2 * MUSB OTG driver host support
4 * Copyright 2005 Mentor Graphics Corporation
5 * Copyright (C) 2005-2006 by Texas Instruments
6 * Copyright (C) 2006-2007 Nokia Corporation
7 * Copyright (C) 2008-2009 MontaVista Software, Inc. <source@mvista.com>
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * version 2 as published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
23 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
24 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
26 * NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
29 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
30 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 #include <linux/module.h>
37 #include <linux/kernel.h>
38 #include <linux/delay.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/errno.h>
42 #include <linux/init.h>
43 #include <linux/list.h>
45 #include "musb_core.h"
46 #include "musb_host.h"
49 /* MUSB HOST status 22-mar-2006
51 * - There's still lots of partial code duplication for fault paths, so
52 * they aren't handled as consistently as they need to be.
54 * - PIO mostly behaved when last tested.
55 * + including ep0, with all usbtest cases 9, 10
56 * + usbtest 14 (ep0out) doesn't seem to run at all
57 * + double buffered OUT/TX endpoints saw stalls(!) with certain usbtest
58 * configurations, but otherwise double buffering passes basic tests.
59 * + for 2.6.N, for N > ~10, needs API changes for hcd framework.
61 * - DMA (CPPI) ... partially behaves, not currently recommended
62 * + about 1/15 the speed of typical EHCI implementations (PCI)
63 * + RX, all too often reqpkt seems to misbehave after tx
64 * + TX, no known issues (other than evident silicon issue)
66 * - DMA (Mentor/OMAP) ...has at least toggle update problems
68 * - [23-feb-2009] minimal traffic scheduling to avoid bulk RX packet
69 * starvation ... nothing yet for TX, interrupt, or bulk.
71 * - Not tested with HNP, but some SRP paths seem to behave.
73 * NOTE 24-August-2006:
75 * - Bulk traffic finally uses both sides of hardware ep1, freeing up an
76 * extra endpoint for periodic use enabling hub + keybd + mouse. That
77 * mostly works, except that with "usbnet" it's easy to trigger cases
78 * with "ping" where RX loses. (a) ping to davinci, even "ping -f",
79 * fine; but (b) ping _from_ davinci, even "ping -c 1", ICMP RX loses
80 * although ARP RX wins. (That test was done with a full speed link.)
85 * NOTE on endpoint usage:
87 * CONTROL transfers all go through ep0. BULK ones go through dedicated IN
88 * and OUT endpoints ... hardware is dedicated for those "async" queue(s).
89 * (Yes, bulk _could_ use more of the endpoints than that, and would even
92 * INTERUPPT and ISOCHRONOUS transfers are scheduled to the other endpoints.
93 * So far that scheduling is both dumb and optimistic: the endpoint will be
94 * "claimed" until its software queue is no longer refilled. No multiplexing
95 * of transfers between endpoints, or anything clever.
99 static void musb_ep_program(struct musb
*musb
, u8 epnum
,
100 struct urb
*urb
, int is_out
,
101 u8
*buf
, u32 offset
, u32 len
);
104 * Clear TX fifo. Needed to avoid BABBLE errors.
106 static void musb_h_tx_flush_fifo(struct musb_hw_ep
*ep
)
108 void __iomem
*epio
= ep
->regs
;
113 csr
= musb_readw(epio
, MUSB_TXCSR
);
114 while (csr
& MUSB_TXCSR_FIFONOTEMPTY
) {
116 DBG(3, "Host TX FIFONOTEMPTY csr: %02x\n", csr
);
118 csr
|= MUSB_TXCSR_FLUSHFIFO
;
119 musb_writew(epio
, MUSB_TXCSR
, csr
);
120 csr
= musb_readw(epio
, MUSB_TXCSR
);
121 if (WARN(retries
-- < 1,
122 "Could not flush host TX%d fifo: csr: %04x\n",
129 static void musb_h_ep0_flush_fifo(struct musb_hw_ep
*ep
)
131 void __iomem
*epio
= ep
->regs
;
135 /* scrub any data left in the fifo */
137 csr
= musb_readw(epio
, MUSB_TXCSR
);
138 if (!(csr
& (MUSB_CSR0_TXPKTRDY
| MUSB_CSR0_RXPKTRDY
)))
140 musb_writew(epio
, MUSB_TXCSR
, MUSB_CSR0_FLUSHFIFO
);
141 csr
= musb_readw(epio
, MUSB_TXCSR
);
145 WARN(!retries
, "Could not flush host TX%d fifo: csr: %04x\n",
148 /* and reset for the next transfer */
149 musb_writew(epio
, MUSB_TXCSR
, 0);
153 * Start transmit. Caller is responsible for locking shared resources.
154 * musb must be locked.
156 static inline void musb_h_tx_start(struct musb_hw_ep
*ep
)
160 /* NOTE: no locks here; caller should lock and select EP */
162 txcsr
= musb_readw(ep
->regs
, MUSB_TXCSR
);
163 txcsr
|= MUSB_TXCSR_TXPKTRDY
| MUSB_TXCSR_H_WZC_BITS
;
164 musb_writew(ep
->regs
, MUSB_TXCSR
, txcsr
);
166 txcsr
= MUSB_CSR0_H_SETUPPKT
| MUSB_CSR0_TXPKTRDY
;
167 musb_writew(ep
->regs
, MUSB_CSR0
, txcsr
);
172 static inline void musb_h_tx_dma_start(struct musb_hw_ep
*ep
)
176 /* NOTE: no locks here; caller should lock and select EP */
177 txcsr
= musb_readw(ep
->regs
, MUSB_TXCSR
);
178 txcsr
|= MUSB_TXCSR_DMAENAB
| MUSB_TXCSR_H_WZC_BITS
;
179 if (is_cppi_enabled())
180 txcsr
|= MUSB_TXCSR_DMAMODE
;
181 musb_writew(ep
->regs
, MUSB_TXCSR
, txcsr
);
184 static void musb_ep_set_qh(struct musb_hw_ep
*ep
, int is_in
, struct musb_qh
*qh
)
186 if (is_in
!= 0 || ep
->is_shared_fifo
)
188 if (is_in
== 0 || ep
->is_shared_fifo
)
192 static struct musb_qh
*musb_ep_get_qh(struct musb_hw_ep
*ep
, int is_in
)
194 return is_in
? ep
->in_qh
: ep
->out_qh
;
198 * Start the URB at the front of an endpoint's queue
199 * end must be claimed from the caller.
201 * Context: controller locked, irqs blocked
204 musb_start_urb(struct musb
*musb
, int is_in
, struct musb_qh
*qh
)
208 void __iomem
*mbase
= musb
->mregs
;
209 struct urb
*urb
= next_urb(qh
);
210 void *buf
= urb
->transfer_buffer
;
212 struct musb_hw_ep
*hw_ep
= qh
->hw_ep
;
213 unsigned pipe
= urb
->pipe
;
214 u8 address
= usb_pipedevice(pipe
);
215 int epnum
= hw_ep
->epnum
;
217 /* initialize software qh state */
221 /* gather right source of data */
223 case USB_ENDPOINT_XFER_CONTROL
:
224 /* control transfers always start with SETUP */
226 musb
->ep0_stage
= MUSB_EP0_START
;
227 buf
= urb
->setup_packet
;
230 case USB_ENDPOINT_XFER_ISOC
:
233 offset
= urb
->iso_frame_desc
[0].offset
;
234 len
= urb
->iso_frame_desc
[0].length
;
236 default: /* bulk, interrupt */
237 /* actual_length may be nonzero on retry paths */
238 buf
= urb
->transfer_buffer
+ urb
->actual_length
;
239 len
= urb
->transfer_buffer_length
- urb
->actual_length
;
242 DBG(4, "qh %p urb %p dev%d ep%d%s%s, hw_ep %d, %p/%d\n",
243 qh
, urb
, address
, qh
->epnum
,
244 is_in
? "in" : "out",
245 ({char *s
; switch (qh
->type
) {
246 case USB_ENDPOINT_XFER_CONTROL
: s
= ""; break;
247 case USB_ENDPOINT_XFER_BULK
: s
= "-bulk"; break;
248 case USB_ENDPOINT_XFER_ISOC
: s
= "-iso"; break;
249 default: s
= "-intr"; break;
251 epnum
, buf
+ offset
, len
);
253 /* Configure endpoint */
254 musb_ep_set_qh(hw_ep
, is_in
, qh
);
255 musb_ep_program(musb
, epnum
, urb
, !is_in
, buf
, offset
, len
);
257 /* transmit may have more work: start it when it is time */
261 /* determine if the time is right for a periodic transfer */
263 case USB_ENDPOINT_XFER_ISOC
:
264 case USB_ENDPOINT_XFER_INT
:
265 DBG(3, "check whether there's still time for periodic Tx\n");
266 frame
= musb_readw(mbase
, MUSB_FRAME
);
267 /* FIXME this doesn't implement that scheduling policy ...
268 * or handle framecounter wrapping
270 if ((urb
->transfer_flags
& URB_ISO_ASAP
)
271 || (frame
>= urb
->start_frame
)) {
272 /* REVISIT the SOF irq handler shouldn't duplicate
273 * this code; and we don't init urb->start_frame...
278 qh
->frame
= urb
->start_frame
;
279 /* enable SOF interrupt so we can count down */
280 DBG(1, "SOF for %d\n", epnum
);
281 #if 1 /* ifndef CONFIG_ARCH_DAVINCI */
282 musb_writeb(mbase
, MUSB_INTRUSBE
, 0xff);
288 DBG(4, "Start TX%d %s\n", epnum
,
289 hw_ep
->tx_channel
? "dma" : "pio");
291 if (!hw_ep
->tx_channel
)
292 musb_h_tx_start(hw_ep
);
293 else if (is_cppi_enabled() || tusb_dma_omap())
294 musb_h_tx_dma_start(hw_ep
);
298 /* Context: caller owns controller lock, IRQs are blocked */
299 static void musb_giveback(struct musb
*musb
, struct urb
*urb
, int status
)
300 __releases(musb
->lock
)
301 __acquires(musb
->lock
)
303 DBG(({ int level
; switch (status
) {
307 /* common/boring faults */
318 "complete %p %pF (%d), dev%d ep%d%s, %d/%d\n",
319 urb
, urb
->complete
, status
,
320 usb_pipedevice(urb
->pipe
),
321 usb_pipeendpoint(urb
->pipe
),
322 usb_pipein(urb
->pipe
) ? "in" : "out",
323 urb
->actual_length
, urb
->transfer_buffer_length
326 usb_hcd_unlink_urb_from_ep(musb_to_hcd(musb
), urb
);
327 spin_unlock(&musb
->lock
);
328 usb_hcd_giveback_urb(musb_to_hcd(musb
), urb
, status
);
329 spin_lock(&musb
->lock
);
332 /* For bulk/interrupt endpoints only */
333 static inline void musb_save_toggle(struct musb_qh
*qh
, int is_in
,
336 void __iomem
*epio
= qh
->hw_ep
->regs
;
340 * FIXME: the current Mentor DMA code seems to have
341 * problems getting toggle correct.
345 csr
= musb_readw(epio
, MUSB_RXCSR
) & MUSB_RXCSR_H_DATATOGGLE
;
347 csr
= musb_readw(epio
, MUSB_TXCSR
) & MUSB_TXCSR_H_DATATOGGLE
;
349 usb_settoggle(urb
->dev
, qh
->epnum
, !is_in
, csr
? 1 : 0);
353 * Advance this hardware endpoint's queue, completing the specified URB and
354 * advancing to either the next URB queued to that qh, or else invalidating
355 * that qh and advancing to the next qh scheduled after the current one.
357 * Context: caller owns controller lock, IRQs are blocked
359 static void musb_advance_schedule(struct musb
*musb
, struct urb
*urb
,
360 struct musb_hw_ep
*hw_ep
, int is_in
)
362 struct musb_qh
*qh
= musb_ep_get_qh(hw_ep
, is_in
);
363 struct musb_hw_ep
*ep
= qh
->hw_ep
;
364 int ready
= qh
->is_ready
;
367 status
= (urb
->status
== -EINPROGRESS
) ? 0 : urb
->status
;
369 /* save toggle eagerly, for paranoia */
371 case USB_ENDPOINT_XFER_BULK
:
372 case USB_ENDPOINT_XFER_INT
:
373 musb_save_toggle(qh
, is_in
, urb
);
375 case USB_ENDPOINT_XFER_ISOC
:
376 if (status
== 0 && urb
->error_count
)
382 musb_giveback(musb
, urb
, status
);
383 qh
->is_ready
= ready
;
385 /* reclaim resources (and bandwidth) ASAP; deschedule it, and
386 * invalidate qh as soon as list_empty(&hep->urb_list)
388 if (list_empty(&qh
->hep
->urb_list
)) {
389 struct list_head
*head
;
396 /* Clobber old pointers to this qh */
397 musb_ep_set_qh(ep
, is_in
, NULL
);
398 qh
->hep
->hcpriv
= NULL
;
402 case USB_ENDPOINT_XFER_CONTROL
:
403 case USB_ENDPOINT_XFER_BULK
:
404 /* fifo policy for these lists, except that NAKing
405 * should rotate a qh to the end (for fairness).
408 head
= qh
->ring
.prev
;
415 case USB_ENDPOINT_XFER_ISOC
:
416 case USB_ENDPOINT_XFER_INT
:
417 /* this is where periodic bandwidth should be
418 * de-allocated if it's tracked and allocated;
419 * and where we'd update the schedule tree...
427 if (qh
!= NULL
&& qh
->is_ready
) {
428 DBG(4, "... next ep%d %cX urb %p\n",
429 hw_ep
->epnum
, is_in
? 'R' : 'T', next_urb(qh
));
430 musb_start_urb(musb
, is_in
, qh
);
434 static u16
musb_h_flush_rxfifo(struct musb_hw_ep
*hw_ep
, u16 csr
)
436 /* we don't want fifo to fill itself again;
437 * ignore dma (various models),
438 * leave toggle alone (may not have been saved yet)
440 csr
|= MUSB_RXCSR_FLUSHFIFO
| MUSB_RXCSR_RXPKTRDY
;
441 csr
&= ~(MUSB_RXCSR_H_REQPKT
442 | MUSB_RXCSR_H_AUTOREQ
443 | MUSB_RXCSR_AUTOCLEAR
);
445 /* write 2x to allow double buffering */
446 musb_writew(hw_ep
->regs
, MUSB_RXCSR
, csr
);
447 musb_writew(hw_ep
->regs
, MUSB_RXCSR
, csr
);
449 /* flush writebuffer */
450 return musb_readw(hw_ep
->regs
, MUSB_RXCSR
);
454 * PIO RX for a packet (or part of it).
457 musb_host_packet_rx(struct musb
*musb
, struct urb
*urb
, u8 epnum
, u8 iso_err
)
465 struct musb_hw_ep
*hw_ep
= musb
->endpoints
+ epnum
;
466 void __iomem
*epio
= hw_ep
->regs
;
467 struct musb_qh
*qh
= hw_ep
->in_qh
;
468 int pipe
= urb
->pipe
;
469 void *buffer
= urb
->transfer_buffer
;
471 /* musb_ep_select(mbase, epnum); */
472 rx_count
= musb_readw(epio
, MUSB_RXCOUNT
);
473 DBG(3, "RX%d count %d, buffer %p len %d/%d\n", epnum
, rx_count
,
474 urb
->transfer_buffer
, qh
->offset
,
475 urb
->transfer_buffer_length
);
478 if (usb_pipeisoc(pipe
)) {
480 struct usb_iso_packet_descriptor
*d
;
487 d
= urb
->iso_frame_desc
+ qh
->iso_idx
;
488 buf
= buffer
+ d
->offset
;
490 if (rx_count
> length
) {
495 DBG(2, "** OVERFLOW %d into %d\n", rx_count
, length
);
499 urb
->actual_length
+= length
;
500 d
->actual_length
= length
;
504 /* see if we are done */
505 done
= (++qh
->iso_idx
>= urb
->number_of_packets
);
508 buf
= buffer
+ qh
->offset
;
509 length
= urb
->transfer_buffer_length
- qh
->offset
;
510 if (rx_count
> length
) {
511 if (urb
->status
== -EINPROGRESS
)
512 urb
->status
= -EOVERFLOW
;
513 DBG(2, "** OVERFLOW %d into %d\n", rx_count
, length
);
517 urb
->actual_length
+= length
;
518 qh
->offset
+= length
;
520 /* see if we are done */
521 done
= (urb
->actual_length
== urb
->transfer_buffer_length
)
522 || (rx_count
< qh
->maxpacket
)
523 || (urb
->status
!= -EINPROGRESS
);
525 && (urb
->status
== -EINPROGRESS
)
526 && (urb
->transfer_flags
& URB_SHORT_NOT_OK
)
527 && (urb
->actual_length
528 < urb
->transfer_buffer_length
))
529 urb
->status
= -EREMOTEIO
;
532 musb_read_fifo(hw_ep
, length
, buf
);
534 csr
= musb_readw(epio
, MUSB_RXCSR
);
535 csr
|= MUSB_RXCSR_H_WZC_BITS
;
536 if (unlikely(do_flush
))
537 musb_h_flush_rxfifo(hw_ep
, csr
);
539 /* REVISIT this assumes AUTOCLEAR is never set */
540 csr
&= ~(MUSB_RXCSR_RXPKTRDY
| MUSB_RXCSR_H_REQPKT
);
542 csr
|= MUSB_RXCSR_H_REQPKT
;
543 musb_writew(epio
, MUSB_RXCSR
, csr
);
549 /* we don't always need to reinit a given side of an endpoint...
550 * when we do, use tx/rx reinit routine and then construct a new CSR
551 * to address data toggle, NYET, and DMA or PIO.
553 * it's possible that driver bugs (especially for DMA) or aborting a
554 * transfer might have left the endpoint busier than it should be.
555 * the busy/not-empty tests are basically paranoia.
558 musb_rx_reinit(struct musb
*musb
, struct musb_qh
*qh
, struct musb_hw_ep
*ep
)
562 /* NOTE: we know the "rx" fifo reinit never triggers for ep0.
563 * That always uses tx_reinit since ep0 repurposes TX register
564 * offsets; the initial SETUP packet is also a kind of OUT.
567 /* if programmed for Tx, put it in RX mode */
568 if (ep
->is_shared_fifo
) {
569 csr
= musb_readw(ep
->regs
, MUSB_TXCSR
);
570 if (csr
& MUSB_TXCSR_MODE
) {
571 musb_h_tx_flush_fifo(ep
);
572 csr
= musb_readw(ep
->regs
, MUSB_TXCSR
);
573 musb_writew(ep
->regs
, MUSB_TXCSR
,
574 csr
| MUSB_TXCSR_FRCDATATOG
);
578 * Clear the MODE bit (and everything else) to enable Rx.
579 * NOTE: we mustn't clear the DMAMODE bit before DMAENAB.
581 if (csr
& MUSB_TXCSR_DMAMODE
)
582 musb_writew(ep
->regs
, MUSB_TXCSR
, MUSB_TXCSR_DMAMODE
);
583 musb_writew(ep
->regs
, MUSB_TXCSR
, 0);
585 /* scrub all previous state, clearing toggle */
587 csr
= musb_readw(ep
->regs
, MUSB_RXCSR
);
588 if (csr
& MUSB_RXCSR_RXPKTRDY
)
589 WARNING("rx%d, packet/%d ready?\n", ep
->epnum
,
590 musb_readw(ep
->regs
, MUSB_RXCOUNT
));
592 musb_h_flush_rxfifo(ep
, MUSB_RXCSR_CLRDATATOG
);
595 /* target addr and (for multipoint) hub addr/port */
596 if (musb
->is_multipoint
) {
597 musb_write_rxfunaddr(ep
->target_regs
, qh
->addr_reg
);
598 musb_write_rxhubaddr(ep
->target_regs
, qh
->h_addr_reg
);
599 musb_write_rxhubport(ep
->target_regs
, qh
->h_port_reg
);
602 musb_writeb(musb
->mregs
, MUSB_FADDR
, qh
->addr_reg
);
604 /* protocol/endpoint, interval/NAKlimit, i/o size */
605 musb_writeb(ep
->regs
, MUSB_RXTYPE
, qh
->type_reg
);
606 musb_writeb(ep
->regs
, MUSB_RXINTERVAL
, qh
->intv_reg
);
607 /* NOTE: bulk combining rewrites high bits of maxpacket */
608 musb_writew(ep
->regs
, MUSB_RXMAXP
,
609 qh
->maxpacket
| ((qh
->hb_mult
- 1) << 11));
614 static bool musb_tx_dma_program(struct dma_controller
*dma
,
615 struct musb_hw_ep
*hw_ep
, struct musb_qh
*qh
,
616 struct urb
*urb
, u32 offset
, u32 length
)
618 struct dma_channel
*channel
= hw_ep
->tx_channel
;
619 void __iomem
*epio
= hw_ep
->regs
;
620 u16 pkt_size
= qh
->maxpacket
;
624 #ifdef CONFIG_USB_INVENTRA_DMA
625 if (length
> channel
->max_len
)
626 length
= channel
->max_len
;
628 csr
= musb_readw(epio
, MUSB_TXCSR
);
629 if (length
> pkt_size
) {
631 csr
|= MUSB_TXCSR_DMAMODE
| MUSB_TXCSR_DMAENAB
;
632 /* autoset shouldn't be set in high bandwidth */
633 if (qh
->hb_mult
== 1)
634 csr
|= MUSB_TXCSR_AUTOSET
;
637 csr
&= ~(MUSB_TXCSR_AUTOSET
| MUSB_TXCSR_DMAMODE
);
638 csr
|= MUSB_TXCSR_DMAENAB
; /* against programmer's guide */
640 channel
->desired_mode
= mode
;
641 musb_writew(epio
, MUSB_TXCSR
, csr
);
643 if (!is_cppi_enabled() && !tusb_dma_omap())
646 channel
->actual_len
= 0;
649 * TX uses "RNDIS" mode automatically but needs help
650 * to identify the zero-length-final-packet case.
652 mode
= (urb
->transfer_flags
& URB_ZERO_PACKET
) ? 1 : 0;
655 qh
->segsize
= length
;
657 if (!dma
->channel_program(channel
, pkt_size
, mode
,
658 urb
->transfer_dma
+ offset
, length
)) {
659 dma
->channel_release(channel
);
660 hw_ep
->tx_channel
= NULL
;
662 csr
= musb_readw(epio
, MUSB_TXCSR
);
663 csr
&= ~(MUSB_TXCSR_AUTOSET
| MUSB_TXCSR_DMAENAB
);
664 musb_writew(epio
, MUSB_TXCSR
, csr
| MUSB_TXCSR_H_WZC_BITS
);
671 * Program an HDRC endpoint as per the given URB
672 * Context: irqs blocked, controller lock held
674 static void musb_ep_program(struct musb
*musb
, u8 epnum
,
675 struct urb
*urb
, int is_out
,
676 u8
*buf
, u32 offset
, u32 len
)
678 struct dma_controller
*dma_controller
;
679 struct dma_channel
*dma_channel
;
681 void __iomem
*mbase
= musb
->mregs
;
682 struct musb_hw_ep
*hw_ep
= musb
->endpoints
+ epnum
;
683 void __iomem
*epio
= hw_ep
->regs
;
684 struct musb_qh
*qh
= musb_ep_get_qh(hw_ep
, !is_out
);
685 u16 packet_sz
= qh
->maxpacket
;
687 DBG(3, "%s hw%d urb %p spd%d dev%d ep%d%s "
688 "h_addr%02x h_port%02x bytes %d\n",
689 is_out
? "-->" : "<--",
690 epnum
, urb
, urb
->dev
->speed
,
691 qh
->addr_reg
, qh
->epnum
, is_out
? "out" : "in",
692 qh
->h_addr_reg
, qh
->h_port_reg
,
695 musb_ep_select(mbase
, epnum
);
697 /* candidate for DMA? */
698 dma_controller
= musb
->dma_controller
;
699 if (is_dma_capable() && epnum
&& dma_controller
) {
700 dma_channel
= is_out
? hw_ep
->tx_channel
: hw_ep
->rx_channel
;
702 dma_channel
= dma_controller
->channel_alloc(
703 dma_controller
, hw_ep
, is_out
);
705 hw_ep
->tx_channel
= dma_channel
;
707 hw_ep
->rx_channel
= dma_channel
;
712 /* make sure we clear DMAEnab, autoSet bits from previous run */
714 /* OUT/transmit/EP0 or IN/receive? */
720 csr
= musb_readw(epio
, MUSB_TXCSR
);
722 /* disable interrupt in case we flush */
723 int_txe
= musb_readw(mbase
, MUSB_INTRTXE
);
724 musb_writew(mbase
, MUSB_INTRTXE
, int_txe
& ~(1 << epnum
));
726 /* general endpoint setup */
728 /* flush all old state, set default */
729 musb_h_tx_flush_fifo(hw_ep
);
732 * We must not clear the DMAMODE bit before or in
733 * the same cycle with the DMAENAB bit, so we clear
734 * the latter first...
736 csr
&= ~(MUSB_TXCSR_H_NAKTIMEOUT
739 | MUSB_TXCSR_FRCDATATOG
740 | MUSB_TXCSR_H_RXSTALL
742 | MUSB_TXCSR_TXPKTRDY
744 csr
|= MUSB_TXCSR_MODE
;
746 if (usb_gettoggle(urb
->dev
, qh
->epnum
, 1))
747 csr
|= MUSB_TXCSR_H_WR_DATATOGGLE
748 | MUSB_TXCSR_H_DATATOGGLE
;
750 csr
|= MUSB_TXCSR_CLRDATATOG
;
752 musb_writew(epio
, MUSB_TXCSR
, csr
);
753 /* REVISIT may need to clear FLUSHFIFO ... */
754 csr
&= ~MUSB_TXCSR_DMAMODE
;
755 musb_writew(epio
, MUSB_TXCSR
, csr
);
756 csr
= musb_readw(epio
, MUSB_TXCSR
);
758 /* endpoint 0: just flush */
759 musb_h_ep0_flush_fifo(hw_ep
);
762 /* target addr and (for multipoint) hub addr/port */
763 if (musb
->is_multipoint
) {
764 musb_write_txfunaddr(mbase
, epnum
, qh
->addr_reg
);
765 musb_write_txhubaddr(mbase
, epnum
, qh
->h_addr_reg
);
766 musb_write_txhubport(mbase
, epnum
, qh
->h_port_reg
);
767 /* FIXME if !epnum, do the same for RX ... */
769 musb_writeb(mbase
, MUSB_FADDR
, qh
->addr_reg
);
771 /* protocol/endpoint/interval/NAKlimit */
773 musb_writeb(epio
, MUSB_TXTYPE
, qh
->type_reg
);
774 if (can_bulk_split(musb
, qh
->type
))
775 musb_writew(epio
, MUSB_TXMAXP
,
777 | ((hw_ep
->max_packet_sz_tx
/
778 packet_sz
) - 1) << 11);
780 musb_writew(epio
, MUSB_TXMAXP
,
782 musb_writeb(epio
, MUSB_TXINTERVAL
, qh
->intv_reg
);
784 musb_writeb(epio
, MUSB_NAKLIMIT0
, qh
->intv_reg
);
785 if (musb
->is_multipoint
)
786 musb_writeb(epio
, MUSB_TYPE0
,
790 if (can_bulk_split(musb
, qh
->type
))
791 load_count
= min((u32
) hw_ep
->max_packet_sz_tx
,
794 load_count
= min((u32
) packet_sz
, len
);
796 if (dma_channel
&& musb_tx_dma_program(dma_controller
,
797 hw_ep
, qh
, urb
, offset
, len
))
801 /* PIO to load FIFO */
802 qh
->segsize
= load_count
;
803 musb_write_fifo(hw_ep
, load_count
, buf
);
806 /* re-enable interrupt */
807 musb_writew(mbase
, MUSB_INTRTXE
, int_txe
);
813 if (hw_ep
->rx_reinit
) {
814 musb_rx_reinit(musb
, qh
, hw_ep
);
816 /* init new state: toggle and NYET, maybe DMA later */
817 if (usb_gettoggle(urb
->dev
, qh
->epnum
, 0))
818 csr
= MUSB_RXCSR_H_WR_DATATOGGLE
819 | MUSB_RXCSR_H_DATATOGGLE
;
822 if (qh
->type
== USB_ENDPOINT_XFER_INT
)
823 csr
|= MUSB_RXCSR_DISNYET
;
826 csr
= musb_readw(hw_ep
->regs
, MUSB_RXCSR
);
828 if (csr
& (MUSB_RXCSR_RXPKTRDY
830 | MUSB_RXCSR_H_REQPKT
))
831 ERR("broken !rx_reinit, ep%d csr %04x\n",
834 /* scrub any stale state, leaving toggle alone */
835 csr
&= MUSB_RXCSR_DISNYET
;
838 /* kick things off */
840 if ((is_cppi_enabled() || tusb_dma_omap()) && dma_channel
) {
841 /* candidate for DMA */
843 dma_channel
->actual_len
= 0L;
846 /* AUTOREQ is in a DMA register */
847 musb_writew(hw_ep
->regs
, MUSB_RXCSR
, csr
);
848 csr
= musb_readw(hw_ep
->regs
,
851 /* unless caller treats short rx transfers as
852 * errors, we dare not queue multiple transfers.
854 dma_ok
= dma_controller
->channel_program(
855 dma_channel
, packet_sz
,
856 !(urb
->transfer_flags
858 urb
->transfer_dma
+ offset
,
861 dma_controller
->channel_release(
863 hw_ep
->rx_channel
= NULL
;
866 csr
|= MUSB_RXCSR_DMAENAB
;
870 csr
|= MUSB_RXCSR_H_REQPKT
;
871 DBG(7, "RXCSR%d := %04x\n", epnum
, csr
);
872 musb_writew(hw_ep
->regs
, MUSB_RXCSR
, csr
);
873 csr
= musb_readw(hw_ep
->regs
, MUSB_RXCSR
);
879 * Service the default endpoint (ep0) as host.
880 * Return true until it's time to start the status stage.
882 static bool musb_h_ep0_continue(struct musb
*musb
, u16 len
, struct urb
*urb
)
885 u8
*fifo_dest
= NULL
;
887 struct musb_hw_ep
*hw_ep
= musb
->control_ep
;
888 struct musb_qh
*qh
= hw_ep
->in_qh
;
889 struct usb_ctrlrequest
*request
;
891 switch (musb
->ep0_stage
) {
893 fifo_dest
= urb
->transfer_buffer
+ urb
->actual_length
;
894 fifo_count
= min_t(size_t, len
, urb
->transfer_buffer_length
-
896 if (fifo_count
< len
)
897 urb
->status
= -EOVERFLOW
;
899 musb_read_fifo(hw_ep
, fifo_count
, fifo_dest
);
901 urb
->actual_length
+= fifo_count
;
902 if (len
< qh
->maxpacket
) {
903 /* always terminate on short read; it's
904 * rarely reported as an error.
906 } else if (urb
->actual_length
<
907 urb
->transfer_buffer_length
)
911 request
= (struct usb_ctrlrequest
*) urb
->setup_packet
;
913 if (!request
->wLength
) {
914 DBG(4, "start no-DATA\n");
916 } else if (request
->bRequestType
& USB_DIR_IN
) {
917 DBG(4, "start IN-DATA\n");
918 musb
->ep0_stage
= MUSB_EP0_IN
;
922 DBG(4, "start OUT-DATA\n");
923 musb
->ep0_stage
= MUSB_EP0_OUT
;
928 fifo_count
= min_t(size_t, qh
->maxpacket
,
929 urb
->transfer_buffer_length
-
932 fifo_dest
= (u8
*) (urb
->transfer_buffer
933 + urb
->actual_length
);
934 DBG(3, "Sending %d byte%s to ep0 fifo %p\n",
936 (fifo_count
== 1) ? "" : "s",
938 musb_write_fifo(hw_ep
, fifo_count
, fifo_dest
);
940 urb
->actual_length
+= fifo_count
;
945 ERR("bogus ep0 stage %d\n", musb
->ep0_stage
);
953 * Handle default endpoint interrupt as host. Only called in IRQ time
954 * from musb_interrupt().
956 * called with controller irqlocked
958 irqreturn_t
musb_h_ep0_irq(struct musb
*musb
)
963 void __iomem
*mbase
= musb
->mregs
;
964 struct musb_hw_ep
*hw_ep
= musb
->control_ep
;
965 void __iomem
*epio
= hw_ep
->regs
;
966 struct musb_qh
*qh
= hw_ep
->in_qh
;
967 bool complete
= false;
968 irqreturn_t retval
= IRQ_NONE
;
970 /* ep0 only has one queue, "in" */
973 musb_ep_select(mbase
, 0);
974 csr
= musb_readw(epio
, MUSB_CSR0
);
975 len
= (csr
& MUSB_CSR0_RXPKTRDY
)
976 ? musb_readb(epio
, MUSB_COUNT0
)
979 DBG(4, "<== csr0 %04x, qh %p, count %d, urb %p, stage %d\n",
980 csr
, qh
, len
, urb
, musb
->ep0_stage
);
982 /* if we just did status stage, we are done */
983 if (MUSB_EP0_STATUS
== musb
->ep0_stage
) {
984 retval
= IRQ_HANDLED
;
989 if (csr
& MUSB_CSR0_H_RXSTALL
) {
990 DBG(6, "STALLING ENDPOINT\n");
993 } else if (csr
& MUSB_CSR0_H_ERROR
) {
994 DBG(2, "no response, csr0 %04x\n", csr
);
997 } else if (csr
& MUSB_CSR0_H_NAKTIMEOUT
) {
998 DBG(2, "control NAK timeout\n");
1000 /* NOTE: this code path would be a good place to PAUSE a
1001 * control transfer, if another one is queued, so that
1002 * ep0 is more likely to stay busy. That's already done
1003 * for bulk RX transfers.
1005 * if (qh->ring.next != &musb->control), then
1006 * we have a candidate... NAKing is *NOT* an error
1008 musb_writew(epio
, MUSB_CSR0
, 0);
1009 retval
= IRQ_HANDLED
;
1013 DBG(6, "aborting\n");
1014 retval
= IRQ_HANDLED
;
1016 urb
->status
= status
;
1019 /* use the proper sequence to abort the transfer */
1020 if (csr
& MUSB_CSR0_H_REQPKT
) {
1021 csr
&= ~MUSB_CSR0_H_REQPKT
;
1022 musb_writew(epio
, MUSB_CSR0
, csr
);
1023 csr
&= ~MUSB_CSR0_H_NAKTIMEOUT
;
1024 musb_writew(epio
, MUSB_CSR0
, csr
);
1026 musb_h_ep0_flush_fifo(hw_ep
);
1029 musb_writeb(epio
, MUSB_NAKLIMIT0
, 0);
1032 musb_writew(epio
, MUSB_CSR0
, 0);
1035 if (unlikely(!urb
)) {
1036 /* stop endpoint since we have no place for its data, this
1037 * SHOULD NEVER HAPPEN! */
1038 ERR("no URB for end 0\n");
1040 musb_h_ep0_flush_fifo(hw_ep
);
1045 /* call common logic and prepare response */
1046 if (musb_h_ep0_continue(musb
, len
, urb
)) {
1047 /* more packets required */
1048 csr
= (MUSB_EP0_IN
== musb
->ep0_stage
)
1049 ? MUSB_CSR0_H_REQPKT
: MUSB_CSR0_TXPKTRDY
;
1051 /* data transfer complete; perform status phase */
1052 if (usb_pipeout(urb
->pipe
)
1053 || !urb
->transfer_buffer_length
)
1054 csr
= MUSB_CSR0_H_STATUSPKT
1055 | MUSB_CSR0_H_REQPKT
;
1057 csr
= MUSB_CSR0_H_STATUSPKT
1058 | MUSB_CSR0_TXPKTRDY
;
1060 /* flag status stage */
1061 musb
->ep0_stage
= MUSB_EP0_STATUS
;
1063 DBG(5, "ep0 STATUS, csr %04x\n", csr
);
1066 musb_writew(epio
, MUSB_CSR0
, csr
);
1067 retval
= IRQ_HANDLED
;
1069 musb
->ep0_stage
= MUSB_EP0_IDLE
;
1071 /* call completion handler if done */
1073 musb_advance_schedule(musb
, urb
, hw_ep
, 1);
1079 #ifdef CONFIG_USB_INVENTRA_DMA
1081 /* Host side TX (OUT) using Mentor DMA works as follows:
1083 - if queue was empty, Program Endpoint
1084 - ... which starts DMA to fifo in mode 1 or 0
1086 DMA Isr (transfer complete) -> TxAvail()
1087 - Stop DMA (~DmaEnab) (<--- Alert ... currently happens
1088 only in musb_cleanup_urb)
1089 - TxPktRdy has to be set in mode 0 or for
1090 short packets in mode 1.
1095 /* Service a Tx-Available or dma completion irq for the endpoint */
1096 void musb_host_tx(struct musb
*musb
, u8 epnum
)
1103 struct musb_hw_ep
*hw_ep
= musb
->endpoints
+ epnum
;
1104 void __iomem
*epio
= hw_ep
->regs
;
1105 struct musb_qh
*qh
= hw_ep
->out_qh
;
1106 struct urb
*urb
= next_urb(qh
);
1108 void __iomem
*mbase
= musb
->mregs
;
1109 struct dma_channel
*dma
;
1111 musb_ep_select(mbase
, epnum
);
1112 tx_csr
= musb_readw(epio
, MUSB_TXCSR
);
1114 /* with CPPI, DMA sometimes triggers "extra" irqs */
1116 DBG(4, "extra TX%d ready, csr %04x\n", epnum
, tx_csr
);
1121 dma
= is_dma_capable() ? hw_ep
->tx_channel
: NULL
;
1122 DBG(4, "OUT/TX%d end, csr %04x%s\n", epnum
, tx_csr
,
1123 dma
? ", dma" : "");
1125 /* check for errors */
1126 if (tx_csr
& MUSB_TXCSR_H_RXSTALL
) {
1127 /* dma was disabled, fifo flushed */
1128 DBG(3, "TX end %d stall\n", epnum
);
1130 /* stall; record URB status */
1133 } else if (tx_csr
& MUSB_TXCSR_H_ERROR
) {
1134 /* (NON-ISO) dma was disabled, fifo flushed */
1135 DBG(3, "TX 3strikes on ep=%d\n", epnum
);
1137 status
= -ETIMEDOUT
;
1139 } else if (tx_csr
& MUSB_TXCSR_H_NAKTIMEOUT
) {
1140 DBG(6, "TX end=%d device not responding\n", epnum
);
1142 /* NOTE: this code path would be a good place to PAUSE a
1143 * transfer, if there's some other (nonperiodic) tx urb
1144 * that could use this fifo. (dma complicates it...)
1145 * That's already done for bulk RX transfers.
1147 * if (bulk && qh->ring.next != &musb->out_bulk), then
1148 * we have a candidate... NAKing is *NOT* an error
1150 musb_ep_select(mbase
, epnum
);
1151 musb_writew(epio
, MUSB_TXCSR
,
1152 MUSB_TXCSR_H_WZC_BITS
1153 | MUSB_TXCSR_TXPKTRDY
);
1158 if (dma_channel_status(dma
) == MUSB_DMA_STATUS_BUSY
) {
1159 dma
->status
= MUSB_DMA_STATUS_CORE_ABORT
;
1160 (void) musb
->dma_controller
->channel_abort(dma
);
1163 /* do the proper sequence to abort the transfer in the
1164 * usb core; the dma engine should already be stopped.
1166 musb_h_tx_flush_fifo(hw_ep
);
1167 tx_csr
&= ~(MUSB_TXCSR_AUTOSET
1168 | MUSB_TXCSR_DMAENAB
1169 | MUSB_TXCSR_H_ERROR
1170 | MUSB_TXCSR_H_RXSTALL
1171 | MUSB_TXCSR_H_NAKTIMEOUT
1174 musb_ep_select(mbase
, epnum
);
1175 musb_writew(epio
, MUSB_TXCSR
, tx_csr
);
1176 /* REVISIT may need to clear FLUSHFIFO ... */
1177 musb_writew(epio
, MUSB_TXCSR
, tx_csr
);
1178 musb_writeb(epio
, MUSB_TXINTERVAL
, 0);
1183 /* second cppi case */
1184 if (dma_channel_status(dma
) == MUSB_DMA_STATUS_BUSY
) {
1185 DBG(4, "extra TX%d ready, csr %04x\n", epnum
, tx_csr
);
1189 if (is_dma_capable() && dma
&& !status
) {
1191 * DMA has completed. But if we're using DMA mode 1 (multi
1192 * packet DMA), we need a terminal TXPKTRDY interrupt before
1193 * we can consider this transfer completed, lest we trash
1194 * its last packet when writing the next URB's data. So we
1195 * switch back to mode 0 to get that interrupt; we'll come
1196 * back here once it happens.
1198 if (tx_csr
& MUSB_TXCSR_DMAMODE
) {
1200 * We shouldn't clear DMAMODE with DMAENAB set; so
1201 * clear them in a safe order. That should be OK
1202 * once TXPKTRDY has been set (and I've never seen
1203 * it being 0 at this moment -- DMA interrupt latency
1204 * is significant) but if it hasn't been then we have
1205 * no choice but to stop being polite and ignore the
1206 * programmer's guide... :-)
1208 * Note that we must write TXCSR with TXPKTRDY cleared
1209 * in order not to re-trigger the packet send (this bit
1210 * can't be cleared by CPU), and there's another caveat:
1211 * TXPKTRDY may be set shortly and then cleared in the
1212 * double-buffered FIFO mode, so we do an extra TXCSR
1213 * read for debouncing...
1215 tx_csr
&= musb_readw(epio
, MUSB_TXCSR
);
1216 if (tx_csr
& MUSB_TXCSR_TXPKTRDY
) {
1217 tx_csr
&= ~(MUSB_TXCSR_DMAENAB
|
1218 MUSB_TXCSR_TXPKTRDY
);
1219 musb_writew(epio
, MUSB_TXCSR
,
1220 tx_csr
| MUSB_TXCSR_H_WZC_BITS
);
1222 tx_csr
&= ~(MUSB_TXCSR_DMAMODE
|
1223 MUSB_TXCSR_TXPKTRDY
);
1224 musb_writew(epio
, MUSB_TXCSR
,
1225 tx_csr
| MUSB_TXCSR_H_WZC_BITS
);
1228 * There is no guarantee that we'll get an interrupt
1229 * after clearing DMAMODE as we might have done this
1230 * too late (after TXPKTRDY was cleared by controller).
1231 * Re-read TXCSR as we have spoiled its previous value.
1233 tx_csr
= musb_readw(epio
, MUSB_TXCSR
);
1237 * We may get here from a DMA completion or TXPKTRDY interrupt.
1238 * In any case, we must check the FIFO status here and bail out
1239 * only if the FIFO still has data -- that should prevent the
1240 * "missed" TXPKTRDY interrupts and deal with double-buffered
1243 if (tx_csr
& (MUSB_TXCSR_FIFONOTEMPTY
| MUSB_TXCSR_TXPKTRDY
)) {
1244 DBG(2, "DMA complete but packet still in FIFO, "
1245 "CSR %04x\n", tx_csr
);
1250 if (!status
|| dma
|| usb_pipeisoc(pipe
)) {
1252 length
= dma
->actual_len
;
1254 length
= qh
->segsize
;
1255 qh
->offset
+= length
;
1257 if (usb_pipeisoc(pipe
)) {
1258 struct usb_iso_packet_descriptor
*d
;
1260 d
= urb
->iso_frame_desc
+ qh
->iso_idx
;
1261 d
->actual_length
= length
;
1263 if (++qh
->iso_idx
>= urb
->number_of_packets
) {
1273 /* see if we need to send more data, or ZLP */
1274 if (qh
->segsize
< qh
->maxpacket
)
1276 else if (qh
->offset
== urb
->transfer_buffer_length
1277 && !(urb
->transfer_flags
1281 offset
= qh
->offset
;
1282 length
= urb
->transfer_buffer_length
- offset
;
1287 /* urb->status != -EINPROGRESS means request has been faulted,
1288 * so we must abort this transfer after cleanup
1290 if (urb
->status
!= -EINPROGRESS
) {
1293 status
= urb
->status
;
1298 urb
->status
= status
;
1299 urb
->actual_length
= qh
->offset
;
1300 musb_advance_schedule(musb
, urb
, hw_ep
, USB_DIR_OUT
);
1302 } else if (usb_pipeisoc(pipe
) && dma
) {
1303 if (musb_tx_dma_program(musb
->dma_controller
, hw_ep
, qh
, urb
,
1306 } else if (tx_csr
& MUSB_TXCSR_DMAENAB
) {
1307 DBG(1, "not complete, but DMA enabled?\n");
1312 * PIO: start next packet in this URB.
1314 * REVISIT: some docs say that when hw_ep->tx_double_buffered,
1315 * (and presumably, FIFO is not half-full) we should write *two*
1316 * packets before updating TXCSR; other docs disagree...
1318 if (length
> qh
->maxpacket
)
1319 length
= qh
->maxpacket
;
1320 musb_write_fifo(hw_ep
, length
, urb
->transfer_buffer
+ offset
);
1321 qh
->segsize
= length
;
1323 musb_ep_select(mbase
, epnum
);
1324 musb_writew(epio
, MUSB_TXCSR
,
1325 MUSB_TXCSR_H_WZC_BITS
| MUSB_TXCSR_TXPKTRDY
);
1329 #ifdef CONFIG_USB_INVENTRA_DMA
1331 /* Host side RX (IN) using Mentor DMA works as follows:
1333 - if queue was empty, ProgramEndpoint
1334 - first IN token is sent out (by setting ReqPkt)
1335 LinuxIsr -> RxReady()
1336 /\ => first packet is received
1337 | - Set in mode 0 (DmaEnab, ~ReqPkt)
1338 | -> DMA Isr (transfer complete) -> RxReady()
1339 | - Ack receive (~RxPktRdy), turn off DMA (~DmaEnab)
1340 | - if urb not complete, send next IN token (ReqPkt)
1341 | | else complete urb.
1343 ---------------------------
1345 * Nuances of mode 1:
1346 * For short packets, no ack (+RxPktRdy) is sent automatically
1347 * (even if AutoClear is ON)
1348 * For full packets, ack (~RxPktRdy) and next IN token (+ReqPkt) is sent
1349 * automatically => major problem, as collecting the next packet becomes
1350 * difficult. Hence mode 1 is not used.
1353 * All we care about at this driver level is that
1354 * (a) all URBs terminate with REQPKT cleared and fifo(s) empty;
1355 * (b) termination conditions are: short RX, or buffer full;
1356 * (c) fault modes include
1357 * - iff URB_SHORT_NOT_OK, short RX status is -EREMOTEIO.
1358 * (and that endpoint's dma queue stops immediately)
1359 * - overflow (full, PLUS more bytes in the terminal packet)
1361 * So for example, usb-storage sets URB_SHORT_NOT_OK, and would
1362 * thus be a great candidate for using mode 1 ... for all but the
1363 * last packet of one URB's transfer.
1368 /* Schedule next QH from musb->in_bulk and move the current qh to
1369 * the end; avoids starvation for other endpoints.
1371 static void musb_bulk_rx_nak_timeout(struct musb
*musb
, struct musb_hw_ep
*ep
)
1373 struct dma_channel
*dma
;
1375 void __iomem
*mbase
= musb
->mregs
;
1376 void __iomem
*epio
= ep
->regs
;
1377 struct musb_qh
*cur_qh
, *next_qh
;
1380 musb_ep_select(mbase
, ep
->epnum
);
1381 dma
= is_dma_capable() ? ep
->rx_channel
: NULL
;
1383 /* clear nak timeout bit */
1384 rx_csr
= musb_readw(epio
, MUSB_RXCSR
);
1385 rx_csr
|= MUSB_RXCSR_H_WZC_BITS
;
1386 rx_csr
&= ~MUSB_RXCSR_DATAERROR
;
1387 musb_writew(epio
, MUSB_RXCSR
, rx_csr
);
1389 cur_qh
= first_qh(&musb
->in_bulk
);
1391 urb
= next_urb(cur_qh
);
1392 if (dma_channel_status(dma
) == MUSB_DMA_STATUS_BUSY
) {
1393 dma
->status
= MUSB_DMA_STATUS_CORE_ABORT
;
1394 musb
->dma_controller
->channel_abort(dma
);
1395 urb
->actual_length
+= dma
->actual_len
;
1396 dma
->actual_len
= 0L;
1398 musb_save_toggle(cur_qh
, 1, urb
);
1400 /* move cur_qh to end of queue */
1401 list_move_tail(&cur_qh
->ring
, &musb
->in_bulk
);
1403 /* get the next qh from musb->in_bulk */
1404 next_qh
= first_qh(&musb
->in_bulk
);
1406 /* set rx_reinit and schedule the next qh */
1408 musb_start_urb(musb
, 1, next_qh
);
1413 * Service an RX interrupt for the given IN endpoint; docs cover bulk, iso,
1414 * and high-bandwidth IN transfer cases.
1416 void musb_host_rx(struct musb
*musb
, u8 epnum
)
1419 struct musb_hw_ep
*hw_ep
= musb
->endpoints
+ epnum
;
1420 void __iomem
*epio
= hw_ep
->regs
;
1421 struct musb_qh
*qh
= hw_ep
->in_qh
;
1423 void __iomem
*mbase
= musb
->mregs
;
1426 bool iso_err
= false;
1429 struct dma_channel
*dma
;
1431 musb_ep_select(mbase
, epnum
);
1434 dma
= is_dma_capable() ? hw_ep
->rx_channel
: NULL
;
1438 rx_csr
= musb_readw(epio
, MUSB_RXCSR
);
1441 if (unlikely(!urb
)) {
1442 /* REVISIT -- THIS SHOULD NEVER HAPPEN ... but, at least
1443 * usbtest #11 (unlinks) triggers it regularly, sometimes
1444 * with fifo full. (Only with DMA??)
1446 DBG(3, "BOGUS RX%d ready, csr %04x, count %d\n", epnum
, val
,
1447 musb_readw(epio
, MUSB_RXCOUNT
));
1448 musb_h_flush_rxfifo(hw_ep
, MUSB_RXCSR_CLRDATATOG
);
1454 DBG(5, "<== hw %d rxcsr %04x, urb actual %d (+dma %zu)\n",
1455 epnum
, rx_csr
, urb
->actual_length
,
1456 dma
? dma
->actual_len
: 0);
1458 /* check for errors, concurrent stall & unlink is not really
1460 if (rx_csr
& MUSB_RXCSR_H_RXSTALL
) {
1461 DBG(3, "RX end %d STALL\n", epnum
);
1463 /* stall; record URB status */
1466 } else if (rx_csr
& MUSB_RXCSR_H_ERROR
) {
1467 DBG(3, "end %d RX proto error\n", epnum
);
1470 musb_writeb(epio
, MUSB_RXINTERVAL
, 0);
1472 } else if (rx_csr
& MUSB_RXCSR_DATAERROR
) {
1474 if (USB_ENDPOINT_XFER_ISOC
!= qh
->type
) {
1475 DBG(6, "RX end %d NAK timeout\n", epnum
);
1477 /* NOTE: NAKing is *NOT* an error, so we want to
1478 * continue. Except ... if there's a request for
1479 * another QH, use that instead of starving it.
1481 * Devices like Ethernet and serial adapters keep
1482 * reads posted at all times, which will starve
1483 * other devices without this logic.
1485 if (usb_pipebulk(urb
->pipe
)
1487 && !list_is_singular(&musb
->in_bulk
)) {
1488 musb_bulk_rx_nak_timeout(musb
, hw_ep
);
1491 musb_ep_select(mbase
, epnum
);
1492 rx_csr
|= MUSB_RXCSR_H_WZC_BITS
;
1493 rx_csr
&= ~MUSB_RXCSR_DATAERROR
;
1494 musb_writew(epio
, MUSB_RXCSR
, rx_csr
);
1498 DBG(4, "RX end %d ISO data error\n", epnum
);
1499 /* packet error reported later */
1502 } else if (rx_csr
& MUSB_RXCSR_INCOMPRX
) {
1503 DBG(3, "end %d high bandwidth incomplete ISO packet RX\n",
1508 /* faults abort the transfer */
1510 /* clean up dma and collect transfer count */
1511 if (dma_channel_status(dma
) == MUSB_DMA_STATUS_BUSY
) {
1512 dma
->status
= MUSB_DMA_STATUS_CORE_ABORT
;
1513 (void) musb
->dma_controller
->channel_abort(dma
);
1514 xfer_len
= dma
->actual_len
;
1516 musb_h_flush_rxfifo(hw_ep
, MUSB_RXCSR_CLRDATATOG
);
1517 musb_writeb(epio
, MUSB_RXINTERVAL
, 0);
1522 if (unlikely(dma_channel_status(dma
) == MUSB_DMA_STATUS_BUSY
)) {
1523 /* SHOULD NEVER HAPPEN ... but at least DaVinci has done it */
1524 ERR("RX%d dma busy, csr %04x\n", epnum
, rx_csr
);
1528 /* thorough shutdown for now ... given more precise fault handling
1529 * and better queueing support, we might keep a DMA pipeline going
1530 * while processing this irq for earlier completions.
1533 /* FIXME this is _way_ too much in-line logic for Mentor DMA */
1535 #ifndef CONFIG_USB_INVENTRA_DMA
1536 if (rx_csr
& MUSB_RXCSR_H_REQPKT
) {
1537 /* REVISIT this happened for a while on some short reads...
1538 * the cleanup still needs investigation... looks bad...
1539 * and also duplicates dma cleanup code above ... plus,
1540 * shouldn't this be the "half full" double buffer case?
1542 if (dma_channel_status(dma
) == MUSB_DMA_STATUS_BUSY
) {
1543 dma
->status
= MUSB_DMA_STATUS_CORE_ABORT
;
1544 (void) musb
->dma_controller
->channel_abort(dma
);
1545 xfer_len
= dma
->actual_len
;
1549 DBG(2, "RXCSR%d %04x, reqpkt, len %zu%s\n", epnum
, rx_csr
,
1550 xfer_len
, dma
? ", dma" : "");
1551 rx_csr
&= ~MUSB_RXCSR_H_REQPKT
;
1553 musb_ep_select(mbase
, epnum
);
1554 musb_writew(epio
, MUSB_RXCSR
,
1555 MUSB_RXCSR_H_WZC_BITS
| rx_csr
);
1558 if (dma
&& (rx_csr
& MUSB_RXCSR_DMAENAB
)) {
1559 xfer_len
= dma
->actual_len
;
1561 val
&= ~(MUSB_RXCSR_DMAENAB
1562 | MUSB_RXCSR_H_AUTOREQ
1563 | MUSB_RXCSR_AUTOCLEAR
1564 | MUSB_RXCSR_RXPKTRDY
);
1565 musb_writew(hw_ep
->regs
, MUSB_RXCSR
, val
);
1567 #ifdef CONFIG_USB_INVENTRA_DMA
1568 if (usb_pipeisoc(pipe
)) {
1569 struct usb_iso_packet_descriptor
*d
;
1571 d
= urb
->iso_frame_desc
+ qh
->iso_idx
;
1572 d
->actual_length
= xfer_len
;
1574 /* even if there was an error, we did the dma
1575 * for iso_frame_desc->length
1577 if (d
->status
!= EILSEQ
&& d
->status
!= -EOVERFLOW
)
1580 if (++qh
->iso_idx
>= urb
->number_of_packets
)
1586 /* done if urb buffer is full or short packet is recd */
1587 done
= (urb
->actual_length
+ xfer_len
>=
1588 urb
->transfer_buffer_length
1589 || dma
->actual_len
< qh
->maxpacket
);
1592 /* send IN token for next packet, without AUTOREQ */
1594 val
|= MUSB_RXCSR_H_REQPKT
;
1595 musb_writew(epio
, MUSB_RXCSR
,
1596 MUSB_RXCSR_H_WZC_BITS
| val
);
1599 DBG(4, "ep %d dma %s, rxcsr %04x, rxcount %d\n", epnum
,
1600 done
? "off" : "reset",
1601 musb_readw(epio
, MUSB_RXCSR
),
1602 musb_readw(epio
, MUSB_RXCOUNT
));
1606 } else if (urb
->status
== -EINPROGRESS
) {
1607 /* if no errors, be sure a packet is ready for unloading */
1608 if (unlikely(!(rx_csr
& MUSB_RXCSR_RXPKTRDY
))) {
1610 ERR("Rx interrupt with no errors or packet!\n");
1612 /* FIXME this is another "SHOULD NEVER HAPPEN" */
1615 /* do the proper sequence to abort the transfer */
1616 musb_ep_select(mbase
, epnum
);
1617 val
&= ~MUSB_RXCSR_H_REQPKT
;
1618 musb_writew(epio
, MUSB_RXCSR
, val
);
1622 /* we are expecting IN packets */
1623 #ifdef CONFIG_USB_INVENTRA_DMA
1625 struct dma_controller
*c
;
1630 rx_count
= musb_readw(epio
, MUSB_RXCOUNT
);
1632 DBG(2, "RX%d count %d, buffer 0x%x len %d/%d\n",
1635 + urb
->actual_length
,
1637 urb
->transfer_buffer_length
);
1639 c
= musb
->dma_controller
;
1641 if (usb_pipeisoc(pipe
)) {
1643 struct usb_iso_packet_descriptor
*d
;
1645 d
= urb
->iso_frame_desc
+ qh
->iso_idx
;
1651 if (rx_count
> d
->length
) {
1653 status
= -EOVERFLOW
;
1656 DBG(2, "** OVERFLOW %d into %d\n",\
1657 rx_count
, d
->length
);
1663 buf
= urb
->transfer_dma
+ d
->offset
;
1666 buf
= urb
->transfer_dma
+
1670 dma
->desired_mode
= 0;
1672 /* because of the issue below, mode 1 will
1673 * only rarely behave with correct semantics.
1675 if ((urb
->transfer_flags
&
1677 && (urb
->transfer_buffer_length
-
1680 dma
->desired_mode
= 1;
1681 if (rx_count
< hw_ep
->max_packet_sz_rx
) {
1683 dma
->bDesiredMode
= 0;
1685 length
= urb
->transfer_buffer_length
;
1689 /* Disadvantage of using mode 1:
1690 * It's basically usable only for mass storage class; essentially all
1691 * other protocols also terminate transfers on short packets.
1694 * An extra IN token is sent at the end of the transfer (due to AUTOREQ)
1695 * If you try to use mode 1 for (transfer_buffer_length - 512), and try
1696 * to use the extra IN token to grab the last packet using mode 0, then
1697 * the problem is that you cannot be sure when the device will send the
1698 * last packet and RxPktRdy set. Sometimes the packet is recd too soon
1699 * such that it gets lost when RxCSR is re-set at the end of the mode 1
1700 * transfer, while sometimes it is recd just a little late so that if you
1701 * try to configure for mode 0 soon after the mode 1 transfer is
1702 * completed, you will find rxcount 0. Okay, so you might think why not
1703 * wait for an interrupt when the pkt is recd. Well, you won't get any!
1706 val
= musb_readw(epio
, MUSB_RXCSR
);
1707 val
&= ~MUSB_RXCSR_H_REQPKT
;
1709 if (dma
->desired_mode
== 0)
1710 val
&= ~MUSB_RXCSR_H_AUTOREQ
;
1712 val
|= MUSB_RXCSR_H_AUTOREQ
;
1713 val
|= MUSB_RXCSR_DMAENAB
;
1715 /* autoclear shouldn't be set in high bandwidth */
1716 if (qh
->hb_mult
== 1)
1717 val
|= MUSB_RXCSR_AUTOCLEAR
;
1719 musb_writew(epio
, MUSB_RXCSR
,
1720 MUSB_RXCSR_H_WZC_BITS
| val
);
1722 /* REVISIT if when actual_length != 0,
1723 * transfer_buffer_length needs to be
1726 ret
= c
->channel_program(
1728 dma
->desired_mode
, buf
, length
);
1731 c
->channel_release(dma
);
1732 hw_ep
->rx_channel
= NULL
;
1734 /* REVISIT reset CSR */
1737 #endif /* Mentor DMA */
1740 done
= musb_host_packet_rx(musb
, urb
,
1742 DBG(6, "read %spacket\n", done
? "last " : "");
1747 urb
->actual_length
+= xfer_len
;
1748 qh
->offset
+= xfer_len
;
1750 if (urb
->status
== -EINPROGRESS
)
1751 urb
->status
= status
;
1752 musb_advance_schedule(musb
, urb
, hw_ep
, USB_DIR_IN
);
1756 /* schedule nodes correspond to peripheral endpoints, like an OHCI QH.
1757 * the software schedule associates multiple such nodes with a given
1758 * host side hardware endpoint + direction; scheduling may activate
1759 * that hardware endpoint.
1761 static int musb_schedule(
1768 int best_end
, epnum
;
1769 struct musb_hw_ep
*hw_ep
= NULL
;
1770 struct list_head
*head
= NULL
;
1772 /* use fixed hardware for control and bulk */
1773 if (qh
->type
== USB_ENDPOINT_XFER_CONTROL
) {
1774 head
= &musb
->control
;
1775 hw_ep
= musb
->control_ep
;
1779 /* else, periodic transfers get muxed to other endpoints */
1782 * We know this qh hasn't been scheduled, so all we need to do
1783 * is choose which hardware endpoint to put it on ...
1785 * REVISIT what we really want here is a regular schedule tree
1786 * like e.g. OHCI uses.
1791 for (epnum
= 1, hw_ep
= musb
->endpoints
+ 1;
1792 epnum
< musb
->nr_endpoints
;
1796 if (musb_ep_get_qh(hw_ep
, is_in
) != NULL
)
1799 if (hw_ep
== musb
->bulk_ep
)
1803 diff
= hw_ep
->max_packet_sz_rx
;
1805 diff
= hw_ep
->max_packet_sz_tx
;
1806 diff
-= (qh
->maxpacket
* qh
->hb_mult
);
1808 if (diff
>= 0 && best_diff
> diff
) {
1813 /* use bulk reserved ep1 if no other ep is free */
1814 if (best_end
< 0 && qh
->type
== USB_ENDPOINT_XFER_BULK
) {
1815 hw_ep
= musb
->bulk_ep
;
1817 head
= &musb
->in_bulk
;
1819 head
= &musb
->out_bulk
;
1821 /* Enable bulk RX NAK timeout scheme when bulk requests are
1822 * multiplexed. This scheme doen't work in high speed to full
1823 * speed scenario as NAK interrupts are not coming from a
1824 * full speed device connected to a high speed device.
1825 * NAK timeout interval is 8 (128 uframe or 16ms) for HS and
1826 * 4 (8 frame or 8ms) for FS device.
1828 if (is_in
&& qh
->dev
)
1830 (USB_SPEED_HIGH
== qh
->dev
->speed
) ? 8 : 4;
1832 } else if (best_end
< 0) {
1838 hw_ep
= musb
->endpoints
+ best_end
;
1839 DBG(4, "qh %p periodic slot %d\n", qh
, best_end
);
1842 idle
= list_empty(head
);
1843 list_add_tail(&qh
->ring
, head
);
1847 qh
->hep
->hcpriv
= qh
;
1849 musb_start_urb(musb
, is_in
, qh
);
1853 static int musb_urb_enqueue(
1854 struct usb_hcd
*hcd
,
1858 unsigned long flags
;
1859 struct musb
*musb
= hcd_to_musb(hcd
);
1860 struct usb_host_endpoint
*hep
= urb
->ep
;
1862 struct usb_endpoint_descriptor
*epd
= &hep
->desc
;
1867 /* host role must be active */
1868 if (!is_host_active(musb
) || !musb
->is_active
)
1871 spin_lock_irqsave(&musb
->lock
, flags
);
1872 ret
= usb_hcd_link_urb_to_ep(hcd
, urb
);
1873 qh
= ret
? NULL
: hep
->hcpriv
;
1876 spin_unlock_irqrestore(&musb
->lock
, flags
);
1878 /* DMA mapping was already done, if needed, and this urb is on
1879 * hep->urb_list now ... so we're done, unless hep wasn't yet
1880 * scheduled onto a live qh.
1882 * REVISIT best to keep hep->hcpriv valid until the endpoint gets
1883 * disabled, testing for empty qh->ring and avoiding qh setup costs
1884 * except for the first urb queued after a config change.
1889 /* Allocate and initialize qh, minimizing the work done each time
1890 * hw_ep gets reprogrammed, or with irqs blocked. Then schedule it.
1892 * REVISIT consider a dedicated qh kmem_cache, so it's harder
1893 * for bugs in other kernel code to break this driver...
1895 qh
= kzalloc(sizeof *qh
, mem_flags
);
1897 spin_lock_irqsave(&musb
->lock
, flags
);
1898 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
1899 spin_unlock_irqrestore(&musb
->lock
, flags
);
1905 INIT_LIST_HEAD(&qh
->ring
);
1908 qh
->maxpacket
= le16_to_cpu(epd
->wMaxPacketSize
);
1909 qh
->type
= usb_endpoint_type(epd
);
1911 /* Bits 11 & 12 of wMaxPacketSize encode high bandwidth multiplier.
1912 * Some musb cores don't support high bandwidth ISO transfers; and
1913 * we don't (yet!) support high bandwidth interrupt transfers.
1915 qh
->hb_mult
= 1 + ((qh
->maxpacket
>> 11) & 0x03);
1916 if (qh
->hb_mult
> 1) {
1917 int ok
= (qh
->type
== USB_ENDPOINT_XFER_ISOC
);
1920 ok
= (usb_pipein(urb
->pipe
) && musb
->hb_iso_rx
)
1921 || (usb_pipeout(urb
->pipe
) && musb
->hb_iso_tx
);
1926 qh
->maxpacket
&= 0x7ff;
1929 qh
->epnum
= usb_endpoint_num(epd
);
1931 /* NOTE: urb->dev->devnum is wrong during SET_ADDRESS */
1932 qh
->addr_reg
= (u8
) usb_pipedevice(urb
->pipe
);
1934 /* precompute rxtype/txtype/type0 register */
1935 type_reg
= (qh
->type
<< 4) | qh
->epnum
;
1936 switch (urb
->dev
->speed
) {
1940 case USB_SPEED_FULL
:
1946 qh
->type_reg
= type_reg
;
1948 /* Precompute RXINTERVAL/TXINTERVAL register */
1950 case USB_ENDPOINT_XFER_INT
:
1952 * Full/low speeds use the linear encoding,
1953 * high speed uses the logarithmic encoding.
1955 if (urb
->dev
->speed
<= USB_SPEED_FULL
) {
1956 interval
= max_t(u8
, epd
->bInterval
, 1);
1960 case USB_ENDPOINT_XFER_ISOC
:
1961 /* ISO always uses logarithmic encoding */
1962 interval
= min_t(u8
, epd
->bInterval
, 16);
1965 /* REVISIT we actually want to use NAK limits, hinting to the
1966 * transfer scheduling logic to try some other qh, e.g. try
1969 * interval = (USB_SPEED_HIGH == urb->dev->speed) ? 16 : 2;
1971 * The downside of disabling this is that transfer scheduling
1972 * gets VERY unfair for nonperiodic transfers; a misbehaving
1973 * peripheral could make that hurt. That's perfectly normal
1974 * for reads from network or serial adapters ... so we have
1975 * partial NAKlimit support for bulk RX.
1977 * The upside of disabling it is simpler transfer scheduling.
1981 qh
->intv_reg
= interval
;
1983 /* precompute addressing for external hub/tt ports */
1984 if (musb
->is_multipoint
) {
1985 struct usb_device
*parent
= urb
->dev
->parent
;
1987 if (parent
!= hcd
->self
.root_hub
) {
1988 qh
->h_addr_reg
= (u8
) parent
->devnum
;
1990 /* set up tt info if needed */
1992 qh
->h_port_reg
= (u8
) urb
->dev
->ttport
;
1993 if (urb
->dev
->tt
->hub
)
1995 (u8
) urb
->dev
->tt
->hub
->devnum
;
1996 if (urb
->dev
->tt
->multi
)
1997 qh
->h_addr_reg
|= 0x80;
2002 /* invariant: hep->hcpriv is null OR the qh that's already scheduled.
2003 * until we get real dma queues (with an entry for each urb/buffer),
2004 * we only have work to do in the former case.
2006 spin_lock_irqsave(&musb
->lock
, flags
);
2008 /* some concurrent activity submitted another urb to hep...
2009 * odd, rare, error prone, but legal.
2014 ret
= musb_schedule(musb
, qh
,
2015 epd
->bEndpointAddress
& USB_ENDPOINT_DIR_MASK
);
2019 /* FIXME set urb->start_frame for iso/intr, it's tested in
2020 * musb_start_urb(), but otherwise only konicawc cares ...
2023 spin_unlock_irqrestore(&musb
->lock
, flags
);
2027 spin_lock_irqsave(&musb
->lock
, flags
);
2028 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
2029 spin_unlock_irqrestore(&musb
->lock
, flags
);
2037 * abort a transfer that's at the head of a hardware queue.
2038 * called with controller locked, irqs blocked
2039 * that hardware queue advances to the next transfer, unless prevented
2041 static int musb_cleanup_urb(struct urb
*urb
, struct musb_qh
*qh
)
2043 struct musb_hw_ep
*ep
= qh
->hw_ep
;
2044 void __iomem
*epio
= ep
->regs
;
2045 unsigned hw_end
= ep
->epnum
;
2046 void __iomem
*regs
= ep
->musb
->mregs
;
2047 int is_in
= usb_pipein(urb
->pipe
);
2051 musb_ep_select(regs
, hw_end
);
2053 if (is_dma_capable()) {
2054 struct dma_channel
*dma
;
2056 dma
= is_in
? ep
->rx_channel
: ep
->tx_channel
;
2058 status
= ep
->musb
->dma_controller
->channel_abort(dma
);
2060 "abort %cX%d DMA for urb %p --> %d\n",
2061 is_in
? 'R' : 'T', ep
->epnum
,
2063 urb
->actual_length
+= dma
->actual_len
;
2067 /* turn off DMA requests, discard state, stop polling ... */
2069 /* giveback saves bulk toggle */
2070 csr
= musb_h_flush_rxfifo(ep
, 0);
2072 /* REVISIT we still get an irq; should likely clear the
2073 * endpoint's irq status here to avoid bogus irqs.
2074 * clearing that status is platform-specific...
2076 } else if (ep
->epnum
) {
2077 musb_h_tx_flush_fifo(ep
);
2078 csr
= musb_readw(epio
, MUSB_TXCSR
);
2079 csr
&= ~(MUSB_TXCSR_AUTOSET
2080 | MUSB_TXCSR_DMAENAB
2081 | MUSB_TXCSR_H_RXSTALL
2082 | MUSB_TXCSR_H_NAKTIMEOUT
2083 | MUSB_TXCSR_H_ERROR
2084 | MUSB_TXCSR_TXPKTRDY
);
2085 musb_writew(epio
, MUSB_TXCSR
, csr
);
2086 /* REVISIT may need to clear FLUSHFIFO ... */
2087 musb_writew(epio
, MUSB_TXCSR
, csr
);
2088 /* flush cpu writebuffer */
2089 csr
= musb_readw(epio
, MUSB_TXCSR
);
2091 musb_h_ep0_flush_fifo(ep
);
2094 musb_advance_schedule(ep
->musb
, urb
, ep
, is_in
);
2098 static int musb_urb_dequeue(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
2100 struct musb
*musb
= hcd_to_musb(hcd
);
2102 unsigned long flags
;
2103 int is_in
= usb_pipein(urb
->pipe
);
2106 DBG(4, "urb=%p, dev%d ep%d%s\n", urb
,
2107 usb_pipedevice(urb
->pipe
),
2108 usb_pipeendpoint(urb
->pipe
),
2109 is_in
? "in" : "out");
2111 spin_lock_irqsave(&musb
->lock
, flags
);
2112 ret
= usb_hcd_check_unlink_urb(hcd
, urb
, status
);
2121 * Any URB not actively programmed into endpoint hardware can be
2122 * immediately given back; that's any URB not at the head of an
2123 * endpoint queue, unless someday we get real DMA queues. And even
2124 * if it's at the head, it might not be known to the hardware...
2126 * Otherwise abort current transfer, pending DMA, etc.; urb->status
2127 * has already been updated. This is a synchronous abort; it'd be
2128 * OK to hold off until after some IRQ, though.
2130 * NOTE: qh is invalid unless !list_empty(&hep->urb_list)
2133 || urb
->urb_list
.prev
!= &qh
->hep
->urb_list
2134 || musb_ep_get_qh(qh
->hw_ep
, is_in
) != qh
) {
2135 int ready
= qh
->is_ready
;
2138 musb_giveback(musb
, urb
, 0);
2139 qh
->is_ready
= ready
;
2141 /* If nothing else (usually musb_giveback) is using it
2142 * and its URB list has emptied, recycle this qh.
2144 if (ready
&& list_empty(&qh
->hep
->urb_list
)) {
2145 qh
->hep
->hcpriv
= NULL
;
2146 list_del(&qh
->ring
);
2150 ret
= musb_cleanup_urb(urb
, qh
);
2152 spin_unlock_irqrestore(&musb
->lock
, flags
);
2156 /* disable an endpoint */
2158 musb_h_disable(struct usb_hcd
*hcd
, struct usb_host_endpoint
*hep
)
2160 u8 is_in
= hep
->desc
.bEndpointAddress
& USB_DIR_IN
;
2161 unsigned long flags
;
2162 struct musb
*musb
= hcd_to_musb(hcd
);
2166 spin_lock_irqsave(&musb
->lock
, flags
);
2172 /* NOTE: qh is invalid unless !list_empty(&hep->urb_list) */
2174 /* Kick the first URB off the hardware, if needed */
2176 if (musb_ep_get_qh(qh
->hw_ep
, is_in
) == qh
) {
2179 /* make software (then hardware) stop ASAP */
2181 urb
->status
= -ESHUTDOWN
;
2184 musb_cleanup_urb(urb
, qh
);
2186 /* Then nuke all the others ... and advance the
2187 * queue on hw_ep (e.g. bulk ring) when we're done.
2189 while (!list_empty(&hep
->urb_list
)) {
2191 urb
->status
= -ESHUTDOWN
;
2192 musb_advance_schedule(musb
, urb
, qh
->hw_ep
, is_in
);
2195 /* Just empty the queue; the hardware is busy with
2196 * other transfers, and since !qh->is_ready nothing
2197 * will activate any of these as it advances.
2199 while (!list_empty(&hep
->urb_list
))
2200 musb_giveback(musb
, next_urb(qh
), -ESHUTDOWN
);
2203 list_del(&qh
->ring
);
2207 spin_unlock_irqrestore(&musb
->lock
, flags
);
2210 static int musb_h_get_frame_number(struct usb_hcd
*hcd
)
2212 struct musb
*musb
= hcd_to_musb(hcd
);
2214 return musb_readw(musb
->mregs
, MUSB_FRAME
);
2217 static int musb_h_start(struct usb_hcd
*hcd
)
2219 struct musb
*musb
= hcd_to_musb(hcd
);
2221 /* NOTE: musb_start() is called when the hub driver turns
2222 * on port power, or when (OTG) peripheral starts.
2224 hcd
->state
= HC_STATE_RUNNING
;
2225 musb
->port1_status
= 0;
2229 static void musb_h_stop(struct usb_hcd
*hcd
)
2231 musb_stop(hcd_to_musb(hcd
));
2232 hcd
->state
= HC_STATE_HALT
;
2235 static int musb_bus_suspend(struct usb_hcd
*hcd
)
2237 struct musb
*musb
= hcd_to_musb(hcd
);
2240 if (!is_host_active(musb
))
2243 switch (musb
->xceiv
->state
) {
2244 case OTG_STATE_A_SUSPEND
:
2246 case OTG_STATE_A_WAIT_VRISE
:
2247 /* ID could be grounded even if there's no device
2248 * on the other end of the cable. NOTE that the
2249 * A_WAIT_VRISE timers are messy with MUSB...
2251 devctl
= musb_readb(musb
->mregs
, MUSB_DEVCTL
);
2252 if ((devctl
& MUSB_DEVCTL_VBUS
) == MUSB_DEVCTL_VBUS
)
2253 musb
->xceiv
->state
= OTG_STATE_A_WAIT_BCON
;
2259 if (musb
->is_active
) {
2260 WARNING("trying to suspend as %s while active\n",
2261 otg_state_string(musb
));
2267 static int musb_bus_resume(struct usb_hcd
*hcd
)
2269 /* resuming child port does the work */
2273 const struct hc_driver musb_hc_driver
= {
2274 .description
= "musb-hcd",
2275 .product_desc
= "MUSB HDRC host driver",
2276 .hcd_priv_size
= sizeof(struct musb
),
2277 .flags
= HCD_USB2
| HCD_MEMORY
,
2279 /* not using irq handler or reset hooks from usbcore, since
2280 * those must be shared with peripheral code for OTG configs
2283 .start
= musb_h_start
,
2284 .stop
= musb_h_stop
,
2286 .get_frame_number
= musb_h_get_frame_number
,
2288 .urb_enqueue
= musb_urb_enqueue
,
2289 .urb_dequeue
= musb_urb_dequeue
,
2290 .endpoint_disable
= musb_h_disable
,
2292 .hub_status_data
= musb_hub_status_data
,
2293 .hub_control
= musb_hub_control
,
2294 .bus_suspend
= musb_bus_suspend
,
2295 .bus_resume
= musb_bus_resume
,
2296 /* .start_port_reset = NULL, */
2297 /* .hub_irq_enable = NULL, */