1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 #include <net/ip6_checksum.h>
32 char e1000_driver_name
[] = "e1000";
33 static char e1000_driver_string
[] = "Intel(R) PRO/1000 Network Driver";
34 #define DRV_VERSION "7.3.21-k5-NAPI"
35 const char e1000_driver_version
[] = DRV_VERSION
;
36 static const char e1000_copyright
[] = "Copyright (c) 1999-2006 Intel Corporation.";
38 /* e1000_pci_tbl - PCI Device ID Table
40 * Last entry must be all 0s
43 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
45 static struct pci_device_id e1000_pci_tbl
[] = {
46 INTEL_E1000_ETHERNET_DEVICE(0x1000),
47 INTEL_E1000_ETHERNET_DEVICE(0x1001),
48 INTEL_E1000_ETHERNET_DEVICE(0x1004),
49 INTEL_E1000_ETHERNET_DEVICE(0x1008),
50 INTEL_E1000_ETHERNET_DEVICE(0x1009),
51 INTEL_E1000_ETHERNET_DEVICE(0x100C),
52 INTEL_E1000_ETHERNET_DEVICE(0x100D),
53 INTEL_E1000_ETHERNET_DEVICE(0x100E),
54 INTEL_E1000_ETHERNET_DEVICE(0x100F),
55 INTEL_E1000_ETHERNET_DEVICE(0x1010),
56 INTEL_E1000_ETHERNET_DEVICE(0x1011),
57 INTEL_E1000_ETHERNET_DEVICE(0x1012),
58 INTEL_E1000_ETHERNET_DEVICE(0x1013),
59 INTEL_E1000_ETHERNET_DEVICE(0x1014),
60 INTEL_E1000_ETHERNET_DEVICE(0x1015),
61 INTEL_E1000_ETHERNET_DEVICE(0x1016),
62 INTEL_E1000_ETHERNET_DEVICE(0x1017),
63 INTEL_E1000_ETHERNET_DEVICE(0x1018),
64 INTEL_E1000_ETHERNET_DEVICE(0x1019),
65 INTEL_E1000_ETHERNET_DEVICE(0x101A),
66 INTEL_E1000_ETHERNET_DEVICE(0x101D),
67 INTEL_E1000_ETHERNET_DEVICE(0x101E),
68 INTEL_E1000_ETHERNET_DEVICE(0x1026),
69 INTEL_E1000_ETHERNET_DEVICE(0x1027),
70 INTEL_E1000_ETHERNET_DEVICE(0x1028),
71 INTEL_E1000_ETHERNET_DEVICE(0x1075),
72 INTEL_E1000_ETHERNET_DEVICE(0x1076),
73 INTEL_E1000_ETHERNET_DEVICE(0x1077),
74 INTEL_E1000_ETHERNET_DEVICE(0x1078),
75 INTEL_E1000_ETHERNET_DEVICE(0x1079),
76 INTEL_E1000_ETHERNET_DEVICE(0x107A),
77 INTEL_E1000_ETHERNET_DEVICE(0x107B),
78 INTEL_E1000_ETHERNET_DEVICE(0x107C),
79 INTEL_E1000_ETHERNET_DEVICE(0x108A),
80 INTEL_E1000_ETHERNET_DEVICE(0x1099),
81 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
82 /* required last entry */
86 MODULE_DEVICE_TABLE(pci
, e1000_pci_tbl
);
88 int e1000_up(struct e1000_adapter
*adapter
);
89 void e1000_down(struct e1000_adapter
*adapter
);
90 void e1000_reinit_locked(struct e1000_adapter
*adapter
);
91 void e1000_reset(struct e1000_adapter
*adapter
);
92 int e1000_set_spd_dplx(struct e1000_adapter
*adapter
, u16 spddplx
);
93 int e1000_setup_all_tx_resources(struct e1000_adapter
*adapter
);
94 int e1000_setup_all_rx_resources(struct e1000_adapter
*adapter
);
95 void e1000_free_all_tx_resources(struct e1000_adapter
*adapter
);
96 void e1000_free_all_rx_resources(struct e1000_adapter
*adapter
);
97 static int e1000_setup_tx_resources(struct e1000_adapter
*adapter
,
98 struct e1000_tx_ring
*txdr
);
99 static int e1000_setup_rx_resources(struct e1000_adapter
*adapter
,
100 struct e1000_rx_ring
*rxdr
);
101 static void e1000_free_tx_resources(struct e1000_adapter
*adapter
,
102 struct e1000_tx_ring
*tx_ring
);
103 static void e1000_free_rx_resources(struct e1000_adapter
*adapter
,
104 struct e1000_rx_ring
*rx_ring
);
105 void e1000_update_stats(struct e1000_adapter
*adapter
);
107 static int e1000_init_module(void);
108 static void e1000_exit_module(void);
109 static int e1000_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
);
110 static void __devexit
e1000_remove(struct pci_dev
*pdev
);
111 static int e1000_alloc_queues(struct e1000_adapter
*adapter
);
112 static int e1000_sw_init(struct e1000_adapter
*adapter
);
113 static int e1000_open(struct net_device
*netdev
);
114 static int e1000_close(struct net_device
*netdev
);
115 static void e1000_configure_tx(struct e1000_adapter
*adapter
);
116 static void e1000_configure_rx(struct e1000_adapter
*adapter
);
117 static void e1000_setup_rctl(struct e1000_adapter
*adapter
);
118 static void e1000_clean_all_tx_rings(struct e1000_adapter
*adapter
);
119 static void e1000_clean_all_rx_rings(struct e1000_adapter
*adapter
);
120 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
,
121 struct e1000_tx_ring
*tx_ring
);
122 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
,
123 struct e1000_rx_ring
*rx_ring
);
124 static void e1000_set_rx_mode(struct net_device
*netdev
);
125 static void e1000_update_phy_info(unsigned long data
);
126 static void e1000_watchdog(unsigned long data
);
127 static void e1000_82547_tx_fifo_stall(unsigned long data
);
128 static netdev_tx_t
e1000_xmit_frame(struct sk_buff
*skb
,
129 struct net_device
*netdev
);
130 static struct net_device_stats
* e1000_get_stats(struct net_device
*netdev
);
131 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
);
132 static int e1000_set_mac(struct net_device
*netdev
, void *p
);
133 static irqreturn_t
e1000_intr(int irq
, void *data
);
134 static bool e1000_clean_tx_irq(struct e1000_adapter
*adapter
,
135 struct e1000_tx_ring
*tx_ring
);
136 static int e1000_clean(struct napi_struct
*napi
, int budget
);
137 static bool e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
138 struct e1000_rx_ring
*rx_ring
,
139 int *work_done
, int work_to_do
);
140 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter
*adapter
,
141 struct e1000_rx_ring
*rx_ring
,
142 int *work_done
, int work_to_do
);
143 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
144 struct e1000_rx_ring
*rx_ring
,
146 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter
*adapter
,
147 struct e1000_rx_ring
*rx_ring
,
149 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
);
150 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
152 static void e1000_enter_82542_rst(struct e1000_adapter
*adapter
);
153 static void e1000_leave_82542_rst(struct e1000_adapter
*adapter
);
154 static void e1000_tx_timeout(struct net_device
*dev
);
155 static void e1000_reset_task(struct work_struct
*work
);
156 static void e1000_smartspeed(struct e1000_adapter
*adapter
);
157 static int e1000_82547_fifo_workaround(struct e1000_adapter
*adapter
,
158 struct sk_buff
*skb
);
160 static void e1000_vlan_rx_register(struct net_device
*netdev
, struct vlan_group
*grp
);
161 static void e1000_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
);
162 static void e1000_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
);
163 static void e1000_restore_vlan(struct e1000_adapter
*adapter
);
166 static int e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
);
167 static int e1000_resume(struct pci_dev
*pdev
);
169 static void e1000_shutdown(struct pci_dev
*pdev
);
171 #ifdef CONFIG_NET_POLL_CONTROLLER
172 /* for netdump / net console */
173 static void e1000_netpoll (struct net_device
*netdev
);
176 #define COPYBREAK_DEFAULT 256
177 static unsigned int copybreak __read_mostly
= COPYBREAK_DEFAULT
;
178 module_param(copybreak
, uint
, 0644);
179 MODULE_PARM_DESC(copybreak
,
180 "Maximum size of packet that is copied to a new buffer on receive");
182 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
183 pci_channel_state_t state
);
184 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
);
185 static void e1000_io_resume(struct pci_dev
*pdev
);
187 static struct pci_error_handlers e1000_err_handler
= {
188 .error_detected
= e1000_io_error_detected
,
189 .slot_reset
= e1000_io_slot_reset
,
190 .resume
= e1000_io_resume
,
193 static struct pci_driver e1000_driver
= {
194 .name
= e1000_driver_name
,
195 .id_table
= e1000_pci_tbl
,
196 .probe
= e1000_probe
,
197 .remove
= __devexit_p(e1000_remove
),
199 /* Power Managment Hooks */
200 .suspend
= e1000_suspend
,
201 .resume
= e1000_resume
,
203 .shutdown
= e1000_shutdown
,
204 .err_handler
= &e1000_err_handler
207 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
208 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
209 MODULE_LICENSE("GPL");
210 MODULE_VERSION(DRV_VERSION
);
212 static int debug
= NETIF_MSG_DRV
| NETIF_MSG_PROBE
;
213 module_param(debug
, int, 0);
214 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
217 * e1000_init_module - Driver Registration Routine
219 * e1000_init_module is the first routine called when the driver is
220 * loaded. All it does is register with the PCI subsystem.
223 static int __init
e1000_init_module(void)
226 printk(KERN_INFO
"%s - version %s\n",
227 e1000_driver_string
, e1000_driver_version
);
229 printk(KERN_INFO
"%s\n", e1000_copyright
);
231 ret
= pci_register_driver(&e1000_driver
);
232 if (copybreak
!= COPYBREAK_DEFAULT
) {
234 printk(KERN_INFO
"e1000: copybreak disabled\n");
236 printk(KERN_INFO
"e1000: copybreak enabled for "
237 "packets <= %u bytes\n", copybreak
);
242 module_init(e1000_init_module
);
245 * e1000_exit_module - Driver Exit Cleanup Routine
247 * e1000_exit_module is called just before the driver is removed
251 static void __exit
e1000_exit_module(void)
253 pci_unregister_driver(&e1000_driver
);
256 module_exit(e1000_exit_module
);
258 static int e1000_request_irq(struct e1000_adapter
*adapter
)
260 struct net_device
*netdev
= adapter
->netdev
;
261 irq_handler_t handler
= e1000_intr
;
262 int irq_flags
= IRQF_SHARED
;
265 err
= request_irq(adapter
->pdev
->irq
, handler
, irq_flags
, netdev
->name
,
269 "Unable to allocate interrupt Error: %d\n", err
);
275 static void e1000_free_irq(struct e1000_adapter
*adapter
)
277 struct net_device
*netdev
= adapter
->netdev
;
279 free_irq(adapter
->pdev
->irq
, netdev
);
283 * e1000_irq_disable - Mask off interrupt generation on the NIC
284 * @adapter: board private structure
287 static void e1000_irq_disable(struct e1000_adapter
*adapter
)
289 struct e1000_hw
*hw
= &adapter
->hw
;
293 synchronize_irq(adapter
->pdev
->irq
);
297 * e1000_irq_enable - Enable default interrupt generation settings
298 * @adapter: board private structure
301 static void e1000_irq_enable(struct e1000_adapter
*adapter
)
303 struct e1000_hw
*hw
= &adapter
->hw
;
305 ew32(IMS
, IMS_ENABLE_MASK
);
309 static void e1000_update_mng_vlan(struct e1000_adapter
*adapter
)
311 struct e1000_hw
*hw
= &adapter
->hw
;
312 struct net_device
*netdev
= adapter
->netdev
;
313 u16 vid
= hw
->mng_cookie
.vlan_id
;
314 u16 old_vid
= adapter
->mng_vlan_id
;
315 if (adapter
->vlgrp
) {
316 if (!vlan_group_get_device(adapter
->vlgrp
, vid
)) {
317 if (hw
->mng_cookie
.status
&
318 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) {
319 e1000_vlan_rx_add_vid(netdev
, vid
);
320 adapter
->mng_vlan_id
= vid
;
322 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
324 if ((old_vid
!= (u16
)E1000_MNG_VLAN_NONE
) &&
326 !vlan_group_get_device(adapter
->vlgrp
, old_vid
))
327 e1000_vlan_rx_kill_vid(netdev
, old_vid
);
329 adapter
->mng_vlan_id
= vid
;
333 static void e1000_init_manageability(struct e1000_adapter
*adapter
)
335 struct e1000_hw
*hw
= &adapter
->hw
;
337 if (adapter
->en_mng_pt
) {
338 u32 manc
= er32(MANC
);
340 /* disable hardware interception of ARP */
341 manc
&= ~(E1000_MANC_ARP_EN
);
347 static void e1000_release_manageability(struct e1000_adapter
*adapter
)
349 struct e1000_hw
*hw
= &adapter
->hw
;
351 if (adapter
->en_mng_pt
) {
352 u32 manc
= er32(MANC
);
354 /* re-enable hardware interception of ARP */
355 manc
|= E1000_MANC_ARP_EN
;
362 * e1000_configure - configure the hardware for RX and TX
363 * @adapter = private board structure
365 static void e1000_configure(struct e1000_adapter
*adapter
)
367 struct net_device
*netdev
= adapter
->netdev
;
370 e1000_set_rx_mode(netdev
);
372 e1000_restore_vlan(adapter
);
373 e1000_init_manageability(adapter
);
375 e1000_configure_tx(adapter
);
376 e1000_setup_rctl(adapter
);
377 e1000_configure_rx(adapter
);
378 /* call E1000_DESC_UNUSED which always leaves
379 * at least 1 descriptor unused to make sure
380 * next_to_use != next_to_clean */
381 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
382 struct e1000_rx_ring
*ring
= &adapter
->rx_ring
[i
];
383 adapter
->alloc_rx_buf(adapter
, ring
,
384 E1000_DESC_UNUSED(ring
));
387 adapter
->tx_queue_len
= netdev
->tx_queue_len
;
390 int e1000_up(struct e1000_adapter
*adapter
)
392 struct e1000_hw
*hw
= &adapter
->hw
;
394 /* hardware has been reset, we need to reload some things */
395 e1000_configure(adapter
);
397 clear_bit(__E1000_DOWN
, &adapter
->flags
);
399 napi_enable(&adapter
->napi
);
401 e1000_irq_enable(adapter
);
403 netif_wake_queue(adapter
->netdev
);
405 /* fire a link change interrupt to start the watchdog */
406 ew32(ICS
, E1000_ICS_LSC
);
411 * e1000_power_up_phy - restore link in case the phy was powered down
412 * @adapter: address of board private structure
414 * The phy may be powered down to save power and turn off link when the
415 * driver is unloaded and wake on lan is not enabled (among others)
416 * *** this routine MUST be followed by a call to e1000_reset ***
420 void e1000_power_up_phy(struct e1000_adapter
*adapter
)
422 struct e1000_hw
*hw
= &adapter
->hw
;
425 /* Just clear the power down bit to wake the phy back up */
426 if (hw
->media_type
== e1000_media_type_copper
) {
427 /* according to the manual, the phy will retain its
428 * settings across a power-down/up cycle */
429 e1000_read_phy_reg(hw
, PHY_CTRL
, &mii_reg
);
430 mii_reg
&= ~MII_CR_POWER_DOWN
;
431 e1000_write_phy_reg(hw
, PHY_CTRL
, mii_reg
);
435 static void e1000_power_down_phy(struct e1000_adapter
*adapter
)
437 struct e1000_hw
*hw
= &adapter
->hw
;
439 /* Power down the PHY so no link is implied when interface is down *
440 * The PHY cannot be powered down if any of the following is true *
443 * (c) SoL/IDER session is active */
444 if (!adapter
->wol
&& hw
->mac_type
>= e1000_82540
&&
445 hw
->media_type
== e1000_media_type_copper
) {
448 switch (hw
->mac_type
) {
451 case e1000_82545_rev_3
:
453 case e1000_82546_rev_3
:
455 case e1000_82541_rev_2
:
457 case e1000_82547_rev_2
:
458 if (er32(MANC
) & E1000_MANC_SMBUS_EN
)
464 e1000_read_phy_reg(hw
, PHY_CTRL
, &mii_reg
);
465 mii_reg
|= MII_CR_POWER_DOWN
;
466 e1000_write_phy_reg(hw
, PHY_CTRL
, mii_reg
);
473 void e1000_down(struct e1000_adapter
*adapter
)
475 struct e1000_hw
*hw
= &adapter
->hw
;
476 struct net_device
*netdev
= adapter
->netdev
;
479 /* signal that we're down so the interrupt handler does not
480 * reschedule our watchdog timer */
481 set_bit(__E1000_DOWN
, &adapter
->flags
);
483 /* disable receives in the hardware */
485 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
486 /* flush and sleep below */
488 netif_tx_disable(netdev
);
490 /* disable transmits in the hardware */
492 tctl
&= ~E1000_TCTL_EN
;
494 /* flush both disables and wait for them to finish */
498 napi_disable(&adapter
->napi
);
500 e1000_irq_disable(adapter
);
502 del_timer_sync(&adapter
->tx_fifo_stall_timer
);
503 del_timer_sync(&adapter
->watchdog_timer
);
504 del_timer_sync(&adapter
->phy_info_timer
);
506 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
507 adapter
->link_speed
= 0;
508 adapter
->link_duplex
= 0;
509 netif_carrier_off(netdev
);
511 e1000_reset(adapter
);
512 e1000_clean_all_tx_rings(adapter
);
513 e1000_clean_all_rx_rings(adapter
);
516 void e1000_reinit_locked(struct e1000_adapter
*adapter
)
518 WARN_ON(in_interrupt());
519 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
523 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
526 void e1000_reset(struct e1000_adapter
*adapter
)
528 struct e1000_hw
*hw
= &adapter
->hw
;
529 u32 pba
= 0, tx_space
, min_tx_space
, min_rx_space
;
530 bool legacy_pba_adjust
= false;
533 /* Repartition Pba for greater than 9k mtu
534 * To take effect CTRL.RST is required.
537 switch (hw
->mac_type
) {
538 case e1000_82542_rev2_0
:
539 case e1000_82542_rev2_1
:
544 case e1000_82541_rev_2
:
545 legacy_pba_adjust
= true;
549 case e1000_82545_rev_3
:
551 case e1000_82546_rev_3
:
555 case e1000_82547_rev_2
:
556 legacy_pba_adjust
= true;
559 case e1000_undefined
:
564 if (legacy_pba_adjust
) {
565 if (hw
->max_frame_size
> E1000_RXBUFFER_8192
)
566 pba
-= 8; /* allocate more FIFO for Tx */
568 if (hw
->mac_type
== e1000_82547
) {
569 adapter
->tx_fifo_head
= 0;
570 adapter
->tx_head_addr
= pba
<< E1000_TX_HEAD_ADDR_SHIFT
;
571 adapter
->tx_fifo_size
=
572 (E1000_PBA_40K
- pba
) << E1000_PBA_BYTES_SHIFT
;
573 atomic_set(&adapter
->tx_fifo_stall
, 0);
575 } else if (hw
->max_frame_size
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
576 /* adjust PBA for jumbo frames */
579 /* To maintain wire speed transmits, the Tx FIFO should be
580 * large enough to accommodate two full transmit packets,
581 * rounded up to the next 1KB and expressed in KB. Likewise,
582 * the Rx FIFO should be large enough to accommodate at least
583 * one full receive packet and is similarly rounded up and
584 * expressed in KB. */
586 /* upper 16 bits has Tx packet buffer allocation size in KB */
587 tx_space
= pba
>> 16;
588 /* lower 16 bits has Rx packet buffer allocation size in KB */
591 * the tx fifo also stores 16 bytes of information about the tx
592 * but don't include ethernet FCS because hardware appends it
594 min_tx_space
= (hw
->max_frame_size
+
595 sizeof(struct e1000_tx_desc
) -
597 min_tx_space
= ALIGN(min_tx_space
, 1024);
599 /* software strips receive CRC, so leave room for it */
600 min_rx_space
= hw
->max_frame_size
;
601 min_rx_space
= ALIGN(min_rx_space
, 1024);
604 /* If current Tx allocation is less than the min Tx FIFO size,
605 * and the min Tx FIFO size is less than the current Rx FIFO
606 * allocation, take space away from current Rx allocation */
607 if (tx_space
< min_tx_space
&&
608 ((min_tx_space
- tx_space
) < pba
)) {
609 pba
= pba
- (min_tx_space
- tx_space
);
611 /* PCI/PCIx hardware has PBA alignment constraints */
612 switch (hw
->mac_type
) {
613 case e1000_82545
... e1000_82546_rev_3
:
614 pba
&= ~(E1000_PBA_8K
- 1);
620 /* if short on rx space, rx wins and must trump tx
621 * adjustment or use Early Receive if available */
622 if (pba
< min_rx_space
)
630 * flow control settings:
631 * The high water mark must be low enough to fit one full frame
632 * (or the size used for early receive) above it in the Rx FIFO.
633 * Set it to the lower of:
634 * - 90% of the Rx FIFO size, and
635 * - the full Rx FIFO size minus the early receive size (for parts
636 * with ERT support assuming ERT set to E1000_ERT_2048), or
637 * - the full Rx FIFO size minus one full frame
639 hwm
= min(((pba
<< 10) * 9 / 10),
640 ((pba
<< 10) - hw
->max_frame_size
));
642 hw
->fc_high_water
= hwm
& 0xFFF8; /* 8-byte granularity */
643 hw
->fc_low_water
= hw
->fc_high_water
- 8;
644 hw
->fc_pause_time
= E1000_FC_PAUSE_TIME
;
646 hw
->fc
= hw
->original_fc
;
648 /* Allow time for pending master requests to run */
650 if (hw
->mac_type
>= e1000_82544
)
653 if (e1000_init_hw(hw
))
654 DPRINTK(PROBE
, ERR
, "Hardware Error\n");
655 e1000_update_mng_vlan(adapter
);
657 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
658 if (hw
->mac_type
>= e1000_82544
&&
660 hw
->autoneg_advertised
== ADVERTISE_1000_FULL
) {
661 u32 ctrl
= er32(CTRL
);
662 /* clear phy power management bit if we are in gig only mode,
663 * which if enabled will attempt negotiation to 100Mb, which
664 * can cause a loss of link at power off or driver unload */
665 ctrl
&= ~E1000_CTRL_SWDPIN3
;
669 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
670 ew32(VET
, ETHERNET_IEEE_VLAN_TYPE
);
672 e1000_reset_adaptive(hw
);
673 e1000_phy_get_info(hw
, &adapter
->phy_info
);
675 e1000_release_manageability(adapter
);
679 * Dump the eeprom for users having checksum issues
681 static void e1000_dump_eeprom(struct e1000_adapter
*adapter
)
683 struct net_device
*netdev
= adapter
->netdev
;
684 struct ethtool_eeprom eeprom
;
685 const struct ethtool_ops
*ops
= netdev
->ethtool_ops
;
688 u16 csum_old
, csum_new
= 0;
690 eeprom
.len
= ops
->get_eeprom_len(netdev
);
693 data
= kmalloc(eeprom
.len
, GFP_KERNEL
);
695 printk(KERN_ERR
"Unable to allocate memory to dump EEPROM"
700 ops
->get_eeprom(netdev
, &eeprom
, data
);
702 csum_old
= (data
[EEPROM_CHECKSUM_REG
* 2]) +
703 (data
[EEPROM_CHECKSUM_REG
* 2 + 1] << 8);
704 for (i
= 0; i
< EEPROM_CHECKSUM_REG
* 2; i
+= 2)
705 csum_new
+= data
[i
] + (data
[i
+ 1] << 8);
706 csum_new
= EEPROM_SUM
- csum_new
;
708 printk(KERN_ERR
"/*********************/\n");
709 printk(KERN_ERR
"Current EEPROM Checksum : 0x%04x\n", csum_old
);
710 printk(KERN_ERR
"Calculated : 0x%04x\n", csum_new
);
712 printk(KERN_ERR
"Offset Values\n");
713 printk(KERN_ERR
"======== ======\n");
714 print_hex_dump(KERN_ERR
, "", DUMP_PREFIX_OFFSET
, 16, 1, data
, 128, 0);
716 printk(KERN_ERR
"Include this output when contacting your support "
718 printk(KERN_ERR
"This is not a software error! Something bad "
719 "happened to your hardware or\n");
720 printk(KERN_ERR
"EEPROM image. Ignoring this "
721 "problem could result in further problems,\n");
722 printk(KERN_ERR
"possibly loss of data, corruption or system hangs!\n");
723 printk(KERN_ERR
"The MAC Address will be reset to 00:00:00:00:00:00, "
724 "which is invalid\n");
725 printk(KERN_ERR
"and requires you to set the proper MAC "
726 "address manually before continuing\n");
727 printk(KERN_ERR
"to enable this network device.\n");
728 printk(KERN_ERR
"Please inspect the EEPROM dump and report the issue "
729 "to your hardware vendor\n");
730 printk(KERN_ERR
"or Intel Customer Support.\n");
731 printk(KERN_ERR
"/*********************/\n");
737 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
738 * @pdev: PCI device information struct
740 * Return true if an adapter needs ioport resources
742 static int e1000_is_need_ioport(struct pci_dev
*pdev
)
744 switch (pdev
->device
) {
745 case E1000_DEV_ID_82540EM
:
746 case E1000_DEV_ID_82540EM_LOM
:
747 case E1000_DEV_ID_82540EP
:
748 case E1000_DEV_ID_82540EP_LOM
:
749 case E1000_DEV_ID_82540EP_LP
:
750 case E1000_DEV_ID_82541EI
:
751 case E1000_DEV_ID_82541EI_MOBILE
:
752 case E1000_DEV_ID_82541ER
:
753 case E1000_DEV_ID_82541ER_LOM
:
754 case E1000_DEV_ID_82541GI
:
755 case E1000_DEV_ID_82541GI_LF
:
756 case E1000_DEV_ID_82541GI_MOBILE
:
757 case E1000_DEV_ID_82544EI_COPPER
:
758 case E1000_DEV_ID_82544EI_FIBER
:
759 case E1000_DEV_ID_82544GC_COPPER
:
760 case E1000_DEV_ID_82544GC_LOM
:
761 case E1000_DEV_ID_82545EM_COPPER
:
762 case E1000_DEV_ID_82545EM_FIBER
:
763 case E1000_DEV_ID_82546EB_COPPER
:
764 case E1000_DEV_ID_82546EB_FIBER
:
765 case E1000_DEV_ID_82546EB_QUAD_COPPER
:
772 static const struct net_device_ops e1000_netdev_ops
= {
773 .ndo_open
= e1000_open
,
774 .ndo_stop
= e1000_close
,
775 .ndo_start_xmit
= e1000_xmit_frame
,
776 .ndo_get_stats
= e1000_get_stats
,
777 .ndo_set_rx_mode
= e1000_set_rx_mode
,
778 .ndo_set_mac_address
= e1000_set_mac
,
779 .ndo_tx_timeout
= e1000_tx_timeout
,
780 .ndo_change_mtu
= e1000_change_mtu
,
781 .ndo_do_ioctl
= e1000_ioctl
,
782 .ndo_validate_addr
= eth_validate_addr
,
784 .ndo_vlan_rx_register
= e1000_vlan_rx_register
,
785 .ndo_vlan_rx_add_vid
= e1000_vlan_rx_add_vid
,
786 .ndo_vlan_rx_kill_vid
= e1000_vlan_rx_kill_vid
,
787 #ifdef CONFIG_NET_POLL_CONTROLLER
788 .ndo_poll_controller
= e1000_netpoll
,
793 * e1000_probe - Device Initialization Routine
794 * @pdev: PCI device information struct
795 * @ent: entry in e1000_pci_tbl
797 * Returns 0 on success, negative on failure
799 * e1000_probe initializes an adapter identified by a pci_dev structure.
800 * The OS initialization, configuring of the adapter private structure,
801 * and a hardware reset occur.
803 static int __devinit
e1000_probe(struct pci_dev
*pdev
,
804 const struct pci_device_id
*ent
)
806 struct net_device
*netdev
;
807 struct e1000_adapter
*adapter
;
810 static int cards_found
= 0;
811 static int global_quad_port_a
= 0; /* global ksp3 port a indication */
812 int i
, err
, pci_using_dac
;
814 u16 eeprom_apme_mask
= E1000_EEPROM_APME
;
815 int bars
, need_ioport
;
817 /* do not allocate ioport bars when not needed */
818 need_ioport
= e1000_is_need_ioport(pdev
);
820 bars
= pci_select_bars(pdev
, IORESOURCE_MEM
| IORESOURCE_IO
);
821 err
= pci_enable_device(pdev
);
823 bars
= pci_select_bars(pdev
, IORESOURCE_MEM
);
824 err
= pci_enable_device_mem(pdev
);
829 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64)) &&
830 !pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64))) {
833 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
835 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
837 E1000_ERR("No usable DMA configuration, "
845 err
= pci_request_selected_regions(pdev
, bars
, e1000_driver_name
);
849 pci_set_master(pdev
);
852 netdev
= alloc_etherdev(sizeof(struct e1000_adapter
));
854 goto err_alloc_etherdev
;
856 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
858 pci_set_drvdata(pdev
, netdev
);
859 adapter
= netdev_priv(netdev
);
860 adapter
->netdev
= netdev
;
861 adapter
->pdev
= pdev
;
862 adapter
->msg_enable
= (1 << debug
) - 1;
863 adapter
->bars
= bars
;
864 adapter
->need_ioport
= need_ioport
;
870 hw
->hw_addr
= pci_ioremap_bar(pdev
, BAR_0
);
874 if (adapter
->need_ioport
) {
875 for (i
= BAR_1
; i
<= BAR_5
; i
++) {
876 if (pci_resource_len(pdev
, i
) == 0)
878 if (pci_resource_flags(pdev
, i
) & IORESOURCE_IO
) {
879 hw
->io_base
= pci_resource_start(pdev
, i
);
885 netdev
->netdev_ops
= &e1000_netdev_ops
;
886 e1000_set_ethtool_ops(netdev
);
887 netdev
->watchdog_timeo
= 5 * HZ
;
888 netif_napi_add(netdev
, &adapter
->napi
, e1000_clean
, 64);
890 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
892 adapter
->bd_number
= cards_found
;
894 /* setup the private structure */
896 err
= e1000_sw_init(adapter
);
902 if (hw
->mac_type
>= e1000_82543
) {
903 netdev
->features
= NETIF_F_SG
|
907 NETIF_F_HW_VLAN_FILTER
;
910 if ((hw
->mac_type
>= e1000_82544
) &&
911 (hw
->mac_type
!= e1000_82547
))
912 netdev
->features
|= NETIF_F_TSO
;
915 netdev
->features
|= NETIF_F_HIGHDMA
;
917 netdev
->vlan_features
|= NETIF_F_TSO
;
918 netdev
->vlan_features
|= NETIF_F_HW_CSUM
;
919 netdev
->vlan_features
|= NETIF_F_SG
;
921 adapter
->en_mng_pt
= e1000_enable_mng_pass_thru(hw
);
923 /* initialize eeprom parameters */
924 if (e1000_init_eeprom_params(hw
)) {
925 E1000_ERR("EEPROM initialization failed\n");
929 /* before reading the EEPROM, reset the controller to
930 * put the device in a known good starting state */
934 /* make sure the EEPROM is good */
935 if (e1000_validate_eeprom_checksum(hw
) < 0) {
936 DPRINTK(PROBE
, ERR
, "The EEPROM Checksum Is Not Valid\n");
937 e1000_dump_eeprom(adapter
);
939 * set MAC address to all zeroes to invalidate and temporary
940 * disable this device for the user. This blocks regular
941 * traffic while still permitting ethtool ioctls from reaching
942 * the hardware as well as allowing the user to run the
943 * interface after manually setting a hw addr using
946 memset(hw
->mac_addr
, 0, netdev
->addr_len
);
948 /* copy the MAC address out of the EEPROM */
949 if (e1000_read_mac_addr(hw
))
950 DPRINTK(PROBE
, ERR
, "EEPROM Read Error\n");
952 /* don't block initalization here due to bad MAC address */
953 memcpy(netdev
->dev_addr
, hw
->mac_addr
, netdev
->addr_len
);
954 memcpy(netdev
->perm_addr
, hw
->mac_addr
, netdev
->addr_len
);
956 if (!is_valid_ether_addr(netdev
->perm_addr
))
957 DPRINTK(PROBE
, ERR
, "Invalid MAC Address\n");
959 e1000_get_bus_info(hw
);
961 init_timer(&adapter
->tx_fifo_stall_timer
);
962 adapter
->tx_fifo_stall_timer
.function
= &e1000_82547_tx_fifo_stall
;
963 adapter
->tx_fifo_stall_timer
.data
= (unsigned long)adapter
;
965 init_timer(&adapter
->watchdog_timer
);
966 adapter
->watchdog_timer
.function
= &e1000_watchdog
;
967 adapter
->watchdog_timer
.data
= (unsigned long) adapter
;
969 init_timer(&adapter
->phy_info_timer
);
970 adapter
->phy_info_timer
.function
= &e1000_update_phy_info
;
971 adapter
->phy_info_timer
.data
= (unsigned long)adapter
;
973 INIT_WORK(&adapter
->reset_task
, e1000_reset_task
);
975 e1000_check_options(adapter
);
977 /* Initial Wake on LAN setting
978 * If APM wake is enabled in the EEPROM,
979 * enable the ACPI Magic Packet filter
982 switch (hw
->mac_type
) {
983 case e1000_82542_rev2_0
:
984 case e1000_82542_rev2_1
:
988 e1000_read_eeprom(hw
,
989 EEPROM_INIT_CONTROL2_REG
, 1, &eeprom_data
);
990 eeprom_apme_mask
= E1000_EEPROM_82544_APM
;
993 case e1000_82546_rev_3
:
994 if (er32(STATUS
) & E1000_STATUS_FUNC_1
){
995 e1000_read_eeprom(hw
,
996 EEPROM_INIT_CONTROL3_PORT_B
, 1, &eeprom_data
);
1001 e1000_read_eeprom(hw
,
1002 EEPROM_INIT_CONTROL3_PORT_A
, 1, &eeprom_data
);
1005 if (eeprom_data
& eeprom_apme_mask
)
1006 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
1008 /* now that we have the eeprom settings, apply the special cases
1009 * where the eeprom may be wrong or the board simply won't support
1010 * wake on lan on a particular port */
1011 switch (pdev
->device
) {
1012 case E1000_DEV_ID_82546GB_PCIE
:
1013 adapter
->eeprom_wol
= 0;
1015 case E1000_DEV_ID_82546EB_FIBER
:
1016 case E1000_DEV_ID_82546GB_FIBER
:
1017 /* Wake events only supported on port A for dual fiber
1018 * regardless of eeprom setting */
1019 if (er32(STATUS
) & E1000_STATUS_FUNC_1
)
1020 adapter
->eeprom_wol
= 0;
1022 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1023 /* if quad port adapter, disable WoL on all but port A */
1024 if (global_quad_port_a
!= 0)
1025 adapter
->eeprom_wol
= 0;
1027 adapter
->quad_port_a
= 1;
1028 /* Reset for multiple quad port adapters */
1029 if (++global_quad_port_a
== 4)
1030 global_quad_port_a
= 0;
1034 /* initialize the wol settings based on the eeprom settings */
1035 adapter
->wol
= adapter
->eeprom_wol
;
1036 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
1038 /* print bus type/speed/width info */
1039 DPRINTK(PROBE
, INFO
, "(PCI%s:%s:%s) ",
1040 ((hw
->bus_type
== e1000_bus_type_pcix
) ? "-X" : ""),
1041 ((hw
->bus_speed
== e1000_bus_speed_133
) ? "133MHz" :
1042 (hw
->bus_speed
== e1000_bus_speed_120
) ? "120MHz" :
1043 (hw
->bus_speed
== e1000_bus_speed_100
) ? "100MHz" :
1044 (hw
->bus_speed
== e1000_bus_speed_66
) ? "66MHz" : "33MHz"),
1045 ((hw
->bus_width
== e1000_bus_width_64
) ? "64-bit" : "32-bit"));
1047 printk("%pM\n", netdev
->dev_addr
);
1049 /* reset the hardware with the new settings */
1050 e1000_reset(adapter
);
1052 strcpy(netdev
->name
, "eth%d");
1053 err
= register_netdev(netdev
);
1057 /* carrier off reporting is important to ethtool even BEFORE open */
1058 netif_carrier_off(netdev
);
1060 DPRINTK(PROBE
, INFO
, "Intel(R) PRO/1000 Network Connection\n");
1067 e1000_phy_hw_reset(hw
);
1069 if (hw
->flash_address
)
1070 iounmap(hw
->flash_address
);
1071 kfree(adapter
->tx_ring
);
1072 kfree(adapter
->rx_ring
);
1074 iounmap(hw
->hw_addr
);
1076 free_netdev(netdev
);
1078 pci_release_selected_regions(pdev
, bars
);
1081 pci_disable_device(pdev
);
1086 * e1000_remove - Device Removal Routine
1087 * @pdev: PCI device information struct
1089 * e1000_remove is called by the PCI subsystem to alert the driver
1090 * that it should release a PCI device. The could be caused by a
1091 * Hot-Plug event, or because the driver is going to be removed from
1095 static void __devexit
e1000_remove(struct pci_dev
*pdev
)
1097 struct net_device
*netdev
= pci_get_drvdata(pdev
);
1098 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1099 struct e1000_hw
*hw
= &adapter
->hw
;
1101 set_bit(__E1000_DOWN
, &adapter
->flags
);
1102 del_timer_sync(&adapter
->tx_fifo_stall_timer
);
1103 del_timer_sync(&adapter
->watchdog_timer
);
1104 del_timer_sync(&adapter
->phy_info_timer
);
1106 cancel_work_sync(&adapter
->reset_task
);
1108 e1000_release_manageability(adapter
);
1110 unregister_netdev(netdev
);
1112 e1000_phy_hw_reset(hw
);
1114 kfree(adapter
->tx_ring
);
1115 kfree(adapter
->rx_ring
);
1117 iounmap(hw
->hw_addr
);
1118 if (hw
->flash_address
)
1119 iounmap(hw
->flash_address
);
1120 pci_release_selected_regions(pdev
, adapter
->bars
);
1122 free_netdev(netdev
);
1124 pci_disable_device(pdev
);
1128 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1129 * @adapter: board private structure to initialize
1131 * e1000_sw_init initializes the Adapter private data structure.
1132 * Fields are initialized based on PCI device information and
1133 * OS network device settings (MTU size).
1136 static int __devinit
e1000_sw_init(struct e1000_adapter
*adapter
)
1138 struct e1000_hw
*hw
= &adapter
->hw
;
1139 struct net_device
*netdev
= adapter
->netdev
;
1140 struct pci_dev
*pdev
= adapter
->pdev
;
1142 /* PCI config space info */
1144 hw
->vendor_id
= pdev
->vendor
;
1145 hw
->device_id
= pdev
->device
;
1146 hw
->subsystem_vendor_id
= pdev
->subsystem_vendor
;
1147 hw
->subsystem_id
= pdev
->subsystem_device
;
1148 hw
->revision_id
= pdev
->revision
;
1150 pci_read_config_word(pdev
, PCI_COMMAND
, &hw
->pci_cmd_word
);
1152 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
1153 hw
->max_frame_size
= netdev
->mtu
+
1154 ENET_HEADER_SIZE
+ ETHERNET_FCS_SIZE
;
1155 hw
->min_frame_size
= MINIMUM_ETHERNET_FRAME_SIZE
;
1157 /* identify the MAC */
1159 if (e1000_set_mac_type(hw
)) {
1160 DPRINTK(PROBE
, ERR
, "Unknown MAC Type\n");
1164 switch (hw
->mac_type
) {
1169 case e1000_82541_rev_2
:
1170 case e1000_82547_rev_2
:
1171 hw
->phy_init_script
= 1;
1175 e1000_set_media_type(hw
);
1177 hw
->wait_autoneg_complete
= false;
1178 hw
->tbi_compatibility_en
= true;
1179 hw
->adaptive_ifs
= true;
1181 /* Copper options */
1183 if (hw
->media_type
== e1000_media_type_copper
) {
1184 hw
->mdix
= AUTO_ALL_MODES
;
1185 hw
->disable_polarity_correction
= false;
1186 hw
->master_slave
= E1000_MASTER_SLAVE
;
1189 adapter
->num_tx_queues
= 1;
1190 adapter
->num_rx_queues
= 1;
1192 if (e1000_alloc_queues(adapter
)) {
1193 DPRINTK(PROBE
, ERR
, "Unable to allocate memory for queues\n");
1197 /* Explicitly disable IRQ since the NIC can be in any state. */
1198 e1000_irq_disable(adapter
);
1200 spin_lock_init(&adapter
->stats_lock
);
1202 set_bit(__E1000_DOWN
, &adapter
->flags
);
1208 * e1000_alloc_queues - Allocate memory for all rings
1209 * @adapter: board private structure to initialize
1211 * We allocate one ring per queue at run-time since we don't know the
1212 * number of queues at compile-time.
1215 static int __devinit
e1000_alloc_queues(struct e1000_adapter
*adapter
)
1217 adapter
->tx_ring
= kcalloc(adapter
->num_tx_queues
,
1218 sizeof(struct e1000_tx_ring
), GFP_KERNEL
);
1219 if (!adapter
->tx_ring
)
1222 adapter
->rx_ring
= kcalloc(adapter
->num_rx_queues
,
1223 sizeof(struct e1000_rx_ring
), GFP_KERNEL
);
1224 if (!adapter
->rx_ring
) {
1225 kfree(adapter
->tx_ring
);
1229 return E1000_SUCCESS
;
1233 * e1000_open - Called when a network interface is made active
1234 * @netdev: network interface device structure
1236 * Returns 0 on success, negative value on failure
1238 * The open entry point is called when a network interface is made
1239 * active by the system (IFF_UP). At this point all resources needed
1240 * for transmit and receive operations are allocated, the interrupt
1241 * handler is registered with the OS, the watchdog timer is started,
1242 * and the stack is notified that the interface is ready.
1245 static int e1000_open(struct net_device
*netdev
)
1247 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1248 struct e1000_hw
*hw
= &adapter
->hw
;
1251 /* disallow open during test */
1252 if (test_bit(__E1000_TESTING
, &adapter
->flags
))
1255 netif_carrier_off(netdev
);
1257 /* allocate transmit descriptors */
1258 err
= e1000_setup_all_tx_resources(adapter
);
1262 /* allocate receive descriptors */
1263 err
= e1000_setup_all_rx_resources(adapter
);
1267 e1000_power_up_phy(adapter
);
1269 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
1270 if ((hw
->mng_cookie
.status
&
1271 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
)) {
1272 e1000_update_mng_vlan(adapter
);
1275 /* before we allocate an interrupt, we must be ready to handle it.
1276 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1277 * as soon as we call pci_request_irq, so we have to setup our
1278 * clean_rx handler before we do so. */
1279 e1000_configure(adapter
);
1281 err
= e1000_request_irq(adapter
);
1285 /* From here on the code is the same as e1000_up() */
1286 clear_bit(__E1000_DOWN
, &adapter
->flags
);
1288 napi_enable(&adapter
->napi
);
1290 e1000_irq_enable(adapter
);
1292 netif_start_queue(netdev
);
1294 /* fire a link status change interrupt to start the watchdog */
1295 ew32(ICS
, E1000_ICS_LSC
);
1297 return E1000_SUCCESS
;
1300 e1000_power_down_phy(adapter
);
1301 e1000_free_all_rx_resources(adapter
);
1303 e1000_free_all_tx_resources(adapter
);
1305 e1000_reset(adapter
);
1311 * e1000_close - Disables a network interface
1312 * @netdev: network interface device structure
1314 * Returns 0, this is not allowed to fail
1316 * The close entry point is called when an interface is de-activated
1317 * by the OS. The hardware is still under the drivers control, but
1318 * needs to be disabled. A global MAC reset is issued to stop the
1319 * hardware, and all transmit and receive resources are freed.
1322 static int e1000_close(struct net_device
*netdev
)
1324 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1325 struct e1000_hw
*hw
= &adapter
->hw
;
1327 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->flags
));
1328 e1000_down(adapter
);
1329 e1000_power_down_phy(adapter
);
1330 e1000_free_irq(adapter
);
1332 e1000_free_all_tx_resources(adapter
);
1333 e1000_free_all_rx_resources(adapter
);
1335 /* kill manageability vlan ID if supported, but not if a vlan with
1336 * the same ID is registered on the host OS (let 8021q kill it) */
1337 if ((hw
->mng_cookie
.status
&
1338 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
1340 vlan_group_get_device(adapter
->vlgrp
, adapter
->mng_vlan_id
))) {
1341 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
1348 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1349 * @adapter: address of board private structure
1350 * @start: address of beginning of memory
1351 * @len: length of memory
1353 static bool e1000_check_64k_bound(struct e1000_adapter
*adapter
, void *start
,
1356 struct e1000_hw
*hw
= &adapter
->hw
;
1357 unsigned long begin
= (unsigned long)start
;
1358 unsigned long end
= begin
+ len
;
1360 /* First rev 82545 and 82546 need to not allow any memory
1361 * write location to cross 64k boundary due to errata 23 */
1362 if (hw
->mac_type
== e1000_82545
||
1363 hw
->mac_type
== e1000_82546
) {
1364 return ((begin
^ (end
- 1)) >> 16) != 0 ? false : true;
1371 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1372 * @adapter: board private structure
1373 * @txdr: tx descriptor ring (for a specific queue) to setup
1375 * Return 0 on success, negative on failure
1378 static int e1000_setup_tx_resources(struct e1000_adapter
*adapter
,
1379 struct e1000_tx_ring
*txdr
)
1381 struct pci_dev
*pdev
= adapter
->pdev
;
1384 size
= sizeof(struct e1000_buffer
) * txdr
->count
;
1385 txdr
->buffer_info
= vmalloc(size
);
1386 if (!txdr
->buffer_info
) {
1388 "Unable to allocate memory for the transmit descriptor ring\n");
1391 memset(txdr
->buffer_info
, 0, size
);
1393 /* round up to nearest 4K */
1395 txdr
->size
= txdr
->count
* sizeof(struct e1000_tx_desc
);
1396 txdr
->size
= ALIGN(txdr
->size
, 4096);
1398 txdr
->desc
= pci_alloc_consistent(pdev
, txdr
->size
, &txdr
->dma
);
1401 vfree(txdr
->buffer_info
);
1403 "Unable to allocate memory for the transmit descriptor ring\n");
1407 /* Fix for errata 23, can't cross 64kB boundary */
1408 if (!e1000_check_64k_bound(adapter
, txdr
->desc
, txdr
->size
)) {
1409 void *olddesc
= txdr
->desc
;
1410 dma_addr_t olddma
= txdr
->dma
;
1411 DPRINTK(TX_ERR
, ERR
, "txdr align check failed: %u bytes "
1412 "at %p\n", txdr
->size
, txdr
->desc
);
1413 /* Try again, without freeing the previous */
1414 txdr
->desc
= pci_alloc_consistent(pdev
, txdr
->size
, &txdr
->dma
);
1415 /* Failed allocation, critical failure */
1417 pci_free_consistent(pdev
, txdr
->size
, olddesc
, olddma
);
1418 goto setup_tx_desc_die
;
1421 if (!e1000_check_64k_bound(adapter
, txdr
->desc
, txdr
->size
)) {
1423 pci_free_consistent(pdev
, txdr
->size
, txdr
->desc
,
1425 pci_free_consistent(pdev
, txdr
->size
, olddesc
, olddma
);
1427 "Unable to allocate aligned memory "
1428 "for the transmit descriptor ring\n");
1429 vfree(txdr
->buffer_info
);
1432 /* Free old allocation, new allocation was successful */
1433 pci_free_consistent(pdev
, txdr
->size
, olddesc
, olddma
);
1436 memset(txdr
->desc
, 0, txdr
->size
);
1438 txdr
->next_to_use
= 0;
1439 txdr
->next_to_clean
= 0;
1445 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1446 * (Descriptors) for all queues
1447 * @adapter: board private structure
1449 * Return 0 on success, negative on failure
1452 int e1000_setup_all_tx_resources(struct e1000_adapter
*adapter
)
1456 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1457 err
= e1000_setup_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1460 "Allocation for Tx Queue %u failed\n", i
);
1461 for (i
-- ; i
>= 0; i
--)
1462 e1000_free_tx_resources(adapter
,
1463 &adapter
->tx_ring
[i
]);
1472 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1473 * @adapter: board private structure
1475 * Configure the Tx unit of the MAC after a reset.
1478 static void e1000_configure_tx(struct e1000_adapter
*adapter
)
1481 struct e1000_hw
*hw
= &adapter
->hw
;
1482 u32 tdlen
, tctl
, tipg
;
1485 /* Setup the HW Tx Head and Tail descriptor pointers */
1487 switch (adapter
->num_tx_queues
) {
1490 tdba
= adapter
->tx_ring
[0].dma
;
1491 tdlen
= adapter
->tx_ring
[0].count
*
1492 sizeof(struct e1000_tx_desc
);
1494 ew32(TDBAH
, (tdba
>> 32));
1495 ew32(TDBAL
, (tdba
& 0x00000000ffffffffULL
));
1498 adapter
->tx_ring
[0].tdh
= ((hw
->mac_type
>= e1000_82543
) ? E1000_TDH
: E1000_82542_TDH
);
1499 adapter
->tx_ring
[0].tdt
= ((hw
->mac_type
>= e1000_82543
) ? E1000_TDT
: E1000_82542_TDT
);
1503 /* Set the default values for the Tx Inter Packet Gap timer */
1504 if ((hw
->media_type
== e1000_media_type_fiber
||
1505 hw
->media_type
== e1000_media_type_internal_serdes
))
1506 tipg
= DEFAULT_82543_TIPG_IPGT_FIBER
;
1508 tipg
= DEFAULT_82543_TIPG_IPGT_COPPER
;
1510 switch (hw
->mac_type
) {
1511 case e1000_82542_rev2_0
:
1512 case e1000_82542_rev2_1
:
1513 tipg
= DEFAULT_82542_TIPG_IPGT
;
1514 ipgr1
= DEFAULT_82542_TIPG_IPGR1
;
1515 ipgr2
= DEFAULT_82542_TIPG_IPGR2
;
1518 ipgr1
= DEFAULT_82543_TIPG_IPGR1
;
1519 ipgr2
= DEFAULT_82543_TIPG_IPGR2
;
1522 tipg
|= ipgr1
<< E1000_TIPG_IPGR1_SHIFT
;
1523 tipg
|= ipgr2
<< E1000_TIPG_IPGR2_SHIFT
;
1526 /* Set the Tx Interrupt Delay register */
1528 ew32(TIDV
, adapter
->tx_int_delay
);
1529 if (hw
->mac_type
>= e1000_82540
)
1530 ew32(TADV
, adapter
->tx_abs_int_delay
);
1532 /* Program the Transmit Control Register */
1535 tctl
&= ~E1000_TCTL_CT
;
1536 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
1537 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
1539 e1000_config_collision_dist(hw
);
1541 /* Setup Transmit Descriptor Settings for eop descriptor */
1542 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_IFCS
;
1544 /* only set IDE if we are delaying interrupts using the timers */
1545 if (adapter
->tx_int_delay
)
1546 adapter
->txd_cmd
|= E1000_TXD_CMD_IDE
;
1548 if (hw
->mac_type
< e1000_82543
)
1549 adapter
->txd_cmd
|= E1000_TXD_CMD_RPS
;
1551 adapter
->txd_cmd
|= E1000_TXD_CMD_RS
;
1553 /* Cache if we're 82544 running in PCI-X because we'll
1554 * need this to apply a workaround later in the send path. */
1555 if (hw
->mac_type
== e1000_82544
&&
1556 hw
->bus_type
== e1000_bus_type_pcix
)
1557 adapter
->pcix_82544
= 1;
1564 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1565 * @adapter: board private structure
1566 * @rxdr: rx descriptor ring (for a specific queue) to setup
1568 * Returns 0 on success, negative on failure
1571 static int e1000_setup_rx_resources(struct e1000_adapter
*adapter
,
1572 struct e1000_rx_ring
*rxdr
)
1574 struct pci_dev
*pdev
= adapter
->pdev
;
1577 size
= sizeof(struct e1000_buffer
) * rxdr
->count
;
1578 rxdr
->buffer_info
= vmalloc(size
);
1579 if (!rxdr
->buffer_info
) {
1581 "Unable to allocate memory for the receive descriptor ring\n");
1584 memset(rxdr
->buffer_info
, 0, size
);
1586 desc_len
= sizeof(struct e1000_rx_desc
);
1588 /* Round up to nearest 4K */
1590 rxdr
->size
= rxdr
->count
* desc_len
;
1591 rxdr
->size
= ALIGN(rxdr
->size
, 4096);
1593 rxdr
->desc
= pci_alloc_consistent(pdev
, rxdr
->size
, &rxdr
->dma
);
1597 "Unable to allocate memory for the receive descriptor ring\n");
1599 vfree(rxdr
->buffer_info
);
1603 /* Fix for errata 23, can't cross 64kB boundary */
1604 if (!e1000_check_64k_bound(adapter
, rxdr
->desc
, rxdr
->size
)) {
1605 void *olddesc
= rxdr
->desc
;
1606 dma_addr_t olddma
= rxdr
->dma
;
1607 DPRINTK(RX_ERR
, ERR
, "rxdr align check failed: %u bytes "
1608 "at %p\n", rxdr
->size
, rxdr
->desc
);
1609 /* Try again, without freeing the previous */
1610 rxdr
->desc
= pci_alloc_consistent(pdev
, rxdr
->size
, &rxdr
->dma
);
1611 /* Failed allocation, critical failure */
1613 pci_free_consistent(pdev
, rxdr
->size
, olddesc
, olddma
);
1615 "Unable to allocate memory "
1616 "for the receive descriptor ring\n");
1617 goto setup_rx_desc_die
;
1620 if (!e1000_check_64k_bound(adapter
, rxdr
->desc
, rxdr
->size
)) {
1622 pci_free_consistent(pdev
, rxdr
->size
, rxdr
->desc
,
1624 pci_free_consistent(pdev
, rxdr
->size
, olddesc
, olddma
);
1626 "Unable to allocate aligned memory "
1627 "for the receive descriptor ring\n");
1628 goto setup_rx_desc_die
;
1630 /* Free old allocation, new allocation was successful */
1631 pci_free_consistent(pdev
, rxdr
->size
, olddesc
, olddma
);
1634 memset(rxdr
->desc
, 0, rxdr
->size
);
1636 rxdr
->next_to_clean
= 0;
1637 rxdr
->next_to_use
= 0;
1638 rxdr
->rx_skb_top
= NULL
;
1644 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1645 * (Descriptors) for all queues
1646 * @adapter: board private structure
1648 * Return 0 on success, negative on failure
1651 int e1000_setup_all_rx_resources(struct e1000_adapter
*adapter
)
1655 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1656 err
= e1000_setup_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
1659 "Allocation for Rx Queue %u failed\n", i
);
1660 for (i
-- ; i
>= 0; i
--)
1661 e1000_free_rx_resources(adapter
,
1662 &adapter
->rx_ring
[i
]);
1671 * e1000_setup_rctl - configure the receive control registers
1672 * @adapter: Board private structure
1674 static void e1000_setup_rctl(struct e1000_adapter
*adapter
)
1676 struct e1000_hw
*hw
= &adapter
->hw
;
1681 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
1683 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
1684 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1685 (hw
->mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1687 if (hw
->tbi_compatibility_on
== 1)
1688 rctl
|= E1000_RCTL_SBP
;
1690 rctl
&= ~E1000_RCTL_SBP
;
1692 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
1693 rctl
&= ~E1000_RCTL_LPE
;
1695 rctl
|= E1000_RCTL_LPE
;
1697 /* Setup buffer sizes */
1698 rctl
&= ~E1000_RCTL_SZ_4096
;
1699 rctl
|= E1000_RCTL_BSEX
;
1700 switch (adapter
->rx_buffer_len
) {
1701 case E1000_RXBUFFER_256
:
1702 rctl
|= E1000_RCTL_SZ_256
;
1703 rctl
&= ~E1000_RCTL_BSEX
;
1705 case E1000_RXBUFFER_512
:
1706 rctl
|= E1000_RCTL_SZ_512
;
1707 rctl
&= ~E1000_RCTL_BSEX
;
1709 case E1000_RXBUFFER_1024
:
1710 rctl
|= E1000_RCTL_SZ_1024
;
1711 rctl
&= ~E1000_RCTL_BSEX
;
1713 case E1000_RXBUFFER_2048
:
1715 rctl
|= E1000_RCTL_SZ_2048
;
1716 rctl
&= ~E1000_RCTL_BSEX
;
1718 case E1000_RXBUFFER_4096
:
1719 rctl
|= E1000_RCTL_SZ_4096
;
1721 case E1000_RXBUFFER_8192
:
1722 rctl
|= E1000_RCTL_SZ_8192
;
1724 case E1000_RXBUFFER_16384
:
1725 rctl
|= E1000_RCTL_SZ_16384
;
1733 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1734 * @adapter: board private structure
1736 * Configure the Rx unit of the MAC after a reset.
1739 static void e1000_configure_rx(struct e1000_adapter
*adapter
)
1742 struct e1000_hw
*hw
= &adapter
->hw
;
1743 u32 rdlen
, rctl
, rxcsum
;
1745 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
1746 rdlen
= adapter
->rx_ring
[0].count
*
1747 sizeof(struct e1000_rx_desc
);
1748 adapter
->clean_rx
= e1000_clean_jumbo_rx_irq
;
1749 adapter
->alloc_rx_buf
= e1000_alloc_jumbo_rx_buffers
;
1751 rdlen
= adapter
->rx_ring
[0].count
*
1752 sizeof(struct e1000_rx_desc
);
1753 adapter
->clean_rx
= e1000_clean_rx_irq
;
1754 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers
;
1757 /* disable receives while setting up the descriptors */
1759 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1761 /* set the Receive Delay Timer Register */
1762 ew32(RDTR
, adapter
->rx_int_delay
);
1764 if (hw
->mac_type
>= e1000_82540
) {
1765 ew32(RADV
, adapter
->rx_abs_int_delay
);
1766 if (adapter
->itr_setting
!= 0)
1767 ew32(ITR
, 1000000000 / (adapter
->itr
* 256));
1770 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1771 * the Base and Length of the Rx Descriptor Ring */
1772 switch (adapter
->num_rx_queues
) {
1775 rdba
= adapter
->rx_ring
[0].dma
;
1777 ew32(RDBAH
, (rdba
>> 32));
1778 ew32(RDBAL
, (rdba
& 0x00000000ffffffffULL
));
1781 adapter
->rx_ring
[0].rdh
= ((hw
->mac_type
>= e1000_82543
) ? E1000_RDH
: E1000_82542_RDH
);
1782 adapter
->rx_ring
[0].rdt
= ((hw
->mac_type
>= e1000_82543
) ? E1000_RDT
: E1000_82542_RDT
);
1786 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1787 if (hw
->mac_type
>= e1000_82543
) {
1788 rxcsum
= er32(RXCSUM
);
1789 if (adapter
->rx_csum
)
1790 rxcsum
|= E1000_RXCSUM_TUOFL
;
1792 /* don't need to clear IPPCSE as it defaults to 0 */
1793 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
1794 ew32(RXCSUM
, rxcsum
);
1797 /* Enable Receives */
1802 * e1000_free_tx_resources - Free Tx Resources per Queue
1803 * @adapter: board private structure
1804 * @tx_ring: Tx descriptor ring for a specific queue
1806 * Free all transmit software resources
1809 static void e1000_free_tx_resources(struct e1000_adapter
*adapter
,
1810 struct e1000_tx_ring
*tx_ring
)
1812 struct pci_dev
*pdev
= adapter
->pdev
;
1814 e1000_clean_tx_ring(adapter
, tx_ring
);
1816 vfree(tx_ring
->buffer_info
);
1817 tx_ring
->buffer_info
= NULL
;
1819 pci_free_consistent(pdev
, tx_ring
->size
, tx_ring
->desc
, tx_ring
->dma
);
1821 tx_ring
->desc
= NULL
;
1825 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1826 * @adapter: board private structure
1828 * Free all transmit software resources
1831 void e1000_free_all_tx_resources(struct e1000_adapter
*adapter
)
1835 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
1836 e1000_free_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1839 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter
*adapter
,
1840 struct e1000_buffer
*buffer_info
)
1842 buffer_info
->dma
= 0;
1843 if (buffer_info
->skb
) {
1844 skb_dma_unmap(&adapter
->pdev
->dev
, buffer_info
->skb
,
1846 dev_kfree_skb_any(buffer_info
->skb
);
1847 buffer_info
->skb
= NULL
;
1849 buffer_info
->time_stamp
= 0;
1850 /* buffer_info must be completely set up in the transmit path */
1854 * e1000_clean_tx_ring - Free Tx Buffers
1855 * @adapter: board private structure
1856 * @tx_ring: ring to be cleaned
1859 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
,
1860 struct e1000_tx_ring
*tx_ring
)
1862 struct e1000_hw
*hw
= &adapter
->hw
;
1863 struct e1000_buffer
*buffer_info
;
1867 /* Free all the Tx ring sk_buffs */
1869 for (i
= 0; i
< tx_ring
->count
; i
++) {
1870 buffer_info
= &tx_ring
->buffer_info
[i
];
1871 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
1874 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
1875 memset(tx_ring
->buffer_info
, 0, size
);
1877 /* Zero out the descriptor ring */
1879 memset(tx_ring
->desc
, 0, tx_ring
->size
);
1881 tx_ring
->next_to_use
= 0;
1882 tx_ring
->next_to_clean
= 0;
1883 tx_ring
->last_tx_tso
= 0;
1885 writel(0, hw
->hw_addr
+ tx_ring
->tdh
);
1886 writel(0, hw
->hw_addr
+ tx_ring
->tdt
);
1890 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1891 * @adapter: board private structure
1894 static void e1000_clean_all_tx_rings(struct e1000_adapter
*adapter
)
1898 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
1899 e1000_clean_tx_ring(adapter
, &adapter
->tx_ring
[i
]);
1903 * e1000_free_rx_resources - Free Rx Resources
1904 * @adapter: board private structure
1905 * @rx_ring: ring to clean the resources from
1907 * Free all receive software resources
1910 static void e1000_free_rx_resources(struct e1000_adapter
*adapter
,
1911 struct e1000_rx_ring
*rx_ring
)
1913 struct pci_dev
*pdev
= adapter
->pdev
;
1915 e1000_clean_rx_ring(adapter
, rx_ring
);
1917 vfree(rx_ring
->buffer_info
);
1918 rx_ring
->buffer_info
= NULL
;
1920 pci_free_consistent(pdev
, rx_ring
->size
, rx_ring
->desc
, rx_ring
->dma
);
1922 rx_ring
->desc
= NULL
;
1926 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
1927 * @adapter: board private structure
1929 * Free all receive software resources
1932 void e1000_free_all_rx_resources(struct e1000_adapter
*adapter
)
1936 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1937 e1000_free_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
1941 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1942 * @adapter: board private structure
1943 * @rx_ring: ring to free buffers from
1946 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
,
1947 struct e1000_rx_ring
*rx_ring
)
1949 struct e1000_hw
*hw
= &adapter
->hw
;
1950 struct e1000_buffer
*buffer_info
;
1951 struct pci_dev
*pdev
= adapter
->pdev
;
1955 /* Free all the Rx ring sk_buffs */
1956 for (i
= 0; i
< rx_ring
->count
; i
++) {
1957 buffer_info
= &rx_ring
->buffer_info
[i
];
1958 if (buffer_info
->dma
&&
1959 adapter
->clean_rx
== e1000_clean_rx_irq
) {
1960 pci_unmap_single(pdev
, buffer_info
->dma
,
1961 buffer_info
->length
,
1962 PCI_DMA_FROMDEVICE
);
1963 } else if (buffer_info
->dma
&&
1964 adapter
->clean_rx
== e1000_clean_jumbo_rx_irq
) {
1965 pci_unmap_page(pdev
, buffer_info
->dma
,
1966 buffer_info
->length
,
1967 PCI_DMA_FROMDEVICE
);
1970 buffer_info
->dma
= 0;
1971 if (buffer_info
->page
) {
1972 put_page(buffer_info
->page
);
1973 buffer_info
->page
= NULL
;
1975 if (buffer_info
->skb
) {
1976 dev_kfree_skb(buffer_info
->skb
);
1977 buffer_info
->skb
= NULL
;
1981 /* there also may be some cached data from a chained receive */
1982 if (rx_ring
->rx_skb_top
) {
1983 dev_kfree_skb(rx_ring
->rx_skb_top
);
1984 rx_ring
->rx_skb_top
= NULL
;
1987 size
= sizeof(struct e1000_buffer
) * rx_ring
->count
;
1988 memset(rx_ring
->buffer_info
, 0, size
);
1990 /* Zero out the descriptor ring */
1991 memset(rx_ring
->desc
, 0, rx_ring
->size
);
1993 rx_ring
->next_to_clean
= 0;
1994 rx_ring
->next_to_use
= 0;
1996 writel(0, hw
->hw_addr
+ rx_ring
->rdh
);
1997 writel(0, hw
->hw_addr
+ rx_ring
->rdt
);
2001 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2002 * @adapter: board private structure
2005 static void e1000_clean_all_rx_rings(struct e1000_adapter
*adapter
)
2009 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2010 e1000_clean_rx_ring(adapter
, &adapter
->rx_ring
[i
]);
2013 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2014 * and memory write and invalidate disabled for certain operations
2016 static void e1000_enter_82542_rst(struct e1000_adapter
*adapter
)
2018 struct e1000_hw
*hw
= &adapter
->hw
;
2019 struct net_device
*netdev
= adapter
->netdev
;
2022 e1000_pci_clear_mwi(hw
);
2025 rctl
|= E1000_RCTL_RST
;
2027 E1000_WRITE_FLUSH();
2030 if (netif_running(netdev
))
2031 e1000_clean_all_rx_rings(adapter
);
2034 static void e1000_leave_82542_rst(struct e1000_adapter
*adapter
)
2036 struct e1000_hw
*hw
= &adapter
->hw
;
2037 struct net_device
*netdev
= adapter
->netdev
;
2041 rctl
&= ~E1000_RCTL_RST
;
2043 E1000_WRITE_FLUSH();
2046 if (hw
->pci_cmd_word
& PCI_COMMAND_INVALIDATE
)
2047 e1000_pci_set_mwi(hw
);
2049 if (netif_running(netdev
)) {
2050 /* No need to loop, because 82542 supports only 1 queue */
2051 struct e1000_rx_ring
*ring
= &adapter
->rx_ring
[0];
2052 e1000_configure_rx(adapter
);
2053 adapter
->alloc_rx_buf(adapter
, ring
, E1000_DESC_UNUSED(ring
));
2058 * e1000_set_mac - Change the Ethernet Address of the NIC
2059 * @netdev: network interface device structure
2060 * @p: pointer to an address structure
2062 * Returns 0 on success, negative on failure
2065 static int e1000_set_mac(struct net_device
*netdev
, void *p
)
2067 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2068 struct e1000_hw
*hw
= &adapter
->hw
;
2069 struct sockaddr
*addr
= p
;
2071 if (!is_valid_ether_addr(addr
->sa_data
))
2072 return -EADDRNOTAVAIL
;
2074 /* 82542 2.0 needs to be in reset to write receive address registers */
2076 if (hw
->mac_type
== e1000_82542_rev2_0
)
2077 e1000_enter_82542_rst(adapter
);
2079 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
2080 memcpy(hw
->mac_addr
, addr
->sa_data
, netdev
->addr_len
);
2082 e1000_rar_set(hw
, hw
->mac_addr
, 0);
2084 if (hw
->mac_type
== e1000_82542_rev2_0
)
2085 e1000_leave_82542_rst(adapter
);
2091 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2092 * @netdev: network interface device structure
2094 * The set_rx_mode entry point is called whenever the unicast or multicast
2095 * address lists or the network interface flags are updated. This routine is
2096 * responsible for configuring the hardware for proper unicast, multicast,
2097 * promiscuous mode, and all-multi behavior.
2100 static void e1000_set_rx_mode(struct net_device
*netdev
)
2102 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2103 struct e1000_hw
*hw
= &adapter
->hw
;
2104 struct netdev_hw_addr
*ha
;
2105 bool use_uc
= false;
2106 struct dev_addr_list
*mc_ptr
;
2109 int i
, rar_entries
= E1000_RAR_ENTRIES
;
2110 int mta_reg_count
= E1000_NUM_MTA_REGISTERS
;
2111 u32
*mcarray
= kcalloc(mta_reg_count
, sizeof(u32
), GFP_ATOMIC
);
2114 DPRINTK(PROBE
, ERR
, "memory allocation failed\n");
2118 /* Check for Promiscuous and All Multicast modes */
2122 if (netdev
->flags
& IFF_PROMISC
) {
2123 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2124 rctl
&= ~E1000_RCTL_VFE
;
2126 if (netdev
->flags
& IFF_ALLMULTI
)
2127 rctl
|= E1000_RCTL_MPE
;
2129 rctl
&= ~E1000_RCTL_MPE
;
2130 /* Enable VLAN filter if there is a VLAN */
2132 rctl
|= E1000_RCTL_VFE
;
2135 if (netdev
->uc
.count
> rar_entries
- 1) {
2136 rctl
|= E1000_RCTL_UPE
;
2137 } else if (!(netdev
->flags
& IFF_PROMISC
)) {
2138 rctl
&= ~E1000_RCTL_UPE
;
2144 /* 82542 2.0 needs to be in reset to write receive address registers */
2146 if (hw
->mac_type
== e1000_82542_rev2_0
)
2147 e1000_enter_82542_rst(adapter
);
2149 /* load the first 14 addresses into the exact filters 1-14. Unicast
2150 * addresses take precedence to avoid disabling unicast filtering
2153 * RAR 0 is used for the station MAC adddress
2154 * if there are not 14 addresses, go ahead and clear the filters
2158 list_for_each_entry(ha
, &netdev
->uc
.list
, list
) {
2159 if (i
== rar_entries
)
2161 e1000_rar_set(hw
, ha
->addr
, i
++);
2164 WARN_ON(i
== rar_entries
);
2166 mc_ptr
= netdev
->mc_list
;
2168 for (; i
< rar_entries
; i
++) {
2170 e1000_rar_set(hw
, mc_ptr
->da_addr
, i
);
2171 mc_ptr
= mc_ptr
->next
;
2173 E1000_WRITE_REG_ARRAY(hw
, RA
, i
<< 1, 0);
2174 E1000_WRITE_FLUSH();
2175 E1000_WRITE_REG_ARRAY(hw
, RA
, (i
<< 1) + 1, 0);
2176 E1000_WRITE_FLUSH();
2180 /* load any remaining addresses into the hash table */
2182 for (; mc_ptr
; mc_ptr
= mc_ptr
->next
) {
2183 u32 hash_reg
, hash_bit
, mta
;
2184 hash_value
= e1000_hash_mc_addr(hw
, mc_ptr
->da_addr
);
2185 hash_reg
= (hash_value
>> 5) & 0x7F;
2186 hash_bit
= hash_value
& 0x1F;
2187 mta
= (1 << hash_bit
);
2188 mcarray
[hash_reg
] |= mta
;
2191 /* write the hash table completely, write from bottom to avoid
2192 * both stupid write combining chipsets, and flushing each write */
2193 for (i
= mta_reg_count
- 1; i
>= 0 ; i
--) {
2195 * If we are on an 82544 has an errata where writing odd
2196 * offsets overwrites the previous even offset, but writing
2197 * backwards over the range solves the issue by always
2198 * writing the odd offset first
2200 E1000_WRITE_REG_ARRAY(hw
, MTA
, i
, mcarray
[i
]);
2202 E1000_WRITE_FLUSH();
2204 if (hw
->mac_type
== e1000_82542_rev2_0
)
2205 e1000_leave_82542_rst(adapter
);
2210 /* Need to wait a few seconds after link up to get diagnostic information from
2213 static void e1000_update_phy_info(unsigned long data
)
2215 struct e1000_adapter
*adapter
= (struct e1000_adapter
*)data
;
2216 struct e1000_hw
*hw
= &adapter
->hw
;
2217 e1000_phy_get_info(hw
, &adapter
->phy_info
);
2221 * e1000_82547_tx_fifo_stall - Timer Call-back
2222 * @data: pointer to adapter cast into an unsigned long
2225 static void e1000_82547_tx_fifo_stall(unsigned long data
)
2227 struct e1000_adapter
*adapter
= (struct e1000_adapter
*)data
;
2228 struct e1000_hw
*hw
= &adapter
->hw
;
2229 struct net_device
*netdev
= adapter
->netdev
;
2232 if (atomic_read(&adapter
->tx_fifo_stall
)) {
2233 if ((er32(TDT
) == er32(TDH
)) &&
2234 (er32(TDFT
) == er32(TDFH
)) &&
2235 (er32(TDFTS
) == er32(TDFHS
))) {
2237 ew32(TCTL
, tctl
& ~E1000_TCTL_EN
);
2238 ew32(TDFT
, adapter
->tx_head_addr
);
2239 ew32(TDFH
, adapter
->tx_head_addr
);
2240 ew32(TDFTS
, adapter
->tx_head_addr
);
2241 ew32(TDFHS
, adapter
->tx_head_addr
);
2243 E1000_WRITE_FLUSH();
2245 adapter
->tx_fifo_head
= 0;
2246 atomic_set(&adapter
->tx_fifo_stall
, 0);
2247 netif_wake_queue(netdev
);
2248 } else if (!test_bit(__E1000_DOWN
, &adapter
->flags
)) {
2249 mod_timer(&adapter
->tx_fifo_stall_timer
, jiffies
+ 1);
2254 static bool e1000_has_link(struct e1000_adapter
*adapter
)
2256 struct e1000_hw
*hw
= &adapter
->hw
;
2257 bool link_active
= false;
2259 /* get_link_status is set on LSC (link status) interrupt or
2260 * rx sequence error interrupt. get_link_status will stay
2261 * false until the e1000_check_for_link establishes link
2262 * for copper adapters ONLY
2264 switch (hw
->media_type
) {
2265 case e1000_media_type_copper
:
2266 if (hw
->get_link_status
) {
2267 e1000_check_for_link(hw
);
2268 link_active
= !hw
->get_link_status
;
2273 case e1000_media_type_fiber
:
2274 e1000_check_for_link(hw
);
2275 link_active
= !!(er32(STATUS
) & E1000_STATUS_LU
);
2277 case e1000_media_type_internal_serdes
:
2278 e1000_check_for_link(hw
);
2279 link_active
= hw
->serdes_has_link
;
2289 * e1000_watchdog - Timer Call-back
2290 * @data: pointer to adapter cast into an unsigned long
2292 static void e1000_watchdog(unsigned long data
)
2294 struct e1000_adapter
*adapter
= (struct e1000_adapter
*)data
;
2295 struct e1000_hw
*hw
= &adapter
->hw
;
2296 struct net_device
*netdev
= adapter
->netdev
;
2297 struct e1000_tx_ring
*txdr
= adapter
->tx_ring
;
2300 link
= e1000_has_link(adapter
);
2301 if ((netif_carrier_ok(netdev
)) && link
)
2305 if (!netif_carrier_ok(netdev
)) {
2308 /* update snapshot of PHY registers on LSC */
2309 e1000_get_speed_and_duplex(hw
,
2310 &adapter
->link_speed
,
2311 &adapter
->link_duplex
);
2314 printk(KERN_INFO
"e1000: %s NIC Link is Up %d Mbps %s, "
2315 "Flow Control: %s\n",
2317 adapter
->link_speed
,
2318 adapter
->link_duplex
== FULL_DUPLEX
?
2319 "Full Duplex" : "Half Duplex",
2320 ((ctrl
& E1000_CTRL_TFCE
) && (ctrl
&
2321 E1000_CTRL_RFCE
)) ? "RX/TX" : ((ctrl
&
2322 E1000_CTRL_RFCE
) ? "RX" : ((ctrl
&
2323 E1000_CTRL_TFCE
) ? "TX" : "None" )));
2325 /* tweak tx_queue_len according to speed/duplex
2326 * and adjust the timeout factor */
2327 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
2328 adapter
->tx_timeout_factor
= 1;
2329 switch (adapter
->link_speed
) {
2332 netdev
->tx_queue_len
= 10;
2333 adapter
->tx_timeout_factor
= 16;
2337 netdev
->tx_queue_len
= 100;
2338 /* maybe add some timeout factor ? */
2342 /* enable transmits in the hardware */
2344 tctl
|= E1000_TCTL_EN
;
2347 netif_carrier_on(netdev
);
2348 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
2349 mod_timer(&adapter
->phy_info_timer
,
2350 round_jiffies(jiffies
+ 2 * HZ
));
2351 adapter
->smartspeed
= 0;
2354 if (netif_carrier_ok(netdev
)) {
2355 adapter
->link_speed
= 0;
2356 adapter
->link_duplex
= 0;
2357 printk(KERN_INFO
"e1000: %s NIC Link is Down\n",
2359 netif_carrier_off(netdev
);
2361 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
2362 mod_timer(&adapter
->phy_info_timer
,
2363 round_jiffies(jiffies
+ 2 * HZ
));
2366 e1000_smartspeed(adapter
);
2370 e1000_update_stats(adapter
);
2372 hw
->tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
2373 adapter
->tpt_old
= adapter
->stats
.tpt
;
2374 hw
->collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
2375 adapter
->colc_old
= adapter
->stats
.colc
;
2377 adapter
->gorcl
= adapter
->stats
.gorcl
- adapter
->gorcl_old
;
2378 adapter
->gorcl_old
= adapter
->stats
.gorcl
;
2379 adapter
->gotcl
= adapter
->stats
.gotcl
- adapter
->gotcl_old
;
2380 adapter
->gotcl_old
= adapter
->stats
.gotcl
;
2382 e1000_update_adaptive(hw
);
2384 if (!netif_carrier_ok(netdev
)) {
2385 if (E1000_DESC_UNUSED(txdr
) + 1 < txdr
->count
) {
2386 /* We've lost link, so the controller stops DMA,
2387 * but we've got queued Tx work that's never going
2388 * to get done, so reset controller to flush Tx.
2389 * (Do the reset outside of interrupt context). */
2390 adapter
->tx_timeout_count
++;
2391 schedule_work(&adapter
->reset_task
);
2392 /* return immediately since reset is imminent */
2397 /* Cause software interrupt to ensure rx ring is cleaned */
2398 ew32(ICS
, E1000_ICS_RXDMT0
);
2400 /* Force detection of hung controller every watchdog period */
2401 adapter
->detect_tx_hung
= true;
2403 /* Reset the timer */
2404 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
2405 mod_timer(&adapter
->watchdog_timer
,
2406 round_jiffies(jiffies
+ 2 * HZ
));
2409 enum latency_range
{
2413 latency_invalid
= 255
2417 * e1000_update_itr - update the dynamic ITR value based on statistics
2418 * @adapter: pointer to adapter
2419 * @itr_setting: current adapter->itr
2420 * @packets: the number of packets during this measurement interval
2421 * @bytes: the number of bytes during this measurement interval
2423 * Stores a new ITR value based on packets and byte
2424 * counts during the last interrupt. The advantage of per interrupt
2425 * computation is faster updates and more accurate ITR for the current
2426 * traffic pattern. Constants in this function were computed
2427 * based on theoretical maximum wire speed and thresholds were set based
2428 * on testing data as well as attempting to minimize response time
2429 * while increasing bulk throughput.
2430 * this functionality is controlled by the InterruptThrottleRate module
2431 * parameter (see e1000_param.c)
2433 static unsigned int e1000_update_itr(struct e1000_adapter
*adapter
,
2434 u16 itr_setting
, int packets
, int bytes
)
2436 unsigned int retval
= itr_setting
;
2437 struct e1000_hw
*hw
= &adapter
->hw
;
2439 if (unlikely(hw
->mac_type
< e1000_82540
))
2440 goto update_itr_done
;
2443 goto update_itr_done
;
2445 switch (itr_setting
) {
2446 case lowest_latency
:
2447 /* jumbo frames get bulk treatment*/
2448 if (bytes
/packets
> 8000)
2449 retval
= bulk_latency
;
2450 else if ((packets
< 5) && (bytes
> 512))
2451 retval
= low_latency
;
2453 case low_latency
: /* 50 usec aka 20000 ints/s */
2454 if (bytes
> 10000) {
2455 /* jumbo frames need bulk latency setting */
2456 if (bytes
/packets
> 8000)
2457 retval
= bulk_latency
;
2458 else if ((packets
< 10) || ((bytes
/packets
) > 1200))
2459 retval
= bulk_latency
;
2460 else if ((packets
> 35))
2461 retval
= lowest_latency
;
2462 } else if (bytes
/packets
> 2000)
2463 retval
= bulk_latency
;
2464 else if (packets
<= 2 && bytes
< 512)
2465 retval
= lowest_latency
;
2467 case bulk_latency
: /* 250 usec aka 4000 ints/s */
2468 if (bytes
> 25000) {
2470 retval
= low_latency
;
2471 } else if (bytes
< 6000) {
2472 retval
= low_latency
;
2481 static void e1000_set_itr(struct e1000_adapter
*adapter
)
2483 struct e1000_hw
*hw
= &adapter
->hw
;
2485 u32 new_itr
= adapter
->itr
;
2487 if (unlikely(hw
->mac_type
< e1000_82540
))
2490 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2491 if (unlikely(adapter
->link_speed
!= SPEED_1000
)) {
2497 adapter
->tx_itr
= e1000_update_itr(adapter
,
2499 adapter
->total_tx_packets
,
2500 adapter
->total_tx_bytes
);
2501 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2502 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
2503 adapter
->tx_itr
= low_latency
;
2505 adapter
->rx_itr
= e1000_update_itr(adapter
,
2507 adapter
->total_rx_packets
,
2508 adapter
->total_rx_bytes
);
2509 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2510 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
2511 adapter
->rx_itr
= low_latency
;
2513 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
2515 switch (current_itr
) {
2516 /* counts and packets in update_itr are dependent on these numbers */
2517 case lowest_latency
:
2521 new_itr
= 20000; /* aka hwitr = ~200 */
2531 if (new_itr
!= adapter
->itr
) {
2532 /* this attempts to bias the interrupt rate towards Bulk
2533 * by adding intermediate steps when interrupt rate is
2535 new_itr
= new_itr
> adapter
->itr
?
2536 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
2538 adapter
->itr
= new_itr
;
2539 ew32(ITR
, 1000000000 / (new_itr
* 256));
2545 #define E1000_TX_FLAGS_CSUM 0x00000001
2546 #define E1000_TX_FLAGS_VLAN 0x00000002
2547 #define E1000_TX_FLAGS_TSO 0x00000004
2548 #define E1000_TX_FLAGS_IPV4 0x00000008
2549 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2550 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2552 static int e1000_tso(struct e1000_adapter
*adapter
,
2553 struct e1000_tx_ring
*tx_ring
, struct sk_buff
*skb
)
2555 struct e1000_context_desc
*context_desc
;
2556 struct e1000_buffer
*buffer_info
;
2559 u16 ipcse
= 0, tucse
, mss
;
2560 u8 ipcss
, ipcso
, tucss
, tucso
, hdr_len
;
2563 if (skb_is_gso(skb
)) {
2564 if (skb_header_cloned(skb
)) {
2565 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2570 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
2571 mss
= skb_shinfo(skb
)->gso_size
;
2572 if (skb
->protocol
== htons(ETH_P_IP
)) {
2573 struct iphdr
*iph
= ip_hdr(skb
);
2576 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
2580 cmd_length
= E1000_TXD_CMD_IP
;
2581 ipcse
= skb_transport_offset(skb
) - 1;
2582 } else if (skb
->protocol
== htons(ETH_P_IPV6
)) {
2583 ipv6_hdr(skb
)->payload_len
= 0;
2584 tcp_hdr(skb
)->check
=
2585 ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
2586 &ipv6_hdr(skb
)->daddr
,
2590 ipcss
= skb_network_offset(skb
);
2591 ipcso
= (void *)&(ip_hdr(skb
)->check
) - (void *)skb
->data
;
2592 tucss
= skb_transport_offset(skb
);
2593 tucso
= (void *)&(tcp_hdr(skb
)->check
) - (void *)skb
->data
;
2596 cmd_length
|= (E1000_TXD_CMD_DEXT
| E1000_TXD_CMD_TSE
|
2597 E1000_TXD_CMD_TCP
| (skb
->len
- (hdr_len
)));
2599 i
= tx_ring
->next_to_use
;
2600 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2601 buffer_info
= &tx_ring
->buffer_info
[i
];
2603 context_desc
->lower_setup
.ip_fields
.ipcss
= ipcss
;
2604 context_desc
->lower_setup
.ip_fields
.ipcso
= ipcso
;
2605 context_desc
->lower_setup
.ip_fields
.ipcse
= cpu_to_le16(ipcse
);
2606 context_desc
->upper_setup
.tcp_fields
.tucss
= tucss
;
2607 context_desc
->upper_setup
.tcp_fields
.tucso
= tucso
;
2608 context_desc
->upper_setup
.tcp_fields
.tucse
= cpu_to_le16(tucse
);
2609 context_desc
->tcp_seg_setup
.fields
.mss
= cpu_to_le16(mss
);
2610 context_desc
->tcp_seg_setup
.fields
.hdr_len
= hdr_len
;
2611 context_desc
->cmd_and_length
= cpu_to_le32(cmd_length
);
2613 buffer_info
->time_stamp
= jiffies
;
2614 buffer_info
->next_to_watch
= i
;
2616 if (++i
== tx_ring
->count
) i
= 0;
2617 tx_ring
->next_to_use
= i
;
2624 static bool e1000_tx_csum(struct e1000_adapter
*adapter
,
2625 struct e1000_tx_ring
*tx_ring
, struct sk_buff
*skb
)
2627 struct e1000_context_desc
*context_desc
;
2628 struct e1000_buffer
*buffer_info
;
2631 u32 cmd_len
= E1000_TXD_CMD_DEXT
;
2633 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
2636 switch (skb
->protocol
) {
2637 case cpu_to_be16(ETH_P_IP
):
2638 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
2639 cmd_len
|= E1000_TXD_CMD_TCP
;
2641 case cpu_to_be16(ETH_P_IPV6
):
2642 /* XXX not handling all IPV6 headers */
2643 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
2644 cmd_len
|= E1000_TXD_CMD_TCP
;
2647 if (unlikely(net_ratelimit()))
2648 DPRINTK(DRV
, WARNING
,
2649 "checksum_partial proto=%x!\n", skb
->protocol
);
2653 css
= skb_transport_offset(skb
);
2655 i
= tx_ring
->next_to_use
;
2656 buffer_info
= &tx_ring
->buffer_info
[i
];
2657 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2659 context_desc
->lower_setup
.ip_config
= 0;
2660 context_desc
->upper_setup
.tcp_fields
.tucss
= css
;
2661 context_desc
->upper_setup
.tcp_fields
.tucso
=
2662 css
+ skb
->csum_offset
;
2663 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
2664 context_desc
->tcp_seg_setup
.data
= 0;
2665 context_desc
->cmd_and_length
= cpu_to_le32(cmd_len
);
2667 buffer_info
->time_stamp
= jiffies
;
2668 buffer_info
->next_to_watch
= i
;
2670 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
2671 tx_ring
->next_to_use
= i
;
2676 #define E1000_MAX_TXD_PWR 12
2677 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2679 static int e1000_tx_map(struct e1000_adapter
*adapter
,
2680 struct e1000_tx_ring
*tx_ring
,
2681 struct sk_buff
*skb
, unsigned int first
,
2682 unsigned int max_per_txd
, unsigned int nr_frags
,
2685 struct e1000_hw
*hw
= &adapter
->hw
;
2686 struct e1000_buffer
*buffer_info
;
2687 unsigned int len
= skb_headlen(skb
);
2688 unsigned int offset
, size
, count
= 0, i
;
2692 i
= tx_ring
->next_to_use
;
2694 if (skb_dma_map(&adapter
->pdev
->dev
, skb
, DMA_TO_DEVICE
)) {
2695 dev_err(&adapter
->pdev
->dev
, "TX DMA map failed\n");
2699 map
= skb_shinfo(skb
)->dma_maps
;
2703 buffer_info
= &tx_ring
->buffer_info
[i
];
2704 size
= min(len
, max_per_txd
);
2705 /* Workaround for Controller erratum --
2706 * descriptor for non-tso packet in a linear SKB that follows a
2707 * tso gets written back prematurely before the data is fully
2708 * DMA'd to the controller */
2709 if (!skb
->data_len
&& tx_ring
->last_tx_tso
&&
2711 tx_ring
->last_tx_tso
= 0;
2715 /* Workaround for premature desc write-backs
2716 * in TSO mode. Append 4-byte sentinel desc */
2717 if (unlikely(mss
&& !nr_frags
&& size
== len
&& size
> 8))
2719 /* work-around for errata 10 and it applies
2720 * to all controllers in PCI-X mode
2721 * The fix is to make sure that the first descriptor of a
2722 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2724 if (unlikely((hw
->bus_type
== e1000_bus_type_pcix
) &&
2725 (size
> 2015) && count
== 0))
2728 /* Workaround for potential 82544 hang in PCI-X. Avoid
2729 * terminating buffers within evenly-aligned dwords. */
2730 if (unlikely(adapter
->pcix_82544
&&
2731 !((unsigned long)(skb
->data
+ offset
+ size
- 1) & 4) &&
2735 buffer_info
->length
= size
;
2736 /* set time_stamp *before* dma to help avoid a possible race */
2737 buffer_info
->time_stamp
= jiffies
;
2738 buffer_info
->dma
= skb_shinfo(skb
)->dma_head
+ offset
;
2739 buffer_info
->next_to_watch
= i
;
2746 if (unlikely(i
== tx_ring
->count
))
2751 for (f
= 0; f
< nr_frags
; f
++) {
2752 struct skb_frag_struct
*frag
;
2754 frag
= &skb_shinfo(skb
)->frags
[f
];
2760 if (unlikely(i
== tx_ring
->count
))
2763 buffer_info
= &tx_ring
->buffer_info
[i
];
2764 size
= min(len
, max_per_txd
);
2765 /* Workaround for premature desc write-backs
2766 * in TSO mode. Append 4-byte sentinel desc */
2767 if (unlikely(mss
&& f
== (nr_frags
-1) && size
== len
&& size
> 8))
2769 /* Workaround for potential 82544 hang in PCI-X.
2770 * Avoid terminating buffers within evenly-aligned
2772 if (unlikely(adapter
->pcix_82544
&&
2773 !((unsigned long)(page_to_phys(frag
->page
) + offset
2778 buffer_info
->length
= size
;
2779 buffer_info
->time_stamp
= jiffies
;
2780 buffer_info
->dma
= map
[f
] + offset
;
2781 buffer_info
->next_to_watch
= i
;
2789 tx_ring
->buffer_info
[i
].skb
= skb
;
2790 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
2795 static void e1000_tx_queue(struct e1000_adapter
*adapter
,
2796 struct e1000_tx_ring
*tx_ring
, int tx_flags
,
2799 struct e1000_hw
*hw
= &adapter
->hw
;
2800 struct e1000_tx_desc
*tx_desc
= NULL
;
2801 struct e1000_buffer
*buffer_info
;
2802 u32 txd_upper
= 0, txd_lower
= E1000_TXD_CMD_IFCS
;
2805 if (likely(tx_flags
& E1000_TX_FLAGS_TSO
)) {
2806 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
|
2808 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
2810 if (likely(tx_flags
& E1000_TX_FLAGS_IPV4
))
2811 txd_upper
|= E1000_TXD_POPTS_IXSM
<< 8;
2814 if (likely(tx_flags
& E1000_TX_FLAGS_CSUM
)) {
2815 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
2816 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
2819 if (unlikely(tx_flags
& E1000_TX_FLAGS_VLAN
)) {
2820 txd_lower
|= E1000_TXD_CMD_VLE
;
2821 txd_upper
|= (tx_flags
& E1000_TX_FLAGS_VLAN_MASK
);
2824 i
= tx_ring
->next_to_use
;
2827 buffer_info
= &tx_ring
->buffer_info
[i
];
2828 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
2829 tx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
2830 tx_desc
->lower
.data
=
2831 cpu_to_le32(txd_lower
| buffer_info
->length
);
2832 tx_desc
->upper
.data
= cpu_to_le32(txd_upper
);
2833 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
2836 tx_desc
->lower
.data
|= cpu_to_le32(adapter
->txd_cmd
);
2838 /* Force memory writes to complete before letting h/w
2839 * know there are new descriptors to fetch. (Only
2840 * applicable for weak-ordered memory model archs,
2841 * such as IA-64). */
2844 tx_ring
->next_to_use
= i
;
2845 writel(i
, hw
->hw_addr
+ tx_ring
->tdt
);
2846 /* we need this if more than one processor can write to our tail
2847 * at a time, it syncronizes IO on IA64/Altix systems */
2852 * 82547 workaround to avoid controller hang in half-duplex environment.
2853 * The workaround is to avoid queuing a large packet that would span
2854 * the internal Tx FIFO ring boundary by notifying the stack to resend
2855 * the packet at a later time. This gives the Tx FIFO an opportunity to
2856 * flush all packets. When that occurs, we reset the Tx FIFO pointers
2857 * to the beginning of the Tx FIFO.
2860 #define E1000_FIFO_HDR 0x10
2861 #define E1000_82547_PAD_LEN 0x3E0
2863 static int e1000_82547_fifo_workaround(struct e1000_adapter
*adapter
,
2864 struct sk_buff
*skb
)
2866 u32 fifo_space
= adapter
->tx_fifo_size
- adapter
->tx_fifo_head
;
2867 u32 skb_fifo_len
= skb
->len
+ E1000_FIFO_HDR
;
2869 skb_fifo_len
= ALIGN(skb_fifo_len
, E1000_FIFO_HDR
);
2871 if (adapter
->link_duplex
!= HALF_DUPLEX
)
2872 goto no_fifo_stall_required
;
2874 if (atomic_read(&adapter
->tx_fifo_stall
))
2877 if (skb_fifo_len
>= (E1000_82547_PAD_LEN
+ fifo_space
)) {
2878 atomic_set(&adapter
->tx_fifo_stall
, 1);
2882 no_fifo_stall_required
:
2883 adapter
->tx_fifo_head
+= skb_fifo_len
;
2884 if (adapter
->tx_fifo_head
>= adapter
->tx_fifo_size
)
2885 adapter
->tx_fifo_head
-= adapter
->tx_fifo_size
;
2889 static int __e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
2891 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2892 struct e1000_tx_ring
*tx_ring
= adapter
->tx_ring
;
2894 netif_stop_queue(netdev
);
2895 /* Herbert's original patch had:
2896 * smp_mb__after_netif_stop_queue();
2897 * but since that doesn't exist yet, just open code it. */
2900 /* We need to check again in a case another CPU has just
2901 * made room available. */
2902 if (likely(E1000_DESC_UNUSED(tx_ring
) < size
))
2906 netif_start_queue(netdev
);
2907 ++adapter
->restart_queue
;
2911 static int e1000_maybe_stop_tx(struct net_device
*netdev
,
2912 struct e1000_tx_ring
*tx_ring
, int size
)
2914 if (likely(E1000_DESC_UNUSED(tx_ring
) >= size
))
2916 return __e1000_maybe_stop_tx(netdev
, size
);
2919 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2920 static netdev_tx_t
e1000_xmit_frame(struct sk_buff
*skb
,
2921 struct net_device
*netdev
)
2923 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2924 struct e1000_hw
*hw
= &adapter
->hw
;
2925 struct e1000_tx_ring
*tx_ring
;
2926 unsigned int first
, max_per_txd
= E1000_MAX_DATA_PER_TXD
;
2927 unsigned int max_txd_pwr
= E1000_MAX_TXD_PWR
;
2928 unsigned int tx_flags
= 0;
2929 unsigned int len
= skb
->len
- skb
->data_len
;
2930 unsigned int nr_frags
;
2936 /* This goes back to the question of how to logically map a tx queue
2937 * to a flow. Right now, performance is impacted slightly negatively
2938 * if using multiple tx queues. If the stack breaks away from a
2939 * single qdisc implementation, we can look at this again. */
2940 tx_ring
= adapter
->tx_ring
;
2942 if (unlikely(skb
->len
<= 0)) {
2943 dev_kfree_skb_any(skb
);
2944 return NETDEV_TX_OK
;
2947 mss
= skb_shinfo(skb
)->gso_size
;
2948 /* The controller does a simple calculation to
2949 * make sure there is enough room in the FIFO before
2950 * initiating the DMA for each buffer. The calc is:
2951 * 4 = ceil(buffer len/mss). To make sure we don't
2952 * overrun the FIFO, adjust the max buffer len if mss
2956 max_per_txd
= min(mss
<< 2, max_per_txd
);
2957 max_txd_pwr
= fls(max_per_txd
) - 1;
2959 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
2960 if (skb
->data_len
&& hdr_len
== len
) {
2961 switch (hw
->mac_type
) {
2962 unsigned int pull_size
;
2964 /* Make sure we have room to chop off 4 bytes,
2965 * and that the end alignment will work out to
2966 * this hardware's requirements
2967 * NOTE: this is a TSO only workaround
2968 * if end byte alignment not correct move us
2969 * into the next dword */
2970 if ((unsigned long)(skb_tail_pointer(skb
) - 1) & 4)
2973 pull_size
= min((unsigned int)4, skb
->data_len
);
2974 if (!__pskb_pull_tail(skb
, pull_size
)) {
2976 "__pskb_pull_tail failed.\n");
2977 dev_kfree_skb_any(skb
);
2978 return NETDEV_TX_OK
;
2980 len
= skb
->len
- skb
->data_len
;
2989 /* reserve a descriptor for the offload context */
2990 if ((mss
) || (skb
->ip_summed
== CHECKSUM_PARTIAL
))
2994 /* Controller Erratum workaround */
2995 if (!skb
->data_len
&& tx_ring
->last_tx_tso
&& !skb_is_gso(skb
))
2998 count
+= TXD_USE_COUNT(len
, max_txd_pwr
);
3000 if (adapter
->pcix_82544
)
3003 /* work-around for errata 10 and it applies to all controllers
3004 * in PCI-X mode, so add one more descriptor to the count
3006 if (unlikely((hw
->bus_type
== e1000_bus_type_pcix
) &&
3010 nr_frags
= skb_shinfo(skb
)->nr_frags
;
3011 for (f
= 0; f
< nr_frags
; f
++)
3012 count
+= TXD_USE_COUNT(skb_shinfo(skb
)->frags
[f
].size
,
3014 if (adapter
->pcix_82544
)
3017 /* need: count + 2 desc gap to keep tail from touching
3018 * head, otherwise try next time */
3019 if (unlikely(e1000_maybe_stop_tx(netdev
, tx_ring
, count
+ 2)))
3020 return NETDEV_TX_BUSY
;
3022 if (unlikely(hw
->mac_type
== e1000_82547
)) {
3023 if (unlikely(e1000_82547_fifo_workaround(adapter
, skb
))) {
3024 netif_stop_queue(netdev
);
3025 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3026 mod_timer(&adapter
->tx_fifo_stall_timer
,
3028 return NETDEV_TX_BUSY
;
3032 if (unlikely(adapter
->vlgrp
&& vlan_tx_tag_present(skb
))) {
3033 tx_flags
|= E1000_TX_FLAGS_VLAN
;
3034 tx_flags
|= (vlan_tx_tag_get(skb
) << E1000_TX_FLAGS_VLAN_SHIFT
);
3037 first
= tx_ring
->next_to_use
;
3039 tso
= e1000_tso(adapter
, tx_ring
, skb
);
3041 dev_kfree_skb_any(skb
);
3042 return NETDEV_TX_OK
;
3046 if (likely(hw
->mac_type
!= e1000_82544
))
3047 tx_ring
->last_tx_tso
= 1;
3048 tx_flags
|= E1000_TX_FLAGS_TSO
;
3049 } else if (likely(e1000_tx_csum(adapter
, tx_ring
, skb
)))
3050 tx_flags
|= E1000_TX_FLAGS_CSUM
;
3052 if (likely(skb
->protocol
== htons(ETH_P_IP
)))
3053 tx_flags
|= E1000_TX_FLAGS_IPV4
;
3055 count
= e1000_tx_map(adapter
, tx_ring
, skb
, first
, max_per_txd
,
3059 e1000_tx_queue(adapter
, tx_ring
, tx_flags
, count
);
3060 /* Make sure there is space in the ring for the next send. */
3061 e1000_maybe_stop_tx(netdev
, tx_ring
, MAX_SKB_FRAGS
+ 2);
3064 dev_kfree_skb_any(skb
);
3065 tx_ring
->buffer_info
[first
].time_stamp
= 0;
3066 tx_ring
->next_to_use
= first
;
3069 return NETDEV_TX_OK
;
3073 * e1000_tx_timeout - Respond to a Tx Hang
3074 * @netdev: network interface device structure
3077 static void e1000_tx_timeout(struct net_device
*netdev
)
3079 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3081 /* Do the reset outside of interrupt context */
3082 adapter
->tx_timeout_count
++;
3083 schedule_work(&adapter
->reset_task
);
3086 static void e1000_reset_task(struct work_struct
*work
)
3088 struct e1000_adapter
*adapter
=
3089 container_of(work
, struct e1000_adapter
, reset_task
);
3091 e1000_reinit_locked(adapter
);
3095 * e1000_get_stats - Get System Network Statistics
3096 * @netdev: network interface device structure
3098 * Returns the address of the device statistics structure.
3099 * The statistics are actually updated from the timer callback.
3102 static struct net_device_stats
*e1000_get_stats(struct net_device
*netdev
)
3104 /* only return the current stats */
3105 return &netdev
->stats
;
3109 * e1000_change_mtu - Change the Maximum Transfer Unit
3110 * @netdev: network interface device structure
3111 * @new_mtu: new value for maximum frame size
3113 * Returns 0 on success, negative on failure
3116 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
)
3118 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3119 struct e1000_hw
*hw
= &adapter
->hw
;
3120 int max_frame
= new_mtu
+ ENET_HEADER_SIZE
+ ETHERNET_FCS_SIZE
;
3122 if ((max_frame
< MINIMUM_ETHERNET_FRAME_SIZE
) ||
3123 (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
3124 DPRINTK(PROBE
, ERR
, "Invalid MTU setting\n");
3128 /* Adapter-specific max frame size limits. */
3129 switch (hw
->mac_type
) {
3130 case e1000_undefined
... e1000_82542_rev2_1
:
3131 if (max_frame
> (ETH_FRAME_LEN
+ ETH_FCS_LEN
)) {
3132 DPRINTK(PROBE
, ERR
, "Jumbo Frames not supported.\n");
3137 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3141 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
3143 /* e1000_down has a dependency on max_frame_size */
3144 hw
->max_frame_size
= max_frame
;
3145 if (netif_running(netdev
))
3146 e1000_down(adapter
);
3148 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3149 * means we reserve 2 more, this pushes us to allocate from the next
3151 * i.e. RXBUFFER_2048 --> size-4096 slab
3152 * however with the new *_jumbo_rx* routines, jumbo receives will use
3153 * fragmented skbs */
3155 if (max_frame
<= E1000_RXBUFFER_256
)
3156 adapter
->rx_buffer_len
= E1000_RXBUFFER_256
;
3157 else if (max_frame
<= E1000_RXBUFFER_512
)
3158 adapter
->rx_buffer_len
= E1000_RXBUFFER_512
;
3159 else if (max_frame
<= E1000_RXBUFFER_1024
)
3160 adapter
->rx_buffer_len
= E1000_RXBUFFER_1024
;
3161 else if (max_frame
<= E1000_RXBUFFER_2048
)
3162 adapter
->rx_buffer_len
= E1000_RXBUFFER_2048
;
3164 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3165 adapter
->rx_buffer_len
= E1000_RXBUFFER_16384
;
3166 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3167 adapter
->rx_buffer_len
= PAGE_SIZE
;
3170 /* adjust allocation if LPE protects us, and we aren't using SBP */
3171 if (!hw
->tbi_compatibility_on
&&
3172 ((max_frame
== (ETH_FRAME_LEN
+ ETH_FCS_LEN
)) ||
3173 (max_frame
== MAXIMUM_ETHERNET_VLAN_SIZE
)))
3174 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
3176 printk(KERN_INFO
"e1000: %s changing MTU from %d to %d\n",
3177 netdev
->name
, netdev
->mtu
, new_mtu
);
3178 netdev
->mtu
= new_mtu
;
3180 if (netif_running(netdev
))
3183 e1000_reset(adapter
);
3185 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
3191 * e1000_update_stats - Update the board statistics counters
3192 * @adapter: board private structure
3195 void e1000_update_stats(struct e1000_adapter
*adapter
)
3197 struct net_device
*netdev
= adapter
->netdev
;
3198 struct e1000_hw
*hw
= &adapter
->hw
;
3199 struct pci_dev
*pdev
= adapter
->pdev
;
3200 unsigned long flags
;
3203 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3206 * Prevent stats update while adapter is being reset, or if the pci
3207 * connection is down.
3209 if (adapter
->link_speed
== 0)
3211 if (pci_channel_offline(pdev
))
3214 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
3216 /* these counters are modified from e1000_tbi_adjust_stats,
3217 * called from the interrupt context, so they must only
3218 * be written while holding adapter->stats_lock
3221 adapter
->stats
.crcerrs
+= er32(CRCERRS
);
3222 adapter
->stats
.gprc
+= er32(GPRC
);
3223 adapter
->stats
.gorcl
+= er32(GORCL
);
3224 adapter
->stats
.gorch
+= er32(GORCH
);
3225 adapter
->stats
.bprc
+= er32(BPRC
);
3226 adapter
->stats
.mprc
+= er32(MPRC
);
3227 adapter
->stats
.roc
+= er32(ROC
);
3229 adapter
->stats
.prc64
+= er32(PRC64
);
3230 adapter
->stats
.prc127
+= er32(PRC127
);
3231 adapter
->stats
.prc255
+= er32(PRC255
);
3232 adapter
->stats
.prc511
+= er32(PRC511
);
3233 adapter
->stats
.prc1023
+= er32(PRC1023
);
3234 adapter
->stats
.prc1522
+= er32(PRC1522
);
3236 adapter
->stats
.symerrs
+= er32(SYMERRS
);
3237 adapter
->stats
.mpc
+= er32(MPC
);
3238 adapter
->stats
.scc
+= er32(SCC
);
3239 adapter
->stats
.ecol
+= er32(ECOL
);
3240 adapter
->stats
.mcc
+= er32(MCC
);
3241 adapter
->stats
.latecol
+= er32(LATECOL
);
3242 adapter
->stats
.dc
+= er32(DC
);
3243 adapter
->stats
.sec
+= er32(SEC
);
3244 adapter
->stats
.rlec
+= er32(RLEC
);
3245 adapter
->stats
.xonrxc
+= er32(XONRXC
);
3246 adapter
->stats
.xontxc
+= er32(XONTXC
);
3247 adapter
->stats
.xoffrxc
+= er32(XOFFRXC
);
3248 adapter
->stats
.xofftxc
+= er32(XOFFTXC
);
3249 adapter
->stats
.fcruc
+= er32(FCRUC
);
3250 adapter
->stats
.gptc
+= er32(GPTC
);
3251 adapter
->stats
.gotcl
+= er32(GOTCL
);
3252 adapter
->stats
.gotch
+= er32(GOTCH
);
3253 adapter
->stats
.rnbc
+= er32(RNBC
);
3254 adapter
->stats
.ruc
+= er32(RUC
);
3255 adapter
->stats
.rfc
+= er32(RFC
);
3256 adapter
->stats
.rjc
+= er32(RJC
);
3257 adapter
->stats
.torl
+= er32(TORL
);
3258 adapter
->stats
.torh
+= er32(TORH
);
3259 adapter
->stats
.totl
+= er32(TOTL
);
3260 adapter
->stats
.toth
+= er32(TOTH
);
3261 adapter
->stats
.tpr
+= er32(TPR
);
3263 adapter
->stats
.ptc64
+= er32(PTC64
);
3264 adapter
->stats
.ptc127
+= er32(PTC127
);
3265 adapter
->stats
.ptc255
+= er32(PTC255
);
3266 adapter
->stats
.ptc511
+= er32(PTC511
);
3267 adapter
->stats
.ptc1023
+= er32(PTC1023
);
3268 adapter
->stats
.ptc1522
+= er32(PTC1522
);
3270 adapter
->stats
.mptc
+= er32(MPTC
);
3271 adapter
->stats
.bptc
+= er32(BPTC
);
3273 /* used for adaptive IFS */
3275 hw
->tx_packet_delta
= er32(TPT
);
3276 adapter
->stats
.tpt
+= hw
->tx_packet_delta
;
3277 hw
->collision_delta
= er32(COLC
);
3278 adapter
->stats
.colc
+= hw
->collision_delta
;
3280 if (hw
->mac_type
>= e1000_82543
) {
3281 adapter
->stats
.algnerrc
+= er32(ALGNERRC
);
3282 adapter
->stats
.rxerrc
+= er32(RXERRC
);
3283 adapter
->stats
.tncrs
+= er32(TNCRS
);
3284 adapter
->stats
.cexterr
+= er32(CEXTERR
);
3285 adapter
->stats
.tsctc
+= er32(TSCTC
);
3286 adapter
->stats
.tsctfc
+= er32(TSCTFC
);
3289 /* Fill out the OS statistics structure */
3290 netdev
->stats
.multicast
= adapter
->stats
.mprc
;
3291 netdev
->stats
.collisions
= adapter
->stats
.colc
;
3295 /* RLEC on some newer hardware can be incorrect so build
3296 * our own version based on RUC and ROC */
3297 netdev
->stats
.rx_errors
= adapter
->stats
.rxerrc
+
3298 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
3299 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
3300 adapter
->stats
.cexterr
;
3301 adapter
->stats
.rlerrc
= adapter
->stats
.ruc
+ adapter
->stats
.roc
;
3302 netdev
->stats
.rx_length_errors
= adapter
->stats
.rlerrc
;
3303 netdev
->stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
3304 netdev
->stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
3305 netdev
->stats
.rx_missed_errors
= adapter
->stats
.mpc
;
3308 adapter
->stats
.txerrc
= adapter
->stats
.ecol
+ adapter
->stats
.latecol
;
3309 netdev
->stats
.tx_errors
= adapter
->stats
.txerrc
;
3310 netdev
->stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
3311 netdev
->stats
.tx_window_errors
= adapter
->stats
.latecol
;
3312 netdev
->stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
3313 if (hw
->bad_tx_carr_stats_fd
&&
3314 adapter
->link_duplex
== FULL_DUPLEX
) {
3315 netdev
->stats
.tx_carrier_errors
= 0;
3316 adapter
->stats
.tncrs
= 0;
3319 /* Tx Dropped needs to be maintained elsewhere */
3322 if (hw
->media_type
== e1000_media_type_copper
) {
3323 if ((adapter
->link_speed
== SPEED_1000
) &&
3324 (!e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_tmp
))) {
3325 phy_tmp
&= PHY_IDLE_ERROR_COUNT_MASK
;
3326 adapter
->phy_stats
.idle_errors
+= phy_tmp
;
3329 if ((hw
->mac_type
<= e1000_82546
) &&
3330 (hw
->phy_type
== e1000_phy_m88
) &&
3331 !e1000_read_phy_reg(hw
, M88E1000_RX_ERR_CNTR
, &phy_tmp
))
3332 adapter
->phy_stats
.receive_errors
+= phy_tmp
;
3335 /* Management Stats */
3336 if (hw
->has_smbus
) {
3337 adapter
->stats
.mgptc
+= er32(MGTPTC
);
3338 adapter
->stats
.mgprc
+= er32(MGTPRC
);
3339 adapter
->stats
.mgpdc
+= er32(MGTPDC
);
3342 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
3346 * e1000_intr - Interrupt Handler
3347 * @irq: interrupt number
3348 * @data: pointer to a network interface device structure
3351 static irqreturn_t
e1000_intr(int irq
, void *data
)
3353 struct net_device
*netdev
= data
;
3354 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3355 struct e1000_hw
*hw
= &adapter
->hw
;
3356 u32 icr
= er32(ICR
);
3358 if (unlikely((!icr
) || test_bit(__E1000_DOWN
, &adapter
->flags
)))
3359 return IRQ_NONE
; /* Not our interrupt */
3361 if (unlikely(icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
))) {
3362 hw
->get_link_status
= 1;
3363 /* guard against interrupt when we're going down */
3364 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3365 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3368 /* disable interrupts, without the synchronize_irq bit */
3370 E1000_WRITE_FLUSH();
3372 if (likely(napi_schedule_prep(&adapter
->napi
))) {
3373 adapter
->total_tx_bytes
= 0;
3374 adapter
->total_tx_packets
= 0;
3375 adapter
->total_rx_bytes
= 0;
3376 adapter
->total_rx_packets
= 0;
3377 __napi_schedule(&adapter
->napi
);
3379 /* this really should not happen! if it does it is basically a
3380 * bug, but not a hard error, so enable ints and continue */
3381 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3382 e1000_irq_enable(adapter
);
3389 * e1000_clean - NAPI Rx polling callback
3390 * @adapter: board private structure
3392 static int e1000_clean(struct napi_struct
*napi
, int budget
)
3394 struct e1000_adapter
*adapter
= container_of(napi
, struct e1000_adapter
, napi
);
3395 int tx_clean_complete
= 0, work_done
= 0;
3397 tx_clean_complete
= e1000_clean_tx_irq(adapter
, &adapter
->tx_ring
[0]);
3399 adapter
->clean_rx(adapter
, &adapter
->rx_ring
[0], &work_done
, budget
);
3401 if (!tx_clean_complete
)
3404 /* If budget not fully consumed, exit the polling mode */
3405 if (work_done
< budget
) {
3406 if (likely(adapter
->itr_setting
& 3))
3407 e1000_set_itr(adapter
);
3408 napi_complete(napi
);
3409 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3410 e1000_irq_enable(adapter
);
3417 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3418 * @adapter: board private structure
3420 static bool e1000_clean_tx_irq(struct e1000_adapter
*adapter
,
3421 struct e1000_tx_ring
*tx_ring
)
3423 struct e1000_hw
*hw
= &adapter
->hw
;
3424 struct net_device
*netdev
= adapter
->netdev
;
3425 struct e1000_tx_desc
*tx_desc
, *eop_desc
;
3426 struct e1000_buffer
*buffer_info
;
3427 unsigned int i
, eop
;
3428 unsigned int count
= 0;
3429 unsigned int total_tx_bytes
=0, total_tx_packets
=0;
3431 i
= tx_ring
->next_to_clean
;
3432 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
3433 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
3435 while ((eop_desc
->upper
.data
& cpu_to_le32(E1000_TXD_STAT_DD
)) &&
3436 (count
< tx_ring
->count
)) {
3437 bool cleaned
= false;
3438 for ( ; !cleaned
; count
++) {
3439 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3440 buffer_info
= &tx_ring
->buffer_info
[i
];
3441 cleaned
= (i
== eop
);
3444 struct sk_buff
*skb
= buffer_info
->skb
;
3445 unsigned int segs
, bytecount
;
3446 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
3447 /* multiply data chunks by size of headers */
3448 bytecount
= ((segs
- 1) * skb_headlen(skb
)) +
3450 total_tx_packets
+= segs
;
3451 total_tx_bytes
+= bytecount
;
3453 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
3454 tx_desc
->upper
.data
= 0;
3456 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
3459 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
3460 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
3463 tx_ring
->next_to_clean
= i
;
3465 #define TX_WAKE_THRESHOLD 32
3466 if (unlikely(count
&& netif_carrier_ok(netdev
) &&
3467 E1000_DESC_UNUSED(tx_ring
) >= TX_WAKE_THRESHOLD
)) {
3468 /* Make sure that anybody stopping the queue after this
3469 * sees the new next_to_clean.
3473 if (netif_queue_stopped(netdev
) &&
3474 !(test_bit(__E1000_DOWN
, &adapter
->flags
))) {
3475 netif_wake_queue(netdev
);
3476 ++adapter
->restart_queue
;
3480 if (adapter
->detect_tx_hung
) {
3481 /* Detect a transmit hang in hardware, this serializes the
3482 * check with the clearing of time_stamp and movement of i */
3483 adapter
->detect_tx_hung
= false;
3484 if (tx_ring
->buffer_info
[eop
].time_stamp
&&
3485 time_after(jiffies
, tx_ring
->buffer_info
[eop
].time_stamp
+
3486 (adapter
->tx_timeout_factor
* HZ
))
3487 && !(er32(STATUS
) & E1000_STATUS_TXOFF
)) {
3489 /* detected Tx unit hang */
3490 DPRINTK(DRV
, ERR
, "Detected Tx Unit Hang\n"
3494 " next_to_use <%x>\n"
3495 " next_to_clean <%x>\n"
3496 "buffer_info[next_to_clean]\n"
3497 " time_stamp <%lx>\n"
3498 " next_to_watch <%x>\n"
3500 " next_to_watch.status <%x>\n",
3501 (unsigned long)((tx_ring
- adapter
->tx_ring
) /
3502 sizeof(struct e1000_tx_ring
)),
3503 readl(hw
->hw_addr
+ tx_ring
->tdh
),
3504 readl(hw
->hw_addr
+ tx_ring
->tdt
),
3505 tx_ring
->next_to_use
,
3506 tx_ring
->next_to_clean
,
3507 tx_ring
->buffer_info
[eop
].time_stamp
,
3510 eop_desc
->upper
.fields
.status
);
3511 netif_stop_queue(netdev
);
3514 adapter
->total_tx_bytes
+= total_tx_bytes
;
3515 adapter
->total_tx_packets
+= total_tx_packets
;
3516 netdev
->stats
.tx_bytes
+= total_tx_bytes
;
3517 netdev
->stats
.tx_packets
+= total_tx_packets
;
3518 return (count
< tx_ring
->count
);
3522 * e1000_rx_checksum - Receive Checksum Offload for 82543
3523 * @adapter: board private structure
3524 * @status_err: receive descriptor status and error fields
3525 * @csum: receive descriptor csum field
3526 * @sk_buff: socket buffer with received data
3529 static void e1000_rx_checksum(struct e1000_adapter
*adapter
, u32 status_err
,
3530 u32 csum
, struct sk_buff
*skb
)
3532 struct e1000_hw
*hw
= &adapter
->hw
;
3533 u16 status
= (u16
)status_err
;
3534 u8 errors
= (u8
)(status_err
>> 24);
3535 skb
->ip_summed
= CHECKSUM_NONE
;
3537 /* 82543 or newer only */
3538 if (unlikely(hw
->mac_type
< e1000_82543
)) return;
3539 /* Ignore Checksum bit is set */
3540 if (unlikely(status
& E1000_RXD_STAT_IXSM
)) return;
3541 /* TCP/UDP checksum error bit is set */
3542 if (unlikely(errors
& E1000_RXD_ERR_TCPE
)) {
3543 /* let the stack verify checksum errors */
3544 adapter
->hw_csum_err
++;
3547 /* TCP/UDP Checksum has not been calculated */
3548 if (!(status
& E1000_RXD_STAT_TCPCS
))
3551 /* It must be a TCP or UDP packet with a valid checksum */
3552 if (likely(status
& E1000_RXD_STAT_TCPCS
)) {
3553 /* TCP checksum is good */
3554 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3556 adapter
->hw_csum_good
++;
3560 * e1000_consume_page - helper function
3562 static void e1000_consume_page(struct e1000_buffer
*bi
, struct sk_buff
*skb
,
3567 skb
->data_len
+= length
;
3568 skb
->truesize
+= length
;
3572 * e1000_receive_skb - helper function to handle rx indications
3573 * @adapter: board private structure
3574 * @status: descriptor status field as written by hardware
3575 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3576 * @skb: pointer to sk_buff to be indicated to stack
3578 static void e1000_receive_skb(struct e1000_adapter
*adapter
, u8 status
,
3579 __le16 vlan
, struct sk_buff
*skb
)
3581 if (unlikely(adapter
->vlgrp
&& (status
& E1000_RXD_STAT_VP
))) {
3582 vlan_hwaccel_receive_skb(skb
, adapter
->vlgrp
,
3584 E1000_RXD_SPC_VLAN_MASK
);
3586 netif_receive_skb(skb
);
3591 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
3592 * @adapter: board private structure
3593 * @rx_ring: ring to clean
3594 * @work_done: amount of napi work completed this call
3595 * @work_to_do: max amount of work allowed for this call to do
3597 * the return value indicates whether actual cleaning was done, there
3598 * is no guarantee that everything was cleaned
3600 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter
*adapter
,
3601 struct e1000_rx_ring
*rx_ring
,
3602 int *work_done
, int work_to_do
)
3604 struct e1000_hw
*hw
= &adapter
->hw
;
3605 struct net_device
*netdev
= adapter
->netdev
;
3606 struct pci_dev
*pdev
= adapter
->pdev
;
3607 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
3608 struct e1000_buffer
*buffer_info
, *next_buffer
;
3609 unsigned long irq_flags
;
3612 int cleaned_count
= 0;
3613 bool cleaned
= false;
3614 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
3616 i
= rx_ring
->next_to_clean
;
3617 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
3618 buffer_info
= &rx_ring
->buffer_info
[i
];
3620 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
3621 struct sk_buff
*skb
;
3624 if (*work_done
>= work_to_do
)
3628 status
= rx_desc
->status
;
3629 skb
= buffer_info
->skb
;
3630 buffer_info
->skb
= NULL
;
3632 if (++i
== rx_ring
->count
) i
= 0;
3633 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
3636 next_buffer
= &rx_ring
->buffer_info
[i
];
3640 pci_unmap_page(pdev
, buffer_info
->dma
, buffer_info
->length
,
3641 PCI_DMA_FROMDEVICE
);
3642 buffer_info
->dma
= 0;
3644 length
= le16_to_cpu(rx_desc
->length
);
3646 /* errors is only valid for DD + EOP descriptors */
3647 if (unlikely((status
& E1000_RXD_STAT_EOP
) &&
3648 (rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
))) {
3649 u8 last_byte
= *(skb
->data
+ length
- 1);
3650 if (TBI_ACCEPT(hw
, status
, rx_desc
->errors
, length
,
3652 spin_lock_irqsave(&adapter
->stats_lock
,
3654 e1000_tbi_adjust_stats(hw
, &adapter
->stats
,
3656 spin_unlock_irqrestore(&adapter
->stats_lock
,
3660 /* recycle both page and skb */
3661 buffer_info
->skb
= skb
;
3662 /* an error means any chain goes out the window
3664 if (rx_ring
->rx_skb_top
)
3665 dev_kfree_skb(rx_ring
->rx_skb_top
);
3666 rx_ring
->rx_skb_top
= NULL
;
3671 #define rxtop rx_ring->rx_skb_top
3672 if (!(status
& E1000_RXD_STAT_EOP
)) {
3673 /* this descriptor is only the beginning (or middle) */
3675 /* this is the beginning of a chain */
3677 skb_fill_page_desc(rxtop
, 0, buffer_info
->page
,
3680 /* this is the middle of a chain */
3681 skb_fill_page_desc(rxtop
,
3682 skb_shinfo(rxtop
)->nr_frags
,
3683 buffer_info
->page
, 0, length
);
3684 /* re-use the skb, only consumed the page */
3685 buffer_info
->skb
= skb
;
3687 e1000_consume_page(buffer_info
, rxtop
, length
);
3691 /* end of the chain */
3692 skb_fill_page_desc(rxtop
,
3693 skb_shinfo(rxtop
)->nr_frags
,
3694 buffer_info
->page
, 0, length
);
3695 /* re-use the current skb, we only consumed the
3697 buffer_info
->skb
= skb
;
3700 e1000_consume_page(buffer_info
, skb
, length
);
3702 /* no chain, got EOP, this buf is the packet
3703 * copybreak to save the put_page/alloc_page */
3704 if (length
<= copybreak
&&
3705 skb_tailroom(skb
) >= length
) {
3707 vaddr
= kmap_atomic(buffer_info
->page
,
3708 KM_SKB_DATA_SOFTIRQ
);
3709 memcpy(skb_tail_pointer(skb
), vaddr
, length
);
3710 kunmap_atomic(vaddr
,
3711 KM_SKB_DATA_SOFTIRQ
);
3712 /* re-use the page, so don't erase
3713 * buffer_info->page */
3714 skb_put(skb
, length
);
3716 skb_fill_page_desc(skb
, 0,
3717 buffer_info
->page
, 0,
3719 e1000_consume_page(buffer_info
, skb
,
3725 /* Receive Checksum Offload XXX recompute due to CRC strip? */
3726 e1000_rx_checksum(adapter
,
3728 ((u32
)(rx_desc
->errors
) << 24),
3729 le16_to_cpu(rx_desc
->csum
), skb
);
3731 pskb_trim(skb
, skb
->len
- 4);
3733 /* probably a little skewed due to removing CRC */
3734 total_rx_bytes
+= skb
->len
;
3737 /* eth type trans needs skb->data to point to something */
3738 if (!pskb_may_pull(skb
, ETH_HLEN
)) {
3739 DPRINTK(DRV
, ERR
, "pskb_may_pull failed.\n");
3744 skb
->protocol
= eth_type_trans(skb
, netdev
);
3746 e1000_receive_skb(adapter
, status
, rx_desc
->special
, skb
);
3749 rx_desc
->status
= 0;
3751 /* return some buffers to hardware, one at a time is too slow */
3752 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
3753 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
3757 /* use prefetched values */
3759 buffer_info
= next_buffer
;
3761 rx_ring
->next_to_clean
= i
;
3763 cleaned_count
= E1000_DESC_UNUSED(rx_ring
);
3765 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
3767 adapter
->total_rx_packets
+= total_rx_packets
;
3768 adapter
->total_rx_bytes
+= total_rx_bytes
;
3769 netdev
->stats
.rx_bytes
+= total_rx_bytes
;
3770 netdev
->stats
.rx_packets
+= total_rx_packets
;
3775 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3776 * @adapter: board private structure
3777 * @rx_ring: ring to clean
3778 * @work_done: amount of napi work completed this call
3779 * @work_to_do: max amount of work allowed for this call to do
3781 static bool e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
3782 struct e1000_rx_ring
*rx_ring
,
3783 int *work_done
, int work_to_do
)
3785 struct e1000_hw
*hw
= &adapter
->hw
;
3786 struct net_device
*netdev
= adapter
->netdev
;
3787 struct pci_dev
*pdev
= adapter
->pdev
;
3788 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
3789 struct e1000_buffer
*buffer_info
, *next_buffer
;
3790 unsigned long flags
;
3793 int cleaned_count
= 0;
3794 bool cleaned
= false;
3795 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
3797 i
= rx_ring
->next_to_clean
;
3798 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
3799 buffer_info
= &rx_ring
->buffer_info
[i
];
3801 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
3802 struct sk_buff
*skb
;
3805 if (*work_done
>= work_to_do
)
3809 status
= rx_desc
->status
;
3810 skb
= buffer_info
->skb
;
3811 buffer_info
->skb
= NULL
;
3813 prefetch(skb
->data
- NET_IP_ALIGN
);
3815 if (++i
== rx_ring
->count
) i
= 0;
3816 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
3819 next_buffer
= &rx_ring
->buffer_info
[i
];
3823 pci_unmap_single(pdev
, buffer_info
->dma
, buffer_info
->length
,
3824 PCI_DMA_FROMDEVICE
);
3825 buffer_info
->dma
= 0;
3827 length
= le16_to_cpu(rx_desc
->length
);
3828 /* !EOP means multiple descriptors were used to store a single
3829 * packet, also make sure the frame isn't just CRC only */
3830 if (unlikely(!(status
& E1000_RXD_STAT_EOP
) || (length
<= 4))) {
3831 /* All receives must fit into a single buffer */
3832 E1000_DBG("%s: Receive packet consumed multiple"
3833 " buffers\n", netdev
->name
);
3835 buffer_info
->skb
= skb
;
3839 if (unlikely(rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
)) {
3840 u8 last_byte
= *(skb
->data
+ length
- 1);
3841 if (TBI_ACCEPT(hw
, status
, rx_desc
->errors
, length
,
3843 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
3844 e1000_tbi_adjust_stats(hw
, &adapter
->stats
,
3846 spin_unlock_irqrestore(&adapter
->stats_lock
,
3851 buffer_info
->skb
= skb
;
3856 /* adjust length to remove Ethernet CRC, this must be
3857 * done after the TBI_ACCEPT workaround above */
3860 /* probably a little skewed due to removing CRC */
3861 total_rx_bytes
+= length
;
3864 /* code added for copybreak, this should improve
3865 * performance for small packets with large amounts
3866 * of reassembly being done in the stack */
3867 if (length
< copybreak
) {
3868 struct sk_buff
*new_skb
=
3869 netdev_alloc_skb(netdev
, length
+ NET_IP_ALIGN
);
3871 skb_reserve(new_skb
, NET_IP_ALIGN
);
3872 skb_copy_to_linear_data_offset(new_skb
,
3878 /* save the skb in buffer_info as good */
3879 buffer_info
->skb
= skb
;
3882 /* else just continue with the old one */
3884 /* end copybreak code */
3885 skb_put(skb
, length
);
3887 /* Receive Checksum Offload */
3888 e1000_rx_checksum(adapter
,
3890 ((u32
)(rx_desc
->errors
) << 24),
3891 le16_to_cpu(rx_desc
->csum
), skb
);
3893 skb
->protocol
= eth_type_trans(skb
, netdev
);
3895 e1000_receive_skb(adapter
, status
, rx_desc
->special
, skb
);
3898 rx_desc
->status
= 0;
3900 /* return some buffers to hardware, one at a time is too slow */
3901 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
3902 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
3906 /* use prefetched values */
3908 buffer_info
= next_buffer
;
3910 rx_ring
->next_to_clean
= i
;
3912 cleaned_count
= E1000_DESC_UNUSED(rx_ring
);
3914 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
3916 adapter
->total_rx_packets
+= total_rx_packets
;
3917 adapter
->total_rx_bytes
+= total_rx_bytes
;
3918 netdev
->stats
.rx_bytes
+= total_rx_bytes
;
3919 netdev
->stats
.rx_packets
+= total_rx_packets
;
3924 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
3925 * @adapter: address of board private structure
3926 * @rx_ring: pointer to receive ring structure
3927 * @cleaned_count: number of buffers to allocate this pass
3931 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter
*adapter
,
3932 struct e1000_rx_ring
*rx_ring
, int cleaned_count
)
3934 struct net_device
*netdev
= adapter
->netdev
;
3935 struct pci_dev
*pdev
= adapter
->pdev
;
3936 struct e1000_rx_desc
*rx_desc
;
3937 struct e1000_buffer
*buffer_info
;
3938 struct sk_buff
*skb
;
3940 unsigned int bufsz
= 256 -
3941 16 /*for skb_reserve */ -
3944 i
= rx_ring
->next_to_use
;
3945 buffer_info
= &rx_ring
->buffer_info
[i
];
3947 while (cleaned_count
--) {
3948 skb
= buffer_info
->skb
;
3954 skb
= netdev_alloc_skb(netdev
, bufsz
);
3955 if (unlikely(!skb
)) {
3956 /* Better luck next round */
3957 adapter
->alloc_rx_buff_failed
++;
3961 /* Fix for errata 23, can't cross 64kB boundary */
3962 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
3963 struct sk_buff
*oldskb
= skb
;
3964 DPRINTK(PROBE
, ERR
, "skb align check failed: %u bytes "
3965 "at %p\n", bufsz
, skb
->data
);
3966 /* Try again, without freeing the previous */
3967 skb
= netdev_alloc_skb(netdev
, bufsz
);
3968 /* Failed allocation, critical failure */
3970 dev_kfree_skb(oldskb
);
3971 adapter
->alloc_rx_buff_failed
++;
3975 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
3978 dev_kfree_skb(oldskb
);
3979 break; /* while (cleaned_count--) */
3982 /* Use new allocation */
3983 dev_kfree_skb(oldskb
);
3985 /* Make buffer alignment 2 beyond a 16 byte boundary
3986 * this will result in a 16 byte aligned IP header after
3987 * the 14 byte MAC header is removed
3989 skb_reserve(skb
, NET_IP_ALIGN
);
3991 buffer_info
->skb
= skb
;
3992 buffer_info
->length
= adapter
->rx_buffer_len
;
3994 /* allocate a new page if necessary */
3995 if (!buffer_info
->page
) {
3996 buffer_info
->page
= alloc_page(GFP_ATOMIC
);
3997 if (unlikely(!buffer_info
->page
)) {
3998 adapter
->alloc_rx_buff_failed
++;
4003 if (!buffer_info
->dma
)
4004 buffer_info
->dma
= pci_map_page(pdev
,
4005 buffer_info
->page
, 0,
4006 buffer_info
->length
,
4007 PCI_DMA_FROMDEVICE
);
4009 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4010 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
4012 if (unlikely(++i
== rx_ring
->count
))
4014 buffer_info
= &rx_ring
->buffer_info
[i
];
4017 if (likely(rx_ring
->next_to_use
!= i
)) {
4018 rx_ring
->next_to_use
= i
;
4019 if (unlikely(i
-- == 0))
4020 i
= (rx_ring
->count
- 1);
4022 /* Force memory writes to complete before letting h/w
4023 * know there are new descriptors to fetch. (Only
4024 * applicable for weak-ordered memory model archs,
4025 * such as IA-64). */
4027 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->rdt
);
4032 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4033 * @adapter: address of board private structure
4036 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
4037 struct e1000_rx_ring
*rx_ring
,
4040 struct e1000_hw
*hw
= &adapter
->hw
;
4041 struct net_device
*netdev
= adapter
->netdev
;
4042 struct pci_dev
*pdev
= adapter
->pdev
;
4043 struct e1000_rx_desc
*rx_desc
;
4044 struct e1000_buffer
*buffer_info
;
4045 struct sk_buff
*skb
;
4047 unsigned int bufsz
= adapter
->rx_buffer_len
+ NET_IP_ALIGN
;
4049 i
= rx_ring
->next_to_use
;
4050 buffer_info
= &rx_ring
->buffer_info
[i
];
4052 while (cleaned_count
--) {
4053 skb
= buffer_info
->skb
;
4059 skb
= netdev_alloc_skb(netdev
, bufsz
);
4060 if (unlikely(!skb
)) {
4061 /* Better luck next round */
4062 adapter
->alloc_rx_buff_failed
++;
4066 /* Fix for errata 23, can't cross 64kB boundary */
4067 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4068 struct sk_buff
*oldskb
= skb
;
4069 DPRINTK(RX_ERR
, ERR
, "skb align check failed: %u bytes "
4070 "at %p\n", bufsz
, skb
->data
);
4071 /* Try again, without freeing the previous */
4072 skb
= netdev_alloc_skb(netdev
, bufsz
);
4073 /* Failed allocation, critical failure */
4075 dev_kfree_skb(oldskb
);
4076 adapter
->alloc_rx_buff_failed
++;
4080 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4083 dev_kfree_skb(oldskb
);
4084 adapter
->alloc_rx_buff_failed
++;
4085 break; /* while !buffer_info->skb */
4088 /* Use new allocation */
4089 dev_kfree_skb(oldskb
);
4091 /* Make buffer alignment 2 beyond a 16 byte boundary
4092 * this will result in a 16 byte aligned IP header after
4093 * the 14 byte MAC header is removed
4095 skb_reserve(skb
, NET_IP_ALIGN
);
4097 buffer_info
->skb
= skb
;
4098 buffer_info
->length
= adapter
->rx_buffer_len
;
4100 buffer_info
->dma
= pci_map_single(pdev
,
4102 buffer_info
->length
,
4103 PCI_DMA_FROMDEVICE
);
4106 * XXX if it was allocated cleanly it will never map to a
4110 /* Fix for errata 23, can't cross 64kB boundary */
4111 if (!e1000_check_64k_bound(adapter
,
4112 (void *)(unsigned long)buffer_info
->dma
,
4113 adapter
->rx_buffer_len
)) {
4114 DPRINTK(RX_ERR
, ERR
,
4115 "dma align check failed: %u bytes at %p\n",
4116 adapter
->rx_buffer_len
,
4117 (void *)(unsigned long)buffer_info
->dma
);
4119 buffer_info
->skb
= NULL
;
4121 pci_unmap_single(pdev
, buffer_info
->dma
,
4122 adapter
->rx_buffer_len
,
4123 PCI_DMA_FROMDEVICE
);
4124 buffer_info
->dma
= 0;
4126 adapter
->alloc_rx_buff_failed
++;
4127 break; /* while !buffer_info->skb */
4129 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4130 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
4132 if (unlikely(++i
== rx_ring
->count
))
4134 buffer_info
= &rx_ring
->buffer_info
[i
];
4137 if (likely(rx_ring
->next_to_use
!= i
)) {
4138 rx_ring
->next_to_use
= i
;
4139 if (unlikely(i
-- == 0))
4140 i
= (rx_ring
->count
- 1);
4142 /* Force memory writes to complete before letting h/w
4143 * know there are new descriptors to fetch. (Only
4144 * applicable for weak-ordered memory model archs,
4145 * such as IA-64). */
4147 writel(i
, hw
->hw_addr
+ rx_ring
->rdt
);
4152 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4156 static void e1000_smartspeed(struct e1000_adapter
*adapter
)
4158 struct e1000_hw
*hw
= &adapter
->hw
;
4162 if ((hw
->phy_type
!= e1000_phy_igp
) || !hw
->autoneg
||
4163 !(hw
->autoneg_advertised
& ADVERTISE_1000_FULL
))
4166 if (adapter
->smartspeed
== 0) {
4167 /* If Master/Slave config fault is asserted twice,
4168 * we assume back-to-back */
4169 e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_status
);
4170 if (!(phy_status
& SR_1000T_MS_CONFIG_FAULT
)) return;
4171 e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_status
);
4172 if (!(phy_status
& SR_1000T_MS_CONFIG_FAULT
)) return;
4173 e1000_read_phy_reg(hw
, PHY_1000T_CTRL
, &phy_ctrl
);
4174 if (phy_ctrl
& CR_1000T_MS_ENABLE
) {
4175 phy_ctrl
&= ~CR_1000T_MS_ENABLE
;
4176 e1000_write_phy_reg(hw
, PHY_1000T_CTRL
,
4178 adapter
->smartspeed
++;
4179 if (!e1000_phy_setup_autoneg(hw
) &&
4180 !e1000_read_phy_reg(hw
, PHY_CTRL
,
4182 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
|
4183 MII_CR_RESTART_AUTO_NEG
);
4184 e1000_write_phy_reg(hw
, PHY_CTRL
,
4189 } else if (adapter
->smartspeed
== E1000_SMARTSPEED_DOWNSHIFT
) {
4190 /* If still no link, perhaps using 2/3 pair cable */
4191 e1000_read_phy_reg(hw
, PHY_1000T_CTRL
, &phy_ctrl
);
4192 phy_ctrl
|= CR_1000T_MS_ENABLE
;
4193 e1000_write_phy_reg(hw
, PHY_1000T_CTRL
, phy_ctrl
);
4194 if (!e1000_phy_setup_autoneg(hw
) &&
4195 !e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_ctrl
)) {
4196 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
|
4197 MII_CR_RESTART_AUTO_NEG
);
4198 e1000_write_phy_reg(hw
, PHY_CTRL
, phy_ctrl
);
4201 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4202 if (adapter
->smartspeed
++ == E1000_SMARTSPEED_MAX
)
4203 adapter
->smartspeed
= 0;
4213 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
4219 return e1000_mii_ioctl(netdev
, ifr
, cmd
);
4232 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
4235 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4236 struct e1000_hw
*hw
= &adapter
->hw
;
4237 struct mii_ioctl_data
*data
= if_mii(ifr
);
4241 unsigned long flags
;
4243 if (hw
->media_type
!= e1000_media_type_copper
)
4248 data
->phy_id
= hw
->phy_addr
;
4251 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4252 if (e1000_read_phy_reg(hw
, data
->reg_num
& 0x1F,
4254 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4257 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4260 if (data
->reg_num
& ~(0x1F))
4262 mii_reg
= data
->val_in
;
4263 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4264 if (e1000_write_phy_reg(hw
, data
->reg_num
,
4266 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4269 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4270 if (hw
->media_type
== e1000_media_type_copper
) {
4271 switch (data
->reg_num
) {
4273 if (mii_reg
& MII_CR_POWER_DOWN
)
4275 if (mii_reg
& MII_CR_AUTO_NEG_EN
) {
4277 hw
->autoneg_advertised
= 0x2F;
4280 spddplx
= SPEED_1000
;
4281 else if (mii_reg
& 0x2000)
4282 spddplx
= SPEED_100
;
4285 spddplx
+= (mii_reg
& 0x100)
4288 retval
= e1000_set_spd_dplx(adapter
,
4293 if (netif_running(adapter
->netdev
))
4294 e1000_reinit_locked(adapter
);
4296 e1000_reset(adapter
);
4298 case M88E1000_PHY_SPEC_CTRL
:
4299 case M88E1000_EXT_PHY_SPEC_CTRL
:
4300 if (e1000_phy_reset(hw
))
4305 switch (data
->reg_num
) {
4307 if (mii_reg
& MII_CR_POWER_DOWN
)
4309 if (netif_running(adapter
->netdev
))
4310 e1000_reinit_locked(adapter
);
4312 e1000_reset(adapter
);
4320 return E1000_SUCCESS
;
4323 void e1000_pci_set_mwi(struct e1000_hw
*hw
)
4325 struct e1000_adapter
*adapter
= hw
->back
;
4326 int ret_val
= pci_set_mwi(adapter
->pdev
);
4329 DPRINTK(PROBE
, ERR
, "Error in setting MWI\n");
4332 void e1000_pci_clear_mwi(struct e1000_hw
*hw
)
4334 struct e1000_adapter
*adapter
= hw
->back
;
4336 pci_clear_mwi(adapter
->pdev
);
4339 int e1000_pcix_get_mmrbc(struct e1000_hw
*hw
)
4341 struct e1000_adapter
*adapter
= hw
->back
;
4342 return pcix_get_mmrbc(adapter
->pdev
);
4345 void e1000_pcix_set_mmrbc(struct e1000_hw
*hw
, int mmrbc
)
4347 struct e1000_adapter
*adapter
= hw
->back
;
4348 pcix_set_mmrbc(adapter
->pdev
, mmrbc
);
4351 void e1000_io_write(struct e1000_hw
*hw
, unsigned long port
, u32 value
)
4356 static void e1000_vlan_rx_register(struct net_device
*netdev
,
4357 struct vlan_group
*grp
)
4359 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4360 struct e1000_hw
*hw
= &adapter
->hw
;
4363 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4364 e1000_irq_disable(adapter
);
4365 adapter
->vlgrp
= grp
;
4368 /* enable VLAN tag insert/strip */
4370 ctrl
|= E1000_CTRL_VME
;
4373 /* enable VLAN receive filtering */
4375 rctl
&= ~E1000_RCTL_CFIEN
;
4376 if (!(netdev
->flags
& IFF_PROMISC
))
4377 rctl
|= E1000_RCTL_VFE
;
4379 e1000_update_mng_vlan(adapter
);
4381 /* disable VLAN tag insert/strip */
4383 ctrl
&= ~E1000_CTRL_VME
;
4386 /* disable VLAN receive filtering */
4388 rctl
&= ~E1000_RCTL_VFE
;
4391 if (adapter
->mng_vlan_id
!= (u16
)E1000_MNG_VLAN_NONE
) {
4392 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
4393 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
4397 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4398 e1000_irq_enable(adapter
);
4401 static void e1000_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
4403 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4404 struct e1000_hw
*hw
= &adapter
->hw
;
4407 if ((hw
->mng_cookie
.status
&
4408 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
4409 (vid
== adapter
->mng_vlan_id
))
4411 /* add VID to filter table */
4412 index
= (vid
>> 5) & 0x7F;
4413 vfta
= E1000_READ_REG_ARRAY(hw
, VFTA
, index
);
4414 vfta
|= (1 << (vid
& 0x1F));
4415 e1000_write_vfta(hw
, index
, vfta
);
4418 static void e1000_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
4420 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4421 struct e1000_hw
*hw
= &adapter
->hw
;
4424 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4425 e1000_irq_disable(adapter
);
4426 vlan_group_set_device(adapter
->vlgrp
, vid
, NULL
);
4427 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4428 e1000_irq_enable(adapter
);
4430 /* remove VID from filter table */
4431 index
= (vid
>> 5) & 0x7F;
4432 vfta
= E1000_READ_REG_ARRAY(hw
, VFTA
, index
);
4433 vfta
&= ~(1 << (vid
& 0x1F));
4434 e1000_write_vfta(hw
, index
, vfta
);
4437 static void e1000_restore_vlan(struct e1000_adapter
*adapter
)
4439 e1000_vlan_rx_register(adapter
->netdev
, adapter
->vlgrp
);
4441 if (adapter
->vlgrp
) {
4443 for (vid
= 0; vid
< VLAN_GROUP_ARRAY_LEN
; vid
++) {
4444 if (!vlan_group_get_device(adapter
->vlgrp
, vid
))
4446 e1000_vlan_rx_add_vid(adapter
->netdev
, vid
);
4451 int e1000_set_spd_dplx(struct e1000_adapter
*adapter
, u16 spddplx
)
4453 struct e1000_hw
*hw
= &adapter
->hw
;
4457 /* Fiber NICs only allow 1000 gbps Full duplex */
4458 if ((hw
->media_type
== e1000_media_type_fiber
) &&
4459 spddplx
!= (SPEED_1000
+ DUPLEX_FULL
)) {
4460 DPRINTK(PROBE
, ERR
, "Unsupported Speed/Duplex configuration\n");
4465 case SPEED_10
+ DUPLEX_HALF
:
4466 hw
->forced_speed_duplex
= e1000_10_half
;
4468 case SPEED_10
+ DUPLEX_FULL
:
4469 hw
->forced_speed_duplex
= e1000_10_full
;
4471 case SPEED_100
+ DUPLEX_HALF
:
4472 hw
->forced_speed_duplex
= e1000_100_half
;
4474 case SPEED_100
+ DUPLEX_FULL
:
4475 hw
->forced_speed_duplex
= e1000_100_full
;
4477 case SPEED_1000
+ DUPLEX_FULL
:
4479 hw
->autoneg_advertised
= ADVERTISE_1000_FULL
;
4481 case SPEED_1000
+ DUPLEX_HALF
: /* not supported */
4483 DPRINTK(PROBE
, ERR
, "Unsupported Speed/Duplex configuration\n");
4489 static int __e1000_shutdown(struct pci_dev
*pdev
, bool *enable_wake
)
4491 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4492 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4493 struct e1000_hw
*hw
= &adapter
->hw
;
4494 u32 ctrl
, ctrl_ext
, rctl
, status
;
4495 u32 wufc
= adapter
->wol
;
4500 netif_device_detach(netdev
);
4502 if (netif_running(netdev
)) {
4503 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->flags
));
4504 e1000_down(adapter
);
4508 retval
= pci_save_state(pdev
);
4513 status
= er32(STATUS
);
4514 if (status
& E1000_STATUS_LU
)
4515 wufc
&= ~E1000_WUFC_LNKC
;
4518 e1000_setup_rctl(adapter
);
4519 e1000_set_rx_mode(netdev
);
4521 /* turn on all-multi mode if wake on multicast is enabled */
4522 if (wufc
& E1000_WUFC_MC
) {
4524 rctl
|= E1000_RCTL_MPE
;
4528 if (hw
->mac_type
>= e1000_82540
) {
4530 /* advertise wake from D3Cold */
4531 #define E1000_CTRL_ADVD3WUC 0x00100000
4532 /* phy power management enable */
4533 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4534 ctrl
|= E1000_CTRL_ADVD3WUC
|
4535 E1000_CTRL_EN_PHY_PWR_MGMT
;
4539 if (hw
->media_type
== e1000_media_type_fiber
||
4540 hw
->media_type
== e1000_media_type_internal_serdes
) {
4541 /* keep the laser running in D3 */
4542 ctrl_ext
= er32(CTRL_EXT
);
4543 ctrl_ext
|= E1000_CTRL_EXT_SDP7_DATA
;
4544 ew32(CTRL_EXT
, ctrl_ext
);
4547 ew32(WUC
, E1000_WUC_PME_EN
);
4554 e1000_release_manageability(adapter
);
4556 *enable_wake
= !!wufc
;
4558 /* make sure adapter isn't asleep if manageability is enabled */
4559 if (adapter
->en_mng_pt
)
4560 *enable_wake
= true;
4562 if (netif_running(netdev
))
4563 e1000_free_irq(adapter
);
4565 pci_disable_device(pdev
);
4571 static int e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
)
4576 retval
= __e1000_shutdown(pdev
, &wake
);
4581 pci_prepare_to_sleep(pdev
);
4583 pci_wake_from_d3(pdev
, false);
4584 pci_set_power_state(pdev
, PCI_D3hot
);
4590 static int e1000_resume(struct pci_dev
*pdev
)
4592 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4593 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4594 struct e1000_hw
*hw
= &adapter
->hw
;
4597 pci_set_power_state(pdev
, PCI_D0
);
4598 pci_restore_state(pdev
);
4600 if (adapter
->need_ioport
)
4601 err
= pci_enable_device(pdev
);
4603 err
= pci_enable_device_mem(pdev
);
4605 printk(KERN_ERR
"e1000: Cannot enable PCI device from suspend\n");
4608 pci_set_master(pdev
);
4610 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4611 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4613 if (netif_running(netdev
)) {
4614 err
= e1000_request_irq(adapter
);
4619 e1000_power_up_phy(adapter
);
4620 e1000_reset(adapter
);
4623 e1000_init_manageability(adapter
);
4625 if (netif_running(netdev
))
4628 netif_device_attach(netdev
);
4634 static void e1000_shutdown(struct pci_dev
*pdev
)
4638 __e1000_shutdown(pdev
, &wake
);
4640 if (system_state
== SYSTEM_POWER_OFF
) {
4641 pci_wake_from_d3(pdev
, wake
);
4642 pci_set_power_state(pdev
, PCI_D3hot
);
4646 #ifdef CONFIG_NET_POLL_CONTROLLER
4648 * Polling 'interrupt' - used by things like netconsole to send skbs
4649 * without having to re-enable interrupts. It's not called while
4650 * the interrupt routine is executing.
4652 static void e1000_netpoll(struct net_device
*netdev
)
4654 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4656 disable_irq(adapter
->pdev
->irq
);
4657 e1000_intr(adapter
->pdev
->irq
, netdev
);
4658 enable_irq(adapter
->pdev
->irq
);
4663 * e1000_io_error_detected - called when PCI error is detected
4664 * @pdev: Pointer to PCI device
4665 * @state: The current pci connection state
4667 * This function is called after a PCI bus error affecting
4668 * this device has been detected.
4670 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
4671 pci_channel_state_t state
)
4673 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4674 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4676 netif_device_detach(netdev
);
4678 if (state
== pci_channel_io_perm_failure
)
4679 return PCI_ERS_RESULT_DISCONNECT
;
4681 if (netif_running(netdev
))
4682 e1000_down(adapter
);
4683 pci_disable_device(pdev
);
4685 /* Request a slot slot reset. */
4686 return PCI_ERS_RESULT_NEED_RESET
;
4690 * e1000_io_slot_reset - called after the pci bus has been reset.
4691 * @pdev: Pointer to PCI device
4693 * Restart the card from scratch, as if from a cold-boot. Implementation
4694 * resembles the first-half of the e1000_resume routine.
4696 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
)
4698 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4699 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4700 struct e1000_hw
*hw
= &adapter
->hw
;
4703 if (adapter
->need_ioport
)
4704 err
= pci_enable_device(pdev
);
4706 err
= pci_enable_device_mem(pdev
);
4708 printk(KERN_ERR
"e1000: Cannot re-enable PCI device after reset.\n");
4709 return PCI_ERS_RESULT_DISCONNECT
;
4711 pci_set_master(pdev
);
4713 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4714 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4716 e1000_reset(adapter
);
4719 return PCI_ERS_RESULT_RECOVERED
;
4723 * e1000_io_resume - called when traffic can start flowing again.
4724 * @pdev: Pointer to PCI device
4726 * This callback is called when the error recovery driver tells us that
4727 * its OK to resume normal operation. Implementation resembles the
4728 * second-half of the e1000_resume routine.
4730 static void e1000_io_resume(struct pci_dev
*pdev
)
4732 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4733 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4735 e1000_init_manageability(adapter
);
4737 if (netif_running(netdev
)) {
4738 if (e1000_up(adapter
)) {
4739 printk("e1000: can't bring device back up after reset\n");
4744 netif_device_attach(netdev
);