On Tue, Nov 06, 2007 at 02:33:53AM -0800, akpm@linux-foundation.org wrote:
[mmotm.git] / drivers / net / wireless / wl12xx / wl1271_spi.c
blob4800fdfd2373fcd0d9ff6964d9a9cbc35581fd5c
1 /*
2 * This file is part of wl1271
4 * Copyright (C) 2008-2009 Nokia Corporation
6 * Contact: Luciano Coelho <luciano.coelho@nokia.com>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * version 2 as published by the Free Software Foundation.
12 * This program is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
20 * 02110-1301 USA
24 #include <linux/module.h>
25 #include <linux/platform_device.h>
26 #include <linux/crc7.h>
27 #include <linux/spi/spi.h>
29 #include "wl1271.h"
30 #include "wl12xx_80211.h"
31 #include "wl1271_spi.h"
33 static int wl1271_translate_addr(struct wl1271 *wl, int addr)
36 * To translate, first check to which window of addresses the
37 * particular address belongs. Then subtract the starting address
38 * of that window from the address. Then, add offset of the
39 * translated region.
41 * The translated regions occur next to each other in physical device
42 * memory, so just add the sizes of the preceeding address regions to
43 * get the offset to the new region.
45 * Currently, only the two first regions are addressed, and the
46 * assumption is that all addresses will fall into either of those
47 * two.
49 if ((addr >= wl->part.reg.start) &&
50 (addr < wl->part.reg.start + wl->part.reg.size))
51 return addr - wl->part.reg.start + wl->part.mem.size;
52 else
53 return addr - wl->part.mem.start;
56 void wl1271_spi_reset(struct wl1271 *wl)
58 u8 *cmd;
59 struct spi_transfer t;
60 struct spi_message m;
62 cmd = kzalloc(WSPI_INIT_CMD_LEN, GFP_KERNEL);
63 if (!cmd) {
64 wl1271_error("could not allocate cmd for spi reset");
65 return;
68 memset(&t, 0, sizeof(t));
69 spi_message_init(&m);
71 memset(cmd, 0xff, WSPI_INIT_CMD_LEN);
73 t.tx_buf = cmd;
74 t.len = WSPI_INIT_CMD_LEN;
75 spi_message_add_tail(&t, &m);
77 spi_sync(wl->spi, &m);
79 wl1271_dump(DEBUG_SPI, "spi reset -> ", cmd, WSPI_INIT_CMD_LEN);
82 void wl1271_spi_init(struct wl1271 *wl)
84 u8 crc[WSPI_INIT_CMD_CRC_LEN], *cmd;
85 struct spi_transfer t;
86 struct spi_message m;
88 cmd = kzalloc(WSPI_INIT_CMD_LEN, GFP_KERNEL);
89 if (!cmd) {
90 wl1271_error("could not allocate cmd for spi init");
91 return;
94 memset(crc, 0, sizeof(crc));
95 memset(&t, 0, sizeof(t));
96 spi_message_init(&m);
99 * Set WSPI_INIT_COMMAND
100 * the data is being send from the MSB to LSB
102 cmd[2] = 0xff;
103 cmd[3] = 0xff;
104 cmd[1] = WSPI_INIT_CMD_START | WSPI_INIT_CMD_TX;
105 cmd[0] = 0;
106 cmd[7] = 0;
107 cmd[6] |= HW_ACCESS_WSPI_INIT_CMD_MASK << 3;
108 cmd[6] |= HW_ACCESS_WSPI_FIXED_BUSY_LEN & WSPI_INIT_CMD_FIXEDBUSY_LEN;
110 if (HW_ACCESS_WSPI_FIXED_BUSY_LEN == 0)
111 cmd[5] |= WSPI_INIT_CMD_DIS_FIXEDBUSY;
112 else
113 cmd[5] |= WSPI_INIT_CMD_EN_FIXEDBUSY;
115 cmd[5] |= WSPI_INIT_CMD_IOD | WSPI_INIT_CMD_IP | WSPI_INIT_CMD_CS
116 | WSPI_INIT_CMD_WSPI | WSPI_INIT_CMD_WS;
118 crc[0] = cmd[1];
119 crc[1] = cmd[0];
120 crc[2] = cmd[7];
121 crc[3] = cmd[6];
122 crc[4] = cmd[5];
124 cmd[4] |= crc7(0, crc, WSPI_INIT_CMD_CRC_LEN) << 1;
125 cmd[4] |= WSPI_INIT_CMD_END;
127 t.tx_buf = cmd;
128 t.len = WSPI_INIT_CMD_LEN;
129 spi_message_add_tail(&t, &m);
131 spi_sync(wl->spi, &m);
133 wl1271_dump(DEBUG_SPI, "spi init -> ", cmd, WSPI_INIT_CMD_LEN);
136 /* Set the SPI partitions to access the chip addresses
138 * To simplify driver code, a fixed (virtual) memory map is defined for
139 * register and memory addresses. Because in the chipset, in different stages
140 * of operation, those addresses will move around, an address translation
141 * mechanism is required.
143 * There are four partitions (three memory and one register partition),
144 * which are mapped to two different areas of the hardware memory.
146 * Virtual address
147 * space
149 * | |
150 * ...+----+--> mem.start
151 * Physical address ... | |
152 * space ... | | [PART_0]
153 * ... | |
154 * 00000000 <--+----+... ...+----+--> mem.start + mem.size
155 * | | ... | |
156 * |MEM | ... | |
157 * | | ... | |
158 * mem.size <--+----+... | | {unused area)
159 * | | ... | |
160 * |REG | ... | |
161 * mem.size | | ... | |
162 * + <--+----+... ...+----+--> reg.start
163 * reg.size | | ... | |
164 * |MEM2| ... | | [PART_1]
165 * | | ... | |
166 * ...+----+--> reg.start + reg.size
167 * | |
170 int wl1271_set_partition(struct wl1271 *wl,
171 struct wl1271_partition_set *p)
173 /* copy partition info */
174 memcpy(&wl->part, p, sizeof(*p));
176 wl1271_debug(DEBUG_SPI, "mem_start %08X mem_size %08X",
177 p->mem.start, p->mem.size);
178 wl1271_debug(DEBUG_SPI, "reg_start %08X reg_size %08X",
179 p->reg.start, p->reg.size);
180 wl1271_debug(DEBUG_SPI, "mem2_start %08X mem2_size %08X",
181 p->mem2.start, p->mem2.size);
182 wl1271_debug(DEBUG_SPI, "mem3_start %08X mem3_size %08X",
183 p->mem3.start, p->mem3.size);
185 /* write partition info to the chipset */
186 wl1271_raw_write32(wl, HW_PART0_START_ADDR, p->mem.start);
187 wl1271_raw_write32(wl, HW_PART0_SIZE_ADDR, p->mem.size);
188 wl1271_raw_write32(wl, HW_PART1_START_ADDR, p->reg.start);
189 wl1271_raw_write32(wl, HW_PART1_SIZE_ADDR, p->reg.size);
190 wl1271_raw_write32(wl, HW_PART2_START_ADDR, p->mem2.start);
191 wl1271_raw_write32(wl, HW_PART2_SIZE_ADDR, p->mem2.size);
192 wl1271_raw_write32(wl, HW_PART3_START_ADDR, p->mem3.start);
194 return 0;
197 #define WL1271_BUSY_WORD_TIMEOUT 1000
199 void wl1271_spi_read_busy(struct wl1271 *wl, void *buf, size_t len)
201 struct spi_transfer t[1];
202 struct spi_message m;
203 u32 *busy_buf;
204 int num_busy_bytes = 0;
206 wl1271_info("spi read BUSY!");
209 * Look for the non-busy word in the read buffer, and if found,
210 * read in the remaining data into the buffer.
212 busy_buf = (u32 *)buf;
213 for (; (u32)busy_buf < (u32)buf + len; busy_buf++) {
214 num_busy_bytes += sizeof(u32);
215 if (*busy_buf & 0x1) {
216 spi_message_init(&m);
217 memset(t, 0, sizeof(t));
218 memmove(buf, busy_buf, len - num_busy_bytes);
219 t[0].rx_buf = buf + (len - num_busy_bytes);
220 t[0].len = num_busy_bytes;
221 spi_message_add_tail(&t[0], &m);
222 spi_sync(wl->spi, &m);
223 return;
228 * Read further busy words from SPI until a non-busy word is
229 * encountered, then read the data itself into the buffer.
231 wl1271_info("spi read BUSY-polling needed!");
233 num_busy_bytes = WL1271_BUSY_WORD_TIMEOUT;
234 busy_buf = wl->buffer_busyword;
235 while (num_busy_bytes) {
236 num_busy_bytes--;
237 spi_message_init(&m);
238 memset(t, 0, sizeof(t));
239 t[0].rx_buf = busy_buf;
240 t[0].len = sizeof(u32);
241 spi_message_add_tail(&t[0], &m);
242 spi_sync(wl->spi, &m);
244 if (*busy_buf & 0x1) {
245 spi_message_init(&m);
246 memset(t, 0, sizeof(t));
247 t[0].rx_buf = buf;
248 t[0].len = len;
249 spi_message_add_tail(&t[0], &m);
250 spi_sync(wl->spi, &m);
251 return;
255 /* The SPI bus is unresponsive, the read failed. */
256 memset(buf, 0, len);
257 wl1271_error("SPI read busy-word timeout!\n");
260 void wl1271_spi_raw_read(struct wl1271 *wl, int addr, void *buf,
261 size_t len, bool fixed)
263 struct spi_transfer t[3];
264 struct spi_message m;
265 u32 *busy_buf;
266 u32 *cmd;
268 cmd = &wl->buffer_cmd;
269 busy_buf = wl->buffer_busyword;
271 *cmd = 0;
272 *cmd |= WSPI_CMD_READ;
273 *cmd |= (len << WSPI_CMD_BYTE_LENGTH_OFFSET) & WSPI_CMD_BYTE_LENGTH;
274 *cmd |= addr & WSPI_CMD_BYTE_ADDR;
276 if (fixed)
277 *cmd |= WSPI_CMD_FIXED;
279 spi_message_init(&m);
280 memset(t, 0, sizeof(t));
282 t[0].tx_buf = cmd;
283 t[0].len = 4;
284 spi_message_add_tail(&t[0], &m);
286 /* Busy and non busy words read */
287 t[1].rx_buf = busy_buf;
288 t[1].len = WL1271_BUSY_WORD_LEN;
289 spi_message_add_tail(&t[1], &m);
291 t[2].rx_buf = buf;
292 t[2].len = len;
293 spi_message_add_tail(&t[2], &m);
295 spi_sync(wl->spi, &m);
297 /* Check busy words */
298 if (!(busy_buf[WL1271_BUSY_WORD_CNT - 1] & 0x1))
299 wl1271_spi_read_busy(wl, buf, len);
301 wl1271_dump(DEBUG_SPI, "spi_read cmd -> ", cmd, sizeof(*cmd));
302 wl1271_dump(DEBUG_SPI, "spi_read buf <- ", buf, len);
305 void wl1271_spi_raw_write(struct wl1271 *wl, int addr, void *buf,
306 size_t len, bool fixed)
308 struct spi_transfer t[2];
309 struct spi_message m;
310 u32 *cmd;
312 cmd = &wl->buffer_cmd;
314 *cmd = 0;
315 *cmd |= WSPI_CMD_WRITE;
316 *cmd |= (len << WSPI_CMD_BYTE_LENGTH_OFFSET) & WSPI_CMD_BYTE_LENGTH;
317 *cmd |= addr & WSPI_CMD_BYTE_ADDR;
319 if (fixed)
320 *cmd |= WSPI_CMD_FIXED;
322 spi_message_init(&m);
323 memset(t, 0, sizeof(t));
325 t[0].tx_buf = cmd;
326 t[0].len = sizeof(*cmd);
327 spi_message_add_tail(&t[0], &m);
329 t[1].tx_buf = buf;
330 t[1].len = len;
331 spi_message_add_tail(&t[1], &m);
333 spi_sync(wl->spi, &m);
335 wl1271_dump(DEBUG_SPI, "spi_write cmd -> ", cmd, sizeof(*cmd));
336 wl1271_dump(DEBUG_SPI, "spi_write buf -> ", buf, len);
339 void wl1271_spi_read(struct wl1271 *wl, int addr, void *buf, size_t len,
340 bool fixed)
342 int physical;
344 physical = wl1271_translate_addr(wl, addr);
346 wl1271_spi_raw_read(wl, physical, buf, len, fixed);
349 void wl1271_spi_write(struct wl1271 *wl, int addr, void *buf, size_t len,
350 bool fixed)
352 int physical;
354 physical = wl1271_translate_addr(wl, addr);
356 wl1271_spi_raw_write(wl, physical, buf, len, fixed);
359 u32 wl1271_spi_read32(struct wl1271 *wl, int addr)
361 return wl1271_raw_read32(wl, wl1271_translate_addr(wl, addr));
364 void wl1271_spi_write32(struct wl1271 *wl, int addr, u32 val)
366 wl1271_raw_write32(wl, wl1271_translate_addr(wl, addr), val);
369 void wl1271_top_reg_write(struct wl1271 *wl, int addr, u16 val)
371 /* write address >> 1 + 0x30000 to OCP_POR_CTR */
372 addr = (addr >> 1) + 0x30000;
373 wl1271_spi_write32(wl, OCP_POR_CTR, addr);
375 /* write value to OCP_POR_WDATA */
376 wl1271_spi_write32(wl, OCP_DATA_WRITE, val);
378 /* write 1 to OCP_CMD */
379 wl1271_spi_write32(wl, OCP_CMD, OCP_CMD_WRITE);
382 u16 wl1271_top_reg_read(struct wl1271 *wl, int addr)
384 u32 val;
385 int timeout = OCP_CMD_LOOP;
387 /* write address >> 1 + 0x30000 to OCP_POR_CTR */
388 addr = (addr >> 1) + 0x30000;
389 wl1271_spi_write32(wl, OCP_POR_CTR, addr);
391 /* write 2 to OCP_CMD */
392 wl1271_spi_write32(wl, OCP_CMD, OCP_CMD_READ);
394 /* poll for data ready */
395 do {
396 val = wl1271_spi_read32(wl, OCP_DATA_READ);
397 timeout--;
398 } while (!(val & OCP_READY_MASK) && timeout);
400 if (!timeout) {
401 wl1271_warning("Top register access timed out.");
402 return 0xffff;
405 /* check data status and return if OK */
406 if ((val & OCP_STATUS_MASK) == OCP_STATUS_OK)
407 return val & 0xffff;
408 else {
409 wl1271_warning("Top register access returned error.");
410 return 0xffff;