2 * amd5536.c -- AMD 5536 UDC high/full speed USB device controller
4 * Copyright (C) 2005-2007 AMD (http://www.amd.com)
5 * Author: Thomas Dahlmann
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * The AMD5536 UDC is part of the x86 southbridge AMD Geode CS5536.
24 * It is a USB Highspeed DMA capable USB device controller. Beside ep0 it
25 * provides 4 IN and 4 OUT endpoints (bulk or interrupt type).
27 * Make sure that UDC is assigned to port 4 by BIOS settings (port can also
28 * be used as host port) and UOC bits PAD_EN and APU are set (should be done
31 * UDC DMA requires 32-bit aligned buffers so DMA with gadget ether does not
32 * work without updating NET_IP_ALIGN. Or PIO mode (module param "use_dma=0")
33 * can be used with gadget ether.
37 /* #define UDC_VERBOSE */
40 #define UDC_MOD_DESCRIPTION "AMD 5536 UDC - USB Device Controller"
41 #define UDC_DRIVER_VERSION_STRING "01.00.0206 - $Revision: #3 $"
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/kernel.h>
47 #include <linux/delay.h>
48 #include <linux/ioport.h>
49 #include <linux/sched.h>
50 #include <linux/slab.h>
51 #include <linux/errno.h>
52 #include <linux/init.h>
53 #include <linux/timer.h>
54 #include <linux/list.h>
55 #include <linux/interrupt.h>
56 #include <linux/ioctl.h>
58 #include <linux/dmapool.h>
59 #include <linux/moduleparam.h>
60 #include <linux/device.h>
62 #include <linux/irq.h>
64 #include <asm/byteorder.h>
65 #include <asm/system.h>
66 #include <asm/unaligned.h>
69 #include <linux/usb/ch9.h>
70 #include <linux/usb/gadget.h>
73 #include "amd5536udc.h"
76 static void udc_tasklet_disconnect(unsigned long);
77 static void empty_req_queue(struct udc_ep
*);
78 static int udc_probe(struct udc
*dev
);
79 static void udc_basic_init(struct udc
*dev
);
80 static void udc_setup_endpoints(struct udc
*dev
);
81 static void udc_soft_reset(struct udc
*dev
);
82 static struct udc_request
*udc_alloc_bna_dummy(struct udc_ep
*ep
);
83 static void udc_free_request(struct usb_ep
*usbep
, struct usb_request
*usbreq
);
84 static int udc_free_dma_chain(struct udc
*dev
, struct udc_request
*req
);
85 static int udc_create_dma_chain(struct udc_ep
*ep
, struct udc_request
*req
,
86 unsigned long buf_len
, gfp_t gfp_flags
);
87 static int udc_remote_wakeup(struct udc
*dev
);
88 static int udc_pci_probe(struct pci_dev
*pdev
, const struct pci_device_id
*id
);
89 static void udc_pci_remove(struct pci_dev
*pdev
);
92 static const char mod_desc
[] = UDC_MOD_DESCRIPTION
;
93 static const char name
[] = "amd5536udc";
95 /* structure to hold endpoint function pointers */
96 static const struct usb_ep_ops udc_ep_ops
;
98 /* received setup data */
99 static union udc_setup_data setup_data
;
101 /* pointer to device object */
102 static struct udc
*udc
;
104 /* irq spin lock for soft reset */
105 static DEFINE_SPINLOCK(udc_irq_spinlock
);
106 /* stall spin lock */
107 static DEFINE_SPINLOCK(udc_stall_spinlock
);
110 * slave mode: pending bytes in rx fifo after nyet,
111 * used if EPIN irq came but no req was available
113 static unsigned int udc_rxfifo_pending
;
115 /* count soft resets after suspend to avoid loop */
116 static int soft_reset_occured
;
117 static int soft_reset_after_usbreset_occured
;
120 static struct timer_list udc_timer
;
121 static int stop_timer
;
123 /* set_rde -- Is used to control enabling of RX DMA. Problem is
124 * that UDC has only one bit (RDE) to enable/disable RX DMA for
125 * all OUT endpoints. So we have to handle race conditions like
126 * when OUT data reaches the fifo but no request was queued yet.
127 * This cannot be solved by letting the RX DMA disabled until a
128 * request gets queued because there may be other OUT packets
129 * in the FIFO (important for not blocking control traffic).
130 * The value of set_rde controls the correspondig timer.
132 * set_rde -1 == not used, means it is alloed to be set to 0 or 1
133 * set_rde 0 == do not touch RDE, do no start the RDE timer
134 * set_rde 1 == timer function will look whether FIFO has data
135 * set_rde 2 == set by timer function to enable RX DMA on next call
137 static int set_rde
= -1;
139 static DECLARE_COMPLETION(on_exit
);
140 static struct timer_list udc_pollstall_timer
;
141 static int stop_pollstall_timer
;
142 static DECLARE_COMPLETION(on_pollstall_exit
);
144 /* tasklet for usb disconnect */
145 static DECLARE_TASKLET(disconnect_tasklet
, udc_tasklet_disconnect
,
146 (unsigned long) &udc
);
149 /* endpoint names used for print */
150 static const char ep0_string
[] = "ep0in";
151 static const char *ep_string
[] = {
153 "ep1in-int", "ep2in-bulk", "ep3in-bulk", "ep4in-bulk", "ep5in-bulk",
154 "ep6in-bulk", "ep7in-bulk", "ep8in-bulk", "ep9in-bulk", "ep10in-bulk",
155 "ep11in-bulk", "ep12in-bulk", "ep13in-bulk", "ep14in-bulk",
156 "ep15in-bulk", "ep0out", "ep1out-bulk", "ep2out-bulk", "ep3out-bulk",
157 "ep4out-bulk", "ep5out-bulk", "ep6out-bulk", "ep7out-bulk",
158 "ep8out-bulk", "ep9out-bulk", "ep10out-bulk", "ep11out-bulk",
159 "ep12out-bulk", "ep13out-bulk", "ep14out-bulk", "ep15out-bulk"
163 static int use_dma
= 1;
164 /* packet per buffer dma */
165 static int use_dma_ppb
= 1;
166 /* with per descr. update */
167 static int use_dma_ppb_du
;
168 /* buffer fill mode */
169 static int use_dma_bufferfill_mode
;
170 /* full speed only mode */
171 static int use_fullspeed
;
172 /* tx buffer size for high speed */
173 static unsigned long hs_tx_buf
= UDC_EPIN_BUFF_SIZE
;
175 /* module parameters */
176 module_param(use_dma
, bool, S_IRUGO
);
177 MODULE_PARM_DESC(use_dma
, "true for DMA");
178 module_param(use_dma_ppb
, bool, S_IRUGO
);
179 MODULE_PARM_DESC(use_dma_ppb
, "true for DMA in packet per buffer mode");
180 module_param(use_dma_ppb_du
, bool, S_IRUGO
);
181 MODULE_PARM_DESC(use_dma_ppb_du
,
182 "true for DMA in packet per buffer mode with descriptor update");
183 module_param(use_fullspeed
, bool, S_IRUGO
);
184 MODULE_PARM_DESC(use_fullspeed
, "true for fullspeed only");
186 /*---------------------------------------------------------------------------*/
187 /* Prints UDC device registers and endpoint irq registers */
188 static void print_regs(struct udc
*dev
)
190 DBG(dev
, "------- Device registers -------\n");
191 DBG(dev
, "dev config = %08x\n", readl(&dev
->regs
->cfg
));
192 DBG(dev
, "dev control = %08x\n", readl(&dev
->regs
->ctl
));
193 DBG(dev
, "dev status = %08x\n", readl(&dev
->regs
->sts
));
195 DBG(dev
, "dev int's = %08x\n", readl(&dev
->regs
->irqsts
));
196 DBG(dev
, "dev intmask = %08x\n", readl(&dev
->regs
->irqmsk
));
198 DBG(dev
, "dev ep int's = %08x\n", readl(&dev
->regs
->ep_irqsts
));
199 DBG(dev
, "dev ep intmask = %08x\n", readl(&dev
->regs
->ep_irqmsk
));
201 DBG(dev
, "USE DMA = %d\n", use_dma
);
202 if (use_dma
&& use_dma_ppb
&& !use_dma_ppb_du
) {
203 DBG(dev
, "DMA mode = PPBNDU (packet per buffer "
204 "WITHOUT desc. update)\n");
205 dev_info(&dev
->pdev
->dev
, "DMA mode (%s)\n", "PPBNDU");
206 } else if (use_dma
&& use_dma_ppb_du
&& use_dma_ppb_du
) {
207 DBG(dev
, "DMA mode = PPBDU (packet per buffer "
208 "WITH desc. update)\n");
209 dev_info(&dev
->pdev
->dev
, "DMA mode (%s)\n", "PPBDU");
211 if (use_dma
&& use_dma_bufferfill_mode
) {
212 DBG(dev
, "DMA mode = BF (buffer fill mode)\n");
213 dev_info(&dev
->pdev
->dev
, "DMA mode (%s)\n", "BF");
216 dev_info(&dev
->pdev
->dev
, "FIFO mode\n");
218 DBG(dev
, "-------------------------------------------------------\n");
221 /* Masks unused interrupts */
222 static int udc_mask_unused_interrupts(struct udc
*dev
)
226 /* mask all dev interrupts */
227 tmp
= AMD_BIT(UDC_DEVINT_SVC
) |
228 AMD_BIT(UDC_DEVINT_ENUM
) |
229 AMD_BIT(UDC_DEVINT_US
) |
230 AMD_BIT(UDC_DEVINT_UR
) |
231 AMD_BIT(UDC_DEVINT_ES
) |
232 AMD_BIT(UDC_DEVINT_SI
) |
233 AMD_BIT(UDC_DEVINT_SOF
)|
234 AMD_BIT(UDC_DEVINT_SC
);
235 writel(tmp
, &dev
->regs
->irqmsk
);
237 /* mask all ep interrupts */
238 writel(UDC_EPINT_MSK_DISABLE_ALL
, &dev
->regs
->ep_irqmsk
);
243 /* Enables endpoint 0 interrupts */
244 static int udc_enable_ep0_interrupts(struct udc
*dev
)
248 DBG(dev
, "udc_enable_ep0_interrupts()\n");
251 tmp
= readl(&dev
->regs
->ep_irqmsk
);
252 /* enable ep0 irq's */
253 tmp
&= AMD_UNMASK_BIT(UDC_EPINT_IN_EP0
)
254 & AMD_UNMASK_BIT(UDC_EPINT_OUT_EP0
);
255 writel(tmp
, &dev
->regs
->ep_irqmsk
);
260 /* Enables device interrupts for SET_INTF and SET_CONFIG */
261 static int udc_enable_dev_setup_interrupts(struct udc
*dev
)
265 DBG(dev
, "enable device interrupts for setup data\n");
268 tmp
= readl(&dev
->regs
->irqmsk
);
270 /* enable SET_INTERFACE, SET_CONFIG and other needed irq's */
271 tmp
&= AMD_UNMASK_BIT(UDC_DEVINT_SI
)
272 & AMD_UNMASK_BIT(UDC_DEVINT_SC
)
273 & AMD_UNMASK_BIT(UDC_DEVINT_UR
)
274 & AMD_UNMASK_BIT(UDC_DEVINT_SVC
)
275 & AMD_UNMASK_BIT(UDC_DEVINT_ENUM
);
276 writel(tmp
, &dev
->regs
->irqmsk
);
281 /* Calculates fifo start of endpoint based on preceeding endpoints */
282 static int udc_set_txfifo_addr(struct udc_ep
*ep
)
288 if (!ep
|| !(ep
->in
))
292 ep
->txfifo
= dev
->txfifo
;
295 for (i
= 0; i
< ep
->num
; i
++) {
296 if (dev
->ep
[i
].regs
) {
298 tmp
= readl(&dev
->ep
[i
].regs
->bufin_framenum
);
299 tmp
= AMD_GETBITS(tmp
, UDC_EPIN_BUFF_SIZE
);
306 /* CNAK pending field: bit0 = ep0in, bit16 = ep0out */
307 static u32 cnak_pending
;
309 static void UDC_QUEUE_CNAK(struct udc_ep
*ep
, unsigned num
)
311 if (readl(&ep
->regs
->ctl
) & AMD_BIT(UDC_EPCTL_NAK
)) {
312 DBG(ep
->dev
, "NAK could not be cleared for ep%d\n", num
);
313 cnak_pending
|= 1 << (num
);
316 cnak_pending
= cnak_pending
& (~(1 << (num
)));
320 /* Enables endpoint, is called by gadget driver */
322 udc_ep_enable(struct usb_ep
*usbep
, const struct usb_endpoint_descriptor
*desc
)
327 unsigned long iflags
;
332 || usbep
->name
== ep0_string
334 || desc
->bDescriptorType
!= USB_DT_ENDPOINT
)
337 ep
= container_of(usbep
, struct udc_ep
, ep
);
340 DBG(dev
, "udc_ep_enable() ep %d\n", ep
->num
);
342 if (!dev
->driver
|| dev
->gadget
.speed
== USB_SPEED_UNKNOWN
)
345 spin_lock_irqsave(&dev
->lock
, iflags
);
350 /* set traffic type */
351 tmp
= readl(&dev
->ep
[ep
->num
].regs
->ctl
);
352 tmp
= AMD_ADDBITS(tmp
, desc
->bmAttributes
, UDC_EPCTL_ET
);
353 writel(tmp
, &dev
->ep
[ep
->num
].regs
->ctl
);
355 /* set max packet size */
356 maxpacket
= le16_to_cpu(desc
->wMaxPacketSize
);
357 tmp
= readl(&dev
->ep
[ep
->num
].regs
->bufout_maxpkt
);
358 tmp
= AMD_ADDBITS(tmp
, maxpacket
, UDC_EP_MAX_PKT_SIZE
);
359 ep
->ep
.maxpacket
= maxpacket
;
360 writel(tmp
, &dev
->ep
[ep
->num
].regs
->bufout_maxpkt
);
365 /* ep ix in UDC CSR register space */
366 udc_csr_epix
= ep
->num
;
368 /* set buffer size (tx fifo entries) */
369 tmp
= readl(&dev
->ep
[ep
->num
].regs
->bufin_framenum
);
370 /* double buffering: fifo size = 2 x max packet size */
373 maxpacket
* UDC_EPIN_BUFF_SIZE_MULT
376 writel(tmp
, &dev
->ep
[ep
->num
].regs
->bufin_framenum
);
378 /* calc. tx fifo base addr */
379 udc_set_txfifo_addr(ep
);
382 tmp
= readl(&ep
->regs
->ctl
);
383 tmp
|= AMD_BIT(UDC_EPCTL_F
);
384 writel(tmp
, &ep
->regs
->ctl
);
388 /* ep ix in UDC CSR register space */
389 udc_csr_epix
= ep
->num
- UDC_CSR_EP_OUT_IX_OFS
;
391 /* set max packet size UDC CSR */
392 tmp
= readl(&dev
->csr
->ne
[ep
->num
- UDC_CSR_EP_OUT_IX_OFS
]);
393 tmp
= AMD_ADDBITS(tmp
, maxpacket
,
395 writel(tmp
, &dev
->csr
->ne
[ep
->num
- UDC_CSR_EP_OUT_IX_OFS
]);
397 if (use_dma
&& !ep
->in
) {
398 /* alloc and init BNA dummy request */
399 ep
->bna_dummy_req
= udc_alloc_bna_dummy(ep
);
400 ep
->bna_occurred
= 0;
403 if (ep
->num
!= UDC_EP0OUT_IX
)
404 dev
->data_ep_enabled
= 1;
408 tmp
= readl(&dev
->csr
->ne
[udc_csr_epix
]);
410 tmp
= AMD_ADDBITS(tmp
, maxpacket
, UDC_CSR_NE_MAX_PKT
);
412 tmp
= AMD_ADDBITS(tmp
, desc
->bEndpointAddress
, UDC_CSR_NE_NUM
);
414 tmp
= AMD_ADDBITS(tmp
, ep
->in
, UDC_CSR_NE_DIR
);
416 tmp
= AMD_ADDBITS(tmp
, desc
->bmAttributes
, UDC_CSR_NE_TYPE
);
418 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_config
, UDC_CSR_NE_CFG
);
420 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_intf
, UDC_CSR_NE_INTF
);
422 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_alt
, UDC_CSR_NE_ALT
);
424 writel(tmp
, &dev
->csr
->ne
[udc_csr_epix
]);
427 tmp
= readl(&dev
->regs
->ep_irqmsk
);
428 tmp
&= AMD_UNMASK_BIT(ep
->num
);
429 writel(tmp
, &dev
->regs
->ep_irqmsk
);
432 * clear NAK by writing CNAK
433 * avoid BNA for OUT DMA, don't clear NAK until DMA desc. written
435 if (!use_dma
|| ep
->in
) {
436 tmp
= readl(&ep
->regs
->ctl
);
437 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
438 writel(tmp
, &ep
->regs
->ctl
);
440 UDC_QUEUE_CNAK(ep
, ep
->num
);
442 tmp
= desc
->bEndpointAddress
;
443 DBG(dev
, "%s enabled\n", usbep
->name
);
445 spin_unlock_irqrestore(&dev
->lock
, iflags
);
449 /* Resets endpoint */
450 static void ep_init(struct udc_regs __iomem
*regs
, struct udc_ep
*ep
)
454 VDBG(ep
->dev
, "ep-%d reset\n", ep
->num
);
456 ep
->ep
.ops
= &udc_ep_ops
;
457 INIT_LIST_HEAD(&ep
->queue
);
459 ep
->ep
.maxpacket
= (u16
) ~0;
461 tmp
= readl(&ep
->regs
->ctl
);
462 tmp
|= AMD_BIT(UDC_EPCTL_SNAK
);
463 writel(tmp
, &ep
->regs
->ctl
);
466 /* disable interrupt */
467 tmp
= readl(®s
->ep_irqmsk
);
468 tmp
|= AMD_BIT(ep
->num
);
469 writel(tmp
, ®s
->ep_irqmsk
);
472 /* unset P and IN bit of potential former DMA */
473 tmp
= readl(&ep
->regs
->ctl
);
474 tmp
&= AMD_UNMASK_BIT(UDC_EPCTL_P
);
475 writel(tmp
, &ep
->regs
->ctl
);
477 tmp
= readl(&ep
->regs
->sts
);
478 tmp
|= AMD_BIT(UDC_EPSTS_IN
);
479 writel(tmp
, &ep
->regs
->sts
);
482 tmp
= readl(&ep
->regs
->ctl
);
483 tmp
|= AMD_BIT(UDC_EPCTL_F
);
484 writel(tmp
, &ep
->regs
->ctl
);
487 /* reset desc pointer */
488 writel(0, &ep
->regs
->desptr
);
491 /* Disables endpoint, is called by gadget driver */
492 static int udc_ep_disable(struct usb_ep
*usbep
)
494 struct udc_ep
*ep
= NULL
;
495 unsigned long iflags
;
500 ep
= container_of(usbep
, struct udc_ep
, ep
);
501 if (usbep
->name
== ep0_string
|| !ep
->desc
)
504 DBG(ep
->dev
, "Disable ep-%d\n", ep
->num
);
506 spin_lock_irqsave(&ep
->dev
->lock
, iflags
);
507 udc_free_request(&ep
->ep
, &ep
->bna_dummy_req
->req
);
509 ep_init(ep
->dev
->regs
, ep
);
510 spin_unlock_irqrestore(&ep
->dev
->lock
, iflags
);
515 /* Allocates request packet, called by gadget driver */
516 static struct usb_request
*
517 udc_alloc_request(struct usb_ep
*usbep
, gfp_t gfp
)
519 struct udc_request
*req
;
520 struct udc_data_dma
*dma_desc
;
526 ep
= container_of(usbep
, struct udc_ep
, ep
);
528 VDBG(ep
->dev
, "udc_alloc_req(): ep%d\n", ep
->num
);
529 req
= kzalloc(sizeof(struct udc_request
), gfp
);
533 req
->req
.dma
= DMA_DONT_USE
;
534 INIT_LIST_HEAD(&req
->queue
);
537 /* ep0 in requests are allocated from data pool here */
538 dma_desc
= pci_pool_alloc(ep
->dev
->data_requests
, gfp
,
545 VDBG(ep
->dev
, "udc_alloc_req: req = %p dma_desc = %p, "
548 (unsigned long)req
->td_phys
);
549 /* prevent from using desc. - set HOST BUSY */
550 dma_desc
->status
= AMD_ADDBITS(dma_desc
->status
,
551 UDC_DMA_STP_STS_BS_HOST_BUSY
,
553 dma_desc
->bufptr
= cpu_to_le32(DMA_DONT_USE
);
554 req
->td_data
= dma_desc
;
555 req
->td_data_last
= NULL
;
562 /* Frees request packet, called by gadget driver */
564 udc_free_request(struct usb_ep
*usbep
, struct usb_request
*usbreq
)
567 struct udc_request
*req
;
569 if (!usbep
|| !usbreq
)
572 ep
= container_of(usbep
, struct udc_ep
, ep
);
573 req
= container_of(usbreq
, struct udc_request
, req
);
574 VDBG(ep
->dev
, "free_req req=%p\n", req
);
575 BUG_ON(!list_empty(&req
->queue
));
577 VDBG(ep
->dev
, "req->td_data=%p\n", req
->td_data
);
579 /* free dma chain if created */
580 if (req
->chain_len
> 1) {
581 udc_free_dma_chain(ep
->dev
, req
);
584 pci_pool_free(ep
->dev
->data_requests
, req
->td_data
,
590 /* Init BNA dummy descriptor for HOST BUSY and pointing to itself */
591 static void udc_init_bna_dummy(struct udc_request
*req
)
595 req
->td_data
->status
|= AMD_BIT(UDC_DMA_IN_STS_L
);
596 /* set next pointer to itself */
597 req
->td_data
->next
= req
->td_phys
;
600 = AMD_ADDBITS(req
->td_data
->status
,
601 UDC_DMA_STP_STS_BS_DMA_DONE
,
604 pr_debug("bna desc = %p, sts = %08x\n",
605 req
->td_data
, req
->td_data
->status
);
610 /* Allocate BNA dummy descriptor */
611 static struct udc_request
*udc_alloc_bna_dummy(struct udc_ep
*ep
)
613 struct udc_request
*req
= NULL
;
614 struct usb_request
*_req
= NULL
;
616 /* alloc the dummy request */
617 _req
= udc_alloc_request(&ep
->ep
, GFP_ATOMIC
);
619 req
= container_of(_req
, struct udc_request
, req
);
620 ep
->bna_dummy_req
= req
;
621 udc_init_bna_dummy(req
);
626 /* Write data to TX fifo for IN packets */
628 udc_txfifo_write(struct udc_ep
*ep
, struct usb_request
*req
)
634 unsigned remaining
= 0;
639 req_buf
= req
->buf
+ req
->actual
;
641 remaining
= req
->length
- req
->actual
;
643 buf
= (u32
*) req_buf
;
645 bytes
= ep
->ep
.maxpacket
;
646 if (bytes
> remaining
)
650 for (i
= 0; i
< bytes
/ UDC_DWORD_BYTES
; i
++) {
651 writel(*(buf
+ i
), ep
->txfifo
);
654 /* remaining bytes must be written by byte access */
655 for (j
= 0; j
< bytes
% UDC_DWORD_BYTES
; j
++) {
656 writeb((u8
)(*(buf
+ i
) >> (j
<< UDC_BITS_PER_BYTE_SHIFT
)),
660 /* dummy write confirm */
661 writel(0, &ep
->regs
->confirm
);
664 /* Read dwords from RX fifo for OUT transfers */
665 static int udc_rxfifo_read_dwords(struct udc
*dev
, u32
*buf
, int dwords
)
669 VDBG(dev
, "udc_read_dwords(): %d dwords\n", dwords
);
671 for (i
= 0; i
< dwords
; i
++) {
672 *(buf
+ i
) = readl(dev
->rxfifo
);
677 /* Read bytes from RX fifo for OUT transfers */
678 static int udc_rxfifo_read_bytes(struct udc
*dev
, u8
*buf
, int bytes
)
683 VDBG(dev
, "udc_read_bytes(): %d bytes\n", bytes
);
686 for (i
= 0; i
< bytes
/ UDC_DWORD_BYTES
; i
++) {
687 *((u32
*)(buf
+ (i
<<2))) = readl(dev
->rxfifo
);
690 /* remaining bytes must be read by byte access */
691 if (bytes
% UDC_DWORD_BYTES
) {
692 tmp
= readl(dev
->rxfifo
);
693 for (j
= 0; j
< bytes
% UDC_DWORD_BYTES
; j
++) {
694 *(buf
+ (i
<<2) + j
) = (u8
)(tmp
& UDC_BYTE_MASK
);
695 tmp
= tmp
>> UDC_BITS_PER_BYTE
;
702 /* Read data from RX fifo for OUT transfers */
704 udc_rxfifo_read(struct udc_ep
*ep
, struct udc_request
*req
)
709 unsigned finished
= 0;
711 /* received number bytes */
712 bytes
= readl(&ep
->regs
->sts
);
713 bytes
= AMD_GETBITS(bytes
, UDC_EPSTS_RX_PKT_SIZE
);
715 buf_space
= req
->req
.length
- req
->req
.actual
;
716 buf
= req
->req
.buf
+ req
->req
.actual
;
717 if (bytes
> buf_space
) {
718 if ((buf_space
% ep
->ep
.maxpacket
) != 0) {
720 "%s: rx %d bytes, rx-buf space = %d bytesn\n",
721 ep
->ep
.name
, bytes
, buf_space
);
722 req
->req
.status
= -EOVERFLOW
;
726 req
->req
.actual
+= bytes
;
729 if (((bytes
% ep
->ep
.maxpacket
) != 0) || (!bytes
)
730 || ((req
->req
.actual
== req
->req
.length
) && !req
->req
.zero
))
733 /* read rx fifo bytes */
734 VDBG(ep
->dev
, "ep %s: rxfifo read %d bytes\n", ep
->ep
.name
, bytes
);
735 udc_rxfifo_read_bytes(ep
->dev
, buf
, bytes
);
740 /* create/re-init a DMA descriptor or a DMA descriptor chain */
741 static int prep_dma(struct udc_ep
*ep
, struct udc_request
*req
, gfp_t gfp
)
746 VDBG(ep
->dev
, "prep_dma\n");
747 VDBG(ep
->dev
, "prep_dma ep%d req->td_data=%p\n",
748 ep
->num
, req
->td_data
);
750 /* set buffer pointer */
751 req
->td_data
->bufptr
= req
->req
.dma
;
754 req
->td_data
->status
|= AMD_BIT(UDC_DMA_IN_STS_L
);
756 /* build/re-init dma chain if maxpkt scatter mode, not for EP0 */
759 retval
= udc_create_dma_chain(ep
, req
, ep
->ep
.maxpacket
, gfp
);
761 if (retval
== -ENOMEM
)
762 DBG(ep
->dev
, "Out of DMA memory\n");
766 if (req
->req
.length
== ep
->ep
.maxpacket
) {
768 req
->td_data
->status
=
769 AMD_ADDBITS(req
->td_data
->status
,
771 UDC_DMA_IN_STS_TXBYTES
);
779 VDBG(ep
->dev
, "IN: use_dma_ppb=%d req->req.len=%d "
780 "maxpacket=%d ep%d\n",
781 use_dma_ppb
, req
->req
.length
,
782 ep
->ep
.maxpacket
, ep
->num
);
784 * if bytes < max packet then tx bytes must
785 * be written in packet per buffer mode
787 if (!use_dma_ppb
|| req
->req
.length
< ep
->ep
.maxpacket
788 || ep
->num
== UDC_EP0OUT_IX
789 || ep
->num
== UDC_EP0IN_IX
) {
791 req
->td_data
->status
=
792 AMD_ADDBITS(req
->td_data
->status
,
794 UDC_DMA_IN_STS_TXBYTES
);
795 /* reset frame num */
796 req
->td_data
->status
=
797 AMD_ADDBITS(req
->td_data
->status
,
799 UDC_DMA_IN_STS_FRAMENUM
);
802 req
->td_data
->status
=
803 AMD_ADDBITS(req
->td_data
->status
,
804 UDC_DMA_STP_STS_BS_HOST_BUSY
,
807 VDBG(ep
->dev
, "OUT set host ready\n");
809 req
->td_data
->status
=
810 AMD_ADDBITS(req
->td_data
->status
,
811 UDC_DMA_STP_STS_BS_HOST_READY
,
815 /* clear NAK by writing CNAK */
817 tmp
= readl(&ep
->regs
->ctl
);
818 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
819 writel(tmp
, &ep
->regs
->ctl
);
821 UDC_QUEUE_CNAK(ep
, ep
->num
);
829 /* Completes request packet ... caller MUST hold lock */
831 complete_req(struct udc_ep
*ep
, struct udc_request
*req
, int sts
)
832 __releases(ep
->dev
->lock
)
833 __acquires(ep
->dev
->lock
)
838 VDBG(ep
->dev
, "complete_req(): ep%d\n", ep
->num
);
842 if (req
->dma_mapping
) {
844 pci_unmap_single(dev
->pdev
,
849 pci_unmap_single(dev
->pdev
,
853 req
->dma_mapping
= 0;
854 req
->req
.dma
= DMA_DONT_USE
;
860 /* set new status if pending */
861 if (req
->req
.status
== -EINPROGRESS
)
862 req
->req
.status
= sts
;
864 /* remove from ep queue */
865 list_del_init(&req
->queue
);
867 VDBG(ep
->dev
, "req %p => complete %d bytes at %s with sts %d\n",
868 &req
->req
, req
->req
.length
, ep
->ep
.name
, sts
);
870 spin_unlock(&dev
->lock
);
871 req
->req
.complete(&ep
->ep
, &req
->req
);
872 spin_lock(&dev
->lock
);
876 /* frees pci pool descriptors of a DMA chain */
877 static int udc_free_dma_chain(struct udc
*dev
, struct udc_request
*req
)
881 struct udc_data_dma
*td
;
882 struct udc_data_dma
*td_last
= NULL
;
885 DBG(dev
, "free chain req = %p\n", req
);
887 /* do not free first desc., will be done by free for request */
888 td_last
= req
->td_data
;
889 td
= phys_to_virt(td_last
->next
);
891 for (i
= 1; i
< req
->chain_len
; i
++) {
893 pci_pool_free(dev
->data_requests
, td
,
894 (dma_addr_t
) td_last
->next
);
896 td
= phys_to_virt(td_last
->next
);
902 /* Iterates to the end of a DMA chain and returns last descriptor */
903 static struct udc_data_dma
*udc_get_last_dma_desc(struct udc_request
*req
)
905 struct udc_data_dma
*td
;
908 while (td
&& !(td
->status
& AMD_BIT(UDC_DMA_IN_STS_L
))) {
909 td
= phys_to_virt(td
->next
);
916 /* Iterates to the end of a DMA chain and counts bytes received */
917 static u32
udc_get_ppbdu_rxbytes(struct udc_request
*req
)
919 struct udc_data_dma
*td
;
923 /* received number bytes */
924 count
= AMD_GETBITS(td
->status
, UDC_DMA_OUT_STS_RXBYTES
);
926 while (td
&& !(td
->status
& AMD_BIT(UDC_DMA_IN_STS_L
))) {
927 td
= phys_to_virt(td
->next
);
928 /* received number bytes */
930 count
+= AMD_GETBITS(td
->status
,
931 UDC_DMA_OUT_STS_RXBYTES
);
939 /* Creates or re-inits a DMA chain */
940 static int udc_create_dma_chain(
942 struct udc_request
*req
,
943 unsigned long buf_len
, gfp_t gfp_flags
946 unsigned long bytes
= req
->req
.length
;
949 struct udc_data_dma
*td
= NULL
;
950 struct udc_data_dma
*last
= NULL
;
951 unsigned long txbytes
;
952 unsigned create_new_chain
= 0;
955 VDBG(ep
->dev
, "udc_create_dma_chain: bytes=%ld buf_len=%ld\n",
957 dma_addr
= DMA_DONT_USE
;
959 /* unset L bit in first desc for OUT */
961 req
->td_data
->status
&= AMD_CLEAR_BIT(UDC_DMA_IN_STS_L
);
964 /* alloc only new desc's if not already available */
965 len
= req
->req
.length
/ ep
->ep
.maxpacket
;
966 if (req
->req
.length
% ep
->ep
.maxpacket
) {
970 if (len
> req
->chain_len
) {
971 /* shorter chain already allocated before */
972 if (req
->chain_len
> 1) {
973 udc_free_dma_chain(ep
->dev
, req
);
975 req
->chain_len
= len
;
976 create_new_chain
= 1;
980 /* gen. required number of descriptors and buffers */
981 for (i
= buf_len
; i
< bytes
; i
+= buf_len
) {
982 /* create or determine next desc. */
983 if (create_new_chain
) {
985 td
= pci_pool_alloc(ep
->dev
->data_requests
,
986 gfp_flags
, &dma_addr
);
991 } else if (i
== buf_len
) {
993 td
= (struct udc_data_dma
*) phys_to_virt(
997 td
= (struct udc_data_dma
*) phys_to_virt(last
->next
);
1003 td
->bufptr
= req
->req
.dma
+ i
; /* assign buffer */
1007 /* short packet ? */
1008 if ((bytes
- i
) >= buf_len
) {
1012 txbytes
= bytes
- i
;
1015 /* link td and assign tx bytes */
1017 if (create_new_chain
) {
1018 req
->td_data
->next
= dma_addr
;
1020 /* req->td_data->next = virt_to_phys(td); */
1022 /* write tx bytes */
1025 req
->td_data
->status
=
1026 AMD_ADDBITS(req
->td_data
->status
,
1028 UDC_DMA_IN_STS_TXBYTES
);
1030 td
->status
= AMD_ADDBITS(td
->status
,
1032 UDC_DMA_IN_STS_TXBYTES
);
1035 if (create_new_chain
) {
1036 last
->next
= dma_addr
;
1038 /* last->next = virt_to_phys(td); */
1041 /* write tx bytes */
1042 td
->status
= AMD_ADDBITS(td
->status
,
1044 UDC_DMA_IN_STS_TXBYTES
);
1051 td
->status
|= AMD_BIT(UDC_DMA_IN_STS_L
);
1052 /* last desc. points to itself */
1053 req
->td_data_last
= td
;
1059 /* Enabling RX DMA */
1060 static void udc_set_rde(struct udc
*dev
)
1064 VDBG(dev
, "udc_set_rde()\n");
1065 /* stop RDE timer */
1066 if (timer_pending(&udc_timer
)) {
1068 mod_timer(&udc_timer
, jiffies
- 1);
1071 tmp
= readl(&dev
->regs
->ctl
);
1072 tmp
|= AMD_BIT(UDC_DEVCTL_RDE
);
1073 writel(tmp
, &dev
->regs
->ctl
);
1076 /* Queues a request packet, called by gadget driver */
1078 udc_queue(struct usb_ep
*usbep
, struct usb_request
*usbreq
, gfp_t gfp
)
1082 unsigned long iflags
;
1084 struct udc_request
*req
;
1088 /* check the inputs */
1089 req
= container_of(usbreq
, struct udc_request
, req
);
1091 if (!usbep
|| !usbreq
|| !usbreq
->complete
|| !usbreq
->buf
1092 || !list_empty(&req
->queue
))
1095 ep
= container_of(usbep
, struct udc_ep
, ep
);
1096 if (!ep
->desc
&& (ep
->num
!= 0 && ep
->num
!= UDC_EP0OUT_IX
))
1099 VDBG(ep
->dev
, "udc_queue(): ep%d-in=%d\n", ep
->num
, ep
->in
);
1102 if (!dev
->driver
|| dev
->gadget
.speed
== USB_SPEED_UNKNOWN
)
1105 /* map dma (usually done before) */
1106 if (ep
->dma
&& usbreq
->length
!= 0
1107 && (usbreq
->dma
== DMA_DONT_USE
|| usbreq
->dma
== 0)) {
1108 VDBG(dev
, "DMA map req %p\n", req
);
1110 usbreq
->dma
= pci_map_single(dev
->pdev
,
1115 usbreq
->dma
= pci_map_single(dev
->pdev
,
1118 PCI_DMA_FROMDEVICE
);
1119 req
->dma_mapping
= 1;
1122 VDBG(dev
, "%s queue req %p, len %d req->td_data=%p buf %p\n",
1123 usbep
->name
, usbreq
, usbreq
->length
,
1124 req
->td_data
, usbreq
->buf
);
1126 spin_lock_irqsave(&dev
->lock
, iflags
);
1128 usbreq
->status
= -EINPROGRESS
;
1131 /* on empty queue just do first transfer */
1132 if (list_empty(&ep
->queue
)) {
1134 if (usbreq
->length
== 0) {
1135 /* IN zlp's are handled by hardware */
1136 complete_req(ep
, req
, 0);
1137 VDBG(dev
, "%s: zlp\n", ep
->ep
.name
);
1139 * if set_config or set_intf is waiting for ack by zlp
1142 if (dev
->set_cfg_not_acked
) {
1143 tmp
= readl(&dev
->regs
->ctl
);
1144 tmp
|= AMD_BIT(UDC_DEVCTL_CSR_DONE
);
1145 writel(tmp
, &dev
->regs
->ctl
);
1146 dev
->set_cfg_not_acked
= 0;
1148 /* setup command is ACK'ed now by zlp */
1149 if (dev
->waiting_zlp_ack_ep0in
) {
1150 /* clear NAK by writing CNAK in EP0_IN */
1151 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1152 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1153 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1154 dev
->ep
[UDC_EP0IN_IX
].naking
= 0;
1155 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0IN_IX
],
1157 dev
->waiting_zlp_ack_ep0in
= 0;
1162 retval
= prep_dma(ep
, req
, gfp
);
1165 /* write desc pointer to enable DMA */
1167 /* set HOST READY */
1168 req
->td_data
->status
=
1169 AMD_ADDBITS(req
->td_data
->status
,
1170 UDC_DMA_IN_STS_BS_HOST_READY
,
1174 /* disabled rx dma while descriptor update */
1176 /* stop RDE timer */
1177 if (timer_pending(&udc_timer
)) {
1179 mod_timer(&udc_timer
, jiffies
- 1);
1182 tmp
= readl(&dev
->regs
->ctl
);
1183 tmp
&= AMD_UNMASK_BIT(UDC_DEVCTL_RDE
);
1184 writel(tmp
, &dev
->regs
->ctl
);
1188 * if BNA occurred then let BNA dummy desc.
1189 * point to current desc.
1191 if (ep
->bna_occurred
) {
1192 VDBG(dev
, "copy to BNA dummy desc.\n");
1193 memcpy(ep
->bna_dummy_req
->td_data
,
1195 sizeof(struct udc_data_dma
));
1198 /* write desc pointer */
1199 writel(req
->td_phys
, &ep
->regs
->desptr
);
1201 /* clear NAK by writing CNAK */
1203 tmp
= readl(&ep
->regs
->ctl
);
1204 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1205 writel(tmp
, &ep
->regs
->ctl
);
1207 UDC_QUEUE_CNAK(ep
, ep
->num
);
1212 tmp
= readl(&dev
->regs
->ep_irqmsk
);
1213 tmp
&= AMD_UNMASK_BIT(ep
->num
);
1214 writel(tmp
, &dev
->regs
->ep_irqmsk
);
1216 } else if (ep
->in
) {
1218 tmp
= readl(&dev
->regs
->ep_irqmsk
);
1219 tmp
&= AMD_UNMASK_BIT(ep
->num
);
1220 writel(tmp
, &dev
->regs
->ep_irqmsk
);
1223 } else if (ep
->dma
) {
1226 * prep_dma not used for OUT ep's, this is not possible
1227 * for PPB modes, because of chain creation reasons
1230 retval
= prep_dma(ep
, req
, gfp
);
1235 VDBG(dev
, "list_add\n");
1236 /* add request to ep queue */
1239 list_add_tail(&req
->queue
, &ep
->queue
);
1241 /* open rxfifo if out data queued */
1246 if (ep
->num
!= UDC_EP0OUT_IX
)
1247 dev
->data_ep_queued
= 1;
1249 /* stop OUT naking */
1251 if (!use_dma
&& udc_rxfifo_pending
) {
1252 DBG(dev
, "udc_queue(): pending bytes in "
1253 "rxfifo after nyet\n");
1255 * read pending bytes afer nyet:
1258 if (udc_rxfifo_read(ep
, req
)) {
1260 complete_req(ep
, req
, 0);
1262 udc_rxfifo_pending
= 0;
1269 spin_unlock_irqrestore(&dev
->lock
, iflags
);
1273 /* Empty request queue of an endpoint; caller holds spinlock */
1274 static void empty_req_queue(struct udc_ep
*ep
)
1276 struct udc_request
*req
;
1279 while (!list_empty(&ep
->queue
)) {
1280 req
= list_entry(ep
->queue
.next
,
1283 complete_req(ep
, req
, -ESHUTDOWN
);
1287 /* Dequeues a request packet, called by gadget driver */
1288 static int udc_dequeue(struct usb_ep
*usbep
, struct usb_request
*usbreq
)
1291 struct udc_request
*req
;
1293 unsigned long iflags
;
1295 ep
= container_of(usbep
, struct udc_ep
, ep
);
1296 if (!usbep
|| !usbreq
|| (!ep
->desc
&& (ep
->num
!= 0
1297 && ep
->num
!= UDC_EP0OUT_IX
)))
1300 req
= container_of(usbreq
, struct udc_request
, req
);
1302 spin_lock_irqsave(&ep
->dev
->lock
, iflags
);
1303 halted
= ep
->halted
;
1305 /* request in processing or next one */
1306 if (ep
->queue
.next
== &req
->queue
) {
1307 if (ep
->dma
&& req
->dma_going
) {
1309 ep
->cancel_transfer
= 1;
1313 /* stop potential receive DMA */
1314 tmp
= readl(&udc
->regs
->ctl
);
1315 writel(tmp
& AMD_UNMASK_BIT(UDC_DEVCTL_RDE
),
1318 * Cancel transfer later in ISR
1319 * if descriptor was touched.
1321 dma_sts
= AMD_GETBITS(req
->td_data
->status
,
1322 UDC_DMA_OUT_STS_BS
);
1323 if (dma_sts
!= UDC_DMA_OUT_STS_BS_HOST_READY
)
1324 ep
->cancel_transfer
= 1;
1326 udc_init_bna_dummy(ep
->req
);
1327 writel(ep
->bna_dummy_req
->td_phys
,
1330 writel(tmp
, &udc
->regs
->ctl
);
1334 complete_req(ep
, req
, -ECONNRESET
);
1335 ep
->halted
= halted
;
1337 spin_unlock_irqrestore(&ep
->dev
->lock
, iflags
);
1341 /* Halt or clear halt of endpoint */
1343 udc_set_halt(struct usb_ep
*usbep
, int halt
)
1347 unsigned long iflags
;
1353 pr_debug("set_halt %s: halt=%d\n", usbep
->name
, halt
);
1355 ep
= container_of(usbep
, struct udc_ep
, ep
);
1356 if (!ep
->desc
&& (ep
->num
!= 0 && ep
->num
!= UDC_EP0OUT_IX
))
1358 if (!ep
->dev
->driver
|| ep
->dev
->gadget
.speed
== USB_SPEED_UNKNOWN
)
1361 spin_lock_irqsave(&udc_stall_spinlock
, iflags
);
1362 /* halt or clear halt */
1365 ep
->dev
->stall_ep0in
= 1;
1369 * rxfifo empty not taken into acount
1371 tmp
= readl(&ep
->regs
->ctl
);
1372 tmp
|= AMD_BIT(UDC_EPCTL_S
);
1373 writel(tmp
, &ep
->regs
->ctl
);
1376 /* setup poll timer */
1377 if (!timer_pending(&udc_pollstall_timer
)) {
1378 udc_pollstall_timer
.expires
= jiffies
+
1379 HZ
* UDC_POLLSTALL_TIMER_USECONDS
1381 if (!stop_pollstall_timer
) {
1382 DBG(ep
->dev
, "start polltimer\n");
1383 add_timer(&udc_pollstall_timer
);
1388 /* ep is halted by set_halt() before */
1390 tmp
= readl(&ep
->regs
->ctl
);
1391 /* clear stall bit */
1392 tmp
= tmp
& AMD_CLEAR_BIT(UDC_EPCTL_S
);
1393 /* clear NAK by writing CNAK */
1394 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1395 writel(tmp
, &ep
->regs
->ctl
);
1397 UDC_QUEUE_CNAK(ep
, ep
->num
);
1400 spin_unlock_irqrestore(&udc_stall_spinlock
, iflags
);
1404 /* gadget interface */
1405 static const struct usb_ep_ops udc_ep_ops
= {
1406 .enable
= udc_ep_enable
,
1407 .disable
= udc_ep_disable
,
1409 .alloc_request
= udc_alloc_request
,
1410 .free_request
= udc_free_request
,
1413 .dequeue
= udc_dequeue
,
1415 .set_halt
= udc_set_halt
,
1416 /* fifo ops not implemented */
1419 /*-------------------------------------------------------------------------*/
1421 /* Get frame counter (not implemented) */
1422 static int udc_get_frame(struct usb_gadget
*gadget
)
1427 /* Remote wakeup gadget interface */
1428 static int udc_wakeup(struct usb_gadget
*gadget
)
1434 dev
= container_of(gadget
, struct udc
, gadget
);
1435 udc_remote_wakeup(dev
);
1440 /* gadget operations */
1441 static const struct usb_gadget_ops udc_ops
= {
1442 .wakeup
= udc_wakeup
,
1443 .get_frame
= udc_get_frame
,
1446 /* Setups endpoint parameters, adds endpoints to linked list */
1447 static void make_ep_lists(struct udc
*dev
)
1449 /* make gadget ep lists */
1450 INIT_LIST_HEAD(&dev
->gadget
.ep_list
);
1451 list_add_tail(&dev
->ep
[UDC_EPIN_STATUS_IX
].ep
.ep_list
,
1452 &dev
->gadget
.ep_list
);
1453 list_add_tail(&dev
->ep
[UDC_EPIN_IX
].ep
.ep_list
,
1454 &dev
->gadget
.ep_list
);
1455 list_add_tail(&dev
->ep
[UDC_EPOUT_IX
].ep
.ep_list
,
1456 &dev
->gadget
.ep_list
);
1459 dev
->ep
[UDC_EPIN_STATUS_IX
].fifo_depth
= UDC_EPIN_SMALLINT_BUFF_SIZE
;
1460 if (dev
->gadget
.speed
== USB_SPEED_FULL
)
1461 dev
->ep
[UDC_EPIN_IX
].fifo_depth
= UDC_FS_EPIN_BUFF_SIZE
;
1462 else if (dev
->gadget
.speed
== USB_SPEED_HIGH
)
1463 dev
->ep
[UDC_EPIN_IX
].fifo_depth
= hs_tx_buf
;
1464 dev
->ep
[UDC_EPOUT_IX
].fifo_depth
= UDC_RXFIFO_SIZE
;
1467 /* init registers at driver load time */
1468 static int startup_registers(struct udc
*dev
)
1472 /* init controller by soft reset */
1473 udc_soft_reset(dev
);
1475 /* mask not needed interrupts */
1476 udc_mask_unused_interrupts(dev
);
1478 /* put into initial config */
1479 udc_basic_init(dev
);
1480 /* link up all endpoints */
1481 udc_setup_endpoints(dev
);
1484 tmp
= readl(&dev
->regs
->cfg
);
1485 if (use_fullspeed
) {
1486 tmp
= AMD_ADDBITS(tmp
, UDC_DEVCFG_SPD_FS
, UDC_DEVCFG_SPD
);
1488 tmp
= AMD_ADDBITS(tmp
, UDC_DEVCFG_SPD_HS
, UDC_DEVCFG_SPD
);
1490 writel(tmp
, &dev
->regs
->cfg
);
1495 /* Inits UDC context */
1496 static void udc_basic_init(struct udc
*dev
)
1500 DBG(dev
, "udc_basic_init()\n");
1502 dev
->gadget
.speed
= USB_SPEED_UNKNOWN
;
1504 /* stop RDE timer */
1505 if (timer_pending(&udc_timer
)) {
1507 mod_timer(&udc_timer
, jiffies
- 1);
1509 /* stop poll stall timer */
1510 if (timer_pending(&udc_pollstall_timer
)) {
1511 mod_timer(&udc_pollstall_timer
, jiffies
- 1);
1514 tmp
= readl(&dev
->regs
->ctl
);
1515 tmp
&= AMD_UNMASK_BIT(UDC_DEVCTL_RDE
);
1516 tmp
&= AMD_UNMASK_BIT(UDC_DEVCTL_TDE
);
1517 writel(tmp
, &dev
->regs
->ctl
);
1519 /* enable dynamic CSR programming */
1520 tmp
= readl(&dev
->regs
->cfg
);
1521 tmp
|= AMD_BIT(UDC_DEVCFG_CSR_PRG
);
1522 /* set self powered */
1523 tmp
|= AMD_BIT(UDC_DEVCFG_SP
);
1524 /* set remote wakeupable */
1525 tmp
|= AMD_BIT(UDC_DEVCFG_RWKP
);
1526 writel(tmp
, &dev
->regs
->cfg
);
1530 dev
->data_ep_enabled
= 0;
1531 dev
->data_ep_queued
= 0;
1534 /* Sets initial endpoint parameters */
1535 static void udc_setup_endpoints(struct udc
*dev
)
1541 DBG(dev
, "udc_setup_endpoints()\n");
1543 /* read enum speed */
1544 tmp
= readl(&dev
->regs
->sts
);
1545 tmp
= AMD_GETBITS(tmp
, UDC_DEVSTS_ENUM_SPEED
);
1546 if (tmp
== UDC_DEVSTS_ENUM_SPEED_HIGH
) {
1547 dev
->gadget
.speed
= USB_SPEED_HIGH
;
1548 } else if (tmp
== UDC_DEVSTS_ENUM_SPEED_FULL
) {
1549 dev
->gadget
.speed
= USB_SPEED_FULL
;
1552 /* set basic ep parameters */
1553 for (tmp
= 0; tmp
< UDC_EP_NUM
; tmp
++) {
1556 ep
->ep
.name
= ep_string
[tmp
];
1558 /* txfifo size is calculated at enable time */
1559 ep
->txfifo
= dev
->txfifo
;
1562 if (tmp
< UDC_EPIN_NUM
) {
1563 ep
->fifo_depth
= UDC_TXFIFO_SIZE
;
1566 ep
->fifo_depth
= UDC_RXFIFO_SIZE
;
1570 ep
->regs
= &dev
->ep_regs
[tmp
];
1572 * ep will be reset only if ep was not enabled before to avoid
1573 * disabling ep interrupts when ENUM interrupt occurs but ep is
1574 * not enabled by gadget driver
1577 ep_init(dev
->regs
, ep
);
1582 * ep->dma is not really used, just to indicate that
1583 * DMA is active: remove this
1584 * dma regs = dev control regs
1586 ep
->dma
= &dev
->regs
->ctl
;
1588 /* nak OUT endpoints until enable - not for ep0 */
1589 if (tmp
!= UDC_EP0IN_IX
&& tmp
!= UDC_EP0OUT_IX
1590 && tmp
> UDC_EPIN_NUM
) {
1592 reg
= readl(&dev
->ep
[tmp
].regs
->ctl
);
1593 reg
|= AMD_BIT(UDC_EPCTL_SNAK
);
1594 writel(reg
, &dev
->ep
[tmp
].regs
->ctl
);
1595 dev
->ep
[tmp
].naking
= 1;
1600 /* EP0 max packet */
1601 if (dev
->gadget
.speed
== USB_SPEED_FULL
) {
1602 dev
->ep
[UDC_EP0IN_IX
].ep
.maxpacket
= UDC_FS_EP0IN_MAX_PKT_SIZE
;
1603 dev
->ep
[UDC_EP0OUT_IX
].ep
.maxpacket
=
1604 UDC_FS_EP0OUT_MAX_PKT_SIZE
;
1605 } else if (dev
->gadget
.speed
== USB_SPEED_HIGH
) {
1606 dev
->ep
[UDC_EP0IN_IX
].ep
.maxpacket
= UDC_EP0IN_MAX_PKT_SIZE
;
1607 dev
->ep
[UDC_EP0OUT_IX
].ep
.maxpacket
= UDC_EP0OUT_MAX_PKT_SIZE
;
1611 * with suspend bug workaround, ep0 params for gadget driver
1612 * are set at gadget driver bind() call
1614 dev
->gadget
.ep0
= &dev
->ep
[UDC_EP0IN_IX
].ep
;
1615 dev
->ep
[UDC_EP0IN_IX
].halted
= 0;
1616 INIT_LIST_HEAD(&dev
->gadget
.ep0
->ep_list
);
1618 /* init cfg/alt/int */
1619 dev
->cur_config
= 0;
1624 /* Bringup after Connect event, initial bringup to be ready for ep0 events */
1625 static void usb_connect(struct udc
*dev
)
1628 dev_info(&dev
->pdev
->dev
, "USB Connect\n");
1632 /* put into initial config */
1633 udc_basic_init(dev
);
1635 /* enable device setup interrupts */
1636 udc_enable_dev_setup_interrupts(dev
);
1640 * Calls gadget with disconnect event and resets the UDC and makes
1641 * initial bringup to be ready for ep0 events
1643 static void usb_disconnect(struct udc
*dev
)
1646 dev_info(&dev
->pdev
->dev
, "USB Disconnect\n");
1650 /* mask interrupts */
1651 udc_mask_unused_interrupts(dev
);
1653 /* REVISIT there doesn't seem to be a point to having this
1654 * talk to a tasklet ... do it directly, we already hold
1655 * the spinlock needed to process the disconnect.
1658 tasklet_schedule(&disconnect_tasklet
);
1661 /* Tasklet for disconnect to be outside of interrupt context */
1662 static void udc_tasklet_disconnect(unsigned long par
)
1664 struct udc
*dev
= (struct udc
*)(*((struct udc
**) par
));
1667 DBG(dev
, "Tasklet disconnect\n");
1668 spin_lock_irq(&dev
->lock
);
1671 spin_unlock(&dev
->lock
);
1672 dev
->driver
->disconnect(&dev
->gadget
);
1673 spin_lock(&dev
->lock
);
1676 for (tmp
= 0; tmp
< UDC_EP_NUM
; tmp
++) {
1677 empty_req_queue(&dev
->ep
[tmp
]);
1684 &dev
->ep
[UDC_EP0IN_IX
]);
1687 if (!soft_reset_occured
) {
1688 /* init controller by soft reset */
1689 udc_soft_reset(dev
);
1690 soft_reset_occured
++;
1693 /* re-enable dev interrupts */
1694 udc_enable_dev_setup_interrupts(dev
);
1695 /* back to full speed ? */
1696 if (use_fullspeed
) {
1697 tmp
= readl(&dev
->regs
->cfg
);
1698 tmp
= AMD_ADDBITS(tmp
, UDC_DEVCFG_SPD_FS
, UDC_DEVCFG_SPD
);
1699 writel(tmp
, &dev
->regs
->cfg
);
1702 spin_unlock_irq(&dev
->lock
);
1705 /* Reset the UDC core */
1706 static void udc_soft_reset(struct udc
*dev
)
1708 unsigned long flags
;
1710 DBG(dev
, "Soft reset\n");
1712 * reset possible waiting interrupts, because int.
1713 * status is lost after soft reset,
1714 * ep int. status reset
1716 writel(UDC_EPINT_MSK_DISABLE_ALL
, &dev
->regs
->ep_irqsts
);
1717 /* device int. status reset */
1718 writel(UDC_DEV_MSK_DISABLE
, &dev
->regs
->irqsts
);
1720 spin_lock_irqsave(&udc_irq_spinlock
, flags
);
1721 writel(AMD_BIT(UDC_DEVCFG_SOFTRESET
), &dev
->regs
->cfg
);
1722 readl(&dev
->regs
->cfg
);
1723 spin_unlock_irqrestore(&udc_irq_spinlock
, flags
);
1727 /* RDE timer callback to set RDE bit */
1728 static void udc_timer_function(unsigned long v
)
1732 spin_lock_irq(&udc_irq_spinlock
);
1736 * open the fifo if fifo was filled on last timer call
1740 /* set RDE to receive setup data */
1741 tmp
= readl(&udc
->regs
->ctl
);
1742 tmp
|= AMD_BIT(UDC_DEVCTL_RDE
);
1743 writel(tmp
, &udc
->regs
->ctl
);
1745 } else if (readl(&udc
->regs
->sts
)
1746 & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY
)) {
1748 * if fifo empty setup polling, do not just
1751 udc_timer
.expires
= jiffies
+ HZ
/UDC_RDE_TIMER_DIV
;
1753 add_timer(&udc_timer
);
1757 * fifo contains data now, setup timer for opening
1758 * the fifo when timer expires to be able to receive
1759 * setup packets, when data packets gets queued by
1760 * gadget layer then timer will forced to expire with
1761 * set_rde=0 (RDE is set in udc_queue())
1764 /* debug: lhadmot_timer_start = 221070 */
1765 udc_timer
.expires
= jiffies
+ HZ
*UDC_RDE_TIMER_SECONDS
;
1767 add_timer(&udc_timer
);
1772 set_rde
= -1; /* RDE was set by udc_queue() */
1773 spin_unlock_irq(&udc_irq_spinlock
);
1779 /* Handle halt state, used in stall poll timer */
1780 static void udc_handle_halt_state(struct udc_ep
*ep
)
1783 /* set stall as long not halted */
1784 if (ep
->halted
== 1) {
1785 tmp
= readl(&ep
->regs
->ctl
);
1786 /* STALL cleared ? */
1787 if (!(tmp
& AMD_BIT(UDC_EPCTL_S
))) {
1789 * FIXME: MSC spec requires that stall remains
1790 * even on receivng of CLEAR_FEATURE HALT. So
1791 * we would set STALL again here to be compliant.
1792 * But with current mass storage drivers this does
1793 * not work (would produce endless host retries).
1794 * So we clear halt on CLEAR_FEATURE.
1796 DBG(ep->dev, "ep %d: set STALL again\n", ep->num);
1797 tmp |= AMD_BIT(UDC_EPCTL_S);
1798 writel(tmp, &ep->regs->ctl);*/
1800 /* clear NAK by writing CNAK */
1801 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1802 writel(tmp
, &ep
->regs
->ctl
);
1804 UDC_QUEUE_CNAK(ep
, ep
->num
);
1809 /* Stall timer callback to poll S bit and set it again after */
1810 static void udc_pollstall_timer_function(unsigned long v
)
1815 spin_lock_irq(&udc_stall_spinlock
);
1817 * only one IN and OUT endpoints are handled
1820 ep
= &udc
->ep
[UDC_EPIN_IX
];
1821 udc_handle_halt_state(ep
);
1824 /* OUT poll stall */
1825 ep
= &udc
->ep
[UDC_EPOUT_IX
];
1826 udc_handle_halt_state(ep
);
1830 /* setup timer again when still halted */
1831 if (!stop_pollstall_timer
&& halted
) {
1832 udc_pollstall_timer
.expires
= jiffies
+
1833 HZ
* UDC_POLLSTALL_TIMER_USECONDS
1835 add_timer(&udc_pollstall_timer
);
1837 spin_unlock_irq(&udc_stall_spinlock
);
1839 if (stop_pollstall_timer
)
1840 complete(&on_pollstall_exit
);
1843 /* Inits endpoint 0 so that SETUP packets are processed */
1844 static void activate_control_endpoints(struct udc
*dev
)
1848 DBG(dev
, "activate_control_endpoints\n");
1851 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1852 tmp
|= AMD_BIT(UDC_EPCTL_F
);
1853 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1855 /* set ep0 directions */
1856 dev
->ep
[UDC_EP0IN_IX
].in
= 1;
1857 dev
->ep
[UDC_EP0OUT_IX
].in
= 0;
1859 /* set buffer size (tx fifo entries) of EP0_IN */
1860 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->bufin_framenum
);
1861 if (dev
->gadget
.speed
== USB_SPEED_FULL
)
1862 tmp
= AMD_ADDBITS(tmp
, UDC_FS_EPIN0_BUFF_SIZE
,
1863 UDC_EPIN_BUFF_SIZE
);
1864 else if (dev
->gadget
.speed
== USB_SPEED_HIGH
)
1865 tmp
= AMD_ADDBITS(tmp
, UDC_EPIN0_BUFF_SIZE
,
1866 UDC_EPIN_BUFF_SIZE
);
1867 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->bufin_framenum
);
1869 /* set max packet size of EP0_IN */
1870 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->bufout_maxpkt
);
1871 if (dev
->gadget
.speed
== USB_SPEED_FULL
)
1872 tmp
= AMD_ADDBITS(tmp
, UDC_FS_EP0IN_MAX_PKT_SIZE
,
1873 UDC_EP_MAX_PKT_SIZE
);
1874 else if (dev
->gadget
.speed
== USB_SPEED_HIGH
)
1875 tmp
= AMD_ADDBITS(tmp
, UDC_EP0IN_MAX_PKT_SIZE
,
1876 UDC_EP_MAX_PKT_SIZE
);
1877 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->bufout_maxpkt
);
1879 /* set max packet size of EP0_OUT */
1880 tmp
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->bufout_maxpkt
);
1881 if (dev
->gadget
.speed
== USB_SPEED_FULL
)
1882 tmp
= AMD_ADDBITS(tmp
, UDC_FS_EP0OUT_MAX_PKT_SIZE
,
1883 UDC_EP_MAX_PKT_SIZE
);
1884 else if (dev
->gadget
.speed
== USB_SPEED_HIGH
)
1885 tmp
= AMD_ADDBITS(tmp
, UDC_EP0OUT_MAX_PKT_SIZE
,
1886 UDC_EP_MAX_PKT_SIZE
);
1887 writel(tmp
, &dev
->ep
[UDC_EP0OUT_IX
].regs
->bufout_maxpkt
);
1889 /* set max packet size of EP0 in UDC CSR */
1890 tmp
= readl(&dev
->csr
->ne
[0]);
1891 if (dev
->gadget
.speed
== USB_SPEED_FULL
)
1892 tmp
= AMD_ADDBITS(tmp
, UDC_FS_EP0OUT_MAX_PKT_SIZE
,
1893 UDC_CSR_NE_MAX_PKT
);
1894 else if (dev
->gadget
.speed
== USB_SPEED_HIGH
)
1895 tmp
= AMD_ADDBITS(tmp
, UDC_EP0OUT_MAX_PKT_SIZE
,
1896 UDC_CSR_NE_MAX_PKT
);
1897 writel(tmp
, &dev
->csr
->ne
[0]);
1900 dev
->ep
[UDC_EP0OUT_IX
].td
->status
|=
1901 AMD_BIT(UDC_DMA_OUT_STS_L
);
1902 /* write dma desc address */
1903 writel(dev
->ep
[UDC_EP0OUT_IX
].td_stp_dma
,
1904 &dev
->ep
[UDC_EP0OUT_IX
].regs
->subptr
);
1905 writel(dev
->ep
[UDC_EP0OUT_IX
].td_phys
,
1906 &dev
->ep
[UDC_EP0OUT_IX
].regs
->desptr
);
1907 /* stop RDE timer */
1908 if (timer_pending(&udc_timer
)) {
1910 mod_timer(&udc_timer
, jiffies
- 1);
1912 /* stop pollstall timer */
1913 if (timer_pending(&udc_pollstall_timer
)) {
1914 mod_timer(&udc_pollstall_timer
, jiffies
- 1);
1917 tmp
= readl(&dev
->regs
->ctl
);
1918 tmp
|= AMD_BIT(UDC_DEVCTL_MODE
)
1919 | AMD_BIT(UDC_DEVCTL_RDE
)
1920 | AMD_BIT(UDC_DEVCTL_TDE
);
1921 if (use_dma_bufferfill_mode
) {
1922 tmp
|= AMD_BIT(UDC_DEVCTL_BF
);
1923 } else if (use_dma_ppb_du
) {
1924 tmp
|= AMD_BIT(UDC_DEVCTL_DU
);
1926 writel(tmp
, &dev
->regs
->ctl
);
1929 /* clear NAK by writing CNAK for EP0IN */
1930 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1931 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1932 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1933 dev
->ep
[UDC_EP0IN_IX
].naking
= 0;
1934 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0IN_IX
], UDC_EP0IN_IX
);
1936 /* clear NAK by writing CNAK for EP0OUT */
1937 tmp
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
1938 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1939 writel(tmp
, &dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
1940 dev
->ep
[UDC_EP0OUT_IX
].naking
= 0;
1941 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0OUT_IX
], UDC_EP0OUT_IX
);
1944 /* Make endpoint 0 ready for control traffic */
1945 static int setup_ep0(struct udc
*dev
)
1947 activate_control_endpoints(dev
);
1948 /* enable ep0 interrupts */
1949 udc_enable_ep0_interrupts(dev
);
1950 /* enable device setup interrupts */
1951 udc_enable_dev_setup_interrupts(dev
);
1956 /* Called by gadget driver to register itself */
1957 int usb_gadget_register_driver(struct usb_gadget_driver
*driver
)
1959 struct udc
*dev
= udc
;
1963 if (!driver
|| !driver
->bind
|| !driver
->setup
1964 || driver
->speed
!= USB_SPEED_HIGH
)
1971 driver
->driver
.bus
= NULL
;
1972 dev
->driver
= driver
;
1973 dev
->gadget
.dev
.driver
= &driver
->driver
;
1975 retval
= driver
->bind(&dev
->gadget
);
1977 /* Some gadget drivers use both ep0 directions.
1978 * NOTE: to gadget driver, ep0 is just one endpoint...
1980 dev
->ep
[UDC_EP0OUT_IX
].ep
.driver_data
=
1981 dev
->ep
[UDC_EP0IN_IX
].ep
.driver_data
;
1984 DBG(dev
, "binding to %s returning %d\n",
1985 driver
->driver
.name
, retval
);
1987 dev
->gadget
.dev
.driver
= NULL
;
1991 /* get ready for ep0 traffic */
1995 tmp
= readl(&dev
->regs
->ctl
);
1996 tmp
= tmp
& AMD_CLEAR_BIT(UDC_DEVCTL_SD
);
1997 writel(tmp
, &dev
->regs
->ctl
);
2003 EXPORT_SYMBOL(usb_gadget_register_driver
);
2005 /* shutdown requests and disconnect from gadget */
2007 shutdown(struct udc
*dev
, struct usb_gadget_driver
*driver
)
2008 __releases(dev
->lock
)
2009 __acquires(dev
->lock
)
2013 if (dev
->gadget
.speed
!= USB_SPEED_UNKNOWN
) {
2014 spin_unlock(&dev
->lock
);
2015 driver
->disconnect(&dev
->gadget
);
2016 spin_lock(&dev
->lock
);
2019 /* empty queues and init hardware */
2020 udc_basic_init(dev
);
2021 for (tmp
= 0; tmp
< UDC_EP_NUM
; tmp
++)
2022 empty_req_queue(&dev
->ep
[tmp
]);
2024 udc_setup_endpoints(dev
);
2027 /* Called by gadget driver to unregister itself */
2028 int usb_gadget_unregister_driver(struct usb_gadget_driver
*driver
)
2030 struct udc
*dev
= udc
;
2031 unsigned long flags
;
2036 if (!driver
|| driver
!= dev
->driver
|| !driver
->unbind
)
2039 spin_lock_irqsave(&dev
->lock
, flags
);
2040 udc_mask_unused_interrupts(dev
);
2041 shutdown(dev
, driver
);
2042 spin_unlock_irqrestore(&dev
->lock
, flags
);
2044 driver
->unbind(&dev
->gadget
);
2045 dev
->gadget
.dev
.driver
= NULL
;
2049 tmp
= readl(&dev
->regs
->ctl
);
2050 tmp
|= AMD_BIT(UDC_DEVCTL_SD
);
2051 writel(tmp
, &dev
->regs
->ctl
);
2054 DBG(dev
, "%s: unregistered\n", driver
->driver
.name
);
2058 EXPORT_SYMBOL(usb_gadget_unregister_driver
);
2061 /* Clear pending NAK bits */
2062 static void udc_process_cnak_queue(struct udc
*dev
)
2068 DBG(dev
, "CNAK pending queue processing\n");
2069 for (tmp
= 0; tmp
< UDC_EPIN_NUM_USED
; tmp
++) {
2070 if (cnak_pending
& (1 << tmp
)) {
2071 DBG(dev
, "CNAK pending for ep%d\n", tmp
);
2072 /* clear NAK by writing CNAK */
2073 reg
= readl(&dev
->ep
[tmp
].regs
->ctl
);
2074 reg
|= AMD_BIT(UDC_EPCTL_CNAK
);
2075 writel(reg
, &dev
->ep
[tmp
].regs
->ctl
);
2076 dev
->ep
[tmp
].naking
= 0;
2077 UDC_QUEUE_CNAK(&dev
->ep
[tmp
], dev
->ep
[tmp
].num
);
2080 /* ... and ep0out */
2081 if (cnak_pending
& (1 << UDC_EP0OUT_IX
)) {
2082 DBG(dev
, "CNAK pending for ep%d\n", UDC_EP0OUT_IX
);
2083 /* clear NAK by writing CNAK */
2084 reg
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
2085 reg
|= AMD_BIT(UDC_EPCTL_CNAK
);
2086 writel(reg
, &dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
2087 dev
->ep
[UDC_EP0OUT_IX
].naking
= 0;
2088 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0OUT_IX
],
2089 dev
->ep
[UDC_EP0OUT_IX
].num
);
2093 /* Enabling RX DMA after setup packet */
2094 static void udc_ep0_set_rde(struct udc
*dev
)
2098 * only enable RXDMA when no data endpoint enabled
2101 if (!dev
->data_ep_enabled
|| dev
->data_ep_queued
) {
2105 * setup timer for enabling RDE (to not enable
2106 * RXFIFO DMA for data endpoints to early)
2108 if (set_rde
!= 0 && !timer_pending(&udc_timer
)) {
2110 jiffies
+ HZ
/UDC_RDE_TIMER_DIV
;
2113 add_timer(&udc_timer
);
2121 /* Interrupt handler for data OUT traffic */
2122 static irqreturn_t
udc_data_out_isr(struct udc
*dev
, int ep_ix
)
2124 irqreturn_t ret_val
= IRQ_NONE
;
2127 struct udc_request
*req
;
2129 struct udc_data_dma
*td
= NULL
;
2132 VDBG(dev
, "ep%d irq\n", ep_ix
);
2133 ep
= &dev
->ep
[ep_ix
];
2135 tmp
= readl(&ep
->regs
->sts
);
2138 if (tmp
& AMD_BIT(UDC_EPSTS_BNA
)) {
2139 DBG(dev
, "BNA ep%dout occured - DESPTR = %x \n",
2140 ep
->num
, readl(&ep
->regs
->desptr
));
2142 writel(tmp
| AMD_BIT(UDC_EPSTS_BNA
), &ep
->regs
->sts
);
2143 if (!ep
->cancel_transfer
)
2144 ep
->bna_occurred
= 1;
2146 ep
->cancel_transfer
= 0;
2147 ret_val
= IRQ_HANDLED
;
2152 if (tmp
& AMD_BIT(UDC_EPSTS_HE
)) {
2153 dev_err(&dev
->pdev
->dev
, "HE ep%dout occured\n", ep
->num
);
2156 writel(tmp
| AMD_BIT(UDC_EPSTS_HE
), &ep
->regs
->sts
);
2157 ret_val
= IRQ_HANDLED
;
2161 if (!list_empty(&ep
->queue
)) {
2164 req
= list_entry(ep
->queue
.next
,
2165 struct udc_request
, queue
);
2168 udc_rxfifo_pending
= 1;
2170 VDBG(dev
, "req = %p\n", req
);
2175 if (req
&& udc_rxfifo_read(ep
, req
)) {
2176 ret_val
= IRQ_HANDLED
;
2179 complete_req(ep
, req
, 0);
2181 if (!list_empty(&ep
->queue
) && !ep
->halted
) {
2182 req
= list_entry(ep
->queue
.next
,
2183 struct udc_request
, queue
);
2189 } else if (!ep
->cancel_transfer
&& req
!= NULL
) {
2190 ret_val
= IRQ_HANDLED
;
2192 /* check for DMA done */
2194 dma_done
= AMD_GETBITS(req
->td_data
->status
,
2195 UDC_DMA_OUT_STS_BS
);
2196 /* packet per buffer mode - rx bytes */
2199 * if BNA occurred then recover desc. from
2202 if (ep
->bna_occurred
) {
2203 VDBG(dev
, "Recover desc. from BNA dummy\n");
2204 memcpy(req
->td_data
, ep
->bna_dummy_req
->td_data
,
2205 sizeof(struct udc_data_dma
));
2206 ep
->bna_occurred
= 0;
2207 udc_init_bna_dummy(ep
->req
);
2209 td
= udc_get_last_dma_desc(req
);
2210 dma_done
= AMD_GETBITS(td
->status
, UDC_DMA_OUT_STS_BS
);
2212 if (dma_done
== UDC_DMA_OUT_STS_BS_DMA_DONE
) {
2213 /* buffer fill mode - rx bytes */
2215 /* received number bytes */
2216 count
= AMD_GETBITS(req
->td_data
->status
,
2217 UDC_DMA_OUT_STS_RXBYTES
);
2218 VDBG(dev
, "rx bytes=%u\n", count
);
2219 /* packet per buffer mode - rx bytes */
2221 VDBG(dev
, "req->td_data=%p\n", req
->td_data
);
2222 VDBG(dev
, "last desc = %p\n", td
);
2223 /* received number bytes */
2224 if (use_dma_ppb_du
) {
2225 /* every desc. counts bytes */
2226 count
= udc_get_ppbdu_rxbytes(req
);
2228 /* last desc. counts bytes */
2229 count
= AMD_GETBITS(td
->status
,
2230 UDC_DMA_OUT_STS_RXBYTES
);
2231 if (!count
&& req
->req
.length
2232 == UDC_DMA_MAXPACKET
) {
2234 * on 64k packets the RXBYTES
2237 count
= UDC_DMA_MAXPACKET
;
2240 VDBG(dev
, "last desc rx bytes=%u\n", count
);
2243 tmp
= req
->req
.length
- req
->req
.actual
;
2245 if ((tmp
% ep
->ep
.maxpacket
) != 0) {
2246 DBG(dev
, "%s: rx %db, space=%db\n",
2247 ep
->ep
.name
, count
, tmp
);
2248 req
->req
.status
= -EOVERFLOW
;
2252 req
->req
.actual
+= count
;
2254 /* complete request */
2255 complete_req(ep
, req
, 0);
2258 if (!list_empty(&ep
->queue
) && !ep
->halted
) {
2259 req
= list_entry(ep
->queue
.next
,
2263 * DMA may be already started by udc_queue()
2264 * called by gadget drivers completion
2265 * routine. This happens when queue
2266 * holds one request only.
2268 if (req
->dma_going
== 0) {
2270 if (prep_dma(ep
, req
, GFP_ATOMIC
) != 0)
2272 /* write desc pointer */
2273 writel(req
->td_phys
,
2281 * implant BNA dummy descriptor to allow
2282 * RXFIFO opening by RDE
2284 if (ep
->bna_dummy_req
) {
2285 /* write desc pointer */
2286 writel(ep
->bna_dummy_req
->td_phys
,
2288 ep
->bna_occurred
= 0;
2292 * schedule timer for setting RDE if queue
2293 * remains empty to allow ep0 packets pass
2297 && !timer_pending(&udc_timer
)) {
2300 + HZ
*UDC_RDE_TIMER_SECONDS
;
2303 add_timer(&udc_timer
);
2306 if (ep
->num
!= UDC_EP0OUT_IX
)
2307 dev
->data_ep_queued
= 0;
2312 * RX DMA must be reenabled for each desc in PPBDU mode
2313 * and must be enabled for PPBNDU mode in case of BNA
2318 } else if (ep
->cancel_transfer
) {
2319 ret_val
= IRQ_HANDLED
;
2320 ep
->cancel_transfer
= 0;
2323 /* check pending CNAKS */
2325 /* CNAk processing when rxfifo empty only */
2326 if (readl(&dev
->regs
->sts
) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY
)) {
2327 udc_process_cnak_queue(dev
);
2331 /* clear OUT bits in ep status */
2332 writel(UDC_EPSTS_OUT_CLEAR
, &ep
->regs
->sts
);
2337 /* Interrupt handler for data IN traffic */
2338 static irqreturn_t
udc_data_in_isr(struct udc
*dev
, int ep_ix
)
2340 irqreturn_t ret_val
= IRQ_NONE
;
2344 struct udc_request
*req
;
2345 struct udc_data_dma
*td
;
2349 ep
= &dev
->ep
[ep_ix
];
2351 epsts
= readl(&ep
->regs
->sts
);
2354 if (epsts
& AMD_BIT(UDC_EPSTS_BNA
)) {
2355 dev_err(&dev
->pdev
->dev
,
2356 "BNA ep%din occured - DESPTR = %08lx \n",
2358 (unsigned long) readl(&ep
->regs
->desptr
));
2361 writel(epsts
, &ep
->regs
->sts
);
2362 ret_val
= IRQ_HANDLED
;
2367 if (epsts
& AMD_BIT(UDC_EPSTS_HE
)) {
2368 dev_err(&dev
->pdev
->dev
,
2369 "HE ep%dn occured - DESPTR = %08lx \n",
2370 ep
->num
, (unsigned long) readl(&ep
->regs
->desptr
));
2373 writel(epsts
| AMD_BIT(UDC_EPSTS_HE
), &ep
->regs
->sts
);
2374 ret_val
= IRQ_HANDLED
;
2378 /* DMA completion */
2379 if (epsts
& AMD_BIT(UDC_EPSTS_TDC
)) {
2380 VDBG(dev
, "TDC set- completion\n");
2381 ret_val
= IRQ_HANDLED
;
2382 if (!ep
->cancel_transfer
&& !list_empty(&ep
->queue
)) {
2383 req
= list_entry(ep
->queue
.next
,
2384 struct udc_request
, queue
);
2386 * length bytes transfered
2387 * check dma done of last desc. in PPBDU mode
2389 if (use_dma_ppb_du
) {
2390 td
= udc_get_last_dma_desc(req
);
2393 AMD_GETBITS(td
->status
,
2395 /* don't care DMA done */
2396 req
->req
.actual
= req
->req
.length
;
2399 /* assume all bytes transferred */
2400 req
->req
.actual
= req
->req
.length
;
2403 if (req
->req
.actual
== req
->req
.length
) {
2405 complete_req(ep
, req
, 0);
2407 /* further request available ? */
2408 if (list_empty(&ep
->queue
)) {
2409 /* disable interrupt */
2410 tmp
= readl(&dev
->regs
->ep_irqmsk
);
2411 tmp
|= AMD_BIT(ep
->num
);
2412 writel(tmp
, &dev
->regs
->ep_irqmsk
);
2416 ep
->cancel_transfer
= 0;
2420 * status reg has IN bit set and TDC not set (if TDC was handled,
2421 * IN must not be handled (UDC defect) ?
2423 if ((epsts
& AMD_BIT(UDC_EPSTS_IN
))
2424 && !(epsts
& AMD_BIT(UDC_EPSTS_TDC
))) {
2425 ret_val
= IRQ_HANDLED
;
2426 if (!list_empty(&ep
->queue
)) {
2428 req
= list_entry(ep
->queue
.next
,
2429 struct udc_request
, queue
);
2433 udc_txfifo_write(ep
, &req
->req
);
2434 len
= req
->req
.length
- req
->req
.actual
;
2435 if (len
> ep
->ep
.maxpacket
)
2436 len
= ep
->ep
.maxpacket
;
2437 req
->req
.actual
+= len
;
2438 if (req
->req
.actual
== req
->req
.length
2439 || (len
!= ep
->ep
.maxpacket
)) {
2441 complete_req(ep
, req
, 0);
2444 } else if (req
&& !req
->dma_going
) {
2445 VDBG(dev
, "IN DMA : req=%p req->td_data=%p\n",
2452 * unset L bit of first desc.
2455 if (use_dma_ppb
&& req
->req
.length
>
2457 req
->td_data
->status
&=
2462 /* write desc pointer */
2463 writel(req
->td_phys
, &ep
->regs
->desptr
);
2465 /* set HOST READY */
2466 req
->td_data
->status
=
2468 req
->td_data
->status
,
2469 UDC_DMA_IN_STS_BS_HOST_READY
,
2472 /* set poll demand bit */
2473 tmp
= readl(&ep
->regs
->ctl
);
2474 tmp
|= AMD_BIT(UDC_EPCTL_P
);
2475 writel(tmp
, &ep
->regs
->ctl
);
2479 } else if (!use_dma
&& ep
->in
) {
2480 /* disable interrupt */
2482 &dev
->regs
->ep_irqmsk
);
2483 tmp
|= AMD_BIT(ep
->num
);
2485 &dev
->regs
->ep_irqmsk
);
2488 /* clear status bits */
2489 writel(epsts
, &ep
->regs
->sts
);
2496 /* Interrupt handler for Control OUT traffic */
2497 static irqreturn_t
udc_control_out_isr(struct udc
*dev
)
2498 __releases(dev
->lock
)
2499 __acquires(dev
->lock
)
2501 irqreturn_t ret_val
= IRQ_NONE
;
2503 int setup_supported
;
2507 struct udc_ep
*ep_tmp
;
2509 ep
= &dev
->ep
[UDC_EP0OUT_IX
];
2512 writel(AMD_BIT(UDC_EPINT_OUT_EP0
), &dev
->regs
->ep_irqsts
);
2514 tmp
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2515 /* check BNA and clear if set */
2516 if (tmp
& AMD_BIT(UDC_EPSTS_BNA
)) {
2517 VDBG(dev
, "ep0: BNA set\n");
2518 writel(AMD_BIT(UDC_EPSTS_BNA
),
2519 &dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2520 ep
->bna_occurred
= 1;
2521 ret_val
= IRQ_HANDLED
;
2525 /* type of data: SETUP or DATA 0 bytes */
2526 tmp
= AMD_GETBITS(tmp
, UDC_EPSTS_OUT
);
2527 VDBG(dev
, "data_typ = %x\n", tmp
);
2530 if (tmp
== UDC_EPSTS_OUT_SETUP
) {
2531 ret_val
= IRQ_HANDLED
;
2533 ep
->dev
->stall_ep0in
= 0;
2534 dev
->waiting_zlp_ack_ep0in
= 0;
2536 /* set NAK for EP0_IN */
2537 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2538 tmp
|= AMD_BIT(UDC_EPCTL_SNAK
);
2539 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2540 dev
->ep
[UDC_EP0IN_IX
].naking
= 1;
2541 /* get setup data */
2544 /* clear OUT bits in ep status */
2545 writel(UDC_EPSTS_OUT_CLEAR
,
2546 &dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2548 setup_data
.data
[0] =
2549 dev
->ep
[UDC_EP0OUT_IX
].td_stp
->data12
;
2550 setup_data
.data
[1] =
2551 dev
->ep
[UDC_EP0OUT_IX
].td_stp
->data34
;
2552 /* set HOST READY */
2553 dev
->ep
[UDC_EP0OUT_IX
].td_stp
->status
=
2554 UDC_DMA_STP_STS_BS_HOST_READY
;
2557 udc_rxfifo_read_dwords(dev
, setup_data
.data
, 2);
2560 /* determine direction of control data */
2561 if ((setup_data
.request
.bRequestType
& USB_DIR_IN
) != 0) {
2562 dev
->gadget
.ep0
= &dev
->ep
[UDC_EP0IN_IX
].ep
;
2564 udc_ep0_set_rde(dev
);
2567 dev
->gadget
.ep0
= &dev
->ep
[UDC_EP0OUT_IX
].ep
;
2569 * implant BNA dummy descriptor to allow RXFIFO opening
2572 if (ep
->bna_dummy_req
) {
2573 /* write desc pointer */
2574 writel(ep
->bna_dummy_req
->td_phys
,
2575 &dev
->ep
[UDC_EP0OUT_IX
].regs
->desptr
);
2576 ep
->bna_occurred
= 0;
2580 dev
->ep
[UDC_EP0OUT_IX
].naking
= 1;
2582 * setup timer for enabling RDE (to not enable
2583 * RXFIFO DMA for data to early)
2586 if (!timer_pending(&udc_timer
)) {
2587 udc_timer
.expires
= jiffies
+
2588 HZ
/UDC_RDE_TIMER_DIV
;
2590 add_timer(&udc_timer
);
2596 * mass storage reset must be processed here because
2597 * next packet may be a CLEAR_FEATURE HALT which would not
2598 * clear the stall bit when no STALL handshake was received
2599 * before (autostall can cause this)
2601 if (setup_data
.data
[0] == UDC_MSCRES_DWORD0
2602 && setup_data
.data
[1] == UDC_MSCRES_DWORD1
) {
2603 DBG(dev
, "MSC Reset\n");
2606 * only one IN and OUT endpoints are handled
2608 ep_tmp
= &udc
->ep
[UDC_EPIN_IX
];
2609 udc_set_halt(&ep_tmp
->ep
, 0);
2610 ep_tmp
= &udc
->ep
[UDC_EPOUT_IX
];
2611 udc_set_halt(&ep_tmp
->ep
, 0);
2614 /* call gadget with setup data received */
2615 spin_unlock(&dev
->lock
);
2616 setup_supported
= dev
->driver
->setup(&dev
->gadget
,
2617 &setup_data
.request
);
2618 spin_lock(&dev
->lock
);
2620 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2621 /* ep0 in returns data (not zlp) on IN phase */
2622 if (setup_supported
>= 0 && setup_supported
<
2623 UDC_EP0IN_MAXPACKET
) {
2624 /* clear NAK by writing CNAK in EP0_IN */
2625 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
2626 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2627 dev
->ep
[UDC_EP0IN_IX
].naking
= 0;
2628 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0IN_IX
], UDC_EP0IN_IX
);
2630 /* if unsupported request then stall */
2631 } else if (setup_supported
< 0) {
2632 tmp
|= AMD_BIT(UDC_EPCTL_S
);
2633 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2635 dev
->waiting_zlp_ack_ep0in
= 1;
2638 /* clear NAK by writing CNAK in EP0_OUT */
2640 tmp
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
2641 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
2642 writel(tmp
, &dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
2643 dev
->ep
[UDC_EP0OUT_IX
].naking
= 0;
2644 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0OUT_IX
], UDC_EP0OUT_IX
);
2648 /* clear OUT bits in ep status */
2649 writel(UDC_EPSTS_OUT_CLEAR
,
2650 &dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2653 /* data packet 0 bytes */
2654 } else if (tmp
== UDC_EPSTS_OUT_DATA
) {
2655 /* clear OUT bits in ep status */
2656 writel(UDC_EPSTS_OUT_CLEAR
, &dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2658 /* get setup data: only 0 packet */
2660 /* no req if 0 packet, just reactivate */
2661 if (list_empty(&dev
->ep
[UDC_EP0OUT_IX
].queue
)) {
2664 /* set HOST READY */
2665 dev
->ep
[UDC_EP0OUT_IX
].td
->status
=
2667 dev
->ep
[UDC_EP0OUT_IX
].td
->status
,
2668 UDC_DMA_OUT_STS_BS_HOST_READY
,
2669 UDC_DMA_OUT_STS_BS
);
2671 udc_ep0_set_rde(dev
);
2672 ret_val
= IRQ_HANDLED
;
2676 ret_val
|= udc_data_out_isr(dev
, UDC_EP0OUT_IX
);
2677 /* re-program desc. pointer for possible ZLPs */
2678 writel(dev
->ep
[UDC_EP0OUT_IX
].td_phys
,
2679 &dev
->ep
[UDC_EP0OUT_IX
].regs
->desptr
);
2681 udc_ep0_set_rde(dev
);
2685 /* received number bytes */
2686 count
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2687 count
= AMD_GETBITS(count
, UDC_EPSTS_RX_PKT_SIZE
);
2688 /* out data for fifo mode not working */
2691 /* 0 packet or real data ? */
2693 ret_val
|= udc_data_out_isr(dev
, UDC_EP0OUT_IX
);
2695 /* dummy read confirm */
2696 readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->confirm
);
2697 ret_val
= IRQ_HANDLED
;
2702 /* check pending CNAKS */
2704 /* CNAk processing when rxfifo empty only */
2705 if (readl(&dev
->regs
->sts
) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY
)) {
2706 udc_process_cnak_queue(dev
);
2714 /* Interrupt handler for Control IN traffic */
2715 static irqreturn_t
udc_control_in_isr(struct udc
*dev
)
2717 irqreturn_t ret_val
= IRQ_NONE
;
2720 struct udc_request
*req
;
2723 ep
= &dev
->ep
[UDC_EP0IN_IX
];
2726 writel(AMD_BIT(UDC_EPINT_IN_EP0
), &dev
->regs
->ep_irqsts
);
2728 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->sts
);
2729 /* DMA completion */
2730 if (tmp
& AMD_BIT(UDC_EPSTS_TDC
)) {
2731 VDBG(dev
, "isr: TDC clear \n");
2732 ret_val
= IRQ_HANDLED
;
2735 writel(AMD_BIT(UDC_EPSTS_TDC
),
2736 &dev
->ep
[UDC_EP0IN_IX
].regs
->sts
);
2738 /* status reg has IN bit set ? */
2739 } else if (tmp
& AMD_BIT(UDC_EPSTS_IN
)) {
2740 ret_val
= IRQ_HANDLED
;
2744 writel(AMD_BIT(UDC_EPSTS_IN
),
2745 &dev
->ep
[UDC_EP0IN_IX
].regs
->sts
);
2747 if (dev
->stall_ep0in
) {
2748 DBG(dev
, "stall ep0in\n");
2750 tmp
= readl(&ep
->regs
->ctl
);
2751 tmp
|= AMD_BIT(UDC_EPCTL_S
);
2752 writel(tmp
, &ep
->regs
->ctl
);
2754 if (!list_empty(&ep
->queue
)) {
2756 req
= list_entry(ep
->queue
.next
,
2757 struct udc_request
, queue
);
2760 /* write desc pointer */
2761 writel(req
->td_phys
, &ep
->regs
->desptr
);
2762 /* set HOST READY */
2763 req
->td_data
->status
=
2765 req
->td_data
->status
,
2766 UDC_DMA_STP_STS_BS_HOST_READY
,
2767 UDC_DMA_STP_STS_BS
);
2769 /* set poll demand bit */
2771 readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2772 tmp
|= AMD_BIT(UDC_EPCTL_P
);
2774 &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2776 /* all bytes will be transferred */
2777 req
->req
.actual
= req
->req
.length
;
2780 complete_req(ep
, req
, 0);
2784 udc_txfifo_write(ep
, &req
->req
);
2786 /* lengh bytes transfered */
2787 len
= req
->req
.length
- req
->req
.actual
;
2788 if (len
> ep
->ep
.maxpacket
)
2789 len
= ep
->ep
.maxpacket
;
2791 req
->req
.actual
+= len
;
2792 if (req
->req
.actual
== req
->req
.length
2793 || (len
!= ep
->ep
.maxpacket
)) {
2795 complete_req(ep
, req
, 0);
2802 dev
->stall_ep0in
= 0;
2805 writel(AMD_BIT(UDC_EPSTS_IN
),
2806 &dev
->ep
[UDC_EP0IN_IX
].regs
->sts
);
2814 /* Interrupt handler for global device events */
2815 static irqreturn_t
udc_dev_isr(struct udc
*dev
, u32 dev_irq
)
2816 __releases(dev
->lock
)
2817 __acquires(dev
->lock
)
2819 irqreturn_t ret_val
= IRQ_NONE
;
2826 /* SET_CONFIG irq ? */
2827 if (dev_irq
& AMD_BIT(UDC_DEVINT_SC
)) {
2828 ret_val
= IRQ_HANDLED
;
2830 /* read config value */
2831 tmp
= readl(&dev
->regs
->sts
);
2832 cfg
= AMD_GETBITS(tmp
, UDC_DEVSTS_CFG
);
2833 DBG(dev
, "SET_CONFIG interrupt: config=%d\n", cfg
);
2834 dev
->cur_config
= cfg
;
2835 dev
->set_cfg_not_acked
= 1;
2837 /* make usb request for gadget driver */
2838 memset(&setup_data
, 0 , sizeof(union udc_setup_data
));
2839 setup_data
.request
.bRequest
= USB_REQ_SET_CONFIGURATION
;
2840 setup_data
.request
.wValue
= cpu_to_le16(dev
->cur_config
);
2842 /* programm the NE registers */
2843 for (i
= 0; i
< UDC_EP_NUM
; i
++) {
2847 /* ep ix in UDC CSR register space */
2848 udc_csr_epix
= ep
->num
;
2853 /* ep ix in UDC CSR register space */
2854 udc_csr_epix
= ep
->num
- UDC_CSR_EP_OUT_IX_OFS
;
2857 tmp
= readl(&dev
->csr
->ne
[udc_csr_epix
]);
2859 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_config
,
2862 writel(tmp
, &dev
->csr
->ne
[udc_csr_epix
]);
2864 /* clear stall bits */
2866 tmp
= readl(&ep
->regs
->ctl
);
2867 tmp
= tmp
& AMD_CLEAR_BIT(UDC_EPCTL_S
);
2868 writel(tmp
, &ep
->regs
->ctl
);
2870 /* call gadget zero with setup data received */
2871 spin_unlock(&dev
->lock
);
2872 tmp
= dev
->driver
->setup(&dev
->gadget
, &setup_data
.request
);
2873 spin_lock(&dev
->lock
);
2875 } /* SET_INTERFACE ? */
2876 if (dev_irq
& AMD_BIT(UDC_DEVINT_SI
)) {
2877 ret_val
= IRQ_HANDLED
;
2879 dev
->set_cfg_not_acked
= 1;
2880 /* read interface and alt setting values */
2881 tmp
= readl(&dev
->regs
->sts
);
2882 dev
->cur_alt
= AMD_GETBITS(tmp
, UDC_DEVSTS_ALT
);
2883 dev
->cur_intf
= AMD_GETBITS(tmp
, UDC_DEVSTS_INTF
);
2885 /* make usb request for gadget driver */
2886 memset(&setup_data
, 0 , sizeof(union udc_setup_data
));
2887 setup_data
.request
.bRequest
= USB_REQ_SET_INTERFACE
;
2888 setup_data
.request
.bRequestType
= USB_RECIP_INTERFACE
;
2889 setup_data
.request
.wValue
= cpu_to_le16(dev
->cur_alt
);
2890 setup_data
.request
.wIndex
= cpu_to_le16(dev
->cur_intf
);
2892 DBG(dev
, "SET_INTERFACE interrupt: alt=%d intf=%d\n",
2893 dev
->cur_alt
, dev
->cur_intf
);
2895 /* programm the NE registers */
2896 for (i
= 0; i
< UDC_EP_NUM
; i
++) {
2900 /* ep ix in UDC CSR register space */
2901 udc_csr_epix
= ep
->num
;
2906 /* ep ix in UDC CSR register space */
2907 udc_csr_epix
= ep
->num
- UDC_CSR_EP_OUT_IX_OFS
;
2912 tmp
= readl(&dev
->csr
->ne
[udc_csr_epix
]);
2914 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_intf
,
2916 /* tmp = AMD_ADDBITS(tmp, 2, UDC_CSR_NE_INTF); */
2918 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_alt
,
2921 writel(tmp
, &dev
->csr
->ne
[udc_csr_epix
]);
2923 /* clear stall bits */
2925 tmp
= readl(&ep
->regs
->ctl
);
2926 tmp
= tmp
& AMD_CLEAR_BIT(UDC_EPCTL_S
);
2927 writel(tmp
, &ep
->regs
->ctl
);
2930 /* call gadget zero with setup data received */
2931 spin_unlock(&dev
->lock
);
2932 tmp
= dev
->driver
->setup(&dev
->gadget
, &setup_data
.request
);
2933 spin_lock(&dev
->lock
);
2936 if (dev_irq
& AMD_BIT(UDC_DEVINT_UR
)) {
2937 DBG(dev
, "USB Reset interrupt\n");
2938 ret_val
= IRQ_HANDLED
;
2940 /* allow soft reset when suspend occurs */
2941 soft_reset_occured
= 0;
2943 dev
->waiting_zlp_ack_ep0in
= 0;
2944 dev
->set_cfg_not_acked
= 0;
2946 /* mask not needed interrupts */
2947 udc_mask_unused_interrupts(dev
);
2949 /* call gadget to resume and reset configs etc. */
2950 spin_unlock(&dev
->lock
);
2951 if (dev
->sys_suspended
&& dev
->driver
->resume
) {
2952 dev
->driver
->resume(&dev
->gadget
);
2953 dev
->sys_suspended
= 0;
2955 dev
->driver
->disconnect(&dev
->gadget
);
2956 spin_lock(&dev
->lock
);
2958 /* disable ep0 to empty req queue */
2959 empty_req_queue(&dev
->ep
[UDC_EP0IN_IX
]);
2960 ep_init(dev
->regs
, &dev
->ep
[UDC_EP0IN_IX
]);
2962 /* soft reset when rxfifo not empty */
2963 tmp
= readl(&dev
->regs
->sts
);
2964 if (!(tmp
& AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY
))
2965 && !soft_reset_after_usbreset_occured
) {
2966 udc_soft_reset(dev
);
2967 soft_reset_after_usbreset_occured
++;
2971 * DMA reset to kill potential old DMA hw hang,
2972 * POLL bit is already reset by ep_init() through
2975 DBG(dev
, "DMA machine reset\n");
2976 tmp
= readl(&dev
->regs
->cfg
);
2977 writel(tmp
| AMD_BIT(UDC_DEVCFG_DMARST
), &dev
->regs
->cfg
);
2978 writel(tmp
, &dev
->regs
->cfg
);
2980 /* put into initial config */
2981 udc_basic_init(dev
);
2983 /* enable device setup interrupts */
2984 udc_enable_dev_setup_interrupts(dev
);
2986 /* enable suspend interrupt */
2987 tmp
= readl(&dev
->regs
->irqmsk
);
2988 tmp
&= AMD_UNMASK_BIT(UDC_DEVINT_US
);
2989 writel(tmp
, &dev
->regs
->irqmsk
);
2992 if (dev_irq
& AMD_BIT(UDC_DEVINT_US
)) {
2993 DBG(dev
, "USB Suspend interrupt\n");
2994 ret_val
= IRQ_HANDLED
;
2995 if (dev
->driver
->suspend
) {
2996 spin_unlock(&dev
->lock
);
2997 dev
->sys_suspended
= 1;
2998 dev
->driver
->suspend(&dev
->gadget
);
2999 spin_lock(&dev
->lock
);
3002 if (dev_irq
& AMD_BIT(UDC_DEVINT_ENUM
)) {
3003 DBG(dev
, "ENUM interrupt\n");
3004 ret_val
= IRQ_HANDLED
;
3005 soft_reset_after_usbreset_occured
= 0;
3007 /* disable ep0 to empty req queue */
3008 empty_req_queue(&dev
->ep
[UDC_EP0IN_IX
]);
3009 ep_init(dev
->regs
, &dev
->ep
[UDC_EP0IN_IX
]);
3011 /* link up all endpoints */
3012 udc_setup_endpoints(dev
);
3013 if (dev
->gadget
.speed
== USB_SPEED_HIGH
) {
3014 dev_info(&dev
->pdev
->dev
, "Connect: speed = %s\n",
3016 } else if (dev
->gadget
.speed
== USB_SPEED_FULL
) {
3017 dev_info(&dev
->pdev
->dev
, "Connect: speed = %s\n",
3022 activate_control_endpoints(dev
);
3024 /* enable ep0 interrupts */
3025 udc_enable_ep0_interrupts(dev
);
3027 /* session valid change interrupt */
3028 if (dev_irq
& AMD_BIT(UDC_DEVINT_SVC
)) {
3029 DBG(dev
, "USB SVC interrupt\n");
3030 ret_val
= IRQ_HANDLED
;
3032 /* check that session is not valid to detect disconnect */
3033 tmp
= readl(&dev
->regs
->sts
);
3034 if (!(tmp
& AMD_BIT(UDC_DEVSTS_SESSVLD
))) {
3035 /* disable suspend interrupt */
3036 tmp
= readl(&dev
->regs
->irqmsk
);
3037 tmp
|= AMD_BIT(UDC_DEVINT_US
);
3038 writel(tmp
, &dev
->regs
->irqmsk
);
3039 DBG(dev
, "USB Disconnect (session valid low)\n");
3040 /* cleanup on disconnect */
3041 usb_disconnect(udc
);
3049 /* Interrupt Service Routine, see Linux Kernel Doc for parameters */
3050 static irqreturn_t
udc_irq(int irq
, void *pdev
)
3052 struct udc
*dev
= pdev
;
3056 irqreturn_t ret_val
= IRQ_NONE
;
3058 spin_lock(&dev
->lock
);
3060 /* check for ep irq */
3061 reg
= readl(&dev
->regs
->ep_irqsts
);
3063 if (reg
& AMD_BIT(UDC_EPINT_OUT_EP0
))
3064 ret_val
|= udc_control_out_isr(dev
);
3065 if (reg
& AMD_BIT(UDC_EPINT_IN_EP0
))
3066 ret_val
|= udc_control_in_isr(dev
);
3072 for (i
= 1; i
< UDC_EP_NUM
; i
++) {
3074 if (!(reg
& ep_irq
) || i
== UDC_EPINT_OUT_EP0
)
3077 /* clear irq status */
3078 writel(ep_irq
, &dev
->regs
->ep_irqsts
);
3080 /* irq for out ep ? */
3081 if (i
> UDC_EPIN_NUM
)
3082 ret_val
|= udc_data_out_isr(dev
, i
);
3084 ret_val
|= udc_data_in_isr(dev
, i
);
3090 /* check for dev irq */
3091 reg
= readl(&dev
->regs
->irqsts
);
3094 writel(reg
, &dev
->regs
->irqsts
);
3095 ret_val
|= udc_dev_isr(dev
, reg
);
3099 spin_unlock(&dev
->lock
);
3103 /* Tears down device */
3104 static void gadget_release(struct device
*pdev
)
3106 struct amd5536udc
*dev
= dev_get_drvdata(pdev
);
3110 /* Cleanup on device remove */
3111 static void udc_remove(struct udc
*dev
)
3115 if (timer_pending(&udc_timer
))
3116 wait_for_completion(&on_exit
);
3118 del_timer_sync(&udc_timer
);
3119 /* remove pollstall timer */
3120 stop_pollstall_timer
++;
3121 if (timer_pending(&udc_pollstall_timer
))
3122 wait_for_completion(&on_pollstall_exit
);
3123 if (udc_pollstall_timer
.data
)
3124 del_timer_sync(&udc_pollstall_timer
);
3128 /* Reset all pci context */
3129 static void udc_pci_remove(struct pci_dev
*pdev
)
3133 dev
= pci_get_drvdata(pdev
);
3135 /* gadget driver must not be registered */
3136 BUG_ON(dev
->driver
!= NULL
);
3138 /* dma pool cleanup */
3139 if (dev
->data_requests
)
3140 pci_pool_destroy(dev
->data_requests
);
3142 if (dev
->stp_requests
) {
3143 /* cleanup DMA desc's for ep0in */
3144 pci_pool_free(dev
->stp_requests
,
3145 dev
->ep
[UDC_EP0OUT_IX
].td_stp
,
3146 dev
->ep
[UDC_EP0OUT_IX
].td_stp_dma
);
3147 pci_pool_free(dev
->stp_requests
,
3148 dev
->ep
[UDC_EP0OUT_IX
].td
,
3149 dev
->ep
[UDC_EP0OUT_IX
].td_phys
);
3151 pci_pool_destroy(dev
->stp_requests
);
3154 /* reset controller */
3155 writel(AMD_BIT(UDC_DEVCFG_SOFTRESET
), &dev
->regs
->cfg
);
3156 if (dev
->irq_registered
)
3157 free_irq(pdev
->irq
, dev
);
3160 if (dev
->mem_region
)
3161 release_mem_region(pci_resource_start(pdev
, 0),
3162 pci_resource_len(pdev
, 0));
3164 pci_disable_device(pdev
);
3166 device_unregister(&dev
->gadget
.dev
);
3167 pci_set_drvdata(pdev
, NULL
);
3172 /* create dma pools on init */
3173 static int init_dma_pools(struct udc
*dev
)
3175 struct udc_stp_dma
*td_stp
;
3176 struct udc_data_dma
*td_data
;
3179 /* consistent DMA mode setting ? */
3181 use_dma_bufferfill_mode
= 0;
3184 use_dma_bufferfill_mode
= 1;
3188 dev
->data_requests
= dma_pool_create("data_requests", NULL
,
3189 sizeof(struct udc_data_dma
), 0, 0);
3190 if (!dev
->data_requests
) {
3191 DBG(dev
, "can't get request data pool\n");
3196 /* EP0 in dma regs = dev control regs */
3197 dev
->ep
[UDC_EP0IN_IX
].dma
= &dev
->regs
->ctl
;
3199 /* dma desc for setup data */
3200 dev
->stp_requests
= dma_pool_create("setup requests", NULL
,
3201 sizeof(struct udc_stp_dma
), 0, 0);
3202 if (!dev
->stp_requests
) {
3203 DBG(dev
, "can't get stp request pool\n");
3208 td_stp
= dma_pool_alloc(dev
->stp_requests
, GFP_KERNEL
,
3209 &dev
->ep
[UDC_EP0OUT_IX
].td_stp_dma
);
3210 if (td_stp
== NULL
) {
3214 dev
->ep
[UDC_EP0OUT_IX
].td_stp
= td_stp
;
3216 /* data: 0 packets !? */
3217 td_data
= dma_pool_alloc(dev
->stp_requests
, GFP_KERNEL
,
3218 &dev
->ep
[UDC_EP0OUT_IX
].td_phys
);
3219 if (td_data
== NULL
) {
3223 dev
->ep
[UDC_EP0OUT_IX
].td
= td_data
;
3230 /* Called by pci bus driver to init pci context */
3231 static int udc_pci_probe(
3232 struct pci_dev
*pdev
,
3233 const struct pci_device_id
*id
3237 unsigned long resource
;
3243 dev_dbg(&pdev
->dev
, "already probed\n");
3248 dev
= kzalloc(sizeof(struct udc
), GFP_KERNEL
);
3255 if (pci_enable_device(pdev
) < 0) {
3263 /* PCI resource allocation */
3264 resource
= pci_resource_start(pdev
, 0);
3265 len
= pci_resource_len(pdev
, 0);
3267 if (!request_mem_region(resource
, len
, name
)) {
3268 dev_dbg(&pdev
->dev
, "pci device used already\n");
3274 dev
->mem_region
= 1;
3276 dev
->virt_addr
= ioremap_nocache(resource
, len
);
3277 if (dev
->virt_addr
== NULL
) {
3278 dev_dbg(&pdev
->dev
, "start address cannot be mapped\n");
3286 dev_err(&dev
->pdev
->dev
, "irq not set\n");
3293 spin_lock_init(&dev
->lock
);
3294 /* udc csr registers base */
3295 dev
->csr
= dev
->virt_addr
+ UDC_CSR_ADDR
;
3296 /* dev registers base */
3297 dev
->regs
= dev
->virt_addr
+ UDC_DEVCFG_ADDR
;
3298 /* ep registers base */
3299 dev
->ep_regs
= dev
->virt_addr
+ UDC_EPREGS_ADDR
;
3301 dev
->rxfifo
= (u32 __iomem
*)(dev
->virt_addr
+ UDC_RXFIFO_ADDR
);
3302 dev
->txfifo
= (u32 __iomem
*)(dev
->virt_addr
+ UDC_TXFIFO_ADDR
);
3304 if (request_irq(pdev
->irq
, udc_irq
, IRQF_SHARED
, name
, dev
) != 0) {
3305 dev_dbg(&dev
->pdev
->dev
, "request_irq(%d) fail\n", pdev
->irq
);
3311 dev
->irq_registered
= 1;
3313 pci_set_drvdata(pdev
, dev
);
3315 /* chip revision for Hs AMD5536 */
3316 dev
->chiprev
= pdev
->revision
;
3318 pci_set_master(pdev
);
3319 pci_try_set_mwi(pdev
);
3321 /* init dma pools */
3323 retval
= init_dma_pools(dev
);
3328 dev
->phys_addr
= resource
;
3329 dev
->irq
= pdev
->irq
;
3331 dev
->gadget
.dev
.parent
= &pdev
->dev
;
3332 dev
->gadget
.dev
.dma_mask
= pdev
->dev
.dma_mask
;
3334 /* general probing */
3335 if (udc_probe(dev
) == 0)
3340 udc_pci_remove(pdev
);
3345 static int udc_probe(struct udc
*dev
)
3351 /* mark timer as not initialized */
3353 udc_pollstall_timer
.data
= 0;
3355 /* device struct setup */
3356 dev
->gadget
.ops
= &udc_ops
;
3358 dev_set_name(&dev
->gadget
.dev
, "gadget");
3359 dev
->gadget
.dev
.release
= gadget_release
;
3360 dev
->gadget
.name
= name
;
3361 dev
->gadget
.name
= name
;
3362 dev
->gadget
.is_dualspeed
= 1;
3364 /* init registers, interrupts, ... */
3365 startup_registers(dev
);
3367 dev_info(&dev
->pdev
->dev
, "%s\n", mod_desc
);
3369 snprintf(tmp
, sizeof tmp
, "%d", dev
->irq
);
3370 dev_info(&dev
->pdev
->dev
,
3371 "irq %s, pci mem %08lx, chip rev %02x(Geode5536 %s)\n",
3372 tmp
, dev
->phys_addr
, dev
->chiprev
,
3373 (dev
->chiprev
== UDC_HSA0_REV
) ? "A0" : "B1");
3374 strcpy(tmp
, UDC_DRIVER_VERSION_STRING
);
3375 if (dev
->chiprev
== UDC_HSA0_REV
) {
3376 dev_err(&dev
->pdev
->dev
, "chip revision is A0; too old\n");
3380 dev_info(&dev
->pdev
->dev
,
3381 "driver version: %s(for Geode5536 B1)\n", tmp
);
3384 retval
= device_register(&dev
->gadget
.dev
);
3389 init_timer(&udc_timer
);
3390 udc_timer
.function
= udc_timer_function
;
3392 /* timer pollstall init */
3393 init_timer(&udc_pollstall_timer
);
3394 udc_pollstall_timer
.function
= udc_pollstall_timer_function
;
3395 udc_pollstall_timer
.data
= 1;
3398 reg
= readl(&dev
->regs
->ctl
);
3399 reg
|= AMD_BIT(UDC_DEVCTL_SD
);
3400 writel(reg
, &dev
->regs
->ctl
);
3402 /* print dev register info */
3411 /* Initiates a remote wakeup */
3412 static int udc_remote_wakeup(struct udc
*dev
)
3414 unsigned long flags
;
3417 DBG(dev
, "UDC initiates remote wakeup\n");
3419 spin_lock_irqsave(&dev
->lock
, flags
);
3421 tmp
= readl(&dev
->regs
->ctl
);
3422 tmp
|= AMD_BIT(UDC_DEVCTL_RES
);
3423 writel(tmp
, &dev
->regs
->ctl
);
3424 tmp
&= AMD_CLEAR_BIT(UDC_DEVCTL_RES
);
3425 writel(tmp
, &dev
->regs
->ctl
);
3427 spin_unlock_irqrestore(&dev
->lock
, flags
);
3431 /* PCI device parameters */
3432 static const struct pci_device_id pci_id
[] = {
3434 PCI_DEVICE(PCI_VENDOR_ID_AMD
, 0x2096),
3435 .class = (PCI_CLASS_SERIAL_USB
<< 8) | 0xfe,
3436 .class_mask
= 0xffffffff,
3440 MODULE_DEVICE_TABLE(pci
, pci_id
);
3443 static struct pci_driver udc_pci_driver
= {
3444 .name
= (char *) name
,
3446 .probe
= udc_pci_probe
,
3447 .remove
= udc_pci_remove
,
3451 static int __init
init(void)
3453 return pci_register_driver(&udc_pci_driver
);
3458 static void __exit
cleanup(void)
3460 pci_unregister_driver(&udc_pci_driver
);
3462 module_exit(cleanup
);
3464 MODULE_DESCRIPTION(UDC_MOD_DESCRIPTION
);
3465 MODULE_AUTHOR("Thomas Dahlmann");
3466 MODULE_LICENSE("GPL");