_base)
3171 pci_iounmap(pdev, vp->cb_fn_base);
3173 unregister_netdev(dev);
3175 pci_set_power_state(pdev, PCI_D0); /* Go active */
3176 if (vp->pm_state_valid)
3177 pci_restore_state(pdev);
3179 /* Should really use issue_and_wait() here */
3180 iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3181 vp->ioaddr + EL3_CMD);
3183 pci_iounmap(pdev, vp->ioaddr);
3185 pci_free_consistent(pdev,
3186 sizeof(struct boom_rx_desc) * RX_RING_SIZE +
3187 sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3188 vp->rx_ring,
3189 vp->rx_ring_dma);
3191 pci_release_regions(pdev);
3192 pci_disable_device(pdev);
3193 free_netdev(dev);
3197 static struct pci_driver vortex_driver = {
3198 .name = "3c59x",
3199 .probe = vortex_init_one,
3200 .remove = __devexit_p(vortex_remove_one),
3201 .id_table = vortex_pci_tbl,
3202 .driver.pm = VORTEX_PM_OPS,
3206 static int vortex_have_pci;
3207 static int vortex_have_eisa;
3210 static int __init vortex_init(void)
3212 int pci_rc, eisa_rc;
3214 pci_rc = pci_register_driver(&vortex_driver);
3215 eisa_rc = vortex_eisa_init();
3217 if (pci_rc == 0)
3218 vortex_have_pci = 1;
3219 if (eisa_rc > 0)
3220 vortex_have_eisa = 1;
3222 return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3226 static void __exit vortex_eisa_cleanup(void)
3228 struct vortex_private *vp;
3229 void __iomem *ioaddr;
3231 #ifdef CONFIG_EISA
3232 /* Take care of the EISA devices */
3233 eisa_driver_unregister(&vortex_eisa_driver);
3234 #endif
3236 if (compaq_net_device) {
3237 vp = netdev_priv(compaq_net_device);
3238 ioaddr = ioport_map(compaq_net_device->base_addr,
3239 VORTEX_TOTAL_SIZE);
3241 unregister_netdev(compaq_net_device);
3242 iowrite16(TotalReset, ioaddr + EL3_CMD);
3243 release_region(compaq_net_device->base_addr,
3244 VORTEX_TOTAL_SIZE);
3246 free_netdev(compaq_net_device);
3251 static void __exit vortex_cleanup(void)
3253 if (vortex_have_pci)
3254 pci_unregister_driver(&vortex_driver);
3255 if (vortex_have_eisa)
3256 vortex_eisa_cleanup();
3260 module_init(vortex_init);
3261 module_exit(vortex_cleanup);