2 * Copyright (C) 2005-2006 by Texas Instruments
4 * This file implements a DMA interface using TI's CPPI DMA.
5 * For now it's DaVinci-only, but CPPI isn't specific to DaVinci or USB.
6 * The TUSB6020, using VLYNQ, has CPPI that looks much like DaVinci.
9 #include <linux/platform_device.h>
10 #include <linux/usb.h>
12 #include "musb_core.h"
13 #include "musb_debug.h"
17 /* CPPI DMA status 7-mar-2006:
19 * - See musb_{host,gadget}.c for more info
21 * - Correct RX DMA generally forces the engine into irq-per-packet mode,
22 * which can easily saturate the CPU under non-mass-storage loads.
24 * NOTES 24-aug-2006 (2.6.18-rc4):
26 * - peripheral RXDMA wedged in a test with packets of length 512/512/1.
27 * evidently after the 1 byte packet was received and acked, the queue
28 * of BDs got garbaged so it wouldn't empty the fifo. (rxcsr 0x2003,
29 * and RX DMA0: 4 left, 80000000 8feff880, 8feff860 8feff860; 8f321401
30 * 004001ff 00000001 .. 8feff860) Host was just getting NAKed on tx
31 * of its next (512 byte) packet. IRQ issues?
33 * REVISIT: the "transfer DMA" glue between CPPI and USB fifos will
34 * evidently also directly update the RX and TX CSRs ... so audit all
35 * host and peripheral side DMA code to avoid CSR access after DMA has
39 /* REVISIT now we can avoid preallocating these descriptors; or
40 * more simply, switch to a global freelist not per-channel ones.
41 * Note: at full speed, 64 descriptors == 4K bulk data.
43 #define NUM_TXCHAN_BD 64
44 #define NUM_RXCHAN_BD 64
46 static inline void cpu_drain_writebuffer(void)
49 #ifdef CONFIG_CPU_ARM926T
50 /* REVISIT this "should not be needed",
51 * but lack of it sure seemed to hurt ...
53 asm("mcr p15, 0, r0, c7, c10, 4 @ drain write buffer\n");
57 static inline struct cppi_descriptor
*cppi_bd_alloc(struct cppi_channel
*c
)
59 struct cppi_descriptor
*bd
= c
->freelist
;
62 c
->freelist
= bd
->next
;
67 cppi_bd_free(struct cppi_channel
*c
, struct cppi_descriptor
*bd
)
71 bd
->next
= c
->freelist
;
76 * Start DMA controller
78 * Initialize the DMA controller as necessary.
81 /* zero out entire rx state RAM entry for the channel */
82 static void cppi_reset_rx(struct cppi_rx_stateram __iomem
*rx
)
84 musb_writel(&rx
->rx_skipbytes
, 0, 0);
85 musb_writel(&rx
->rx_head
, 0, 0);
86 musb_writel(&rx
->rx_sop
, 0, 0);
87 musb_writel(&rx
->rx_current
, 0, 0);
88 musb_writel(&rx
->rx_buf_current
, 0, 0);
89 musb_writel(&rx
->rx_len_len
, 0, 0);
90 musb_writel(&rx
->rx_cnt_cnt
, 0, 0);
93 /* zero out entire tx state RAM entry for the channel */
94 static void cppi_reset_tx(struct cppi_tx_stateram __iomem
*tx
, u32 ptr
)
96 musb_writel(&tx
->tx_head
, 0, 0);
97 musb_writel(&tx
->tx_buf
, 0, 0);
98 musb_writel(&tx
->tx_current
, 0, 0);
99 musb_writel(&tx
->tx_buf_current
, 0, 0);
100 musb_writel(&tx
->tx_info
, 0, 0);
101 musb_writel(&tx
->tx_rem_len
, 0, 0);
102 /* musb_writel(&tx->tx_dummy, 0, 0); */
103 musb_writel(&tx
->tx_complete
, 0, ptr
);
106 static void __init
cppi_pool_init(struct cppi
*cppi
, struct cppi_channel
*c
)
110 /* initialize channel fields */
113 c
->last_processed
= NULL
;
114 c
->channel
.status
= MUSB_DMA_STATUS_UNKNOWN
;
115 c
->controller
= cppi
;
119 /* build the BD Free list for the channel */
120 for (j
= 0; j
< NUM_TXCHAN_BD
+ 1; j
++) {
121 struct cppi_descriptor
*bd
;
124 bd
= dma_pool_alloc(cppi
->pool
, GFP_KERNEL
, &dma
);
130 static int cppi_channel_abort(struct dma_channel
*);
132 static void cppi_pool_free(struct cppi_channel
*c
)
134 struct cppi
*cppi
= c
->controller
;
135 struct cppi_descriptor
*bd
;
137 (void) cppi_channel_abort(&c
->channel
);
138 c
->channel
.status
= MUSB_DMA_STATUS_UNKNOWN
;
139 c
->controller
= NULL
;
141 /* free all its bds */
142 bd
= c
->last_processed
;
145 dma_pool_free(cppi
->pool
, bd
, bd
->dma
);
146 bd
= cppi_bd_alloc(c
);
148 c
->last_processed
= NULL
;
151 static int __init
cppi_controller_start(struct dma_controller
*c
)
153 struct cppi
*controller
;
154 void __iomem
*tibase
;
157 controller
= container_of(c
, struct cppi
, controller
);
159 /* do whatever is necessary to start controller */
160 for (i
= 0; i
< ARRAY_SIZE(controller
->tx
); i
++) {
161 controller
->tx
[i
].transmit
= true;
162 controller
->tx
[i
].index
= i
;
164 for (i
= 0; i
< ARRAY_SIZE(controller
->rx
); i
++) {
165 controller
->rx
[i
].transmit
= false;
166 controller
->rx
[i
].index
= i
;
169 /* setup BD list on a per channel basis */
170 for (i
= 0; i
< ARRAY_SIZE(controller
->tx
); i
++)
171 cppi_pool_init(controller
, controller
->tx
+ i
);
172 for (i
= 0; i
< ARRAY_SIZE(controller
->rx
); i
++)
173 cppi_pool_init(controller
, controller
->rx
+ i
);
175 tibase
= controller
->tibase
;
176 INIT_LIST_HEAD(&controller
->tx_complete
);
178 /* initialise tx/rx channel head pointers to zero */
179 for (i
= 0; i
< ARRAY_SIZE(controller
->tx
); i
++) {
180 struct cppi_channel
*tx_ch
= controller
->tx
+ i
;
181 struct cppi_tx_stateram __iomem
*tx
;
183 INIT_LIST_HEAD(&tx_ch
->tx_complete
);
185 tx
= tibase
+ DAVINCI_TXCPPI_STATERAM_OFFSET(i
);
186 tx_ch
->state_ram
= tx
;
187 cppi_reset_tx(tx
, 0);
189 for (i
= 0; i
< ARRAY_SIZE(controller
->rx
); i
++) {
190 struct cppi_channel
*rx_ch
= controller
->rx
+ i
;
191 struct cppi_rx_stateram __iomem
*rx
;
193 INIT_LIST_HEAD(&rx_ch
->tx_complete
);
195 rx
= tibase
+ DAVINCI_RXCPPI_STATERAM_OFFSET(i
);
196 rx_ch
->state_ram
= rx
;
200 /* enable individual cppi channels */
201 musb_writel(tibase
, DAVINCI_TXCPPI_INTENAB_REG
,
202 DAVINCI_DMA_ALL_CHANNELS_ENABLE
);
203 musb_writel(tibase
, DAVINCI_RXCPPI_INTENAB_REG
,
204 DAVINCI_DMA_ALL_CHANNELS_ENABLE
);
206 /* enable tx/rx CPPI control */
207 musb_writel(tibase
, DAVINCI_TXCPPI_CTRL_REG
, DAVINCI_DMA_CTRL_ENABLE
);
208 musb_writel(tibase
, DAVINCI_RXCPPI_CTRL_REG
, DAVINCI_DMA_CTRL_ENABLE
);
210 /* disable RNDIS mode, also host rx RNDIS autorequest */
211 musb_writel(tibase
, DAVINCI_RNDIS_REG
, 0);
212 musb_writel(tibase
, DAVINCI_AUTOREQ_REG
, 0);
218 * Stop DMA controller
220 * De-Init the DMA controller as necessary.
223 static int cppi_controller_stop(struct dma_controller
*c
)
225 struct cppi
*controller
;
226 void __iomem
*tibase
;
229 controller
= container_of(c
, struct cppi
, controller
);
231 tibase
= controller
->tibase
;
232 /* DISABLE INDIVIDUAL CHANNEL Interrupts */
233 musb_writel(tibase
, DAVINCI_TXCPPI_INTCLR_REG
,
234 DAVINCI_DMA_ALL_CHANNELS_ENABLE
);
235 musb_writel(tibase
, DAVINCI_RXCPPI_INTCLR_REG
,
236 DAVINCI_DMA_ALL_CHANNELS_ENABLE
);
238 DBG(1, "Tearing down RX and TX Channels\n");
239 for (i
= 0; i
< ARRAY_SIZE(controller
->tx
); i
++) {
240 /* FIXME restructure of txdma to use bds like rxdma */
241 controller
->tx
[i
].last_processed
= NULL
;
242 cppi_pool_free(controller
->tx
+ i
);
244 for (i
= 0; i
< ARRAY_SIZE(controller
->rx
); i
++)
245 cppi_pool_free(controller
->rx
+ i
);
247 /* in Tx Case proper teardown is supported. We resort to disabling
248 * Tx/Rx CPPI after cleanup of Tx channels. Before TX teardown is
249 * complete TX CPPI cannot be disabled.
251 /*disable tx/rx cppi */
252 musb_writel(tibase
, DAVINCI_TXCPPI_CTRL_REG
, DAVINCI_DMA_CTRL_DISABLE
);
253 musb_writel(tibase
, DAVINCI_RXCPPI_CTRL_REG
, DAVINCI_DMA_CTRL_DISABLE
);
258 /* While dma channel is allocated, we only want the core irqs active
259 * for fault reports, otherwise we'd get irqs that we don't care about.
260 * Except for TX irqs, where dma done != fifo empty and reusable ...
262 * NOTE: docs don't say either way, but irq masking **enables** irqs.
264 * REVISIT same issue applies to pure PIO usage too, and non-cppi dma...
266 static inline void core_rxirq_disable(void __iomem
*tibase
, unsigned epnum
)
268 musb_writel(tibase
, DAVINCI_USB_INT_MASK_CLR_REG
, 1 << (epnum
+ 8));
271 static inline void core_rxirq_enable(void __iomem
*tibase
, unsigned epnum
)
273 musb_writel(tibase
, DAVINCI_USB_INT_MASK_SET_REG
, 1 << (epnum
+ 8));
278 * Allocate a CPPI Channel for DMA. With CPPI, channels are bound to
279 * each transfer direction of a non-control endpoint, so allocating
280 * (and deallocating) is mostly a way to notice bad housekeeping on
281 * the software side. We assume the irqs are always active.
283 static struct dma_channel
*
284 cppi_channel_allocate(struct dma_controller
*c
,
285 struct musb_hw_ep
*ep
, u8 transmit
)
287 struct cppi
*controller
;
289 struct cppi_channel
*cppi_ch
;
290 void __iomem
*tibase
;
292 controller
= container_of(c
, struct cppi
, controller
);
293 tibase
= controller
->tibase
;
295 /* ep0 doesn't use DMA; remember cppi indices are 0..N-1 */
296 index
= ep
->epnum
- 1;
298 /* return the corresponding CPPI Channel Handle, and
299 * probably disable the non-CPPI irq until we need it.
302 if (index
>= ARRAY_SIZE(controller
->tx
)) {
303 DBG(1, "no %cX%d CPPI channel\n", 'T', index
);
306 cppi_ch
= controller
->tx
+ index
;
308 if (index
>= ARRAY_SIZE(controller
->rx
)) {
309 DBG(1, "no %cX%d CPPI channel\n", 'R', index
);
312 cppi_ch
= controller
->rx
+ index
;
313 core_rxirq_disable(tibase
, ep
->epnum
);
316 /* REVISIT make this an error later once the same driver code works
317 * with the other DMA engine too
320 DBG(1, "re-allocating DMA%d %cX channel %p\n",
321 index
, transmit
? 'T' : 'R', cppi_ch
);
323 cppi_ch
->channel
.status
= MUSB_DMA_STATUS_FREE
;
325 DBG(4, "Allocate CPPI%d %cX\n", index
, transmit
? 'T' : 'R');
326 return &cppi_ch
->channel
;
329 /* Release a CPPI Channel. */
330 static void cppi_channel_release(struct dma_channel
*channel
)
332 struct cppi_channel
*c
;
333 void __iomem
*tibase
;
335 /* REVISIT: for paranoia, check state and abort if needed... */
337 c
= container_of(channel
, struct cppi_channel
, channel
);
338 tibase
= c
->controller
->tibase
;
340 DBG(1, "releasing idle DMA channel %p\n", c
);
341 else if (!c
->transmit
)
342 core_rxirq_enable(tibase
, c
->index
+ 1);
344 /* for now, leave its cppi IRQ enabled (we won't trigger it) */
346 channel
->status
= MUSB_DMA_STATUS_UNKNOWN
;
349 /* Context: controller irqlocked */
351 cppi_dump_rx(int level
, struct cppi_channel
*c
, const char *tag
)
353 void __iomem
*base
= c
->controller
->mregs
;
354 struct cppi_rx_stateram __iomem
*rx
= c
->state_ram
;
356 musb_ep_select(base
, c
->index
+ 1);
358 DBG(level
, "RX DMA%d%s: %d left, csr %04x, "
359 "%08x H%08x S%08x C%08x, "
360 "B%08x L%08x %08x .. %08x"
363 musb_readl(c
->controller
->tibase
,
364 DAVINCI_RXCPPI_BUFCNT0_REG
+ 4 * c
->index
),
365 musb_readw(c
->hw_ep
->regs
, MUSB_RXCSR
),
367 musb_readl(&rx
->rx_skipbytes
, 0),
368 musb_readl(&rx
->rx_head
, 0),
369 musb_readl(&rx
->rx_sop
, 0),
370 musb_readl(&rx
->rx_current
, 0),
372 musb_readl(&rx
->rx_buf_current
, 0),
373 musb_readl(&rx
->rx_len_len
, 0),
374 musb_readl(&rx
->rx_cnt_cnt
, 0),
375 musb_readl(&rx
->rx_complete
, 0)
379 /* Context: controller irqlocked */
381 cppi_dump_tx(int level
, struct cppi_channel
*c
, const char *tag
)
383 void __iomem
*base
= c
->controller
->mregs
;
384 struct cppi_tx_stateram __iomem
*tx
= c
->state_ram
;
386 musb_ep_select(base
, c
->index
+ 1);
388 DBG(level
, "TX DMA%d%s: csr %04x, "
389 "H%08x S%08x C%08x %08x, "
390 "F%08x L%08x .. %08x"
393 musb_readw(c
->hw_ep
->regs
, MUSB_TXCSR
),
395 musb_readl(&tx
->tx_head
, 0),
396 musb_readl(&tx
->tx_buf
, 0),
397 musb_readl(&tx
->tx_current
, 0),
398 musb_readl(&tx
->tx_buf_current
, 0),
400 musb_readl(&tx
->tx_info
, 0),
401 musb_readl(&tx
->tx_rem_len
, 0),
402 /* dummy/unused word 6 */
403 musb_readl(&tx
->tx_complete
, 0)
407 /* Context: controller irqlocked */
409 cppi_rndis_update(struct cppi_channel
*c
, int is_rx
,
410 void __iomem
*tibase
, int is_rndis
)
412 /* we may need to change the rndis flag for this cppi channel */
413 if (c
->is_rndis
!= is_rndis
) {
414 u32 value
= musb_readl(tibase
, DAVINCI_RNDIS_REG
);
415 u32 temp
= 1 << (c
->index
);
423 musb_writel(tibase
, DAVINCI_RNDIS_REG
, value
);
424 c
->is_rndis
= is_rndis
;
428 #ifdef CONFIG_USB_MUSB_DEBUG
429 static void cppi_dump_rxbd(const char *tag
, struct cppi_descriptor
*bd
)
431 pr_debug("RXBD/%s %08x: "
432 "nxt %08x buf %08x off.blen %08x opt.plen %08x\n",
434 bd
->hw_next
, bd
->hw_bufp
, bd
->hw_off_len
,
439 static void cppi_dump_rxq(int level
, const char *tag
, struct cppi_channel
*rx
)
441 #ifdef CONFIG_USB_MUSB_DEBUG
442 struct cppi_descriptor
*bd
;
444 if (!_dbg_level(level
))
446 cppi_dump_rx(level
, rx
, tag
);
447 if (rx
->last_processed
)
448 cppi_dump_rxbd("last", rx
->last_processed
);
449 for (bd
= rx
->head
; bd
; bd
= bd
->next
)
450 cppi_dump_rxbd("active", bd
);
455 /* NOTE: DaVinci autoreq is ignored except for host side "RNDIS" mode RX;
456 * so we won't ever use it (see "CPPI RX Woes" below).
458 static inline int cppi_autoreq_update(struct cppi_channel
*rx
,
459 void __iomem
*tibase
, int onepacket
, unsigned n_bds
)
463 #ifdef RNDIS_RX_IS_USABLE
465 /* assert(is_host_active(musb)) */
467 /* start from "AutoReq never" */
468 tmp
= musb_readl(tibase
, DAVINCI_AUTOREQ_REG
);
469 val
= tmp
& ~((0x3) << (rx
->index
* 2));
471 /* HCD arranged reqpkt for packet #1. we arrange int
472 * for all but the last one, maybe in two segments.
476 /* use two segments, autoreq "all" then the last "never" */
477 val
|= ((0x3) << (rx
->index
* 2));
480 /* one segment, autoreq "all-but-last" */
481 val
|= ((0x1) << (rx
->index
* 2));
488 /* make sure that autoreq is updated before continuing */
489 musb_writel(tibase
, DAVINCI_AUTOREQ_REG
, val
);
491 tmp
= musb_readl(tibase
, DAVINCI_AUTOREQ_REG
);
499 /* REQPKT is turned off after each segment */
500 if (n_bds
&& rx
->channel
.actual_len
) {
501 void __iomem
*regs
= rx
->hw_ep
->regs
;
503 val
= musb_readw(regs
, MUSB_RXCSR
);
504 if (!(val
& MUSB_RXCSR_H_REQPKT
)) {
505 val
|= MUSB_RXCSR_H_REQPKT
| MUSB_RXCSR_H_WZC_BITS
;
506 musb_writew(regs
, MUSB_RXCSR
, val
);
507 /* flush writebufer */
508 val
= musb_readw(regs
, MUSB_RXCSR
);
515 /* Buffer enqueuing Logic:
517 * - RX builds new queues each time, to help handle routine "early
518 * termination" cases (faults, including errors and short reads)
521 * - for now, TX reuses the same queue of BDs every time
523 * REVISIT long term, we want a normal dynamic model.
524 * ... the goal will be to append to the
525 * existing queue, processing completed "dma buffers" (segments) on the fly.
527 * Otherwise we force an IRQ latency between requests, which slows us a lot
528 * (especially in "transparent" dma). Unfortunately that model seems to be
529 * inherent in the DMA model from the Mentor code, except in the rare case
530 * of transfers big enough (~128+ KB) that we could append "middle" segments
531 * in the TX paths. (RX can't do this, see below.)
533 * That's true even in the CPPI- friendly iso case, where most urbs have
534 * several small segments provided in a group and where the "packet at a time"
535 * "transparent" DMA model is always correct, even on the RX side.
541 * TX is a lot more reasonable than RX; it doesn't need to run in
542 * irq-per-packet mode very often. RNDIS mode seems to behave too
543 * (except how it handles the exactly-N-packets case). Building a
544 * txdma queue with multiple requests (urb or usb_request) looks
545 * like it would work ... but fault handling would need much testing.
547 * The main issue with TX mode RNDIS relates to transfer lengths that
548 * are an exact multiple of the packet length. It appears that there's
549 * a hiccup in that case (maybe the DMA completes before the ZLP gets
550 * written?) boiling down to not being able to rely on CPPI writing any
551 * terminating zero length packet before the next transfer is written.
552 * So that's punted to PIO; better yet, gadget drivers can avoid it.
554 * Plus, there's allegedly an undocumented constraint that rndis transfer
555 * length be a multiple of 64 bytes ... but the chip doesn't act that
556 * way, and we really don't _want_ that behavior anyway.
558 * On TX, "transparent" mode works ... although experiments have shown
559 * problems trying to use the SOP/EOP bits in different USB packets.
561 * REVISIT try to handle terminating zero length packets using CPPI
562 * instead of doing it by PIO after an IRQ. (Meanwhile, make Ethernet
563 * links avoid that issue by forcing them to avoid zlps.)
566 cppi_next_tx_segment(struct musb
*musb
, struct cppi_channel
*tx
)
568 unsigned maxpacket
= tx
->maxpacket
;
569 dma_addr_t addr
= tx
->buf_dma
+ tx
->offset
;
570 size_t length
= tx
->buf_len
- tx
->offset
;
571 struct cppi_descriptor
*bd
;
574 struct cppi_tx_stateram __iomem
*tx_ram
= tx
->state_ram
;
577 /* TX can use the CPPI "rndis" mode, where we can probably fit this
578 * transfer in one BD and one IRQ. The only time we would NOT want
579 * to use it is when hardware constraints prevent it, or if we'd
580 * trigger the "send a ZLP?" confusion.
582 rndis
= (maxpacket
& 0x3f) == 0
583 && length
> maxpacket
585 && (length
% maxpacket
) != 0;
591 n_bds
= length
/ maxpacket
;
592 if (!length
|| (length
% maxpacket
))
594 n_bds
= min(n_bds
, (unsigned) NUM_TXCHAN_BD
);
595 length
= min(n_bds
* maxpacket
, length
);
598 DBG(4, "TX DMA%d, pktSz %d %s bds %d dma 0x%x len %u\n",
601 rndis
? "rndis" : "transparent",
605 cppi_rndis_update(tx
, 0, musb
->ctrl_base
, rndis
);
607 /* assuming here that channel_program is called during
608 * transfer initiation ... current code maintains state
609 * for one outstanding request only (no queues, not even
610 * the implicit ones of an iso urb).
615 tx
->last_processed
= NULL
;
617 /* FIXME use BD pool like RX side does, and just queue
618 * the minimum number for this request.
621 /* Prepare queue of BDs first, then hand it to hardware.
622 * All BDs except maybe the last should be of full packet
623 * size; for RNDIS there _is_ only that last packet.
625 for (i
= 0; i
< n_bds
; ) {
626 if (++i
< n_bds
&& bd
->next
)
627 bd
->hw_next
= bd
->next
->dma
;
631 bd
->hw_bufp
= tx
->buf_dma
+ tx
->offset
;
633 /* FIXME set EOP only on the last packet,
634 * SOP only on the first ... avoid IRQs
636 if ((tx
->offset
+ maxpacket
) <= tx
->buf_len
) {
637 tx
->offset
+= maxpacket
;
638 bd
->hw_off_len
= maxpacket
;
639 bd
->hw_options
= CPPI_SOP_SET
| CPPI_EOP_SET
640 | CPPI_OWN_SET
| maxpacket
;
642 /* only this one may be a partial USB Packet */
645 partial_len
= tx
->buf_len
- tx
->offset
;
646 tx
->offset
= tx
->buf_len
;
647 bd
->hw_off_len
= partial_len
;
649 bd
->hw_options
= CPPI_SOP_SET
| CPPI_EOP_SET
650 | CPPI_OWN_SET
| partial_len
;
651 if (partial_len
== 0)
652 bd
->hw_options
|= CPPI_ZERO_SET
;
655 DBG(5, "TXBD %p: nxt %08x buf %08x len %04x opt %08x\n",
656 bd
, bd
->hw_next
, bd
->hw_bufp
,
657 bd
->hw_off_len
, bd
->hw_options
);
659 /* update the last BD enqueued to the list */
664 /* BDs live in DMA-coherent memory, but writes might be pending */
665 cpu_drain_writebuffer();
667 /* Write to the HeadPtr in state RAM to trigger */
668 musb_writel(&tx_ram
->tx_head
, 0, (u32
)tx
->freelist
->dma
);
670 cppi_dump_tx(5, tx
, "/S");
676 * Consider a 1KB bulk RX buffer in two scenarios: (a) it's fed two 300 byte
677 * packets back-to-back, and (b) it's fed two 512 byte packets back-to-back.
678 * (Full speed transfers have similar scenarios.)
680 * The correct behavior for Linux is that (a) fills the buffer with 300 bytes,
681 * and the next packet goes into a buffer that's queued later; while (b) fills
682 * the buffer with 1024 bytes. How to do that with CPPI?
684 * - RX queues in "rndis" mode -- one single BD -- handle (a) correctly, but
685 * (b) loses **BADLY** because nothing (!) happens when that second packet
686 * fills the buffer, much less when a third one arrives. (Which makes this
687 * not a "true" RNDIS mode. In the RNDIS protocol short-packet termination
688 * is optional, and it's fine if peripherals -- not hosts! -- pad messages
689 * out to end-of-buffer. Standard PCI host controller DMA descriptors
690 * implement that mode by default ... which is no accident.)
692 * - RX queues in "transparent" mode -- two BDs with 512 bytes each -- have
693 * converse problems: (b) is handled right, but (a) loses badly. CPPI RX
694 * ignores SOP/EOP markings and processes both of those BDs; so both packets
695 * are loaded into the buffer (with a 212 byte gap between them), and the next
696 * buffer queued will NOT get its 300 bytes of data. (It seems like SOP/EOP
697 * are intended as outputs for RX queues, not inputs...)
699 * - A variant of "transparent" mode -- one BD at a time -- is the only way to
700 * reliably make both cases work, with software handling both cases correctly
701 * and at the significant penalty of needing an IRQ per packet. (The lack of
702 * I/O overlap can be slightly ameliorated by enabling double buffering.)
704 * So how to get rid of IRQ-per-packet? The transparent multi-BD case could
705 * be used in special cases like mass storage, which sets URB_SHORT_NOT_OK
706 * (or maybe its peripheral side counterpart) to flag (a) scenarios as errors
707 * with guaranteed driver level fault recovery and scrubbing out what's left
708 * of that garbaged datastream.
710 * But there seems to be no way to identify the cases where CPPI RNDIS mode
711 * is appropriate -- which do NOT include RNDIS host drivers, but do include
712 * the CDC Ethernet driver! -- and the documentation is incomplete/wrong.
713 * So we can't _ever_ use RX RNDIS mode ... except by using a heuristic
714 * that applies best on the peripheral side (and which could fail rudely).
716 * Leaving only "transparent" mode; we avoid multi-bd modes in almost all
717 * cases other than mass storage class. Otherwise we're correct but slow,
718 * since CPPI penalizes our need for a "true RNDIS" default mode.
722 /* Heuristic, intended to kick in for ethernet/rndis peripheral ONLY
725 * (a) peripheral mode ... since rndis peripherals could pad their
726 * writes to hosts, causing i/o failure; or we'd have to cope with
727 * a largely unknowable variety of host side protocol variants
728 * (b) and short reads are NOT errors ... since full reads would
729 * cause those same i/o failures
730 * (c) and read length is
731 * - less than 64KB (max per cppi descriptor)
732 * - not a multiple of 4096 (g_zero default, full reads typical)
733 * - N (>1) packets long, ditto (full reads not EXPECTED)
737 * Cost of heuristic failing: RXDMA wedges at the end of transfers that
738 * fill out the whole buffer. Buggy host side usb network drivers could
739 * trigger that, but "in the field" such bugs seem to be all but unknown.
741 * So this module parameter lets the heuristic be disabled. When using
742 * gadgetfs, the heuristic will probably need to be disabled.
744 static int cppi_rx_rndis
= 1;
746 module_param(cppi_rx_rndis
, bool, 0);
747 MODULE_PARM_DESC(cppi_rx_rndis
, "enable/disable RX RNDIS heuristic");
751 * cppi_next_rx_segment - dma read for the next chunk of a buffer
752 * @musb: the controller
754 * @onepacket: true unless caller treats short reads as errors, and
755 * performs fault recovery above usbcore.
756 * Context: controller irqlocked
758 * See above notes about why we can't use multi-BD RX queues except in
759 * rare cases (mass storage class), and can never use the hardware "rndis"
760 * mode (since it's not a "true" RNDIS mode) with complete safety..
762 * It's ESSENTIAL that callers specify "onepacket" mode unless they kick in
763 * code to recover from corrupted datastreams after each short transfer.
766 cppi_next_rx_segment(struct musb
*musb
, struct cppi_channel
*rx
, int onepacket
)
768 unsigned maxpacket
= rx
->maxpacket
;
769 dma_addr_t addr
= rx
->buf_dma
+ rx
->offset
;
770 size_t length
= rx
->buf_len
- rx
->offset
;
771 struct cppi_descriptor
*bd
, *tail
;
774 void __iomem
*tibase
= musb
->ctrl_base
;
776 struct cppi_rx_stateram __iomem
*rx_ram
= rx
->state_ram
;
779 /* almost every USB driver, host or peripheral side */
782 /* maybe apply the heuristic above */
784 && is_peripheral_active(musb
)
785 && length
> maxpacket
786 && (length
& ~0xffff) == 0
787 && (length
& 0x0fff) != 0
788 && (length
& (maxpacket
- 1)) == 0) {
793 /* virtually nothing except mass storage class */
794 if (length
> 0xffff) {
795 n_bds
= 0xffff / maxpacket
;
796 length
= n_bds
* maxpacket
;
798 n_bds
= length
/ maxpacket
;
799 if (length
% maxpacket
)
805 n_bds
= min(n_bds
, (unsigned) NUM_RXCHAN_BD
);
808 /* In host mode, autorequest logic can generate some IN tokens; it's
809 * tricky since we can't leave REQPKT set in RXCSR after the transfer
810 * finishes. So: multipacket transfers involve two or more segments.
811 * And always at least two IRQs ... RNDIS mode is not an option.
813 if (is_host_active(musb
))
814 n_bds
= cppi_autoreq_update(rx
, tibase
, onepacket
, n_bds
);
816 cppi_rndis_update(rx
, 1, musb
->ctrl_base
, is_rndis
);
818 length
= min(n_bds
* maxpacket
, length
);
820 DBG(4, "RX DMA%d seg, maxp %d %s bds %d (cnt %d) "
821 "dma 0x%x len %u %u/%u\n",
822 rx
->index
, maxpacket
,
824 ? (is_rndis
? "rndis" : "onepacket")
828 DAVINCI_RXCPPI_BUFCNT0_REG
+ (rx
->index
* 4))
830 addr
, length
, rx
->channel
.actual_len
, rx
->buf_len
);
832 /* only queue one segment at a time, since the hardware prevents
833 * correct queue shutdown after unexpected short packets
835 bd
= cppi_bd_alloc(rx
);
838 /* Build BDs for all packets in this segment */
839 for (i
= 0, tail
= NULL
; bd
&& i
< n_bds
; i
++, tail
= bd
) {
843 bd
= cppi_bd_alloc(rx
);
847 tail
->hw_next
= bd
->dma
;
851 /* all but the last packet will be maxpacket size */
852 if (maxpacket
< length
)
859 rx
->offset
+= bd_len
;
861 bd
->hw_off_len
= (0 /*offset*/ << 16) + bd_len
;
864 bd
->hw_options
= CPPI_OWN_SET
| (i
== 0 ? length
: 0);
868 /* we always expect at least one reusable BD! */
870 WARNING("rx dma%d -- no BDs? need %d\n", rx
->index
, n_bds
);
872 } else if (i
< n_bds
)
873 WARNING("rx dma%d -- only %d of %d BDs\n", rx
->index
, i
, n_bds
);
881 /* short reads and other faults should terminate this entire
882 * dma segment. we want one "dma packet" per dma segment, not
883 * one per USB packet, terminating the whole queue at once...
884 * NOTE that current hardware seems to ignore SOP and EOP.
886 bd
->hw_options
|= CPPI_SOP_SET
;
887 tail
->hw_options
|= CPPI_EOP_SET
;
889 #ifdef CONFIG_USB_MUSB_DEBUG
891 struct cppi_descriptor
*d
;
893 for (d
= rx
->head
; d
; d
= d
->next
)
894 cppi_dump_rxbd("S", d
);
898 /* in case the preceding transfer left some state... */
899 tail
= rx
->last_processed
;
902 tail
->hw_next
= bd
->dma
;
905 core_rxirq_enable(tibase
, rx
->index
+ 1);
907 /* BDs live in DMA-coherent memory, but writes might be pending */
908 cpu_drain_writebuffer();
910 /* REVISIT specs say to write this AFTER the BUFCNT register
911 * below ... but that loses badly.
913 musb_writel(&rx_ram
->rx_head
, 0, bd
->dma
);
915 /* bufferCount must be at least 3, and zeroes on completion
916 * unless it underflows below zero, or stops at two, or keeps
919 i
= musb_readl(tibase
,
920 DAVINCI_RXCPPI_BUFCNT0_REG
+ (rx
->index
* 4))
925 DAVINCI_RXCPPI_BUFCNT0_REG
+ (rx
->index
* 4),
927 else if (n_bds
> (i
- 3))
929 DAVINCI_RXCPPI_BUFCNT0_REG
+ (rx
->index
* 4),
932 i
= musb_readl(tibase
,
933 DAVINCI_RXCPPI_BUFCNT0_REG
+ (rx
->index
* 4))
935 if (i
< (2 + n_bds
)) {
936 DBG(2, "bufcnt%d underrun - %d (for %d)\n",
937 rx
->index
, i
, n_bds
);
939 DAVINCI_RXCPPI_BUFCNT0_REG
+ (rx
->index
* 4),
943 cppi_dump_rx(4, rx
, "/S");
947 * cppi_channel_program - program channel for data transfer
949 * @maxpacket: max packet size
950 * @mode: For RX, 1 unless the usb protocol driver promised to treat
951 * all short reads as errors and kick in high level fault recovery.
952 * For TX, ignored because of RNDIS mode races/glitches.
953 * @dma_addr: dma address of buffer
954 * @len: length of buffer
955 * Context: controller irqlocked
957 static int cppi_channel_program(struct dma_channel
*ch
,
958 u16 maxpacket
, u8 mode
,
959 dma_addr_t dma_addr
, u32 len
)
961 struct cppi_channel
*cppi_ch
;
962 struct cppi
*controller
;
965 cppi_ch
= container_of(ch
, struct cppi_channel
, channel
);
966 controller
= cppi_ch
->controller
;
967 musb
= controller
->musb
;
969 switch (ch
->status
) {
970 case MUSB_DMA_STATUS_BUS_ABORT
:
971 case MUSB_DMA_STATUS_CORE_ABORT
:
972 /* fault irq handler should have handled cleanup */
973 WARNING("%cX DMA%d not cleaned up after abort!\n",
974 cppi_ch
->transmit
? 'T' : 'R',
978 case MUSB_DMA_STATUS_BUSY
:
979 WARNING("program active channel? %cX DMA%d\n",
980 cppi_ch
->transmit
? 'T' : 'R',
984 case MUSB_DMA_STATUS_UNKNOWN
:
985 DBG(1, "%cX DMA%d not allocated!\n",
986 cppi_ch
->transmit
? 'T' : 'R',
989 case MUSB_DMA_STATUS_FREE
:
993 ch
->status
= MUSB_DMA_STATUS_BUSY
;
995 /* set transfer parameters, then queue up its first segment */
996 cppi_ch
->buf_dma
= dma_addr
;
998 cppi_ch
->maxpacket
= maxpacket
;
999 cppi_ch
->buf_len
= len
;
1000 cppi_ch
->channel
.actual_len
= 0;
1002 /* TX channel? or RX? */
1003 if (cppi_ch
->transmit
)
1004 cppi_next_tx_segment(musb
, cppi_ch
);
1006 cppi_next_rx_segment(musb
, cppi_ch
, mode
);
1011 static bool cppi_rx_scan(struct cppi
*cppi
, unsigned ch
)
1013 struct cppi_channel
*rx
= &cppi
->rx
[ch
];
1014 struct cppi_rx_stateram __iomem
*state
= rx
->state_ram
;
1015 struct cppi_descriptor
*bd
;
1016 struct cppi_descriptor
*last
= rx
->last_processed
;
1017 bool completed
= false;
1020 dma_addr_t safe2ack
;
1021 void __iomem
*regs
= rx
->hw_ep
->regs
;
1023 cppi_dump_rx(6, rx
, "/K");
1025 bd
= last
? last
->next
: rx
->head
;
1029 /* run through all completed BDs */
1030 for (i
= 0, safe2ack
= musb_readl(&state
->rx_complete
, 0);
1031 (safe2ack
|| completed
) && bd
&& i
< NUM_RXCHAN_BD
;
1032 i
++, bd
= bd
->next
) {
1035 /* catch latest BD writes from CPPI */
1037 if (!completed
&& (bd
->hw_options
& CPPI_OWN_SET
))
1040 DBG(5, "C/RXBD %08x: nxt %08x buf %08x "
1041 "off.len %08x opt.len %08x (%d)\n",
1042 bd
->dma
, bd
->hw_next
, bd
->hw_bufp
,
1043 bd
->hw_off_len
, bd
->hw_options
,
1044 rx
->channel
.actual_len
);
1046 /* actual packet received length */
1047 if ((bd
->hw_options
& CPPI_SOP_SET
) && !completed
)
1048 len
= bd
->hw_off_len
& CPPI_RECV_PKTLEN_MASK
;
1052 if (bd
->hw_options
& CPPI_EOQ_MASK
)
1055 if (!completed
&& len
< bd
->buflen
) {
1056 /* NOTE: when we get a short packet, RXCSR_H_REQPKT
1057 * must have been cleared, and no more DMA packets may
1058 * active be in the queue... TI docs didn't say, but
1059 * CPPI ignores those BDs even though OWN is still set.
1062 DBG(3, "rx short %d/%d (%d)\n",
1064 rx
->channel
.actual_len
);
1067 /* If we got here, we expect to ack at least one BD; meanwhile
1068 * CPPI may completing other BDs while we scan this list...
1070 * RACE: we can notice OWN cleared before CPPI raises the
1071 * matching irq by writing that BD as the completion pointer.
1072 * In such cases, stop scanning and wait for the irq, avoiding
1073 * lost acks and states where BD ownership is unclear.
1075 if (bd
->dma
== safe2ack
) {
1076 musb_writel(&state
->rx_complete
, 0, safe2ack
);
1077 safe2ack
= musb_readl(&state
->rx_complete
, 0);
1079 if (bd
->dma
== safe2ack
)
1083 rx
->channel
.actual_len
+= len
;
1085 cppi_bd_free(rx
, last
);
1088 /* stop scanning on end-of-segment */
1089 if (bd
->hw_next
== 0)
1092 rx
->last_processed
= last
;
1094 /* dma abort, lost ack, or ... */
1095 if (!acked
&& last
) {
1098 if (safe2ack
== 0 || safe2ack
== rx
->last_processed
->dma
)
1099 musb_writel(&state
->rx_complete
, 0, safe2ack
);
1100 if (safe2ack
== 0) {
1101 cppi_bd_free(rx
, last
);
1102 rx
->last_processed
= NULL
;
1104 /* if we land here on the host side, H_REQPKT will
1105 * be clear and we need to restart the queue...
1109 musb_ep_select(cppi
->mregs
, rx
->index
+ 1);
1110 csr
= musb_readw(regs
, MUSB_RXCSR
);
1111 if (csr
& MUSB_RXCSR_DMAENAB
) {
1112 DBG(4, "list%d %p/%p, last %08x%s, csr %04x\n",
1116 ? rx
->last_processed
->dma
1118 completed
? ", completed" : "",
1120 cppi_dump_rxq(4, "/what?", rx
);
1128 /* REVISIT seems like "autoreq all but EOP" doesn't...
1129 * setting it here "should" be racey, but seems to work
1131 csr
= musb_readw(rx
->hw_ep
->regs
, MUSB_RXCSR
);
1132 if (is_host_active(cppi
->musb
)
1134 && !(csr
& MUSB_RXCSR_H_REQPKT
)) {
1135 csr
|= MUSB_RXCSR_H_REQPKT
;
1136 musb_writew(regs
, MUSB_RXCSR
,
1137 MUSB_RXCSR_H_WZC_BITS
| csr
);
1138 csr
= musb_readw(rx
->hw_ep
->regs
, MUSB_RXCSR
);
1145 cppi_dump_rx(6, rx
, completed
? "/completed" : "/cleaned");
1149 irqreturn_t
cppi_interrupt(int irq
, void *dev_id
)
1151 struct musb
*musb
= dev_id
;
1153 void __iomem
*tibase
;
1154 struct musb_hw_ep
*hw_ep
= NULL
;
1158 cppi
= container_of(musb
->dma_controller
, struct cppi
, controller
);
1160 tibase
= musb
->ctrl_base
;
1162 tx
= musb_readl(tibase
, DAVINCI_TXCPPI_MASKED_REG
);
1163 rx
= musb_readl(tibase
, DAVINCI_RXCPPI_MASKED_REG
);
1168 DBG(4, "CPPI IRQ Tx%x Rx%x\n", tx
, rx
);
1170 /* process TX channels */
1171 for (index
= 0; tx
; tx
= tx
>> 1, index
++) {
1172 struct cppi_channel
*tx_ch
;
1173 struct cppi_tx_stateram __iomem
*tx_ram
;
1174 bool completed
= false;
1175 struct cppi_descriptor
*bd
;
1180 tx_ch
= cppi
->tx
+ index
;
1181 tx_ram
= tx_ch
->state_ram
;
1183 /* FIXME need a cppi_tx_scan() routine, which
1184 * can also be called from abort code
1187 cppi_dump_tx(5, tx_ch
, "/E");
1192 DBG(1, "null BD\n");
1196 /* run through all completed BDs */
1197 for (i
= 0; !completed
&& bd
&& i
< NUM_TXCHAN_BD
;
1198 i
++, bd
= bd
->next
) {
1201 /* catch latest BD writes from CPPI */
1203 if (bd
->hw_options
& CPPI_OWN_SET
)
1206 DBG(5, "C/TXBD %p n %x b %x off %x opt %x\n",
1207 bd
, bd
->hw_next
, bd
->hw_bufp
,
1208 bd
->hw_off_len
, bd
->hw_options
);
1210 len
= bd
->hw_off_len
& CPPI_BUFFER_LEN_MASK
;
1211 tx_ch
->channel
.actual_len
+= len
;
1213 tx_ch
->last_processed
= bd
;
1215 /* write completion register to acknowledge
1216 * processing of completed BDs, and possibly
1217 * release the IRQ; EOQ might not be set ...
1219 * REVISIT use the same ack strategy as rx
1221 * REVISIT have observed bit 18 set; huh??
1223 /* if ((bd->hw_options & CPPI_EOQ_MASK)) */
1224 musb_writel(&tx_ram
->tx_complete
, 0, bd
->dma
);
1226 /* stop scanning on end-of-segment */
1227 if (bd
->hw_next
== 0)
1231 /* on end of segment, maybe go to next one */
1233 /* cppi_dump_tx(4, tx_ch, "/complete"); */
1235 /* transfer more, or report completion */
1236 if (tx_ch
->offset
>= tx_ch
->buf_len
) {
1239 tx_ch
->channel
.status
= MUSB_DMA_STATUS_FREE
;
1241 hw_ep
= tx_ch
->hw_ep
;
1243 musb_dma_completion(musb
, index
+ 1, 1);
1246 /* Bigger transfer than we could fit in
1247 * that first batch of descriptors...
1249 cppi_next_tx_segment(musb
, tx_ch
);
1255 /* Start processing the RX block */
1256 for (index
= 0; rx
; rx
= rx
>> 1, index
++) {
1259 struct cppi_channel
*rx_ch
;
1261 rx_ch
= cppi
->rx
+ index
;
1263 /* let incomplete dma segments finish */
1264 if (!cppi_rx_scan(cppi
, index
))
1267 /* start another dma segment if needed */
1268 if (rx_ch
->channel
.actual_len
!= rx_ch
->buf_len
1269 && rx_ch
->channel
.actual_len
1271 cppi_next_rx_segment(musb
, rx_ch
, 1);
1275 /* all segments completed! */
1276 rx_ch
->channel
.status
= MUSB_DMA_STATUS_FREE
;
1278 hw_ep
= rx_ch
->hw_ep
;
1280 core_rxirq_disable(tibase
, index
+ 1);
1281 musb_dma_completion(musb
, index
+ 1, 0);
1285 /* write to CPPI EOI register to re-enable interrupts */
1286 musb_writel(tibase
, DAVINCI_CPPI_EOI_REG
, 0);
1291 /* Instantiate a software object representing a DMA controller. */
1292 struct dma_controller
*__init
1293 dma_controller_create(struct musb
*musb
, void __iomem
*mregs
)
1295 struct cppi
*controller
;
1296 struct device
*dev
= musb
->controller
;
1297 struct platform_device
*pdev
= to_platform_device(dev
);
1298 int irq
= platform_get_irq(pdev
, 1);
1300 controller
= kzalloc(sizeof *controller
, GFP_KERNEL
);
1304 controller
->mregs
= mregs
;
1305 controller
->tibase
= mregs
- DAVINCI_BASE_OFFSET
;
1307 controller
->musb
= musb
;
1308 controller
->controller
.start
= cppi_controller_start
;
1309 controller
->controller
.stop
= cppi_controller_stop
;
1310 controller
->controller
.channel_alloc
= cppi_channel_allocate
;
1311 controller
->controller
.channel_release
= cppi_channel_release
;
1312 controller
->controller
.channel_program
= cppi_channel_program
;
1313 controller
->controller
.channel_abort
= cppi_channel_abort
;
1315 /* NOTE: allocating from on-chip SRAM would give the least
1316 * contention for memory access, if that ever matters here.
1319 /* setup BufferPool */
1320 controller
->pool
= dma_pool_create("cppi",
1321 controller
->musb
->controller
,
1322 sizeof(struct cppi_descriptor
),
1323 CPPI_DESCRIPTOR_ALIGN
, 0);
1324 if (!controller
->pool
) {
1330 if (request_irq(irq
, cppi_interrupt
, 0, "cppi-dma", musb
)) {
1331 dev_err(dev
, "request_irq %d failed!\n", irq
);
1332 dma_controller_destroy(&controller
->controller
);
1335 controller
->irq
= irq
;
1338 return &controller
->controller
;
1342 * Destroy a previously-instantiated DMA controller.
1344 void dma_controller_destroy(struct dma_controller
*c
)
1348 cppi
= container_of(c
, struct cppi
, controller
);
1351 free_irq(cppi
->irq
, cppi
->musb
);
1353 /* assert: caller stopped the controller first */
1354 dma_pool_destroy(cppi
->pool
);
1360 * Context: controller irqlocked, endpoint selected
1362 static int cppi_channel_abort(struct dma_channel
*channel
)
1364 struct cppi_channel
*cppi_ch
;
1365 struct cppi
*controller
;
1366 void __iomem
*mbase
;
1367 void __iomem
*tibase
;
1370 struct cppi_descriptor
*queue
;
1372 cppi_ch
= container_of(channel
, struct cppi_channel
, channel
);
1374 controller
= cppi_ch
->controller
;
1376 switch (channel
->status
) {
1377 case MUSB_DMA_STATUS_BUS_ABORT
:
1378 case MUSB_DMA_STATUS_CORE_ABORT
:
1379 /* from RX or TX fault irq handler */
1380 case MUSB_DMA_STATUS_BUSY
:
1381 /* the hardware needs shutting down */
1382 regs
= cppi_ch
->hw_ep
->regs
;
1384 case MUSB_DMA_STATUS_UNKNOWN
:
1385 case MUSB_DMA_STATUS_FREE
:
1391 if (!cppi_ch
->transmit
&& cppi_ch
->head
)
1392 cppi_dump_rxq(3, "/abort", cppi_ch
);
1394 mbase
= controller
->mregs
;
1395 tibase
= controller
->tibase
;
1397 queue
= cppi_ch
->head
;
1398 cppi_ch
->head
= NULL
;
1399 cppi_ch
->tail
= NULL
;
1401 /* REVISIT should rely on caller having done this,
1402 * and caller should rely on us not changing it.
1403 * peripheral code is safe ... check host too.
1405 musb_ep_select(mbase
, cppi_ch
->index
+ 1);
1407 if (cppi_ch
->transmit
) {
1408 struct cppi_tx_stateram __iomem
*tx_ram
;
1411 /* mask interrupts raised to signal teardown complete. */
1412 enabled
= musb_readl(tibase
, DAVINCI_TXCPPI_INTENAB_REG
)
1413 & (1 << cppi_ch
->index
);
1415 musb_writel(tibase
, DAVINCI_TXCPPI_INTCLR_REG
,
1416 (1 << cppi_ch
->index
));
1418 /* REVISIT put timeouts on these controller handshakes */
1420 cppi_dump_tx(6, cppi_ch
, " (teardown)");
1422 /* teardown DMA engine then usb core */
1424 value
= musb_readl(tibase
, DAVINCI_TXCPPI_TEAR_REG
);
1425 } while (!(value
& CPPI_TEAR_READY
));
1426 musb_writel(tibase
, DAVINCI_TXCPPI_TEAR_REG
, cppi_ch
->index
);
1428 tx_ram
= cppi_ch
->state_ram
;
1430 value
= musb_readl(&tx_ram
->tx_complete
, 0);
1431 } while (0xFFFFFFFC != value
);
1432 musb_writel(&tx_ram
->tx_complete
, 0, 0xFFFFFFFC);
1434 /* FIXME clean up the transfer state ... here?
1435 * the completion routine should get called with
1436 * an appropriate status code.
1439 value
= musb_readw(regs
, MUSB_TXCSR
);
1440 value
&= ~MUSB_TXCSR_DMAENAB
;
1441 value
|= MUSB_TXCSR_FLUSHFIFO
;
1442 musb_writew(regs
, MUSB_TXCSR
, value
);
1443 musb_writew(regs
, MUSB_TXCSR
, value
);
1445 /* re-enable interrupt */
1447 musb_writel(tibase
, DAVINCI_TXCPPI_INTENAB_REG
,
1448 (1 << cppi_ch
->index
));
1450 /* While we scrub the TX state RAM, ensure that we clean
1451 * up any interrupt that's currently asserted:
1452 * 1. Write to completion Ptr value 0x1(bit 0 set)
1454 * 2. Write to completion Ptr value 0x0(bit 0 cleared)
1456 * Value written is compared(for bits 31:2) and when
1457 * equal, interrupt is deasserted.
1459 cppi_reset_tx(tx_ram
, 1);
1460 musb_writel(&tx_ram
->tx_complete
, 0, 0);
1462 cppi_dump_tx(5, cppi_ch
, " (done teardown)");
1464 /* REVISIT tx side _should_ clean up the same way
1465 * as the RX side ... this does no cleanup at all!
1471 /* NOTE: docs don't guarantee any of this works ... we
1472 * expect that if the usb core stops telling the cppi core
1473 * to pull more data from it, then it'll be safe to flush
1474 * current RX DMA state iff any pending fifo transfer is done.
1477 core_rxirq_disable(tibase
, cppi_ch
->index
+ 1);
1479 /* for host, ensure ReqPkt is never set again */
1480 if (is_host_active(cppi_ch
->controller
->musb
)) {
1481 value
= musb_readl(tibase
, DAVINCI_AUTOREQ_REG
);
1482 value
&= ~((0x3) << (cppi_ch
->index
* 2));
1483 musb_writel(tibase
, DAVINCI_AUTOREQ_REG
, value
);
1486 csr
= musb_readw(regs
, MUSB_RXCSR
);
1488 /* for host, clear (just) ReqPkt at end of current packet(s) */
1489 if (is_host_active(cppi_ch
->controller
->musb
)) {
1490 csr
|= MUSB_RXCSR_H_WZC_BITS
;
1491 csr
&= ~MUSB_RXCSR_H_REQPKT
;
1493 csr
|= MUSB_RXCSR_P_WZC_BITS
;
1495 /* clear dma enable */
1496 csr
&= ~(MUSB_RXCSR_DMAENAB
);
1497 musb_writew(regs
, MUSB_RXCSR
, csr
);
1498 csr
= musb_readw(regs
, MUSB_RXCSR
);
1500 /* Quiesce: wait for current dma to finish (if not cleanup).
1501 * We can't use bit zero of stateram->rx_sop, since that
1502 * refers to an entire "DMA packet" not just emptying the
1503 * current fifo. Most segments need multiple usb packets.
1505 if (channel
->status
== MUSB_DMA_STATUS_BUSY
)
1508 /* scan the current list, reporting any data that was
1509 * transferred and acking any IRQ
1511 cppi_rx_scan(controller
, cppi_ch
->index
);
1513 /* clobber the existing state once it's idle
1515 * NOTE: arguably, we should also wait for all the other
1516 * RX channels to quiesce (how??) and then temporarily
1517 * disable RXCPPI_CTRL_REG ... but it seems that we can
1518 * rely on the controller restarting from state ram, with
1519 * only RXCPPI_BUFCNT state being bogus. BUFCNT will
1520 * correct itself after the next DMA transfer though.
1522 * REVISIT does using rndis mode change that?
1524 cppi_reset_rx(cppi_ch
->state_ram
);
1526 /* next DMA request _should_ load cppi head ptr */
1528 /* ... we don't "free" that list, only mutate it in place. */
1529 cppi_dump_rx(5, cppi_ch
, " (done abort)");
1531 /* clean up previously pending bds */
1532 cppi_bd_free(cppi_ch
, cppi_ch
->last_processed
);
1533 cppi_ch
->last_processed
= NULL
;
1536 struct cppi_descriptor
*tmp
= queue
->next
;
1538 cppi_bd_free(cppi_ch
, queue
);
1543 channel
->status
= MUSB_DMA_STATUS_FREE
;
1544 cppi_ch
->buf_dma
= 0;
1545 cppi_ch
->offset
= 0;
1546 cppi_ch
->buf_len
= 0;
1547 cppi_ch
->maxpacket
= 0;
1553 * Power Management ... probably turn off cppi during suspend, restart;
1554 * check state ram? Clocking is presumably shared with usb core.