1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 /* ethtool support for e1000 */
32 #include <asm/uaccess.h>
35 char stat_string
[ETH_GSTRING_LEN
];
40 #define E1000_STAT(m) FIELD_SIZEOF(struct e1000_adapter, m), \
41 offsetof(struct e1000_adapter, m)
42 #define E1000_NETDEV_STAT(m) FIELD_SIZEOF(struct net_device, m), \
43 offsetof(struct net_device, m)
44 static const struct e1000_stats e1000_gstrings_stats
[] = {
45 { "rx_packets", E1000_STAT(stats
.gprc
) },
46 { "tx_packets", E1000_STAT(stats
.gptc
) },
47 { "rx_bytes", E1000_STAT(stats
.gorcl
) },
48 { "tx_bytes", E1000_STAT(stats
.gotcl
) },
49 { "rx_broadcast", E1000_STAT(stats
.bprc
) },
50 { "tx_broadcast", E1000_STAT(stats
.bptc
) },
51 { "rx_multicast", E1000_STAT(stats
.mprc
) },
52 { "tx_multicast", E1000_STAT(stats
.mptc
) },
53 { "rx_errors", E1000_STAT(stats
.rxerrc
) },
54 { "tx_errors", E1000_STAT(stats
.txerrc
) },
55 { "tx_dropped", E1000_NETDEV_STAT(stats
.tx_dropped
) },
56 { "multicast", E1000_STAT(stats
.mprc
) },
57 { "collisions", E1000_STAT(stats
.colc
) },
58 { "rx_length_errors", E1000_STAT(stats
.rlerrc
) },
59 { "rx_over_errors", E1000_NETDEV_STAT(stats
.rx_over_errors
) },
60 { "rx_crc_errors", E1000_STAT(stats
.crcerrs
) },
61 { "rx_frame_errors", E1000_NETDEV_STAT(stats
.rx_frame_errors
) },
62 { "rx_no_buffer_count", E1000_STAT(stats
.rnbc
) },
63 { "rx_missed_errors", E1000_STAT(stats
.mpc
) },
64 { "tx_aborted_errors", E1000_STAT(stats
.ecol
) },
65 { "tx_carrier_errors", E1000_STAT(stats
.tncrs
) },
66 { "tx_fifo_errors", E1000_NETDEV_STAT(stats
.tx_fifo_errors
) },
67 { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats
.tx_heartbeat_errors
) },
68 { "tx_window_errors", E1000_STAT(stats
.latecol
) },
69 { "tx_abort_late_coll", E1000_STAT(stats
.latecol
) },
70 { "tx_deferred_ok", E1000_STAT(stats
.dc
) },
71 { "tx_single_coll_ok", E1000_STAT(stats
.scc
) },
72 { "tx_multi_coll_ok", E1000_STAT(stats
.mcc
) },
73 { "tx_timeout_count", E1000_STAT(tx_timeout_count
) },
74 { "tx_restart_queue", E1000_STAT(restart_queue
) },
75 { "rx_long_length_errors", E1000_STAT(stats
.roc
) },
76 { "rx_short_length_errors", E1000_STAT(stats
.ruc
) },
77 { "rx_align_errors", E1000_STAT(stats
.algnerrc
) },
78 { "tx_tcp_seg_good", E1000_STAT(stats
.tsctc
) },
79 { "tx_tcp_seg_failed", E1000_STAT(stats
.tsctfc
) },
80 { "rx_flow_control_xon", E1000_STAT(stats
.xonrxc
) },
81 { "rx_flow_control_xoff", E1000_STAT(stats
.xoffrxc
) },
82 { "tx_flow_control_xon", E1000_STAT(stats
.xontxc
) },
83 { "tx_flow_control_xoff", E1000_STAT(stats
.xofftxc
) },
84 { "rx_long_byte_count", E1000_STAT(stats
.gorcl
) },
85 { "rx_csum_offload_good", E1000_STAT(hw_csum_good
) },
86 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err
) },
87 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed
) },
88 { "tx_smbus", E1000_STAT(stats
.mgptc
) },
89 { "rx_smbus", E1000_STAT(stats
.mgprc
) },
90 { "dropped_smbus", E1000_STAT(stats
.mgpdc
) },
93 #define E1000_QUEUE_STATS_LEN 0
94 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
95 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
96 static const char e1000_gstrings_test
[][ETH_GSTRING_LEN
] = {
97 "Register test (offline)", "Eeprom test (offline)",
98 "Interrupt test (offline)", "Loopback test (offline)",
99 "Link test (on/offline)"
101 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
103 static int e1000_get_settings(struct net_device
*netdev
,
104 struct ethtool_cmd
*ecmd
)
106 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
107 struct e1000_hw
*hw
= &adapter
->hw
;
109 if (hw
->media_type
== e1000_media_type_copper
) {
111 ecmd
->supported
= (SUPPORTED_10baseT_Half
|
112 SUPPORTED_10baseT_Full
|
113 SUPPORTED_100baseT_Half
|
114 SUPPORTED_100baseT_Full
|
115 SUPPORTED_1000baseT_Full
|
118 ecmd
->advertising
= ADVERTISED_TP
;
120 if (hw
->autoneg
== 1) {
121 ecmd
->advertising
|= ADVERTISED_Autoneg
;
122 /* the e1000 autoneg seems to match ethtool nicely */
123 ecmd
->advertising
|= hw
->autoneg_advertised
;
126 ecmd
->port
= PORT_TP
;
127 ecmd
->phy_address
= hw
->phy_addr
;
129 if (hw
->mac_type
== e1000_82543
)
130 ecmd
->transceiver
= XCVR_EXTERNAL
;
132 ecmd
->transceiver
= XCVR_INTERNAL
;
135 ecmd
->supported
= (SUPPORTED_1000baseT_Full
|
139 ecmd
->advertising
= (ADVERTISED_1000baseT_Full
|
143 ecmd
->port
= PORT_FIBRE
;
145 if (hw
->mac_type
>= e1000_82545
)
146 ecmd
->transceiver
= XCVR_INTERNAL
;
148 ecmd
->transceiver
= XCVR_EXTERNAL
;
151 if (er32(STATUS
) & E1000_STATUS_LU
) {
153 e1000_get_speed_and_duplex(hw
, &adapter
->link_speed
,
154 &adapter
->link_duplex
);
155 ecmd
->speed
= adapter
->link_speed
;
157 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
158 * and HALF_DUPLEX != DUPLEX_HALF */
160 if (adapter
->link_duplex
== FULL_DUPLEX
)
161 ecmd
->duplex
= DUPLEX_FULL
;
163 ecmd
->duplex
= DUPLEX_HALF
;
169 ecmd
->autoneg
= ((hw
->media_type
== e1000_media_type_fiber
) ||
170 hw
->autoneg
) ? AUTONEG_ENABLE
: AUTONEG_DISABLE
;
174 static int e1000_set_settings(struct net_device
*netdev
,
175 struct ethtool_cmd
*ecmd
)
177 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
178 struct e1000_hw
*hw
= &adapter
->hw
;
180 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
183 if (ecmd
->autoneg
== AUTONEG_ENABLE
) {
185 if (hw
->media_type
== e1000_media_type_fiber
)
186 hw
->autoneg_advertised
= ADVERTISED_1000baseT_Full
|
190 hw
->autoneg_advertised
= ecmd
->advertising
|
193 ecmd
->advertising
= hw
->autoneg_advertised
;
195 if (e1000_set_spd_dplx(adapter
, ecmd
->speed
+ ecmd
->duplex
)) {
196 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
202 if (netif_running(adapter
->netdev
)) {
206 e1000_reset(adapter
);
208 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
212 static void e1000_get_pauseparam(struct net_device
*netdev
,
213 struct ethtool_pauseparam
*pause
)
215 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
216 struct e1000_hw
*hw
= &adapter
->hw
;
219 (adapter
->fc_autoneg
? AUTONEG_ENABLE
: AUTONEG_DISABLE
);
221 if (hw
->fc
== E1000_FC_RX_PAUSE
)
223 else if (hw
->fc
== E1000_FC_TX_PAUSE
)
225 else if (hw
->fc
== E1000_FC_FULL
) {
231 static int e1000_set_pauseparam(struct net_device
*netdev
,
232 struct ethtool_pauseparam
*pause
)
234 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
235 struct e1000_hw
*hw
= &adapter
->hw
;
238 adapter
->fc_autoneg
= pause
->autoneg
;
240 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
243 if (pause
->rx_pause
&& pause
->tx_pause
)
244 hw
->fc
= E1000_FC_FULL
;
245 else if (pause
->rx_pause
&& !pause
->tx_pause
)
246 hw
->fc
= E1000_FC_RX_PAUSE
;
247 else if (!pause
->rx_pause
&& pause
->tx_pause
)
248 hw
->fc
= E1000_FC_TX_PAUSE
;
249 else if (!pause
->rx_pause
&& !pause
->tx_pause
)
250 hw
->fc
= E1000_FC_NONE
;
252 hw
->original_fc
= hw
->fc
;
254 if (adapter
->fc_autoneg
== AUTONEG_ENABLE
) {
255 if (netif_running(adapter
->netdev
)) {
259 e1000_reset(adapter
);
261 retval
= ((hw
->media_type
== e1000_media_type_fiber
) ?
262 e1000_setup_link(hw
) : e1000_force_mac_fc(hw
));
264 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
268 static u32
e1000_get_rx_csum(struct net_device
*netdev
)
270 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
271 return adapter
->rx_csum
;
274 static int e1000_set_rx_csum(struct net_device
*netdev
, u32 data
)
276 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
277 adapter
->rx_csum
= data
;
279 if (netif_running(netdev
))
280 e1000_reinit_locked(adapter
);
282 e1000_reset(adapter
);
286 static u32
e1000_get_tx_csum(struct net_device
*netdev
)
288 return (netdev
->features
& NETIF_F_HW_CSUM
) != 0;
291 static int e1000_set_tx_csum(struct net_device
*netdev
, u32 data
)
293 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
294 struct e1000_hw
*hw
= &adapter
->hw
;
296 if (hw
->mac_type
< e1000_82543
) {
303 netdev
->features
|= NETIF_F_HW_CSUM
;
305 netdev
->features
&= ~NETIF_F_HW_CSUM
;
310 static int e1000_set_tso(struct net_device
*netdev
, u32 data
)
312 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
313 struct e1000_hw
*hw
= &adapter
->hw
;
315 if ((hw
->mac_type
< e1000_82544
) ||
316 (hw
->mac_type
== e1000_82547
))
317 return data
? -EINVAL
: 0;
320 netdev
->features
|= NETIF_F_TSO
;
322 netdev
->features
&= ~NETIF_F_TSO
;
324 netdev
->features
&= ~NETIF_F_TSO6
;
326 DPRINTK(PROBE
, INFO
, "TSO is %s\n", data
? "Enabled" : "Disabled");
327 adapter
->tso_force
= true;
331 static u32
e1000_get_msglevel(struct net_device
*netdev
)
333 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
334 return adapter
->msg_enable
;
337 static void e1000_set_msglevel(struct net_device
*netdev
, u32 data
)
339 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
340 adapter
->msg_enable
= data
;
343 static int e1000_get_regs_len(struct net_device
*netdev
)
345 #define E1000_REGS_LEN 32
346 return E1000_REGS_LEN
* sizeof(u32
);
349 static void e1000_get_regs(struct net_device
*netdev
, struct ethtool_regs
*regs
,
352 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
353 struct e1000_hw
*hw
= &adapter
->hw
;
357 memset(p
, 0, E1000_REGS_LEN
* sizeof(u32
));
359 regs
->version
= (1 << 24) | (hw
->revision_id
<< 16) | hw
->device_id
;
361 regs_buff
[0] = er32(CTRL
);
362 regs_buff
[1] = er32(STATUS
);
364 regs_buff
[2] = er32(RCTL
);
365 regs_buff
[3] = er32(RDLEN
);
366 regs_buff
[4] = er32(RDH
);
367 regs_buff
[5] = er32(RDT
);
368 regs_buff
[6] = er32(RDTR
);
370 regs_buff
[7] = er32(TCTL
);
371 regs_buff
[8] = er32(TDLEN
);
372 regs_buff
[9] = er32(TDH
);
373 regs_buff
[10] = er32(TDT
);
374 regs_buff
[11] = er32(TIDV
);
376 regs_buff
[12] = hw
->phy_type
; /* PHY type (IGP=1, M88=0) */
377 if (hw
->phy_type
== e1000_phy_igp
) {
378 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
379 IGP01E1000_PHY_AGC_A
);
380 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_A
&
381 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
382 regs_buff
[13] = (u32
)phy_data
; /* cable length */
383 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
384 IGP01E1000_PHY_AGC_B
);
385 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_B
&
386 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
387 regs_buff
[14] = (u32
)phy_data
; /* cable length */
388 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
389 IGP01E1000_PHY_AGC_C
);
390 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_C
&
391 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
392 regs_buff
[15] = (u32
)phy_data
; /* cable length */
393 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
394 IGP01E1000_PHY_AGC_D
);
395 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_D
&
396 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
397 regs_buff
[16] = (u32
)phy_data
; /* cable length */
398 regs_buff
[17] = 0; /* extended 10bt distance (not needed) */
399 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
, 0x0);
400 e1000_read_phy_reg(hw
, IGP01E1000_PHY_PORT_STATUS
&
401 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
402 regs_buff
[18] = (u32
)phy_data
; /* cable polarity */
403 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
404 IGP01E1000_PHY_PCS_INIT_REG
);
405 e1000_read_phy_reg(hw
, IGP01E1000_PHY_PCS_INIT_REG
&
406 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
407 regs_buff
[19] = (u32
)phy_data
; /* cable polarity */
408 regs_buff
[20] = 0; /* polarity correction enabled (always) */
409 regs_buff
[22] = 0; /* phy receive errors (unavailable) */
410 regs_buff
[23] = regs_buff
[18]; /* mdix mode */
411 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
, 0x0);
413 e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
414 regs_buff
[13] = (u32
)phy_data
; /* cable length */
415 regs_buff
[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
416 regs_buff
[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
417 regs_buff
[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
418 e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
419 regs_buff
[17] = (u32
)phy_data
; /* extended 10bt distance */
420 regs_buff
[18] = regs_buff
[13]; /* cable polarity */
421 regs_buff
[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
422 regs_buff
[20] = regs_buff
[17]; /* polarity correction */
423 /* phy receive errors */
424 regs_buff
[22] = adapter
->phy_stats
.receive_errors
;
425 regs_buff
[23] = regs_buff
[13]; /* mdix mode */
427 regs_buff
[21] = adapter
->phy_stats
.idle_errors
; /* phy idle errors */
428 e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_data
);
429 regs_buff
[24] = (u32
)phy_data
; /* phy local receiver status */
430 regs_buff
[25] = regs_buff
[24]; /* phy remote receiver status */
431 if (hw
->mac_type
>= e1000_82540
&&
432 hw
->media_type
== e1000_media_type_copper
) {
433 regs_buff
[26] = er32(MANC
);
437 static int e1000_get_eeprom_len(struct net_device
*netdev
)
439 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
440 struct e1000_hw
*hw
= &adapter
->hw
;
442 return hw
->eeprom
.word_size
* 2;
445 static int e1000_get_eeprom(struct net_device
*netdev
,
446 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
448 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
449 struct e1000_hw
*hw
= &adapter
->hw
;
451 int first_word
, last_word
;
455 if (eeprom
->len
== 0)
458 eeprom
->magic
= hw
->vendor_id
| (hw
->device_id
<< 16);
460 first_word
= eeprom
->offset
>> 1;
461 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
463 eeprom_buff
= kmalloc(sizeof(u16
) *
464 (last_word
- first_word
+ 1), GFP_KERNEL
);
468 if (hw
->eeprom
.type
== e1000_eeprom_spi
)
469 ret_val
= e1000_read_eeprom(hw
, first_word
,
470 last_word
- first_word
+ 1,
473 for (i
= 0; i
< last_word
- first_word
+ 1; i
++) {
474 ret_val
= e1000_read_eeprom(hw
, first_word
+ i
, 1,
481 /* Device's eeprom is always little-endian, word addressable */
482 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
483 le16_to_cpus(&eeprom_buff
[i
]);
485 memcpy(bytes
, (u8
*)eeprom_buff
+ (eeprom
->offset
& 1),
492 static int e1000_set_eeprom(struct net_device
*netdev
,
493 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
495 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
496 struct e1000_hw
*hw
= &adapter
->hw
;
499 int max_len
, first_word
, last_word
, ret_val
= 0;
502 if (eeprom
->len
== 0)
505 if (eeprom
->magic
!= (hw
->vendor_id
| (hw
->device_id
<< 16)))
508 max_len
= hw
->eeprom
.word_size
* 2;
510 first_word
= eeprom
->offset
>> 1;
511 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
512 eeprom_buff
= kmalloc(max_len
, GFP_KERNEL
);
516 ptr
= (void *)eeprom_buff
;
518 if (eeprom
->offset
& 1) {
519 /* need read/modify/write of first changed EEPROM word */
520 /* only the second byte of the word is being modified */
521 ret_val
= e1000_read_eeprom(hw
, first_word
, 1,
525 if (((eeprom
->offset
+ eeprom
->len
) & 1) && (ret_val
== 0)) {
526 /* need read/modify/write of last changed EEPROM word */
527 /* only the first byte of the word is being modified */
528 ret_val
= e1000_read_eeprom(hw
, last_word
, 1,
529 &eeprom_buff
[last_word
- first_word
]);
532 /* Device's eeprom is always little-endian, word addressable */
533 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
534 le16_to_cpus(&eeprom_buff
[i
]);
536 memcpy(ptr
, bytes
, eeprom
->len
);
538 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
539 eeprom_buff
[i
] = cpu_to_le16(eeprom_buff
[i
]);
541 ret_val
= e1000_write_eeprom(hw
, first_word
,
542 last_word
- first_word
+ 1, eeprom_buff
);
544 /* Update the checksum over the first part of the EEPROM if needed */
545 if ((ret_val
== 0) && (first_word
<= EEPROM_CHECKSUM_REG
))
546 e1000_update_eeprom_checksum(hw
);
552 static void e1000_get_drvinfo(struct net_device
*netdev
,
553 struct ethtool_drvinfo
*drvinfo
)
555 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
556 char firmware_version
[32];
558 strncpy(drvinfo
->driver
, e1000_driver_name
, 32);
559 strncpy(drvinfo
->version
, e1000_driver_version
, 32);
561 sprintf(firmware_version
, "N/A");
562 strncpy(drvinfo
->fw_version
, firmware_version
, 32);
563 strncpy(drvinfo
->bus_info
, pci_name(adapter
->pdev
), 32);
564 drvinfo
->regdump_len
= e1000_get_regs_len(netdev
);
565 drvinfo
->eedump_len
= e1000_get_eeprom_len(netdev
);
568 static void e1000_get_ringparam(struct net_device
*netdev
,
569 struct ethtool_ringparam
*ring
)
571 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
572 struct e1000_hw
*hw
= &adapter
->hw
;
573 e1000_mac_type mac_type
= hw
->mac_type
;
574 struct e1000_tx_ring
*txdr
= adapter
->tx_ring
;
575 struct e1000_rx_ring
*rxdr
= adapter
->rx_ring
;
577 ring
->rx_max_pending
= (mac_type
< e1000_82544
) ? E1000_MAX_RXD
:
579 ring
->tx_max_pending
= (mac_type
< e1000_82544
) ? E1000_MAX_TXD
:
581 ring
->rx_mini_max_pending
= 0;
582 ring
->rx_jumbo_max_pending
= 0;
583 ring
->rx_pending
= rxdr
->count
;
584 ring
->tx_pending
= txdr
->count
;
585 ring
->rx_mini_pending
= 0;
586 ring
->rx_jumbo_pending
= 0;
589 static int e1000_set_ringparam(struct net_device
*netdev
,
590 struct ethtool_ringparam
*ring
)
592 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
593 struct e1000_hw
*hw
= &adapter
->hw
;
594 e1000_mac_type mac_type
= hw
->mac_type
;
595 struct e1000_tx_ring
*txdr
, *tx_old
;
596 struct e1000_rx_ring
*rxdr
, *rx_old
;
599 if ((ring
->rx_mini_pending
) || (ring
->rx_jumbo_pending
))
602 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
605 if (netif_running(adapter
->netdev
))
608 tx_old
= adapter
->tx_ring
;
609 rx_old
= adapter
->rx_ring
;
612 txdr
= kcalloc(adapter
->num_tx_queues
, sizeof(struct e1000_tx_ring
), GFP_KERNEL
);
616 rxdr
= kcalloc(adapter
->num_rx_queues
, sizeof(struct e1000_rx_ring
), GFP_KERNEL
);
620 adapter
->tx_ring
= txdr
;
621 adapter
->rx_ring
= rxdr
;
623 rxdr
->count
= max(ring
->rx_pending
,(u32
)E1000_MIN_RXD
);
624 rxdr
->count
= min(rxdr
->count
,(u32
)(mac_type
< e1000_82544
?
625 E1000_MAX_RXD
: E1000_MAX_82544_RXD
));
626 rxdr
->count
= ALIGN(rxdr
->count
, REQ_RX_DESCRIPTOR_MULTIPLE
);
628 txdr
->count
= max(ring
->tx_pending
,(u32
)E1000_MIN_TXD
);
629 txdr
->count
= min(txdr
->count
,(u32
)(mac_type
< e1000_82544
?
630 E1000_MAX_TXD
: E1000_MAX_82544_TXD
));
631 txdr
->count
= ALIGN(txdr
->count
, REQ_TX_DESCRIPTOR_MULTIPLE
);
633 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
634 txdr
[i
].count
= txdr
->count
;
635 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
636 rxdr
[i
].count
= rxdr
->count
;
638 if (netif_running(adapter
->netdev
)) {
639 /* Try to get new resources before deleting old */
640 err
= e1000_setup_all_rx_resources(adapter
);
643 err
= e1000_setup_all_tx_resources(adapter
);
647 /* save the new, restore the old in order to free it,
648 * then restore the new back again */
650 adapter
->rx_ring
= rx_old
;
651 adapter
->tx_ring
= tx_old
;
652 e1000_free_all_rx_resources(adapter
);
653 e1000_free_all_tx_resources(adapter
);
656 adapter
->rx_ring
= rxdr
;
657 adapter
->tx_ring
= txdr
;
658 err
= e1000_up(adapter
);
663 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
666 e1000_free_all_rx_resources(adapter
);
668 adapter
->rx_ring
= rx_old
;
669 adapter
->tx_ring
= tx_old
;
676 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
680 static bool reg_pattern_test(struct e1000_adapter
*adapter
, u64
*data
, int reg
,
683 struct e1000_hw
*hw
= &adapter
->hw
;
684 static const u32 test
[] =
685 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
686 u8 __iomem
*address
= hw
->hw_addr
+ reg
;
690 for (i
= 0; i
< ARRAY_SIZE(test
); i
++) {
691 writel(write
& test
[i
], address
);
692 read
= readl(address
);
693 if (read
!= (write
& test
[i
] & mask
)) {
694 DPRINTK(DRV
, ERR
, "pattern test reg %04X failed: "
695 "got 0x%08X expected 0x%08X\n",
696 reg
, read
, (write
& test
[i
] & mask
));
704 static bool reg_set_and_check(struct e1000_adapter
*adapter
, u64
*data
, int reg
,
707 struct e1000_hw
*hw
= &adapter
->hw
;
708 u8 __iomem
*address
= hw
->hw_addr
+ reg
;
711 writel(write
& mask
, address
);
712 read
= readl(address
);
713 if ((read
& mask
) != (write
& mask
)) {
714 DPRINTK(DRV
, ERR
, "set/check reg %04X test failed: "
715 "got 0x%08X expected 0x%08X\n",
716 reg
, (read
& mask
), (write
& mask
));
723 #define REG_PATTERN_TEST(reg, mask, write) \
725 if (reg_pattern_test(adapter, data, \
726 (hw->mac_type >= e1000_82543) \
727 ? E1000_##reg : E1000_82542_##reg, \
732 #define REG_SET_AND_CHECK(reg, mask, write) \
734 if (reg_set_and_check(adapter, data, \
735 (hw->mac_type >= e1000_82543) \
736 ? E1000_##reg : E1000_82542_##reg, \
741 static int e1000_reg_test(struct e1000_adapter
*adapter
, u64
*data
)
743 u32 value
, before
, after
;
745 struct e1000_hw
*hw
= &adapter
->hw
;
747 /* The status register is Read Only, so a write should fail.
748 * Some bits that get toggled are ignored.
751 /* there are several bits on newer hardware that are r/w */
754 before
= er32(STATUS
);
755 value
= (er32(STATUS
) & toggle
);
756 ew32(STATUS
, toggle
);
757 after
= er32(STATUS
) & toggle
;
758 if (value
!= after
) {
759 DPRINTK(DRV
, ERR
, "failed STATUS register test got: "
760 "0x%08X expected: 0x%08X\n", after
, value
);
764 /* restore previous status */
765 ew32(STATUS
, before
);
767 REG_PATTERN_TEST(FCAL
, 0xFFFFFFFF, 0xFFFFFFFF);
768 REG_PATTERN_TEST(FCAH
, 0x0000FFFF, 0xFFFFFFFF);
769 REG_PATTERN_TEST(FCT
, 0x0000FFFF, 0xFFFFFFFF);
770 REG_PATTERN_TEST(VET
, 0x0000FFFF, 0xFFFFFFFF);
772 REG_PATTERN_TEST(RDTR
, 0x0000FFFF, 0xFFFFFFFF);
773 REG_PATTERN_TEST(RDBAH
, 0xFFFFFFFF, 0xFFFFFFFF);
774 REG_PATTERN_TEST(RDLEN
, 0x000FFF80, 0x000FFFFF);
775 REG_PATTERN_TEST(RDH
, 0x0000FFFF, 0x0000FFFF);
776 REG_PATTERN_TEST(RDT
, 0x0000FFFF, 0x0000FFFF);
777 REG_PATTERN_TEST(FCRTH
, 0x0000FFF8, 0x0000FFF8);
778 REG_PATTERN_TEST(FCTTV
, 0x0000FFFF, 0x0000FFFF);
779 REG_PATTERN_TEST(TIPG
, 0x3FFFFFFF, 0x3FFFFFFF);
780 REG_PATTERN_TEST(TDBAH
, 0xFFFFFFFF, 0xFFFFFFFF);
781 REG_PATTERN_TEST(TDLEN
, 0x000FFF80, 0x000FFFFF);
783 REG_SET_AND_CHECK(RCTL
, 0xFFFFFFFF, 0x00000000);
786 REG_SET_AND_CHECK(RCTL
, before
, 0x003FFFFB);
787 REG_SET_AND_CHECK(TCTL
, 0xFFFFFFFF, 0x00000000);
789 if (hw
->mac_type
>= e1000_82543
) {
791 REG_SET_AND_CHECK(RCTL
, before
, 0xFFFFFFFF);
792 REG_PATTERN_TEST(RDBAL
, 0xFFFFFFF0, 0xFFFFFFFF);
793 REG_PATTERN_TEST(TXCW
, 0xC000FFFF, 0x0000FFFF);
794 REG_PATTERN_TEST(TDBAL
, 0xFFFFFFF0, 0xFFFFFFFF);
795 REG_PATTERN_TEST(TIDV
, 0x0000FFFF, 0x0000FFFF);
796 value
= E1000_RAR_ENTRIES
;
797 for (i
= 0; i
< value
; i
++) {
798 REG_PATTERN_TEST(RA
+ (((i
<< 1) + 1) << 2), 0x8003FFFF,
804 REG_SET_AND_CHECK(RCTL
, 0xFFFFFFFF, 0x01FFFFFF);
805 REG_PATTERN_TEST(RDBAL
, 0xFFFFF000, 0xFFFFFFFF);
806 REG_PATTERN_TEST(TXCW
, 0x0000FFFF, 0x0000FFFF);
807 REG_PATTERN_TEST(TDBAL
, 0xFFFFF000, 0xFFFFFFFF);
811 value
= E1000_MC_TBL_SIZE
;
812 for (i
= 0; i
< value
; i
++)
813 REG_PATTERN_TEST(MTA
+ (i
<< 2), 0xFFFFFFFF, 0xFFFFFFFF);
819 static int e1000_eeprom_test(struct e1000_adapter
*adapter
, u64
*data
)
821 struct e1000_hw
*hw
= &adapter
->hw
;
827 /* Read and add up the contents of the EEPROM */
828 for (i
= 0; i
< (EEPROM_CHECKSUM_REG
+ 1); i
++) {
829 if ((e1000_read_eeprom(hw
, i
, 1, &temp
)) < 0) {
836 /* If Checksum is not Correct return error else test passed */
837 if ((checksum
!= (u16
)EEPROM_SUM
) && !(*data
))
843 static irqreturn_t
e1000_test_intr(int irq
, void *data
)
845 struct net_device
*netdev
= (struct net_device
*)data
;
846 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
847 struct e1000_hw
*hw
= &adapter
->hw
;
849 adapter
->test_icr
|= er32(ICR
);
854 static int e1000_intr_test(struct e1000_adapter
*adapter
, u64
*data
)
856 struct net_device
*netdev
= adapter
->netdev
;
858 bool shared_int
= true;
859 u32 irq
= adapter
->pdev
->irq
;
860 struct e1000_hw
*hw
= &adapter
->hw
;
864 /* NOTE: we don't test MSI interrupts here, yet */
865 /* Hook up test interrupt handler just for this test */
866 if (!request_irq(irq
, &e1000_test_intr
, IRQF_PROBE_SHARED
, netdev
->name
,
869 else if (request_irq(irq
, &e1000_test_intr
, IRQF_SHARED
,
870 netdev
->name
, netdev
)) {
874 DPRINTK(HW
, INFO
, "testing %s interrupt\n",
875 (shared_int
? "shared" : "unshared"));
877 /* Disable all the interrupts */
878 ew32(IMC
, 0xFFFFFFFF);
881 /* Test each interrupt */
882 for (; i
< 10; i
++) {
884 /* Interrupt to test */
888 /* Disable the interrupt to be reported in
889 * the cause register and then force the same
890 * interrupt and see if one gets posted. If
891 * an interrupt was posted to the bus, the
894 adapter
->test_icr
= 0;
899 if (adapter
->test_icr
& mask
) {
905 /* Enable the interrupt to be reported in
906 * the cause register and then force the same
907 * interrupt and see if one gets posted. If
908 * an interrupt was not posted to the bus, the
911 adapter
->test_icr
= 0;
916 if (!(adapter
->test_icr
& mask
)) {
922 /* Disable the other interrupts to be reported in
923 * the cause register and then force the other
924 * interrupts and see if any get posted. If
925 * an interrupt was posted to the bus, the
928 adapter
->test_icr
= 0;
929 ew32(IMC
, ~mask
& 0x00007FFF);
930 ew32(ICS
, ~mask
& 0x00007FFF);
933 if (adapter
->test_icr
) {
940 /* Disable all the interrupts */
941 ew32(IMC
, 0xFFFFFFFF);
944 /* Unhook test interrupt handler */
945 free_irq(irq
, netdev
);
950 static void e1000_free_desc_rings(struct e1000_adapter
*adapter
)
952 struct e1000_tx_ring
*txdr
= &adapter
->test_tx_ring
;
953 struct e1000_rx_ring
*rxdr
= &adapter
->test_rx_ring
;
954 struct pci_dev
*pdev
= adapter
->pdev
;
957 if (txdr
->desc
&& txdr
->buffer_info
) {
958 for (i
= 0; i
< txdr
->count
; i
++) {
959 if (txdr
->buffer_info
[i
].dma
)
960 pci_unmap_single(pdev
, txdr
->buffer_info
[i
].dma
,
961 txdr
->buffer_info
[i
].length
,
963 if (txdr
->buffer_info
[i
].skb
)
964 dev_kfree_skb(txdr
->buffer_info
[i
].skb
);
968 if (rxdr
->desc
&& rxdr
->buffer_info
) {
969 for (i
= 0; i
< rxdr
->count
; i
++) {
970 if (rxdr
->buffer_info
[i
].dma
)
971 pci_unmap_single(pdev
, rxdr
->buffer_info
[i
].dma
,
972 rxdr
->buffer_info
[i
].length
,
974 if (rxdr
->buffer_info
[i
].skb
)
975 dev_kfree_skb(rxdr
->buffer_info
[i
].skb
);
980 pci_free_consistent(pdev
, txdr
->size
, txdr
->desc
, txdr
->dma
);
984 pci_free_consistent(pdev
, rxdr
->size
, rxdr
->desc
, rxdr
->dma
);
988 kfree(txdr
->buffer_info
);
989 txdr
->buffer_info
= NULL
;
990 kfree(rxdr
->buffer_info
);
991 rxdr
->buffer_info
= NULL
;
996 static int e1000_setup_desc_rings(struct e1000_adapter
*adapter
)
998 struct e1000_hw
*hw
= &adapter
->hw
;
999 struct e1000_tx_ring
*txdr
= &adapter
->test_tx_ring
;
1000 struct e1000_rx_ring
*rxdr
= &adapter
->test_rx_ring
;
1001 struct pci_dev
*pdev
= adapter
->pdev
;
1005 /* Setup Tx descriptor ring and Tx buffers */
1008 txdr
->count
= E1000_DEFAULT_TXD
;
1010 txdr
->buffer_info
= kcalloc(txdr
->count
, sizeof(struct e1000_buffer
),
1012 if (!txdr
->buffer_info
) {
1017 txdr
->size
= txdr
->count
* sizeof(struct e1000_tx_desc
);
1018 txdr
->size
= ALIGN(txdr
->size
, 4096);
1019 txdr
->desc
= pci_alloc_consistent(pdev
, txdr
->size
, &txdr
->dma
);
1024 memset(txdr
->desc
, 0, txdr
->size
);
1025 txdr
->next_to_use
= txdr
->next_to_clean
= 0;
1027 ew32(TDBAL
, ((u64
)txdr
->dma
& 0x00000000FFFFFFFF));
1028 ew32(TDBAH
, ((u64
)txdr
->dma
>> 32));
1029 ew32(TDLEN
, txdr
->count
* sizeof(struct e1000_tx_desc
));
1032 ew32(TCTL
, E1000_TCTL_PSP
| E1000_TCTL_EN
|
1033 E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
|
1034 E1000_FDX_COLLISION_DISTANCE
<< E1000_COLD_SHIFT
);
1036 for (i
= 0; i
< txdr
->count
; i
++) {
1037 struct e1000_tx_desc
*tx_desc
= E1000_TX_DESC(*txdr
, i
);
1038 struct sk_buff
*skb
;
1039 unsigned int size
= 1024;
1041 skb
= alloc_skb(size
, GFP_KERNEL
);
1047 txdr
->buffer_info
[i
].skb
= skb
;
1048 txdr
->buffer_info
[i
].length
= skb
->len
;
1049 txdr
->buffer_info
[i
].dma
=
1050 pci_map_single(pdev
, skb
->data
, skb
->len
,
1052 tx_desc
->buffer_addr
= cpu_to_le64(txdr
->buffer_info
[i
].dma
);
1053 tx_desc
->lower
.data
= cpu_to_le32(skb
->len
);
1054 tx_desc
->lower
.data
|= cpu_to_le32(E1000_TXD_CMD_EOP
|
1055 E1000_TXD_CMD_IFCS
|
1057 tx_desc
->upper
.data
= 0;
1060 /* Setup Rx descriptor ring and Rx buffers */
1063 rxdr
->count
= E1000_DEFAULT_RXD
;
1065 rxdr
->buffer_info
= kcalloc(rxdr
->count
, sizeof(struct e1000_buffer
),
1067 if (!rxdr
->buffer_info
) {
1072 rxdr
->size
= rxdr
->count
* sizeof(struct e1000_rx_desc
);
1073 rxdr
->desc
= pci_alloc_consistent(pdev
, rxdr
->size
, &rxdr
->dma
);
1078 memset(rxdr
->desc
, 0, rxdr
->size
);
1079 rxdr
->next_to_use
= rxdr
->next_to_clean
= 0;
1082 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1083 ew32(RDBAL
, ((u64
)rxdr
->dma
& 0xFFFFFFFF));
1084 ew32(RDBAH
, ((u64
)rxdr
->dma
>> 32));
1085 ew32(RDLEN
, rxdr
->size
);
1088 rctl
= E1000_RCTL_EN
| E1000_RCTL_BAM
| E1000_RCTL_SZ_2048
|
1089 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1090 (hw
->mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1093 for (i
= 0; i
< rxdr
->count
; i
++) {
1094 struct e1000_rx_desc
*rx_desc
= E1000_RX_DESC(*rxdr
, i
);
1095 struct sk_buff
*skb
;
1097 skb
= alloc_skb(E1000_RXBUFFER_2048
+ NET_IP_ALIGN
, GFP_KERNEL
);
1102 skb_reserve(skb
, NET_IP_ALIGN
);
1103 rxdr
->buffer_info
[i
].skb
= skb
;
1104 rxdr
->buffer_info
[i
].length
= E1000_RXBUFFER_2048
;
1105 rxdr
->buffer_info
[i
].dma
=
1106 pci_map_single(pdev
, skb
->data
, E1000_RXBUFFER_2048
,
1107 PCI_DMA_FROMDEVICE
);
1108 rx_desc
->buffer_addr
= cpu_to_le64(rxdr
->buffer_info
[i
].dma
);
1109 memset(skb
->data
, 0x00, skb
->len
);
1115 e1000_free_desc_rings(adapter
);
1119 static void e1000_phy_disable_receiver(struct e1000_adapter
*adapter
)
1121 struct e1000_hw
*hw
= &adapter
->hw
;
1123 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1124 e1000_write_phy_reg(hw
, 29, 0x001F);
1125 e1000_write_phy_reg(hw
, 30, 0x8FFC);
1126 e1000_write_phy_reg(hw
, 29, 0x001A);
1127 e1000_write_phy_reg(hw
, 30, 0x8FF0);
1130 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter
*adapter
)
1132 struct e1000_hw
*hw
= &adapter
->hw
;
1135 /* Because we reset the PHY above, we need to re-force TX_CLK in the
1136 * Extended PHY Specific Control Register to 25MHz clock. This
1137 * value defaults back to a 2.5MHz clock when the PHY is reset.
1139 e1000_read_phy_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_reg
);
1140 phy_reg
|= M88E1000_EPSCR_TX_CLK_25
;
1141 e1000_write_phy_reg(hw
,
1142 M88E1000_EXT_PHY_SPEC_CTRL
, phy_reg
);
1144 /* In addition, because of the s/w reset above, we need to enable
1145 * CRS on TX. This must be set for both full and half duplex
1148 e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_reg
);
1149 phy_reg
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
1150 e1000_write_phy_reg(hw
,
1151 M88E1000_PHY_SPEC_CTRL
, phy_reg
);
1154 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter
*adapter
)
1156 struct e1000_hw
*hw
= &adapter
->hw
;
1160 /* Setup the Device Control Register for PHY loopback test. */
1162 ctrl_reg
= er32(CTRL
);
1163 ctrl_reg
|= (E1000_CTRL_ILOS
| /* Invert Loss-Of-Signal */
1164 E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1165 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1166 E1000_CTRL_SPD_1000
| /* Force Speed to 1000 */
1167 E1000_CTRL_FD
); /* Force Duplex to FULL */
1169 ew32(CTRL
, ctrl_reg
);
1171 /* Read the PHY Specific Control Register (0x10) */
1172 e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_reg
);
1174 /* Clear Auto-Crossover bits in PHY Specific Control Register
1177 phy_reg
&= ~M88E1000_PSCR_AUTO_X_MODE
;
1178 e1000_write_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, phy_reg
);
1180 /* Perform software reset on the PHY */
1181 e1000_phy_reset(hw
);
1183 /* Have to setup TX_CLK and TX_CRS after software reset */
1184 e1000_phy_reset_clk_and_crs(adapter
);
1186 e1000_write_phy_reg(hw
, PHY_CTRL
, 0x8100);
1188 /* Wait for reset to complete. */
1191 /* Have to setup TX_CLK and TX_CRS after software reset */
1192 e1000_phy_reset_clk_and_crs(adapter
);
1194 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1195 e1000_phy_disable_receiver(adapter
);
1197 /* Set the loopback bit in the PHY control register. */
1198 e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_reg
);
1199 phy_reg
|= MII_CR_LOOPBACK
;
1200 e1000_write_phy_reg(hw
, PHY_CTRL
, phy_reg
);
1202 /* Setup TX_CLK and TX_CRS one more time. */
1203 e1000_phy_reset_clk_and_crs(adapter
);
1205 /* Check Phy Configuration */
1206 e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_reg
);
1207 if (phy_reg
!= 0x4100)
1210 e1000_read_phy_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_reg
);
1211 if (phy_reg
!= 0x0070)
1214 e1000_read_phy_reg(hw
, 29, &phy_reg
);
1215 if (phy_reg
!= 0x001A)
1221 static int e1000_integrated_phy_loopback(struct e1000_adapter
*adapter
)
1223 struct e1000_hw
*hw
= &adapter
->hw
;
1227 hw
->autoneg
= false;
1229 if (hw
->phy_type
== e1000_phy_m88
) {
1230 /* Auto-MDI/MDIX Off */
1231 e1000_write_phy_reg(hw
,
1232 M88E1000_PHY_SPEC_CTRL
, 0x0808);
1233 /* reset to update Auto-MDI/MDIX */
1234 e1000_write_phy_reg(hw
, PHY_CTRL
, 0x9140);
1236 e1000_write_phy_reg(hw
, PHY_CTRL
, 0x8140);
1239 ctrl_reg
= er32(CTRL
);
1241 /* force 1000, set loopback */
1242 e1000_write_phy_reg(hw
, PHY_CTRL
, 0x4140);
1244 /* Now set up the MAC to the same speed/duplex as the PHY. */
1245 ctrl_reg
= er32(CTRL
);
1246 ctrl_reg
&= ~E1000_CTRL_SPD_SEL
; /* Clear the speed sel bits */
1247 ctrl_reg
|= (E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1248 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1249 E1000_CTRL_SPD_1000
|/* Force Speed to 1000 */
1250 E1000_CTRL_FD
); /* Force Duplex to FULL */
1252 if (hw
->media_type
== e1000_media_type_copper
&&
1253 hw
->phy_type
== e1000_phy_m88
)
1254 ctrl_reg
|= E1000_CTRL_ILOS
; /* Invert Loss of Signal */
1256 /* Set the ILOS bit on the fiber Nic is half
1257 * duplex link is detected. */
1258 stat_reg
= er32(STATUS
);
1259 if ((stat_reg
& E1000_STATUS_FD
) == 0)
1260 ctrl_reg
|= (E1000_CTRL_ILOS
| E1000_CTRL_SLU
);
1263 ew32(CTRL
, ctrl_reg
);
1265 /* Disable the receiver on the PHY so when a cable is plugged in, the
1266 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1268 if (hw
->phy_type
== e1000_phy_m88
)
1269 e1000_phy_disable_receiver(adapter
);
1276 static int e1000_set_phy_loopback(struct e1000_adapter
*adapter
)
1278 struct e1000_hw
*hw
= &adapter
->hw
;
1282 switch (hw
->mac_type
) {
1284 if (hw
->media_type
== e1000_media_type_copper
) {
1285 /* Attempt to setup Loopback mode on Non-integrated PHY.
1286 * Some PHY registers get corrupted at random, so
1287 * attempt this 10 times.
1289 while (e1000_nonintegrated_phy_loopback(adapter
) &&
1299 case e1000_82545_rev_3
:
1301 case e1000_82546_rev_3
:
1303 case e1000_82541_rev_2
:
1305 case e1000_82547_rev_2
:
1306 return e1000_integrated_phy_loopback(adapter
);
1309 /* Default PHY loopback work is to read the MII
1310 * control register and assert bit 14 (loopback mode).
1312 e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_reg
);
1313 phy_reg
|= MII_CR_LOOPBACK
;
1314 e1000_write_phy_reg(hw
, PHY_CTRL
, phy_reg
);
1322 static int e1000_setup_loopback_test(struct e1000_adapter
*adapter
)
1324 struct e1000_hw
*hw
= &adapter
->hw
;
1327 if (hw
->media_type
== e1000_media_type_fiber
||
1328 hw
->media_type
== e1000_media_type_internal_serdes
) {
1329 switch (hw
->mac_type
) {
1332 case e1000_82545_rev_3
:
1333 case e1000_82546_rev_3
:
1334 return e1000_set_phy_loopback(adapter
);
1338 rctl
|= E1000_RCTL_LBM_TCVR
;
1342 } else if (hw
->media_type
== e1000_media_type_copper
)
1343 return e1000_set_phy_loopback(adapter
);
1348 static void e1000_loopback_cleanup(struct e1000_adapter
*adapter
)
1350 struct e1000_hw
*hw
= &adapter
->hw
;
1355 rctl
&= ~(E1000_RCTL_LBM_TCVR
| E1000_RCTL_LBM_MAC
);
1358 switch (hw
->mac_type
) {
1361 case e1000_82545_rev_3
:
1362 case e1000_82546_rev_3
:
1365 e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_reg
);
1366 if (phy_reg
& MII_CR_LOOPBACK
) {
1367 phy_reg
&= ~MII_CR_LOOPBACK
;
1368 e1000_write_phy_reg(hw
, PHY_CTRL
, phy_reg
);
1369 e1000_phy_reset(hw
);
1375 static void e1000_create_lbtest_frame(struct sk_buff
*skb
,
1376 unsigned int frame_size
)
1378 memset(skb
->data
, 0xFF, frame_size
);
1380 memset(&skb
->data
[frame_size
/ 2], 0xAA, frame_size
/ 2 - 1);
1381 memset(&skb
->data
[frame_size
/ 2 + 10], 0xBE, 1);
1382 memset(&skb
->data
[frame_size
/ 2 + 12], 0xAF, 1);
1385 static int e1000_check_lbtest_frame(struct sk_buff
*skb
,
1386 unsigned int frame_size
)
1389 if (*(skb
->data
+ 3) == 0xFF) {
1390 if ((*(skb
->data
+ frame_size
/ 2 + 10) == 0xBE) &&
1391 (*(skb
->data
+ frame_size
/ 2 + 12) == 0xAF)) {
1398 static int e1000_run_loopback_test(struct e1000_adapter
*adapter
)
1400 struct e1000_hw
*hw
= &adapter
->hw
;
1401 struct e1000_tx_ring
*txdr
= &adapter
->test_tx_ring
;
1402 struct e1000_rx_ring
*rxdr
= &adapter
->test_rx_ring
;
1403 struct pci_dev
*pdev
= adapter
->pdev
;
1404 int i
, j
, k
, l
, lc
, good_cnt
, ret_val
=0;
1407 ew32(RDT
, rxdr
->count
- 1);
1409 /* Calculate the loop count based on the largest descriptor ring
1410 * The idea is to wrap the largest ring a number of times using 64
1411 * send/receive pairs during each loop
1414 if (rxdr
->count
<= txdr
->count
)
1415 lc
= ((txdr
->count
/ 64) * 2) + 1;
1417 lc
= ((rxdr
->count
/ 64) * 2) + 1;
1420 for (j
= 0; j
<= lc
; j
++) { /* loop count loop */
1421 for (i
= 0; i
< 64; i
++) { /* send the packets */
1422 e1000_create_lbtest_frame(txdr
->buffer_info
[i
].skb
,
1424 pci_dma_sync_single_for_device(pdev
,
1425 txdr
->buffer_info
[k
].dma
,
1426 txdr
->buffer_info
[k
].length
,
1428 if (unlikely(++k
== txdr
->count
)) k
= 0;
1432 time
= jiffies
; /* set the start time for the receive */
1434 do { /* receive the sent packets */
1435 pci_dma_sync_single_for_cpu(pdev
,
1436 rxdr
->buffer_info
[l
].dma
,
1437 rxdr
->buffer_info
[l
].length
,
1438 PCI_DMA_FROMDEVICE
);
1440 ret_val
= e1000_check_lbtest_frame(
1441 rxdr
->buffer_info
[l
].skb
,
1445 if (unlikely(++l
== rxdr
->count
)) l
= 0;
1446 /* time + 20 msecs (200 msecs on 2.4) is more than
1447 * enough time to complete the receives, if it's
1448 * exceeded, break and error off
1450 } while (good_cnt
< 64 && jiffies
< (time
+ 20));
1451 if (good_cnt
!= 64) {
1452 ret_val
= 13; /* ret_val is the same as mis-compare */
1455 if (jiffies
>= (time
+ 2)) {
1456 ret_val
= 14; /* error code for time out error */
1459 } /* end loop count loop */
1463 static int e1000_loopback_test(struct e1000_adapter
*adapter
, u64
*data
)
1465 *data
= e1000_setup_desc_rings(adapter
);
1468 *data
= e1000_setup_loopback_test(adapter
);
1471 *data
= e1000_run_loopback_test(adapter
);
1472 e1000_loopback_cleanup(adapter
);
1475 e1000_free_desc_rings(adapter
);
1480 static int e1000_link_test(struct e1000_adapter
*adapter
, u64
*data
)
1482 struct e1000_hw
*hw
= &adapter
->hw
;
1484 if (hw
->media_type
== e1000_media_type_internal_serdes
) {
1486 hw
->serdes_has_link
= false;
1488 /* On some blade server designs, link establishment
1489 * could take as long as 2-3 minutes */
1491 e1000_check_for_link(hw
);
1492 if (hw
->serdes_has_link
)
1495 } while (i
++ < 3750);
1499 e1000_check_for_link(hw
);
1500 if (hw
->autoneg
) /* if auto_neg is set wait for it */
1503 if (!(er32(STATUS
) & E1000_STATUS_LU
)) {
1510 static int e1000_get_sset_count(struct net_device
*netdev
, int sset
)
1514 return E1000_TEST_LEN
;
1516 return E1000_STATS_LEN
;
1522 static void e1000_diag_test(struct net_device
*netdev
,
1523 struct ethtool_test
*eth_test
, u64
*data
)
1525 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1526 struct e1000_hw
*hw
= &adapter
->hw
;
1527 bool if_running
= netif_running(netdev
);
1529 set_bit(__E1000_TESTING
, &adapter
->flags
);
1530 if (eth_test
->flags
== ETH_TEST_FL_OFFLINE
) {
1533 /* save speed, duplex, autoneg settings */
1534 u16 autoneg_advertised
= hw
->autoneg_advertised
;
1535 u8 forced_speed_duplex
= hw
->forced_speed_duplex
;
1536 u8 autoneg
= hw
->autoneg
;
1538 DPRINTK(HW
, INFO
, "offline testing starting\n");
1540 /* Link test performed before hardware reset so autoneg doesn't
1541 * interfere with test result */
1542 if (e1000_link_test(adapter
, &data
[4]))
1543 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1546 /* indicate we're in test mode */
1549 e1000_reset(adapter
);
1551 if (e1000_reg_test(adapter
, &data
[0]))
1552 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1554 e1000_reset(adapter
);
1555 if (e1000_eeprom_test(adapter
, &data
[1]))
1556 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1558 e1000_reset(adapter
);
1559 if (e1000_intr_test(adapter
, &data
[2]))
1560 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1562 e1000_reset(adapter
);
1563 /* make sure the phy is powered up */
1564 e1000_power_up_phy(adapter
);
1565 if (e1000_loopback_test(adapter
, &data
[3]))
1566 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1568 /* restore speed, duplex, autoneg settings */
1569 hw
->autoneg_advertised
= autoneg_advertised
;
1570 hw
->forced_speed_duplex
= forced_speed_duplex
;
1571 hw
->autoneg
= autoneg
;
1573 e1000_reset(adapter
);
1574 clear_bit(__E1000_TESTING
, &adapter
->flags
);
1578 DPRINTK(HW
, INFO
, "online testing starting\n");
1580 if (e1000_link_test(adapter
, &data
[4]))
1581 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1583 /* Online tests aren't run; pass by default */
1589 clear_bit(__E1000_TESTING
, &adapter
->flags
);
1591 msleep_interruptible(4 * 1000);
1594 static int e1000_wol_exclusion(struct e1000_adapter
*adapter
,
1595 struct ethtool_wolinfo
*wol
)
1597 struct e1000_hw
*hw
= &adapter
->hw
;
1598 int retval
= 1; /* fail by default */
1600 switch (hw
->device_id
) {
1601 case E1000_DEV_ID_82542
:
1602 case E1000_DEV_ID_82543GC_FIBER
:
1603 case E1000_DEV_ID_82543GC_COPPER
:
1604 case E1000_DEV_ID_82544EI_FIBER
:
1605 case E1000_DEV_ID_82546EB_QUAD_COPPER
:
1606 case E1000_DEV_ID_82545EM_FIBER
:
1607 case E1000_DEV_ID_82545EM_COPPER
:
1608 case E1000_DEV_ID_82546GB_QUAD_COPPER
:
1609 case E1000_DEV_ID_82546GB_PCIE
:
1610 /* these don't support WoL at all */
1613 case E1000_DEV_ID_82546EB_FIBER
:
1614 case E1000_DEV_ID_82546GB_FIBER
:
1615 /* Wake events not supported on port B */
1616 if (er32(STATUS
) & E1000_STATUS_FUNC_1
) {
1620 /* return success for non excluded adapter ports */
1623 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1624 /* quad port adapters only support WoL on port A */
1625 if (!adapter
->quad_port_a
) {
1629 /* return success for non excluded adapter ports */
1633 /* dual port cards only support WoL on port A from now on
1634 * unless it was enabled in the eeprom for port B
1635 * so exclude FUNC_1 ports from having WoL enabled */
1636 if (er32(STATUS
) & E1000_STATUS_FUNC_1
&&
1637 !adapter
->eeprom_wol
) {
1648 static void e1000_get_wol(struct net_device
*netdev
,
1649 struct ethtool_wolinfo
*wol
)
1651 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1652 struct e1000_hw
*hw
= &adapter
->hw
;
1654 wol
->supported
= WAKE_UCAST
| WAKE_MCAST
|
1655 WAKE_BCAST
| WAKE_MAGIC
;
1658 /* this function will set ->supported = 0 and return 1 if wol is not
1659 * supported by this hardware */
1660 if (e1000_wol_exclusion(adapter
, wol
) ||
1661 !device_can_wakeup(&adapter
->pdev
->dev
))
1664 /* apply any specific unsupported masks here */
1665 switch (hw
->device_id
) {
1666 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1667 /* KSP3 does not suppport UCAST wake-ups */
1668 wol
->supported
&= ~WAKE_UCAST
;
1670 if (adapter
->wol
& E1000_WUFC_EX
)
1671 DPRINTK(DRV
, ERR
, "Interface does not support "
1672 "directed (unicast) frame wake-up packets\n");
1678 if (adapter
->wol
& E1000_WUFC_EX
)
1679 wol
->wolopts
|= WAKE_UCAST
;
1680 if (adapter
->wol
& E1000_WUFC_MC
)
1681 wol
->wolopts
|= WAKE_MCAST
;
1682 if (adapter
->wol
& E1000_WUFC_BC
)
1683 wol
->wolopts
|= WAKE_BCAST
;
1684 if (adapter
->wol
& E1000_WUFC_MAG
)
1685 wol
->wolopts
|= WAKE_MAGIC
;
1690 static int e1000_set_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
1692 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1693 struct e1000_hw
*hw
= &adapter
->hw
;
1695 if (wol
->wolopts
& (WAKE_PHY
| WAKE_ARP
| WAKE_MAGICSECURE
))
1698 if (e1000_wol_exclusion(adapter
, wol
) ||
1699 !device_can_wakeup(&adapter
->pdev
->dev
))
1700 return wol
->wolopts
? -EOPNOTSUPP
: 0;
1702 switch (hw
->device_id
) {
1703 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1704 if (wol
->wolopts
& WAKE_UCAST
) {
1705 DPRINTK(DRV
, ERR
, "Interface does not support "
1706 "directed (unicast) frame wake-up packets\n");
1714 /* these settings will always override what we currently have */
1717 if (wol
->wolopts
& WAKE_UCAST
)
1718 adapter
->wol
|= E1000_WUFC_EX
;
1719 if (wol
->wolopts
& WAKE_MCAST
)
1720 adapter
->wol
|= E1000_WUFC_MC
;
1721 if (wol
->wolopts
& WAKE_BCAST
)
1722 adapter
->wol
|= E1000_WUFC_BC
;
1723 if (wol
->wolopts
& WAKE_MAGIC
)
1724 adapter
->wol
|= E1000_WUFC_MAG
;
1726 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
1731 /* toggle LED 4 times per second = 2 "blinks" per second */
1732 #define E1000_ID_INTERVAL (HZ/4)
1734 /* bit defines for adapter->led_status */
1735 #define E1000_LED_ON 0
1737 static void e1000_led_blink_callback(unsigned long data
)
1739 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
1740 struct e1000_hw
*hw
= &adapter
->hw
;
1742 if (test_and_change_bit(E1000_LED_ON
, &adapter
->led_status
))
1747 mod_timer(&adapter
->blink_timer
, jiffies
+ E1000_ID_INTERVAL
);
1750 static int e1000_phys_id(struct net_device
*netdev
, u32 data
)
1752 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1753 struct e1000_hw
*hw
= &adapter
->hw
;
1758 if (!adapter
->blink_timer
.function
) {
1759 init_timer(&adapter
->blink_timer
);
1760 adapter
->blink_timer
.function
= e1000_led_blink_callback
;
1761 adapter
->blink_timer
.data
= (unsigned long)adapter
;
1763 e1000_setup_led(hw
);
1764 mod_timer(&adapter
->blink_timer
, jiffies
);
1765 msleep_interruptible(data
* 1000);
1766 del_timer_sync(&adapter
->blink_timer
);
1769 clear_bit(E1000_LED_ON
, &adapter
->led_status
);
1770 e1000_cleanup_led(hw
);
1775 static int e1000_get_coalesce(struct net_device
*netdev
,
1776 struct ethtool_coalesce
*ec
)
1778 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1780 if (adapter
->hw
.mac_type
< e1000_82545
)
1783 if (adapter
->itr_setting
<= 3)
1784 ec
->rx_coalesce_usecs
= adapter
->itr_setting
;
1786 ec
->rx_coalesce_usecs
= 1000000 / adapter
->itr_setting
;
1791 static int e1000_set_coalesce(struct net_device
*netdev
,
1792 struct ethtool_coalesce
*ec
)
1794 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1795 struct e1000_hw
*hw
= &adapter
->hw
;
1797 if (hw
->mac_type
< e1000_82545
)
1800 if ((ec
->rx_coalesce_usecs
> E1000_MAX_ITR_USECS
) ||
1801 ((ec
->rx_coalesce_usecs
> 3) &&
1802 (ec
->rx_coalesce_usecs
< E1000_MIN_ITR_USECS
)) ||
1803 (ec
->rx_coalesce_usecs
== 2))
1806 if (ec
->rx_coalesce_usecs
<= 3) {
1807 adapter
->itr
= 20000;
1808 adapter
->itr_setting
= ec
->rx_coalesce_usecs
;
1810 adapter
->itr
= (1000000 / ec
->rx_coalesce_usecs
);
1811 adapter
->itr_setting
= adapter
->itr
& ~3;
1814 if (adapter
->itr_setting
!= 0)
1815 ew32(ITR
, 1000000000 / (adapter
->itr
* 256));
1822 static int e1000_nway_reset(struct net_device
*netdev
)
1824 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1825 if (netif_running(netdev
))
1826 e1000_reinit_locked(adapter
);
1830 static void e1000_get_ethtool_stats(struct net_device
*netdev
,
1831 struct ethtool_stats
*stats
, u64
*data
)
1833 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1836 e1000_update_stats(adapter
);
1837 for (i
= 0; i
< E1000_GLOBAL_STATS_LEN
; i
++) {
1838 char *p
= (char *)adapter
+e1000_gstrings_stats
[i
].stat_offset
;
1839 data
[i
] = (e1000_gstrings_stats
[i
].sizeof_stat
==
1840 sizeof(u64
)) ? *(u64
*)p
: *(u32
*)p
;
1842 /* BUG_ON(i != E1000_STATS_LEN); */
1845 static void e1000_get_strings(struct net_device
*netdev
, u32 stringset
,
1851 switch (stringset
) {
1853 memcpy(data
, *e1000_gstrings_test
,
1854 sizeof(e1000_gstrings_test
));
1857 for (i
= 0; i
< E1000_GLOBAL_STATS_LEN
; i
++) {
1858 memcpy(p
, e1000_gstrings_stats
[i
].stat_string
,
1860 p
+= ETH_GSTRING_LEN
;
1862 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1867 static const struct ethtool_ops e1000_ethtool_ops
= {
1868 .get_settings
= e1000_get_settings
,
1869 .set_settings
= e1000_set_settings
,
1870 .get_drvinfo
= e1000_get_drvinfo
,
1871 .get_regs_len
= e1000_get_regs_len
,
1872 .get_regs
= e1000_get_regs
,
1873 .get_wol
= e1000_get_wol
,
1874 .set_wol
= e1000_set_wol
,
1875 .get_msglevel
= e1000_get_msglevel
,
1876 .set_msglevel
= e1000_set_msglevel
,
1877 .nway_reset
= e1000_nway_reset
,
1878 .get_link
= ethtool_op_get_link
,
1879 .get_eeprom_len
= e1000_get_eeprom_len
,
1880 .get_eeprom
= e1000_get_eeprom
,
1881 .set_eeprom
= e1000_set_eeprom
,
1882 .get_ringparam
= e1000_get_ringparam
,
1883 .set_ringparam
= e1000_set_ringparam
,
1884 .get_pauseparam
= e1000_get_pauseparam
,
1885 .set_pauseparam
= e1000_set_pauseparam
,
1886 .get_rx_csum
= e1000_get_rx_csum
,
1887 .set_rx_csum
= e1000_set_rx_csum
,
1888 .get_tx_csum
= e1000_get_tx_csum
,
1889 .set_tx_csum
= e1000_set_tx_csum
,
1890 .set_sg
= ethtool_op_set_sg
,
1891 .set_tso
= e1000_set_tso
,
1892 .self_test
= e1000_diag_test
,
1893 .get_strings
= e1000_get_strings
,
1894 .phys_id
= e1000_phys_id
,
1895 .get_ethtool_stats
= e1000_get_ethtool_stats
,
1896 .get_sset_count
= e1000_get_sset_count
,
1897 .get_coalesce
= e1000_get_coalesce
,
1898 .set_coalesce
= e1000_set_coalesce
,
1901 void e1000_set_ethtool_ops(struct net_device
*netdev
)
1903 SET_ETHTOOL_OPS(netdev
, &e1000_ethtool_ops
);