1 /******************************************************************************
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
8 * Copyright(c) 2008 - 2009 Intel Corporation. All rights reserved.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
24 * The full GNU General Public License is included in this distribution
25 * in the file called LICENSE.GPL.
27 * Contact Information:
28 * Intel Linux Wireless <ilw@linux.intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
33 * Copyright(c) 2005 - 2009 Intel Corporation. All rights reserved.
34 * All rights reserved.
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *****************************************************************************/
63 #include <net/mac80211.h>
67 #include "iwl-calib.h"
69 /*****************************************************************************
70 * INIT calibrations framework
71 *****************************************************************************/
73 struct statistics_general_data
{
74 u32 beacon_silence_rssi_a
;
75 u32 beacon_silence_rssi_b
;
76 u32 beacon_silence_rssi_c
;
82 int iwl_send_calib_results(struct iwl_priv
*priv
)
87 struct iwl_host_cmd hcmd
= {
88 .id
= REPLY_PHY_CALIBRATION_CMD
,
89 .flags
= CMD_SIZE_HUGE
,
92 for (i
= 0; i
< IWL_CALIB_MAX
; i
++) {
93 if ((BIT(i
) & priv
->hw_params
.calib_init_cfg
) &&
94 priv
->calib_results
[i
].buf
) {
95 hcmd
.len
= priv
->calib_results
[i
].buf_len
;
96 hcmd
.data
= priv
->calib_results
[i
].buf
;
97 ret
= iwl_send_cmd_sync(priv
, &hcmd
);
105 IWL_ERR(priv
, "Error %d iteration %d\n", ret
, i
);
108 EXPORT_SYMBOL(iwl_send_calib_results
);
110 int iwl_calib_set(struct iwl_calib_result
*res
, const u8
*buf
, int len
)
112 if (res
->buf_len
!= len
) {
114 res
->buf
= kzalloc(len
, GFP_ATOMIC
);
116 if (unlikely(res
->buf
== NULL
))
120 memcpy(res
->buf
, buf
, len
);
123 EXPORT_SYMBOL(iwl_calib_set
);
125 void iwl_calib_free_results(struct iwl_priv
*priv
)
129 for (i
= 0; i
< IWL_CALIB_MAX
; i
++) {
130 kfree(priv
->calib_results
[i
].buf
);
131 priv
->calib_results
[i
].buf
= NULL
;
132 priv
->calib_results
[i
].buf_len
= 0;
136 /*****************************************************************************
137 * RUNTIME calibrations framework
138 *****************************************************************************/
140 /* "false alarms" are signals that our DSP tries to lock onto,
141 * but then determines that they are either noise, or transmissions
142 * from a distant wireless network (also "noise", really) that get
143 * "stepped on" by stronger transmissions within our own network.
144 * This algorithm attempts to set a sensitivity level that is high
145 * enough to receive all of our own network traffic, but not so
146 * high that our DSP gets too busy trying to lock onto non-network
148 static int iwl_sens_energy_cck(struct iwl_priv
*priv
,
151 struct statistics_general_data
*rx_info
)
155 u8 max_silence_rssi
= 0;
157 u8 silence_rssi_a
= 0;
158 u8 silence_rssi_b
= 0;
159 u8 silence_rssi_c
= 0;
162 /* "false_alarms" values below are cross-multiplications to assess the
163 * numbers of false alarms within the measured period of actual Rx
164 * (Rx is off when we're txing), vs the min/max expected false alarms
165 * (some should be expected if rx is sensitive enough) in a
166 * hypothetical listening period of 200 time units (TU), 204.8 msec:
168 * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
171 u32 false_alarms
= norm_fa
* 200 * 1024;
172 u32 max_false_alarms
= MAX_FA_CCK
* rx_enable_time
;
173 u32 min_false_alarms
= MIN_FA_CCK
* rx_enable_time
;
174 struct iwl_sensitivity_data
*data
= NULL
;
175 const struct iwl_sensitivity_ranges
*ranges
= priv
->hw_params
.sens
;
177 data
= &(priv
->sensitivity_data
);
179 data
->nrg_auto_corr_silence_diff
= 0;
181 /* Find max silence rssi among all 3 receivers.
182 * This is background noise, which may include transmissions from other
183 * networks, measured during silence before our network's beacon */
184 silence_rssi_a
= (u8
)((rx_info
->beacon_silence_rssi_a
&
185 ALL_BAND_FILTER
) >> 8);
186 silence_rssi_b
= (u8
)((rx_info
->beacon_silence_rssi_b
&
187 ALL_BAND_FILTER
) >> 8);
188 silence_rssi_c
= (u8
)((rx_info
->beacon_silence_rssi_c
&
189 ALL_BAND_FILTER
) >> 8);
191 val
= max(silence_rssi_b
, silence_rssi_c
);
192 max_silence_rssi
= max(silence_rssi_a
, (u8
) val
);
194 /* Store silence rssi in 20-beacon history table */
195 data
->nrg_silence_rssi
[data
->nrg_silence_idx
] = max_silence_rssi
;
196 data
->nrg_silence_idx
++;
197 if (data
->nrg_silence_idx
>= NRG_NUM_PREV_STAT_L
)
198 data
->nrg_silence_idx
= 0;
200 /* Find max silence rssi across 20 beacon history */
201 for (i
= 0; i
< NRG_NUM_PREV_STAT_L
; i
++) {
202 val
= data
->nrg_silence_rssi
[i
];
203 silence_ref
= max(silence_ref
, val
);
205 IWL_DEBUG_CALIB(priv
, "silence a %u, b %u, c %u, 20-bcn max %u\n",
206 silence_rssi_a
, silence_rssi_b
, silence_rssi_c
,
209 /* Find max rx energy (min value!) among all 3 receivers,
210 * measured during beacon frame.
211 * Save it in 10-beacon history table. */
212 i
= data
->nrg_energy_idx
;
213 val
= min(rx_info
->beacon_energy_b
, rx_info
->beacon_energy_c
);
214 data
->nrg_value
[i
] = min(rx_info
->beacon_energy_a
, val
);
216 data
->nrg_energy_idx
++;
217 if (data
->nrg_energy_idx
>= 10)
218 data
->nrg_energy_idx
= 0;
220 /* Find min rx energy (max value) across 10 beacon history.
221 * This is the minimum signal level that we want to receive well.
222 * Add backoff (margin so we don't miss slightly lower energy frames).
223 * This establishes an upper bound (min value) for energy threshold. */
224 max_nrg_cck
= data
->nrg_value
[0];
225 for (i
= 1; i
< 10; i
++)
226 max_nrg_cck
= (u32
) max(max_nrg_cck
, (data
->nrg_value
[i
]));
229 IWL_DEBUG_CALIB(priv
, "rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
230 rx_info
->beacon_energy_a
, rx_info
->beacon_energy_b
,
231 rx_info
->beacon_energy_c
, max_nrg_cck
- 6);
233 /* Count number of consecutive beacons with fewer-than-desired
235 if (false_alarms
< min_false_alarms
)
236 data
->num_in_cck_no_fa
++;
238 data
->num_in_cck_no_fa
= 0;
239 IWL_DEBUG_CALIB(priv
, "consecutive bcns with few false alarms = %u\n",
240 data
->num_in_cck_no_fa
);
242 /* If we got too many false alarms this time, reduce sensitivity */
243 if ((false_alarms
> max_false_alarms
) &&
244 (data
->auto_corr_cck
> AUTO_CORR_MAX_TH_CCK
)) {
245 IWL_DEBUG_CALIB(priv
, "norm FA %u > max FA %u\n",
246 false_alarms
, max_false_alarms
);
247 IWL_DEBUG_CALIB(priv
, "... reducing sensitivity\n");
248 data
->nrg_curr_state
= IWL_FA_TOO_MANY
;
249 /* Store for "fewer than desired" on later beacon */
250 data
->nrg_silence_ref
= silence_ref
;
252 /* increase energy threshold (reduce nrg value)
253 * to decrease sensitivity */
254 data
->nrg_th_cck
= data
->nrg_th_cck
- NRG_STEP_CCK
;
255 /* Else if we got fewer than desired, increase sensitivity */
256 } else if (false_alarms
< min_false_alarms
) {
257 data
->nrg_curr_state
= IWL_FA_TOO_FEW
;
259 /* Compare silence level with silence level for most recent
260 * healthy number or too many false alarms */
261 data
->nrg_auto_corr_silence_diff
= (s32
)data
->nrg_silence_ref
-
264 IWL_DEBUG_CALIB(priv
, "norm FA %u < min FA %u, silence diff %d\n",
265 false_alarms
, min_false_alarms
,
266 data
->nrg_auto_corr_silence_diff
);
268 /* Increase value to increase sensitivity, but only if:
269 * 1a) previous beacon did *not* have *too many* false alarms
270 * 1b) AND there's a significant difference in Rx levels
271 * from a previous beacon with too many, or healthy # FAs
272 * OR 2) We've seen a lot of beacons (100) with too few
274 if ((data
->nrg_prev_state
!= IWL_FA_TOO_MANY
) &&
275 ((data
->nrg_auto_corr_silence_diff
> NRG_DIFF
) ||
276 (data
->num_in_cck_no_fa
> MAX_NUMBER_CCK_NO_FA
))) {
278 IWL_DEBUG_CALIB(priv
, "... increasing sensitivity\n");
279 /* Increase nrg value to increase sensitivity */
280 val
= data
->nrg_th_cck
+ NRG_STEP_CCK
;
281 data
->nrg_th_cck
= min((u32
)ranges
->min_nrg_cck
, val
);
283 IWL_DEBUG_CALIB(priv
, "... but not changing sensitivity\n");
286 /* Else we got a healthy number of false alarms, keep status quo */
288 IWL_DEBUG_CALIB(priv
, " FA in safe zone\n");
289 data
->nrg_curr_state
= IWL_FA_GOOD_RANGE
;
291 /* Store for use in "fewer than desired" with later beacon */
292 data
->nrg_silence_ref
= silence_ref
;
294 /* If previous beacon had too many false alarms,
295 * give it some extra margin by reducing sensitivity again
296 * (but don't go below measured energy of desired Rx) */
297 if (IWL_FA_TOO_MANY
== data
->nrg_prev_state
) {
298 IWL_DEBUG_CALIB(priv
, "... increasing margin\n");
299 if (data
->nrg_th_cck
> (max_nrg_cck
+ NRG_MARGIN
))
300 data
->nrg_th_cck
-= NRG_MARGIN
;
302 data
->nrg_th_cck
= max_nrg_cck
;
306 /* Make sure the energy threshold does not go above the measured
307 * energy of the desired Rx signals (reduced by backoff margin),
308 * or else we might start missing Rx frames.
309 * Lower value is higher energy, so we use max()!
311 data
->nrg_th_cck
= max(max_nrg_cck
, data
->nrg_th_cck
);
312 IWL_DEBUG_CALIB(priv
, "new nrg_th_cck %u\n", data
->nrg_th_cck
);
314 data
->nrg_prev_state
= data
->nrg_curr_state
;
316 /* Auto-correlation CCK algorithm */
317 if (false_alarms
> min_false_alarms
) {
319 /* increase auto_corr values to decrease sensitivity
320 * so the DSP won't be disturbed by the noise
322 if (data
->auto_corr_cck
< AUTO_CORR_MAX_TH_CCK
)
323 data
->auto_corr_cck
= AUTO_CORR_MAX_TH_CCK
+ 1;
325 val
= data
->auto_corr_cck
+ AUTO_CORR_STEP_CCK
;
326 data
->auto_corr_cck
=
327 min((u32
)ranges
->auto_corr_max_cck
, val
);
329 val
= data
->auto_corr_cck_mrc
+ AUTO_CORR_STEP_CCK
;
330 data
->auto_corr_cck_mrc
=
331 min((u32
)ranges
->auto_corr_max_cck_mrc
, val
);
332 } else if ((false_alarms
< min_false_alarms
) &&
333 ((data
->nrg_auto_corr_silence_diff
> NRG_DIFF
) ||
334 (data
->num_in_cck_no_fa
> MAX_NUMBER_CCK_NO_FA
))) {
336 /* Decrease auto_corr values to increase sensitivity */
337 val
= data
->auto_corr_cck
- AUTO_CORR_STEP_CCK
;
338 data
->auto_corr_cck
=
339 max((u32
)ranges
->auto_corr_min_cck
, val
);
340 val
= data
->auto_corr_cck_mrc
- AUTO_CORR_STEP_CCK
;
341 data
->auto_corr_cck_mrc
=
342 max((u32
)ranges
->auto_corr_min_cck_mrc
, val
);
349 static int iwl_sens_auto_corr_ofdm(struct iwl_priv
*priv
,
354 u32 false_alarms
= norm_fa
* 200 * 1024;
355 u32 max_false_alarms
= MAX_FA_OFDM
* rx_enable_time
;
356 u32 min_false_alarms
= MIN_FA_OFDM
* rx_enable_time
;
357 struct iwl_sensitivity_data
*data
= NULL
;
358 const struct iwl_sensitivity_ranges
*ranges
= priv
->hw_params
.sens
;
360 data
= &(priv
->sensitivity_data
);
362 /* If we got too many false alarms this time, reduce sensitivity */
363 if (false_alarms
> max_false_alarms
) {
365 IWL_DEBUG_CALIB(priv
, "norm FA %u > max FA %u)\n",
366 false_alarms
, max_false_alarms
);
368 val
= data
->auto_corr_ofdm
+ AUTO_CORR_STEP_OFDM
;
369 data
->auto_corr_ofdm
=
370 min((u32
)ranges
->auto_corr_max_ofdm
, val
);
372 val
= data
->auto_corr_ofdm_mrc
+ AUTO_CORR_STEP_OFDM
;
373 data
->auto_corr_ofdm_mrc
=
374 min((u32
)ranges
->auto_corr_max_ofdm_mrc
, val
);
376 val
= data
->auto_corr_ofdm_x1
+ AUTO_CORR_STEP_OFDM
;
377 data
->auto_corr_ofdm_x1
=
378 min((u32
)ranges
->auto_corr_max_ofdm_x1
, val
);
380 val
= data
->auto_corr_ofdm_mrc_x1
+ AUTO_CORR_STEP_OFDM
;
381 data
->auto_corr_ofdm_mrc_x1
=
382 min((u32
)ranges
->auto_corr_max_ofdm_mrc_x1
, val
);
385 /* Else if we got fewer than desired, increase sensitivity */
386 else if (false_alarms
< min_false_alarms
) {
388 IWL_DEBUG_CALIB(priv
, "norm FA %u < min FA %u\n",
389 false_alarms
, min_false_alarms
);
391 val
= data
->auto_corr_ofdm
- AUTO_CORR_STEP_OFDM
;
392 data
->auto_corr_ofdm
=
393 max((u32
)ranges
->auto_corr_min_ofdm
, val
);
395 val
= data
->auto_corr_ofdm_mrc
- AUTO_CORR_STEP_OFDM
;
396 data
->auto_corr_ofdm_mrc
=
397 max((u32
)ranges
->auto_corr_min_ofdm_mrc
, val
);
399 val
= data
->auto_corr_ofdm_x1
- AUTO_CORR_STEP_OFDM
;
400 data
->auto_corr_ofdm_x1
=
401 max((u32
)ranges
->auto_corr_min_ofdm_x1
, val
);
403 val
= data
->auto_corr_ofdm_mrc_x1
- AUTO_CORR_STEP_OFDM
;
404 data
->auto_corr_ofdm_mrc_x1
=
405 max((u32
)ranges
->auto_corr_min_ofdm_mrc_x1
, val
);
407 IWL_DEBUG_CALIB(priv
, "min FA %u < norm FA %u < max FA %u OK\n",
408 min_false_alarms
, false_alarms
, max_false_alarms
);
413 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
414 static int iwl_sensitivity_write(struct iwl_priv
*priv
)
417 struct iwl_sensitivity_cmd cmd
;
418 struct iwl_sensitivity_data
*data
= NULL
;
419 struct iwl_host_cmd cmd_out
= {
420 .id
= SENSITIVITY_CMD
,
421 .len
= sizeof(struct iwl_sensitivity_cmd
),
426 data
= &(priv
->sensitivity_data
);
428 memset(&cmd
, 0, sizeof(cmd
));
430 cmd
.table
[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX
] =
431 cpu_to_le16((u16
)data
->auto_corr_ofdm
);
432 cmd
.table
[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX
] =
433 cpu_to_le16((u16
)data
->auto_corr_ofdm_mrc
);
434 cmd
.table
[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX
] =
435 cpu_to_le16((u16
)data
->auto_corr_ofdm_x1
);
436 cmd
.table
[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX
] =
437 cpu_to_le16((u16
)data
->auto_corr_ofdm_mrc_x1
);
439 cmd
.table
[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX
] =
440 cpu_to_le16((u16
)data
->auto_corr_cck
);
441 cmd
.table
[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX
] =
442 cpu_to_le16((u16
)data
->auto_corr_cck_mrc
);
444 cmd
.table
[HD_MIN_ENERGY_CCK_DET_INDEX
] =
445 cpu_to_le16((u16
)data
->nrg_th_cck
);
446 cmd
.table
[HD_MIN_ENERGY_OFDM_DET_INDEX
] =
447 cpu_to_le16((u16
)data
->nrg_th_ofdm
);
449 cmd
.table
[HD_BARKER_CORR_TH_ADD_MIN_INDEX
] =
450 cpu_to_le16(data
->barker_corr_th_min
);
451 cmd
.table
[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX
] =
452 cpu_to_le16(data
->barker_corr_th_min_mrc
);
453 cmd
.table
[HD_OFDM_ENERGY_TH_IN_INDEX
] =
454 cpu_to_le16(data
->nrg_th_cca
);
456 IWL_DEBUG_CALIB(priv
, "ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
457 data
->auto_corr_ofdm
, data
->auto_corr_ofdm_mrc
,
458 data
->auto_corr_ofdm_x1
, data
->auto_corr_ofdm_mrc_x1
,
461 IWL_DEBUG_CALIB(priv
, "cck: ac %u mrc %u thresh %u\n",
462 data
->auto_corr_cck
, data
->auto_corr_cck_mrc
,
465 /* Update uCode's "work" table, and copy it to DSP */
466 cmd
.control
= SENSITIVITY_CMD_CONTROL_WORK_TABLE
;
468 /* Don't send command to uCode if nothing has changed */
469 if (!memcmp(&cmd
.table
[0], &(priv
->sensitivity_tbl
[0]),
470 sizeof(u16
)*HD_TABLE_SIZE
)) {
471 IWL_DEBUG_CALIB(priv
, "No change in SENSITIVITY_CMD\n");
475 /* Copy table for comparison next time */
476 memcpy(&(priv
->sensitivity_tbl
[0]), &(cmd
.table
[0]),
477 sizeof(u16
)*HD_TABLE_SIZE
);
479 ret
= iwl_send_cmd(priv
, &cmd_out
);
481 IWL_ERR(priv
, "SENSITIVITY_CMD failed\n");
486 void iwl_init_sensitivity(struct iwl_priv
*priv
)
490 struct iwl_sensitivity_data
*data
= NULL
;
491 const struct iwl_sensitivity_ranges
*ranges
= priv
->hw_params
.sens
;
493 if (priv
->disable_sens_cal
)
496 IWL_DEBUG_CALIB(priv
, "Start iwl_init_sensitivity\n");
498 /* Clear driver's sensitivity algo data */
499 data
= &(priv
->sensitivity_data
);
504 memset(data
, 0, sizeof(struct iwl_sensitivity_data
));
506 data
->num_in_cck_no_fa
= 0;
507 data
->nrg_curr_state
= IWL_FA_TOO_MANY
;
508 data
->nrg_prev_state
= IWL_FA_TOO_MANY
;
509 data
->nrg_silence_ref
= 0;
510 data
->nrg_silence_idx
= 0;
511 data
->nrg_energy_idx
= 0;
513 for (i
= 0; i
< 10; i
++)
514 data
->nrg_value
[i
] = 0;
516 for (i
= 0; i
< NRG_NUM_PREV_STAT_L
; i
++)
517 data
->nrg_silence_rssi
[i
] = 0;
519 data
->auto_corr_ofdm
= ranges
->auto_corr_min_ofdm
;
520 data
->auto_corr_ofdm_mrc
= ranges
->auto_corr_min_ofdm_mrc
;
521 data
->auto_corr_ofdm_x1
= ranges
->auto_corr_min_ofdm_x1
;
522 data
->auto_corr_ofdm_mrc_x1
= ranges
->auto_corr_min_ofdm_mrc_x1
;
523 data
->auto_corr_cck
= AUTO_CORR_CCK_MIN_VAL_DEF
;
524 data
->auto_corr_cck_mrc
= ranges
->auto_corr_min_cck_mrc
;
525 data
->nrg_th_cck
= ranges
->nrg_th_cck
;
526 data
->nrg_th_ofdm
= ranges
->nrg_th_ofdm
;
527 data
->barker_corr_th_min
= ranges
->barker_corr_th_min
;
528 data
->barker_corr_th_min_mrc
= ranges
->barker_corr_th_min_mrc
;
529 data
->nrg_th_cca
= ranges
->nrg_th_cca
;
531 data
->last_bad_plcp_cnt_ofdm
= 0;
532 data
->last_fa_cnt_ofdm
= 0;
533 data
->last_bad_plcp_cnt_cck
= 0;
534 data
->last_fa_cnt_cck
= 0;
536 ret
|= iwl_sensitivity_write(priv
);
537 IWL_DEBUG_CALIB(priv
, "<<return 0x%X\n", ret
);
539 EXPORT_SYMBOL(iwl_init_sensitivity
);
541 void iwl_sensitivity_calibration(struct iwl_priv
*priv
,
542 struct iwl_notif_statistics
*resp
)
551 struct iwl_sensitivity_data
*data
= NULL
;
552 struct statistics_rx_non_phy
*rx_info
= &(resp
->rx
.general
);
553 struct statistics_rx
*statistics
= &(resp
->rx
);
555 struct statistics_general_data statis
;
557 if (priv
->disable_sens_cal
)
560 data
= &(priv
->sensitivity_data
);
562 if (!iwl_is_associated(priv
)) {
563 IWL_DEBUG_CALIB(priv
, "<< - not associated\n");
567 spin_lock_irqsave(&priv
->lock
, flags
);
568 if (rx_info
->interference_data_flag
!= INTERFERENCE_DATA_AVAILABLE
) {
569 IWL_DEBUG_CALIB(priv
, "<< invalid data.\n");
570 spin_unlock_irqrestore(&priv
->lock
, flags
);
574 /* Extract Statistics: */
575 rx_enable_time
= le32_to_cpu(rx_info
->channel_load
);
576 fa_cck
= le32_to_cpu(statistics
->cck
.false_alarm_cnt
);
577 fa_ofdm
= le32_to_cpu(statistics
->ofdm
.false_alarm_cnt
);
578 bad_plcp_cck
= le32_to_cpu(statistics
->cck
.plcp_err
);
579 bad_plcp_ofdm
= le32_to_cpu(statistics
->ofdm
.plcp_err
);
581 statis
.beacon_silence_rssi_a
=
582 le32_to_cpu(statistics
->general
.beacon_silence_rssi_a
);
583 statis
.beacon_silence_rssi_b
=
584 le32_to_cpu(statistics
->general
.beacon_silence_rssi_b
);
585 statis
.beacon_silence_rssi_c
=
586 le32_to_cpu(statistics
->general
.beacon_silence_rssi_c
);
587 statis
.beacon_energy_a
=
588 le32_to_cpu(statistics
->general
.beacon_energy_a
);
589 statis
.beacon_energy_b
=
590 le32_to_cpu(statistics
->general
.beacon_energy_b
);
591 statis
.beacon_energy_c
=
592 le32_to_cpu(statistics
->general
.beacon_energy_c
);
594 spin_unlock_irqrestore(&priv
->lock
, flags
);
596 IWL_DEBUG_CALIB(priv
, "rx_enable_time = %u usecs\n", rx_enable_time
);
598 if (!rx_enable_time
) {
599 IWL_DEBUG_CALIB(priv
, "<< RX Enable Time == 0! \n");
603 /* These statistics increase monotonically, and do not reset
604 * at each beacon. Calculate difference from last value, or just
605 * use the new statistics value if it has reset or wrapped around. */
606 if (data
->last_bad_plcp_cnt_cck
> bad_plcp_cck
)
607 data
->last_bad_plcp_cnt_cck
= bad_plcp_cck
;
609 bad_plcp_cck
-= data
->last_bad_plcp_cnt_cck
;
610 data
->last_bad_plcp_cnt_cck
+= bad_plcp_cck
;
613 if (data
->last_bad_plcp_cnt_ofdm
> bad_plcp_ofdm
)
614 data
->last_bad_plcp_cnt_ofdm
= bad_plcp_ofdm
;
616 bad_plcp_ofdm
-= data
->last_bad_plcp_cnt_ofdm
;
617 data
->last_bad_plcp_cnt_ofdm
+= bad_plcp_ofdm
;
620 if (data
->last_fa_cnt_ofdm
> fa_ofdm
)
621 data
->last_fa_cnt_ofdm
= fa_ofdm
;
623 fa_ofdm
-= data
->last_fa_cnt_ofdm
;
624 data
->last_fa_cnt_ofdm
+= fa_ofdm
;
627 if (data
->last_fa_cnt_cck
> fa_cck
)
628 data
->last_fa_cnt_cck
= fa_cck
;
630 fa_cck
-= data
->last_fa_cnt_cck
;
631 data
->last_fa_cnt_cck
+= fa_cck
;
634 /* Total aborted signal locks */
635 norm_fa_ofdm
= fa_ofdm
+ bad_plcp_ofdm
;
636 norm_fa_cck
= fa_cck
+ bad_plcp_cck
;
638 IWL_DEBUG_CALIB(priv
, "cck: fa %u badp %u ofdm: fa %u badp %u\n", fa_cck
,
639 bad_plcp_cck
, fa_ofdm
, bad_plcp_ofdm
);
641 iwl_sens_auto_corr_ofdm(priv
, norm_fa_ofdm
, rx_enable_time
);
642 iwl_sens_energy_cck(priv
, norm_fa_cck
, rx_enable_time
, &statis
);
643 iwl_sensitivity_write(priv
);
647 EXPORT_SYMBOL(iwl_sensitivity_calibration
);
649 static inline u8
find_first_chain(u8 mask
)
659 * Accumulate 20 beacons of signal and noise statistics for each of
660 * 3 receivers/antennas/rx-chains, then figure out:
661 * 1) Which antennas are connected.
662 * 2) Differential rx gain settings to balance the 3 receivers.
664 void iwl_chain_noise_calibration(struct iwl_priv
*priv
,
665 struct iwl_notif_statistics
*stat_resp
)
667 struct iwl_chain_noise_data
*data
= NULL
;
675 u32 average_sig
[NUM_RX_CHAINS
] = {INITIALIZATION_VALUE
};
676 u32 average_noise
[NUM_RX_CHAINS
] = {INITIALIZATION_VALUE
};
678 u16 max_average_sig_antenna_i
;
679 u32 min_average_noise
= MIN_AVERAGE_NOISE_MAX_VALUE
;
680 u16 min_average_noise_antenna_i
= INITIALIZATION_VALUE
;
682 u16 rxon_chnum
= INITIALIZATION_VALUE
;
683 u16 stat_chnum
= INITIALIZATION_VALUE
;
686 u32 active_chains
= 0;
689 struct statistics_rx_non_phy
*rx_info
= &(stat_resp
->rx
.general
);
692 if (priv
->disable_chain_noise_cal
)
695 data
= &(priv
->chain_noise_data
);
698 * Accumulate just the first "chain_noise_num_beacons" after
699 * the first association, then we're done forever.
701 if (data
->state
!= IWL_CHAIN_NOISE_ACCUMULATE
) {
702 if (data
->state
== IWL_CHAIN_NOISE_ALIVE
)
703 IWL_DEBUG_CALIB(priv
, "Wait for noise calib reset\n");
707 spin_lock_irqsave(&priv
->lock
, flags
);
708 if (rx_info
->interference_data_flag
!= INTERFERENCE_DATA_AVAILABLE
) {
709 IWL_DEBUG_CALIB(priv
, " << Interference data unavailable\n");
710 spin_unlock_irqrestore(&priv
->lock
, flags
);
714 rxon_band24
= !!(priv
->staging_rxon
.flags
& RXON_FLG_BAND_24G_MSK
);
715 rxon_chnum
= le16_to_cpu(priv
->staging_rxon
.channel
);
716 stat_band24
= !!(stat_resp
->flag
& STATISTICS_REPLY_FLG_BAND_24G_MSK
);
717 stat_chnum
= le32_to_cpu(stat_resp
->flag
) >> 16;
719 /* Make sure we accumulate data for just the associated channel
720 * (even if scanning). */
721 if ((rxon_chnum
!= stat_chnum
) || (rxon_band24
!= stat_band24
)) {
722 IWL_DEBUG_CALIB(priv
, "Stats not from chan=%d, band24=%d\n",
723 rxon_chnum
, rxon_band24
);
724 spin_unlock_irqrestore(&priv
->lock
, flags
);
729 * Accumulate beacon statistics values across
730 * "chain_noise_num_beacons"
732 chain_noise_a
= le32_to_cpu(rx_info
->beacon_silence_rssi_a
) &
734 chain_noise_b
= le32_to_cpu(rx_info
->beacon_silence_rssi_b
) &
736 chain_noise_c
= le32_to_cpu(rx_info
->beacon_silence_rssi_c
) &
739 chain_sig_a
= le32_to_cpu(rx_info
->beacon_rssi_a
) & IN_BAND_FILTER
;
740 chain_sig_b
= le32_to_cpu(rx_info
->beacon_rssi_b
) & IN_BAND_FILTER
;
741 chain_sig_c
= le32_to_cpu(rx_info
->beacon_rssi_c
) & IN_BAND_FILTER
;
743 spin_unlock_irqrestore(&priv
->lock
, flags
);
745 data
->beacon_count
++;
747 data
->chain_noise_a
= (chain_noise_a
+ data
->chain_noise_a
);
748 data
->chain_noise_b
= (chain_noise_b
+ data
->chain_noise_b
);
749 data
->chain_noise_c
= (chain_noise_c
+ data
->chain_noise_c
);
751 data
->chain_signal_a
= (chain_sig_a
+ data
->chain_signal_a
);
752 data
->chain_signal_b
= (chain_sig_b
+ data
->chain_signal_b
);
753 data
->chain_signal_c
= (chain_sig_c
+ data
->chain_signal_c
);
755 IWL_DEBUG_CALIB(priv
, "chan=%d, band24=%d, beacon=%d\n",
756 rxon_chnum
, rxon_band24
, data
->beacon_count
);
757 IWL_DEBUG_CALIB(priv
, "chain_sig: a %d b %d c %d\n",
758 chain_sig_a
, chain_sig_b
, chain_sig_c
);
759 IWL_DEBUG_CALIB(priv
, "chain_noise: a %d b %d c %d\n",
760 chain_noise_a
, chain_noise_b
, chain_noise_c
);
762 /* If this is the "chain_noise_num_beacons", determine:
763 * 1) Disconnected antennas (using signal strengths)
764 * 2) Differential gain (using silence noise) to balance receivers */
765 if (data
->beacon_count
!= priv
->cfg
->chain_noise_num_beacons
)
768 /* Analyze signal for disconnected antenna */
770 (data
->chain_signal_a
) / priv
->cfg
->chain_noise_num_beacons
;
772 (data
->chain_signal_b
) / priv
->cfg
->chain_noise_num_beacons
;
774 (data
->chain_signal_c
) / priv
->cfg
->chain_noise_num_beacons
;
776 if (average_sig
[0] >= average_sig
[1]) {
777 max_average_sig
= average_sig
[0];
778 max_average_sig_antenna_i
= 0;
779 active_chains
= (1 << max_average_sig_antenna_i
);
781 max_average_sig
= average_sig
[1];
782 max_average_sig_antenna_i
= 1;
783 active_chains
= (1 << max_average_sig_antenna_i
);
786 if (average_sig
[2] >= max_average_sig
) {
787 max_average_sig
= average_sig
[2];
788 max_average_sig_antenna_i
= 2;
789 active_chains
= (1 << max_average_sig_antenna_i
);
792 IWL_DEBUG_CALIB(priv
, "average_sig: a %d b %d c %d\n",
793 average_sig
[0], average_sig
[1], average_sig
[2]);
794 IWL_DEBUG_CALIB(priv
, "max_average_sig = %d, antenna %d\n",
795 max_average_sig
, max_average_sig_antenna_i
);
797 /* Compare signal strengths for all 3 receivers. */
798 for (i
= 0; i
< NUM_RX_CHAINS
; i
++) {
799 if (i
!= max_average_sig_antenna_i
) {
800 s32 rssi_delta
= (max_average_sig
- average_sig
[i
]);
802 /* If signal is very weak, compared with
803 * strongest, mark it as disconnected. */
804 if (rssi_delta
> MAXIMUM_ALLOWED_PATHLOSS
)
805 data
->disconn_array
[i
] = 1;
807 active_chains
|= (1 << i
);
808 IWL_DEBUG_CALIB(priv
, "i = %d rssiDelta = %d "
809 "disconn_array[i] = %d\n",
810 i
, rssi_delta
, data
->disconn_array
[i
]);
815 for (i
= 0; i
< NUM_RX_CHAINS
; i
++) {
816 /* loops on all the bits of
817 * priv->hw_setting.valid_tx_ant */
818 u8 ant_msk
= (1 << i
);
819 if (!(priv
->hw_params
.valid_tx_ant
& ant_msk
))
823 if (data
->disconn_array
[i
] == 0)
824 /* there is a Tx antenna connected */
826 if (num_tx_chains
== priv
->hw_params
.tx_chains_num
&&
827 data
->disconn_array
[i
]) {
829 * If all chains are disconnected
830 * connect the first valid tx chain
833 find_first_chain(priv
->cfg
->valid_tx_ant
);
834 data
->disconn_array
[first_chain
] = 0;
835 active_chains
|= BIT(first_chain
);
836 IWL_DEBUG_CALIB(priv
, "All Tx chains are disconnected W/A - declare %d as connected\n",
842 /* Save for use within RXON, TX, SCAN commands, etc. */
843 priv
->chain_noise_data
.active_chains
= active_chains
;
844 IWL_DEBUG_CALIB(priv
, "active_chains (bitwise) = 0x%x\n",
847 /* Analyze noise for rx balance */
849 ((data
->chain_noise_a
) / priv
->cfg
->chain_noise_num_beacons
);
851 ((data
->chain_noise_b
) / priv
->cfg
->chain_noise_num_beacons
);
853 ((data
->chain_noise_c
) / priv
->cfg
->chain_noise_num_beacons
);
855 for (i
= 0; i
< NUM_RX_CHAINS
; i
++) {
856 if (!(data
->disconn_array
[i
]) &&
857 (average_noise
[i
] <= min_average_noise
)) {
858 /* This means that chain i is active and has
859 * lower noise values so far: */
860 min_average_noise
= average_noise
[i
];
861 min_average_noise_antenna_i
= i
;
865 IWL_DEBUG_CALIB(priv
, "average_noise: a %d b %d c %d\n",
866 average_noise
[0], average_noise
[1],
869 IWL_DEBUG_CALIB(priv
, "min_average_noise = %d, antenna %d\n",
870 min_average_noise
, min_average_noise_antenna_i
);
872 if (priv
->cfg
->ops
->utils
->gain_computation
)
873 priv
->cfg
->ops
->utils
->gain_computation(priv
, average_noise
,
874 min_average_noise_antenna_i
, min_average_noise
,
875 find_first_chain(priv
->cfg
->valid_rx_ant
));
877 /* Some power changes may have been made during the calibration.
878 * Update and commit the RXON
880 if (priv
->cfg
->ops
->lib
->update_chain_flags
)
881 priv
->cfg
->ops
->lib
->update_chain_flags(priv
);
883 data
->state
= IWL_CHAIN_NOISE_DONE
;
884 iwl_power_update_mode(priv
, false);
886 EXPORT_SYMBOL(iwl_chain_noise_calibration
);
889 void iwl_reset_run_time_calib(struct iwl_priv
*priv
)
892 memset(&(priv
->sensitivity_data
), 0,
893 sizeof(struct iwl_sensitivity_data
));
894 memset(&(priv
->chain_noise_data
), 0,
895 sizeof(struct iwl_chain_noise_data
));
896 for (i
= 0; i
< NUM_RX_CHAINS
; i
++)
897 priv
->chain_noise_data
.delta_gain_code
[i
] =
898 CHAIN_NOISE_DELTA_GAIN_INIT_VAL
;
900 /* Ask for statistics now, the uCode will send notification
901 * periodically after association */
902 iwl_send_statistics_request(priv
, CMD_ASYNC
);
904 EXPORT_SYMBOL(iwl_reset_run_time_calib
);