On Tue, Nov 06, 2007 at 02:33:53AM -0800, akpm@linux-foundation.org wrote:
[mmotm.git] / drivers / rtc / rtc-sh.c
blobe6ed5404bca0e8d32d4623bd123c6d0b8e6a1b54
1 /*
2 * SuperH On-Chip RTC Support
4 * Copyright (C) 2006 - 2009 Paul Mundt
5 * Copyright (C) 2006 Jamie Lenehan
6 * Copyright (C) 2008 Angelo Castello
8 * Based on the old arch/sh/kernel/cpu/rtc.c by:
10 * Copyright (C) 2000 Philipp Rumpf <prumpf@tux.org>
11 * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka
13 * This file is subject to the terms and conditions of the GNU General Public
14 * License. See the file "COPYING" in the main directory of this archive
15 * for more details.
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/bcd.h>
20 #include <linux/rtc.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/seq_file.h>
24 #include <linux/interrupt.h>
25 #include <linux/spinlock.h>
26 #include <linux/io.h>
27 #include <linux/log2.h>
28 #include <linux/clk.h>
29 #include <asm/rtc.h>
31 #define DRV_NAME "sh-rtc"
32 #define DRV_VERSION "0.2.3"
34 #define RTC_REG(r) ((r) * rtc_reg_size)
36 #define R64CNT RTC_REG(0)
38 #define RSECCNT RTC_REG(1) /* RTC sec */
39 #define RMINCNT RTC_REG(2) /* RTC min */
40 #define RHRCNT RTC_REG(3) /* RTC hour */
41 #define RWKCNT RTC_REG(4) /* RTC week */
42 #define RDAYCNT RTC_REG(5) /* RTC day */
43 #define RMONCNT RTC_REG(6) /* RTC month */
44 #define RYRCNT RTC_REG(7) /* RTC year */
45 #define RSECAR RTC_REG(8) /* ALARM sec */
46 #define RMINAR RTC_REG(9) /* ALARM min */
47 #define RHRAR RTC_REG(10) /* ALARM hour */
48 #define RWKAR RTC_REG(11) /* ALARM week */
49 #define RDAYAR RTC_REG(12) /* ALARM day */
50 #define RMONAR RTC_REG(13) /* ALARM month */
51 #define RCR1 RTC_REG(14) /* Control */
52 #define RCR2 RTC_REG(15) /* Control */
55 * Note on RYRAR and RCR3: Up until this point most of the register
56 * definitions are consistent across all of the available parts. However,
57 * the placement of the optional RYRAR and RCR3 (the RYRAR control
58 * register used to control RYRCNT/RYRAR compare) varies considerably
59 * across various parts, occasionally being mapped in to a completely
60 * unrelated address space. For proper RYRAR support a separate resource
61 * would have to be handed off, but as this is purely optional in
62 * practice, we simply opt not to support it, thereby keeping the code
63 * quite a bit more simplified.
66 /* ALARM Bits - or with BCD encoded value */
67 #define AR_ENB 0x80 /* Enable for alarm cmp */
69 /* Period Bits */
70 #define PF_HP 0x100 /* Enable Half Period to support 8,32,128Hz */
71 #define PF_COUNT 0x200 /* Half periodic counter */
72 #define PF_OXS 0x400 /* Periodic One x Second */
73 #define PF_KOU 0x800 /* Kernel or User periodic request 1=kernel */
74 #define PF_MASK 0xf00
76 /* RCR1 Bits */
77 #define RCR1_CF 0x80 /* Carry Flag */
78 #define RCR1_CIE 0x10 /* Carry Interrupt Enable */
79 #define RCR1_AIE 0x08 /* Alarm Interrupt Enable */
80 #define RCR1_AF 0x01 /* Alarm Flag */
82 /* RCR2 Bits */
83 #define RCR2_PEF 0x80 /* PEriodic interrupt Flag */
84 #define RCR2_PESMASK 0x70 /* Periodic interrupt Set */
85 #define RCR2_RTCEN 0x08 /* ENable RTC */
86 #define RCR2_ADJ 0x04 /* ADJustment (30-second) */
87 #define RCR2_RESET 0x02 /* Reset bit */
88 #define RCR2_START 0x01 /* Start bit */
90 struct sh_rtc {
91 void __iomem *regbase;
92 unsigned long regsize;
93 struct resource *res;
94 int alarm_irq;
95 int periodic_irq;
96 int carry_irq;
97 struct clk *clk;
98 struct rtc_device *rtc_dev;
99 spinlock_t lock;
100 unsigned long capabilities; /* See asm/rtc.h for cap bits */
101 unsigned short periodic_freq;
104 static int __sh_rtc_interrupt(struct sh_rtc *rtc)
106 unsigned int tmp, pending;
108 tmp = readb(rtc->regbase + RCR1);
109 pending = tmp & RCR1_CF;
110 tmp &= ~RCR1_CF;
111 writeb(tmp, rtc->regbase + RCR1);
113 /* Users have requested One x Second IRQ */
114 if (pending && rtc->periodic_freq & PF_OXS)
115 rtc_update_irq(rtc->rtc_dev, 1, RTC_UF | RTC_IRQF);
117 return pending;
120 static int __sh_rtc_alarm(struct sh_rtc *rtc)
122 unsigned int tmp, pending;
124 tmp = readb(rtc->regbase + RCR1);
125 pending = tmp & RCR1_AF;
126 tmp &= ~(RCR1_AF | RCR1_AIE);
127 writeb(tmp, rtc->regbase + RCR1);
129 if (pending)
130 rtc_update_irq(rtc->rtc_dev, 1, RTC_AF | RTC_IRQF);
132 return pending;
135 static int __sh_rtc_periodic(struct sh_rtc *rtc)
137 struct rtc_device *rtc_dev = rtc->rtc_dev;
138 struct rtc_task *irq_task;
139 unsigned int tmp, pending;
141 tmp = readb(rtc->regbase + RCR2);
142 pending = tmp & RCR2_PEF;
143 tmp &= ~RCR2_PEF;
144 writeb(tmp, rtc->regbase + RCR2);
146 if (!pending)
147 return 0;
149 /* Half period enabled than one skipped and the next notified */
150 if ((rtc->periodic_freq & PF_HP) && (rtc->periodic_freq & PF_COUNT))
151 rtc->periodic_freq &= ~PF_COUNT;
152 else {
153 if (rtc->periodic_freq & PF_HP)
154 rtc->periodic_freq |= PF_COUNT;
155 if (rtc->periodic_freq & PF_KOU) {
156 spin_lock(&rtc_dev->irq_task_lock);
157 irq_task = rtc_dev->irq_task;
158 if (irq_task)
159 irq_task->func(irq_task->private_data);
160 spin_unlock(&rtc_dev->irq_task_lock);
161 } else
162 rtc_update_irq(rtc->rtc_dev, 1, RTC_PF | RTC_IRQF);
165 return pending;
168 static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id)
170 struct sh_rtc *rtc = dev_id;
171 int ret;
173 spin_lock(&rtc->lock);
174 ret = __sh_rtc_interrupt(rtc);
175 spin_unlock(&rtc->lock);
177 return IRQ_RETVAL(ret);
180 static irqreturn_t sh_rtc_alarm(int irq, void *dev_id)
182 struct sh_rtc *rtc = dev_id;
183 int ret;
185 spin_lock(&rtc->lock);
186 ret = __sh_rtc_alarm(rtc);
187 spin_unlock(&rtc->lock);
189 return IRQ_RETVAL(ret);
192 static irqreturn_t sh_rtc_periodic(int irq, void *dev_id)
194 struct sh_rtc *rtc = dev_id;
195 int ret;
197 spin_lock(&rtc->lock);
198 ret = __sh_rtc_periodic(rtc);
199 spin_unlock(&rtc->lock);
201 return IRQ_RETVAL(ret);
204 static irqreturn_t sh_rtc_shared(int irq, void *dev_id)
206 struct sh_rtc *rtc = dev_id;
207 int ret;
209 spin_lock(&rtc->lock);
210 ret = __sh_rtc_interrupt(rtc);
211 ret |= __sh_rtc_alarm(rtc);
212 ret |= __sh_rtc_periodic(rtc);
213 spin_unlock(&rtc->lock);
215 return IRQ_RETVAL(ret);
218 static int sh_rtc_irq_set_state(struct device *dev, int enable)
220 struct sh_rtc *rtc = dev_get_drvdata(dev);
221 unsigned int tmp;
223 spin_lock_irq(&rtc->lock);
225 tmp = readb(rtc->regbase + RCR2);
227 if (enable) {
228 rtc->periodic_freq |= PF_KOU;
229 tmp &= ~RCR2_PEF; /* Clear PES bit */
230 tmp |= (rtc->periodic_freq & ~PF_HP); /* Set PES2-0 */
231 } else {
232 rtc->periodic_freq &= ~PF_KOU;
233 tmp &= ~(RCR2_PESMASK | RCR2_PEF);
236 writeb(tmp, rtc->regbase + RCR2);
238 spin_unlock_irq(&rtc->lock);
240 return 0;
243 static int sh_rtc_irq_set_freq(struct device *dev, int freq)
245 struct sh_rtc *rtc = dev_get_drvdata(dev);
246 int tmp, ret = 0;
248 spin_lock_irq(&rtc->lock);
249 tmp = rtc->periodic_freq & PF_MASK;
251 switch (freq) {
252 case 0:
253 rtc->periodic_freq = 0x00;
254 break;
255 case 1:
256 rtc->periodic_freq = 0x60;
257 break;
258 case 2:
259 rtc->periodic_freq = 0x50;
260 break;
261 case 4:
262 rtc->periodic_freq = 0x40;
263 break;
264 case 8:
265 rtc->periodic_freq = 0x30 | PF_HP;
266 break;
267 case 16:
268 rtc->periodic_freq = 0x30;
269 break;
270 case 32:
271 rtc->periodic_freq = 0x20 | PF_HP;
272 break;
273 case 64:
274 rtc->periodic_freq = 0x20;
275 break;
276 case 128:
277 rtc->periodic_freq = 0x10 | PF_HP;
278 break;
279 case 256:
280 rtc->periodic_freq = 0x10;
281 break;
282 default:
283 ret = -ENOTSUPP;
286 if (ret == 0)
287 rtc->periodic_freq |= tmp;
289 spin_unlock_irq(&rtc->lock);
290 return ret;
293 static inline void sh_rtc_setaie(struct device *dev, unsigned int enable)
295 struct sh_rtc *rtc = dev_get_drvdata(dev);
296 unsigned int tmp;
298 spin_lock_irq(&rtc->lock);
300 tmp = readb(rtc->regbase + RCR1);
302 if (enable)
303 tmp |= RCR1_AIE;
304 else
305 tmp &= ~RCR1_AIE;
307 writeb(tmp, rtc->regbase + RCR1);
309 spin_unlock_irq(&rtc->lock);
312 static int sh_rtc_proc(struct device *dev, struct seq_file *seq)
314 struct sh_rtc *rtc = dev_get_drvdata(dev);
315 unsigned int tmp;
317 tmp = readb(rtc->regbase + RCR1);
318 seq_printf(seq, "carry_IRQ\t: %s\n", (tmp & RCR1_CIE) ? "yes" : "no");
320 tmp = readb(rtc->regbase + RCR2);
321 seq_printf(seq, "periodic_IRQ\t: %s\n",
322 (tmp & RCR2_PESMASK) ? "yes" : "no");
324 return 0;
327 static inline void sh_rtc_setcie(struct device *dev, unsigned int enable)
329 struct sh_rtc *rtc = dev_get_drvdata(dev);
330 unsigned int tmp;
332 spin_lock_irq(&rtc->lock);
334 tmp = readb(rtc->regbase + RCR1);
336 if (!enable)
337 tmp &= ~RCR1_CIE;
338 else
339 tmp |= RCR1_CIE;
341 writeb(tmp, rtc->regbase + RCR1);
343 spin_unlock_irq(&rtc->lock);
346 static int sh_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
348 struct sh_rtc *rtc = dev_get_drvdata(dev);
349 unsigned int ret = 0;
351 switch (cmd) {
352 case RTC_AIE_OFF:
353 case RTC_AIE_ON:
354 sh_rtc_setaie(dev, cmd == RTC_AIE_ON);
355 break;
356 case RTC_UIE_OFF:
357 rtc->periodic_freq &= ~PF_OXS;
358 sh_rtc_setcie(dev, 0);
359 break;
360 case RTC_UIE_ON:
361 rtc->periodic_freq |= PF_OXS;
362 sh_rtc_setcie(dev, 1);
363 break;
364 default:
365 ret = -ENOIOCTLCMD;
368 return ret;
371 static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm)
373 struct platform_device *pdev = to_platform_device(dev);
374 struct sh_rtc *rtc = platform_get_drvdata(pdev);
375 unsigned int sec128, sec2, yr, yr100, cf_bit;
377 do {
378 unsigned int tmp;
380 spin_lock_irq(&rtc->lock);
382 tmp = readb(rtc->regbase + RCR1);
383 tmp &= ~RCR1_CF; /* Clear CF-bit */
384 tmp |= RCR1_CIE;
385 writeb(tmp, rtc->regbase + RCR1);
387 sec128 = readb(rtc->regbase + R64CNT);
389 tm->tm_sec = bcd2bin(readb(rtc->regbase + RSECCNT));
390 tm->tm_min = bcd2bin(readb(rtc->regbase + RMINCNT));
391 tm->tm_hour = bcd2bin(readb(rtc->regbase + RHRCNT));
392 tm->tm_wday = bcd2bin(readb(rtc->regbase + RWKCNT));
393 tm->tm_mday = bcd2bin(readb(rtc->regbase + RDAYCNT));
394 tm->tm_mon = bcd2bin(readb(rtc->regbase + RMONCNT)) - 1;
396 if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
397 yr = readw(rtc->regbase + RYRCNT);
398 yr100 = bcd2bin(yr >> 8);
399 yr &= 0xff;
400 } else {
401 yr = readb(rtc->regbase + RYRCNT);
402 yr100 = bcd2bin((yr == 0x99) ? 0x19 : 0x20);
405 tm->tm_year = (yr100 * 100 + bcd2bin(yr)) - 1900;
407 sec2 = readb(rtc->regbase + R64CNT);
408 cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF;
410 spin_unlock_irq(&rtc->lock);
411 } while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0);
413 #if RTC_BIT_INVERTED != 0
414 if ((sec128 & RTC_BIT_INVERTED))
415 tm->tm_sec--;
416 #endif
418 /* only keep the carry interrupt enabled if UIE is on */
419 if (!(rtc->periodic_freq & PF_OXS))
420 sh_rtc_setcie(dev, 0);
422 dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
423 "mday=%d, mon=%d, year=%d, wday=%d\n",
424 __func__,
425 tm->tm_sec, tm->tm_min, tm->tm_hour,
426 tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday);
428 return rtc_valid_tm(tm);
431 static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm)
433 struct platform_device *pdev = to_platform_device(dev);
434 struct sh_rtc *rtc = platform_get_drvdata(pdev);
435 unsigned int tmp;
436 int year;
438 spin_lock_irq(&rtc->lock);
440 /* Reset pre-scaler & stop RTC */
441 tmp = readb(rtc->regbase + RCR2);
442 tmp |= RCR2_RESET;
443 tmp &= ~RCR2_START;
444 writeb(tmp, rtc->regbase + RCR2);
446 writeb(bin2bcd(tm->tm_sec), rtc->regbase + RSECCNT);
447 writeb(bin2bcd(tm->tm_min), rtc->regbase + RMINCNT);
448 writeb(bin2bcd(tm->tm_hour), rtc->regbase + RHRCNT);
449 writeb(bin2bcd(tm->tm_wday), rtc->regbase + RWKCNT);
450 writeb(bin2bcd(tm->tm_mday), rtc->regbase + RDAYCNT);
451 writeb(bin2bcd(tm->tm_mon + 1), rtc->regbase + RMONCNT);
453 if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
454 year = (bin2bcd((tm->tm_year + 1900) / 100) << 8) |
455 bin2bcd(tm->tm_year % 100);
456 writew(year, rtc->regbase + RYRCNT);
457 } else {
458 year = tm->tm_year % 100;
459 writeb(bin2bcd(year), rtc->regbase + RYRCNT);
462 /* Start RTC */
463 tmp = readb(rtc->regbase + RCR2);
464 tmp &= ~RCR2_RESET;
465 tmp |= RCR2_RTCEN | RCR2_START;
466 writeb(tmp, rtc->regbase + RCR2);
468 spin_unlock_irq(&rtc->lock);
470 return 0;
473 static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off)
475 unsigned int byte;
476 int value = 0xff; /* return 0xff for ignored values */
478 byte = readb(rtc->regbase + reg_off);
479 if (byte & AR_ENB) {
480 byte &= ~AR_ENB; /* strip the enable bit */
481 value = bcd2bin(byte);
484 return value;
487 static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
489 struct platform_device *pdev = to_platform_device(dev);
490 struct sh_rtc *rtc = platform_get_drvdata(pdev);
491 struct rtc_time *tm = &wkalrm->time;
493 spin_lock_irq(&rtc->lock);
495 tm->tm_sec = sh_rtc_read_alarm_value(rtc, RSECAR);
496 tm->tm_min = sh_rtc_read_alarm_value(rtc, RMINAR);
497 tm->tm_hour = sh_rtc_read_alarm_value(rtc, RHRAR);
498 tm->tm_wday = sh_rtc_read_alarm_value(rtc, RWKAR);
499 tm->tm_mday = sh_rtc_read_alarm_value(rtc, RDAYAR);
500 tm->tm_mon = sh_rtc_read_alarm_value(rtc, RMONAR);
501 if (tm->tm_mon > 0)
502 tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */
503 tm->tm_year = 0xffff;
505 wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0;
507 spin_unlock_irq(&rtc->lock);
509 return 0;
512 static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc,
513 int value, int reg_off)
515 /* < 0 for a value that is ignored */
516 if (value < 0)
517 writeb(0, rtc->regbase + reg_off);
518 else
519 writeb(bin2bcd(value) | AR_ENB, rtc->regbase + reg_off);
522 static int sh_rtc_check_alarm(struct rtc_time *tm)
525 * The original rtc says anything > 0xc0 is "don't care" or "match
526 * all" - most users use 0xff but rtc-dev uses -1 for the same thing.
527 * The original rtc doesn't support years - some things use -1 and
528 * some 0xffff. We use -1 to make out tests easier.
530 if (tm->tm_year == 0xffff)
531 tm->tm_year = -1;
532 if (tm->tm_mon >= 0xff)
533 tm->tm_mon = -1;
534 if (tm->tm_mday >= 0xff)
535 tm->tm_mday = -1;
536 if (tm->tm_wday >= 0xff)
537 tm->tm_wday = -1;
538 if (tm->tm_hour >= 0xff)
539 tm->tm_hour = -1;
540 if (tm->tm_min >= 0xff)
541 tm->tm_min = -1;
542 if (tm->tm_sec >= 0xff)
543 tm->tm_sec = -1;
545 if (tm->tm_year > 9999 ||
546 tm->tm_mon >= 12 ||
547 tm->tm_mday == 0 || tm->tm_mday >= 32 ||
548 tm->tm_wday >= 7 ||
549 tm->tm_hour >= 24 ||
550 tm->tm_min >= 60 ||
551 tm->tm_sec >= 60)
552 return -EINVAL;
554 return 0;
557 static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
559 struct platform_device *pdev = to_platform_device(dev);
560 struct sh_rtc *rtc = platform_get_drvdata(pdev);
561 unsigned int rcr1;
562 struct rtc_time *tm = &wkalrm->time;
563 int mon, err;
565 err = sh_rtc_check_alarm(tm);
566 if (unlikely(err < 0))
567 return err;
569 spin_lock_irq(&rtc->lock);
571 /* disable alarm interrupt and clear the alarm flag */
572 rcr1 = readb(rtc->regbase + RCR1);
573 rcr1 &= ~(RCR1_AF | RCR1_AIE);
574 writeb(rcr1, rtc->regbase + RCR1);
576 /* set alarm time */
577 sh_rtc_write_alarm_value(rtc, tm->tm_sec, RSECAR);
578 sh_rtc_write_alarm_value(rtc, tm->tm_min, RMINAR);
579 sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR);
580 sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR);
581 sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR);
582 mon = tm->tm_mon;
583 if (mon >= 0)
584 mon += 1;
585 sh_rtc_write_alarm_value(rtc, mon, RMONAR);
587 if (wkalrm->enabled) {
588 rcr1 |= RCR1_AIE;
589 writeb(rcr1, rtc->regbase + RCR1);
592 spin_unlock_irq(&rtc->lock);
594 return 0;
597 static struct rtc_class_ops sh_rtc_ops = {
598 .ioctl = sh_rtc_ioctl,
599 .read_time = sh_rtc_read_time,
600 .set_time = sh_rtc_set_time,
601 .read_alarm = sh_rtc_read_alarm,
602 .set_alarm = sh_rtc_set_alarm,
603 .irq_set_state = sh_rtc_irq_set_state,
604 .irq_set_freq = sh_rtc_irq_set_freq,
605 .proc = sh_rtc_proc,
608 static int __init sh_rtc_probe(struct platform_device *pdev)
610 struct sh_rtc *rtc;
611 struct resource *res;
612 struct rtc_time r;
613 char clk_name[6];
614 int clk_id, ret;
616 rtc = kzalloc(sizeof(struct sh_rtc), GFP_KERNEL);
617 if (unlikely(!rtc))
618 return -ENOMEM;
620 spin_lock_init(&rtc->lock);
622 /* get periodic/carry/alarm irqs */
623 ret = platform_get_irq(pdev, 0);
624 if (unlikely(ret <= 0)) {
625 ret = -ENOENT;
626 dev_err(&pdev->dev, "No IRQ resource\n");
627 goto err_badres;
630 rtc->periodic_irq = ret;
631 rtc->carry_irq = platform_get_irq(pdev, 1);
632 rtc->alarm_irq = platform_get_irq(pdev, 2);
634 res = platform_get_resource(pdev, IORESOURCE_IO, 0);
635 if (unlikely(res == NULL)) {
636 ret = -ENOENT;
637 dev_err(&pdev->dev, "No IO resource\n");
638 goto err_badres;
641 rtc->regsize = resource_size(res);
643 rtc->res = request_mem_region(res->start, rtc->regsize, pdev->name);
644 if (unlikely(!rtc->res)) {
645 ret = -EBUSY;
646 goto err_badres;
649 rtc->regbase = ioremap_nocache(rtc->res->start, rtc->regsize);
650 if (unlikely(!rtc->regbase)) {
651 ret = -EINVAL;
652 goto err_badmap;
655 clk_id = pdev->id;
656 /* With a single device, the clock id is still "rtc0" */
657 if (clk_id < 0)
658 clk_id = 0;
660 snprintf(clk_name, sizeof(clk_name), "rtc%d", clk_id);
662 rtc->clk = clk_get(&pdev->dev, clk_name);
663 if (IS_ERR(rtc->clk)) {
665 * No error handling for rtc->clk intentionally, not all
666 * platforms will have a unique clock for the RTC, and
667 * the clk API can handle the struct clk pointer being
668 * NULL.
670 rtc->clk = NULL;
673 clk_enable(rtc->clk);
675 rtc->capabilities = RTC_DEF_CAPABILITIES;
676 if (pdev->dev.platform_data) {
677 struct sh_rtc_platform_info *pinfo = pdev->dev.platform_data;
680 * Some CPUs have special capabilities in addition to the
681 * default set. Add those in here.
683 rtc->capabilities |= pinfo->capabilities;
686 if (rtc->carry_irq <= 0) {
687 /* register shared periodic/carry/alarm irq */
688 ret = request_irq(rtc->periodic_irq, sh_rtc_shared,
689 IRQF_DISABLED, "sh-rtc", rtc);
690 if (unlikely(ret)) {
691 dev_err(&pdev->dev,
692 "request IRQ failed with %d, IRQ %d\n", ret,
693 rtc->periodic_irq);
694 goto err_unmap;
696 } else {
697 /* register periodic/carry/alarm irqs */
698 ret = request_irq(rtc->periodic_irq, sh_rtc_periodic,
699 IRQF_DISABLED, "sh-rtc period", rtc);
700 if (unlikely(ret)) {
701 dev_err(&pdev->dev,
702 "request period IRQ failed with %d, IRQ %d\n",
703 ret, rtc->periodic_irq);
704 goto err_unmap;
707 ret = request_irq(rtc->carry_irq, sh_rtc_interrupt,
708 IRQF_DISABLED, "sh-rtc carry", rtc);
709 if (unlikely(ret)) {
710 dev_err(&pdev->dev,
711 "request carry IRQ failed with %d, IRQ %d\n",
712 ret, rtc->carry_irq);
713 free_irq(rtc->periodic_irq, rtc);
714 goto err_unmap;
717 ret = request_irq(rtc->alarm_irq, sh_rtc_alarm,
718 IRQF_DISABLED, "sh-rtc alarm", rtc);
719 if (unlikely(ret)) {
720 dev_err(&pdev->dev,
721 "request alarm IRQ failed with %d, IRQ %d\n",
722 ret, rtc->alarm_irq);
723 free_irq(rtc->carry_irq, rtc);
724 free_irq(rtc->periodic_irq, rtc);
725 goto err_unmap;
729 platform_set_drvdata(pdev, rtc);
731 /* everything disabled by default */
732 sh_rtc_irq_set_freq(&pdev->dev, 0);
733 sh_rtc_irq_set_state(&pdev->dev, 0);
734 sh_rtc_setaie(&pdev->dev, 0);
735 sh_rtc_setcie(&pdev->dev, 0);
737 rtc->rtc_dev = rtc_device_register("sh", &pdev->dev,
738 &sh_rtc_ops, THIS_MODULE);
739 if (IS_ERR(rtc->rtc_dev)) {
740 ret = PTR_ERR(rtc->rtc_dev);
741 free_irq(rtc->periodic_irq, rtc);
742 free_irq(rtc->carry_irq, rtc);
743 free_irq(rtc->alarm_irq, rtc);
744 goto err_unmap;
747 rtc->rtc_dev->max_user_freq = 256;
749 /* reset rtc to epoch 0 if time is invalid */
750 if (rtc_read_time(rtc->rtc_dev, &r) < 0) {
751 rtc_time_to_tm(0, &r);
752 rtc_set_time(rtc->rtc_dev, &r);
755 device_init_wakeup(&pdev->dev, 1);
756 return 0;
758 err_unmap:
759 clk_disable(rtc->clk);
760 clk_put(rtc->clk);
761 iounmap(rtc->regbase);
762 err_badmap:
763 release_resource(rtc->res);
764 err_badres:
765 kfree(rtc);
767 return ret;
770 static int __exit sh_rtc_remove(struct platform_device *pdev)
772 struct sh_rtc *rtc = platform_get_drvdata(pdev);
774 rtc_device_unregister(rtc->rtc_dev);
775 sh_rtc_irq_set_state(&pdev->dev, 0);
777 sh_rtc_setaie(&pdev->dev, 0);
778 sh_rtc_setcie(&pdev->dev, 0);
780 free_irq(rtc->periodic_irq, rtc);
782 if (rtc->carry_irq > 0) {
783 free_irq(rtc->carry_irq, rtc);
784 free_irq(rtc->alarm_irq, rtc);
787 iounmap(rtc->regbase);
788 release_resource(rtc->res);
790 clk_disable(rtc->clk);
791 clk_put(rtc->clk);
793 platform_set_drvdata(pdev, NULL);
795 kfree(rtc);
797 return 0;
800 static void sh_rtc_set_irq_wake(struct device *dev, int enabled)
802 struct platform_device *pdev = to_platform_device(dev);
803 struct sh_rtc *rtc = platform_get_drvdata(pdev);
805 set_irq_wake(rtc->periodic_irq, enabled);
807 if (rtc->carry_irq > 0) {
808 set_irq_wake(rtc->carry_irq, enabled);
809 set_irq_wake(rtc->alarm_irq, enabled);
813 static int sh_rtc_suspend(struct device *dev)
815 if (device_may_wakeup(dev))
816 sh_rtc_set_irq_wake(dev, 1);
818 return 0;
821 static int sh_rtc_resume(struct device *dev)
823 if (device_may_wakeup(dev))
824 sh_rtc_set_irq_wake(dev, 0);
826 return 0;
829 static struct dev_pm_ops sh_rtc_dev_pm_ops = {
830 .suspend = sh_rtc_suspend,
831 .resume = sh_rtc_resume,
834 static struct platform_driver sh_rtc_platform_driver = {
835 .driver = {
836 .name = DRV_NAME,
837 .owner = THIS_MODULE,
838 .pm = &sh_rtc_dev_pm_ops,
840 .remove = __exit_p(sh_rtc_remove),
843 static int __init sh_rtc_init(void)
845 return platform_driver_probe(&sh_rtc_platform_driver, sh_rtc_probe);
848 static void __exit sh_rtc_exit(void)
850 platform_driver_unregister(&sh_rtc_platform_driver);
853 module_init(sh_rtc_init);
854 module_exit(sh_rtc_exit);
856 MODULE_DESCRIPTION("SuperH on-chip RTC driver");
857 MODULE_VERSION(DRV_VERSION);
858 MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, "
859 "Jamie Lenehan <lenehan@twibble.org>, "
860 "Angelo Castello <angelo.castello@st.com>");
861 MODULE_LICENSE("GPL");
862 MODULE_ALIAS("platform:" DRV_NAME);