On Tue, Nov 06, 2007 at 02:33:53AM -0800, akpm@linux-foundation.org wrote:
[mmotm.git] / fs / reiserfs / inode.c
blob9e33b3abf5343d1452302c658d5e0ce8dd857a8f
1 /*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
5 #include <linux/time.h>
6 #include <linux/fs.h>
7 #include <linux/reiserfs_fs.h>
8 #include <linux/reiserfs_acl.h>
9 #include <linux/reiserfs_xattr.h>
10 #include <linux/exportfs.h>
11 #include <linux/smp_lock.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <asm/uaccess.h>
15 #include <asm/unaligned.h>
16 #include <linux/buffer_head.h>
17 #include <linux/mpage.h>
18 #include <linux/writeback.h>
19 #include <linux/quotaops.h>
20 #include <linux/swap.h>
22 int reiserfs_commit_write(struct file *f, struct page *page,
23 unsigned from, unsigned to);
24 int reiserfs_prepare_write(struct file *f, struct page *page,
25 unsigned from, unsigned to);
27 void reiserfs_delete_inode(struct inode *inode)
29 /* We need blocks for transaction + (user+group) quota update (possibly delete) */
30 int jbegin_count =
31 JOURNAL_PER_BALANCE_CNT * 2 +
32 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
33 struct reiserfs_transaction_handle th;
34 int err;
36 truncate_inode_pages(&inode->i_data, 0);
38 reiserfs_write_lock(inode->i_sb);
40 /* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */
41 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) { /* also handles bad_inode case */
42 reiserfs_delete_xattrs(inode);
44 if (journal_begin(&th, inode->i_sb, jbegin_count))
45 goto out;
46 reiserfs_update_inode_transaction(inode);
48 reiserfs_discard_prealloc(&th, inode);
50 err = reiserfs_delete_object(&th, inode);
52 /* Do quota update inside a transaction for journaled quotas. We must do that
53 * after delete_object so that quota updates go into the same transaction as
54 * stat data deletion */
55 if (!err)
56 vfs_dq_free_inode(inode);
58 if (journal_end(&th, inode->i_sb, jbegin_count))
59 goto out;
61 /* check return value from reiserfs_delete_object after
62 * ending the transaction
64 if (err)
65 goto out;
67 /* all items of file are deleted, so we can remove "save" link */
68 remove_save_link(inode, 0 /* not truncate */ ); /* we can't do anything
69 * about an error here */
70 } else {
71 /* no object items are in the tree */
74 out:
75 clear_inode(inode); /* note this must go after the journal_end to prevent deadlock */
76 inode->i_blocks = 0;
77 reiserfs_write_unlock(inode->i_sb);
80 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
81 __u32 objectid, loff_t offset, int type, int length)
83 key->version = version;
85 key->on_disk_key.k_dir_id = dirid;
86 key->on_disk_key.k_objectid = objectid;
87 set_cpu_key_k_offset(key, offset);
88 set_cpu_key_k_type(key, type);
89 key->key_length = length;
92 /* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set
93 offset and type of key */
94 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
95 int type, int length)
97 _make_cpu_key(key, get_inode_item_key_version(inode),
98 le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
99 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
100 length);
104 // when key is 0, do not set version and short key
106 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
107 int version,
108 loff_t offset, int type, int length,
109 int entry_count /*or ih_free_space */ )
111 if (key) {
112 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
113 ih->ih_key.k_objectid =
114 cpu_to_le32(key->on_disk_key.k_objectid);
116 put_ih_version(ih, version);
117 set_le_ih_k_offset(ih, offset);
118 set_le_ih_k_type(ih, type);
119 put_ih_item_len(ih, length);
120 /* set_ih_free_space (ih, 0); */
121 // for directory items it is entry count, for directs and stat
122 // datas - 0xffff, for indirects - 0
123 put_ih_entry_count(ih, entry_count);
127 // FIXME: we might cache recently accessed indirect item
129 // Ugh. Not too eager for that....
130 // I cut the code until such time as I see a convincing argument (benchmark).
131 // I don't want a bloated inode struct..., and I don't like code complexity....
133 /* cutting the code is fine, since it really isn't in use yet and is easy
134 ** to add back in. But, Vladimir has a really good idea here. Think
135 ** about what happens for reading a file. For each page,
136 ** The VFS layer calls reiserfs_readpage, who searches the tree to find
137 ** an indirect item. This indirect item has X number of pointers, where
138 ** X is a big number if we've done the block allocation right. But,
139 ** we only use one or two of these pointers during each call to readpage,
140 ** needlessly researching again later on.
142 ** The size of the cache could be dynamic based on the size of the file.
144 ** I'd also like to see us cache the location the stat data item, since
145 ** we are needlessly researching for that frequently.
147 ** --chris
150 /* If this page has a file tail in it, and
151 ** it was read in by get_block_create_0, the page data is valid,
152 ** but tail is still sitting in a direct item, and we can't write to
153 ** it. So, look through this page, and check all the mapped buffers
154 ** to make sure they have valid block numbers. Any that don't need
155 ** to be unmapped, so that block_prepare_write will correctly call
156 ** reiserfs_get_block to convert the tail into an unformatted node
158 static inline void fix_tail_page_for_writing(struct page *page)
160 struct buffer_head *head, *next, *bh;
162 if (page && page_has_buffers(page)) {
163 head = page_buffers(page);
164 bh = head;
165 do {
166 next = bh->b_this_page;
167 if (buffer_mapped(bh) && bh->b_blocknr == 0) {
168 reiserfs_unmap_buffer(bh);
170 bh = next;
171 } while (bh != head);
175 /* reiserfs_get_block does not need to allocate a block only if it has been
176 done already or non-hole position has been found in the indirect item */
177 static inline int allocation_needed(int retval, b_blocknr_t allocated,
178 struct item_head *ih,
179 __le32 * item, int pos_in_item)
181 if (allocated)
182 return 0;
183 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
184 get_block_num(item, pos_in_item))
185 return 0;
186 return 1;
189 static inline int indirect_item_found(int retval, struct item_head *ih)
191 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
194 static inline void set_block_dev_mapped(struct buffer_head *bh,
195 b_blocknr_t block, struct inode *inode)
197 map_bh(bh, inode->i_sb, block);
201 // files which were created in the earlier version can not be longer,
202 // than 2 gb
204 static int file_capable(struct inode *inode, sector_t block)
206 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 || // it is new file.
207 block < (1 << (31 - inode->i_sb->s_blocksize_bits))) // old file, but 'block' is inside of 2gb
208 return 1;
210 return 0;
213 static int restart_transaction(struct reiserfs_transaction_handle *th,
214 struct inode *inode, struct treepath *path)
216 struct super_block *s = th->t_super;
217 int len = th->t_blocks_allocated;
218 int err;
220 BUG_ON(!th->t_trans_id);
221 BUG_ON(!th->t_refcount);
223 pathrelse(path);
225 /* we cannot restart while nested */
226 if (th->t_refcount > 1) {
227 return 0;
229 reiserfs_update_sd(th, inode);
230 err = journal_end(th, s, len);
231 if (!err) {
232 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
233 if (!err)
234 reiserfs_update_inode_transaction(inode);
236 return err;
239 // it is called by get_block when create == 0. Returns block number
240 // for 'block'-th logical block of file. When it hits direct item it
241 // returns 0 (being called from bmap) or read direct item into piece
242 // of page (bh_result)
244 // Please improve the english/clarity in the comment above, as it is
245 // hard to understand.
247 static int _get_block_create_0(struct inode *inode, sector_t block,
248 struct buffer_head *bh_result, int args)
250 INITIALIZE_PATH(path);
251 struct cpu_key key;
252 struct buffer_head *bh;
253 struct item_head *ih, tmp_ih;
254 int fs_gen;
255 b_blocknr_t blocknr;
256 char *p = NULL;
257 int chars;
258 int ret;
259 int result;
260 int done = 0;
261 unsigned long offset;
263 // prepare the key to look for the 'block'-th block of file
264 make_cpu_key(&key, inode,
265 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
268 research:
269 result = search_for_position_by_key(inode->i_sb, &key, &path);
270 if (result != POSITION_FOUND) {
271 pathrelse(&path);
272 if (p)
273 kunmap(bh_result->b_page);
274 if (result == IO_ERROR)
275 return -EIO;
276 // We do not return -ENOENT if there is a hole but page is uptodate, because it means
277 // That there is some MMAPED data associated with it that is yet to be written to disk.
278 if ((args & GET_BLOCK_NO_HOLE)
279 && !PageUptodate(bh_result->b_page)) {
280 return -ENOENT;
282 return 0;
285 bh = get_last_bh(&path);
286 ih = get_ih(&path);
287 if (is_indirect_le_ih(ih)) {
288 __le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih);
290 /* FIXME: here we could cache indirect item or part of it in
291 the inode to avoid search_by_key in case of subsequent
292 access to file */
293 blocknr = get_block_num(ind_item, path.pos_in_item);
294 ret = 0;
295 if (blocknr) {
296 map_bh(bh_result, inode->i_sb, blocknr);
297 if (path.pos_in_item ==
298 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
299 set_buffer_boundary(bh_result);
301 } else
302 // We do not return -ENOENT if there is a hole but page is uptodate, because it means
303 // That there is some MMAPED data associated with it that is yet to be written to disk.
304 if ((args & GET_BLOCK_NO_HOLE)
305 && !PageUptodate(bh_result->b_page)) {
306 ret = -ENOENT;
309 pathrelse(&path);
310 if (p)
311 kunmap(bh_result->b_page);
312 return ret;
314 // requested data are in direct item(s)
315 if (!(args & GET_BLOCK_READ_DIRECT)) {
316 // we are called by bmap. FIXME: we can not map block of file
317 // when it is stored in direct item(s)
318 pathrelse(&path);
319 if (p)
320 kunmap(bh_result->b_page);
321 return -ENOENT;
324 /* if we've got a direct item, and the buffer or page was uptodate,
325 ** we don't want to pull data off disk again. skip to the
326 ** end, where we map the buffer and return
328 if (buffer_uptodate(bh_result)) {
329 goto finished;
330 } else
332 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date
333 ** pages without any buffers. If the page is up to date, we don't want
334 ** read old data off disk. Set the up to date bit on the buffer instead
335 ** and jump to the end
337 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
338 set_buffer_uptodate(bh_result);
339 goto finished;
341 // read file tail into part of page
342 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1);
343 fs_gen = get_generation(inode->i_sb);
344 copy_item_head(&tmp_ih, ih);
346 /* we only want to kmap if we are reading the tail into the page.
347 ** this is not the common case, so we don't kmap until we are
348 ** sure we need to. But, this means the item might move if
349 ** kmap schedules
351 if (!p) {
352 p = (char *)kmap(bh_result->b_page);
353 if (fs_changed(fs_gen, inode->i_sb)
354 && item_moved(&tmp_ih, &path)) {
355 goto research;
358 p += offset;
359 memset(p, 0, inode->i_sb->s_blocksize);
360 do {
361 if (!is_direct_le_ih(ih)) {
362 BUG();
364 /* make sure we don't read more bytes than actually exist in
365 ** the file. This can happen in odd cases where i_size isn't
366 ** correct, and when direct item padding results in a few
367 ** extra bytes at the end of the direct item
369 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
370 break;
371 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
372 chars =
373 inode->i_size - (le_ih_k_offset(ih) - 1) -
374 path.pos_in_item;
375 done = 1;
376 } else {
377 chars = ih_item_len(ih) - path.pos_in_item;
379 memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars);
381 if (done)
382 break;
384 p += chars;
386 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
387 // we done, if read direct item is not the last item of
388 // node FIXME: we could try to check right delimiting key
389 // to see whether direct item continues in the right
390 // neighbor or rely on i_size
391 break;
393 // update key to look for the next piece
394 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
395 result = search_for_position_by_key(inode->i_sb, &key, &path);
396 if (result != POSITION_FOUND)
397 // i/o error most likely
398 break;
399 bh = get_last_bh(&path);
400 ih = get_ih(&path);
401 } while (1);
403 flush_dcache_page(bh_result->b_page);
404 kunmap(bh_result->b_page);
406 finished:
407 pathrelse(&path);
409 if (result == IO_ERROR)
410 return -EIO;
412 /* this buffer has valid data, but isn't valid for io. mapping it to
413 * block #0 tells the rest of reiserfs it just has a tail in it
415 map_bh(bh_result, inode->i_sb, 0);
416 set_buffer_uptodate(bh_result);
417 return 0;
420 // this is called to create file map. So, _get_block_create_0 will not
421 // read direct item
422 static int reiserfs_bmap(struct inode *inode, sector_t block,
423 struct buffer_head *bh_result, int create)
425 if (!file_capable(inode, block))
426 return -EFBIG;
428 reiserfs_write_lock(inode->i_sb);
429 /* do not read the direct item */
430 _get_block_create_0(inode, block, bh_result, 0);
431 reiserfs_write_unlock(inode->i_sb);
432 return 0;
435 /* special version of get_block that is only used by grab_tail_page right
436 ** now. It is sent to block_prepare_write, and when you try to get a
437 ** block past the end of the file (or a block from a hole) it returns
438 ** -ENOENT instead of a valid buffer. block_prepare_write expects to
439 ** be able to do i/o on the buffers returned, unless an error value
440 ** is also returned.
442 ** So, this allows block_prepare_write to be used for reading a single block
443 ** in a page. Where it does not produce a valid page for holes, or past the
444 ** end of the file. This turns out to be exactly what we need for reading
445 ** tails for conversion.
447 ** The point of the wrapper is forcing a certain value for create, even
448 ** though the VFS layer is calling this function with create==1. If you
449 ** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
450 ** don't use this function.
452 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
453 struct buffer_head *bh_result,
454 int create)
456 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
459 /* This is special helper for reiserfs_get_block in case we are executing
460 direct_IO request. */
461 static int reiserfs_get_blocks_direct_io(struct inode *inode,
462 sector_t iblock,
463 struct buffer_head *bh_result,
464 int create)
466 int ret;
468 bh_result->b_page = NULL;
470 /* We set the b_size before reiserfs_get_block call since it is
471 referenced in convert_tail_for_hole() that may be called from
472 reiserfs_get_block() */
473 bh_result->b_size = (1 << inode->i_blkbits);
475 ret = reiserfs_get_block(inode, iblock, bh_result,
476 create | GET_BLOCK_NO_DANGLE);
477 if (ret)
478 goto out;
480 /* don't allow direct io onto tail pages */
481 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
482 /* make sure future calls to the direct io funcs for this offset
483 ** in the file fail by unmapping the buffer
485 clear_buffer_mapped(bh_result);
486 ret = -EINVAL;
488 /* Possible unpacked tail. Flush the data before pages have
489 disappeared */
490 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
491 int err;
493 reiserfs_write_lock(inode->i_sb);
495 err = reiserfs_commit_for_inode(inode);
496 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
498 reiserfs_write_unlock(inode->i_sb);
500 if (err < 0)
501 ret = err;
503 out:
504 return ret;
508 ** helper function for when reiserfs_get_block is called for a hole
509 ** but the file tail is still in a direct item
510 ** bh_result is the buffer head for the hole
511 ** tail_offset is the offset of the start of the tail in the file
513 ** This calls prepare_write, which will start a new transaction
514 ** you should not be in a transaction, or have any paths held when you
515 ** call this.
517 static int convert_tail_for_hole(struct inode *inode,
518 struct buffer_head *bh_result,
519 loff_t tail_offset)
521 unsigned long index;
522 unsigned long tail_end;
523 unsigned long tail_start;
524 struct page *tail_page;
525 struct page *hole_page = bh_result->b_page;
526 int retval = 0;
528 if ((tail_offset & (bh_result->b_size - 1)) != 1)
529 return -EIO;
531 /* always try to read until the end of the block */
532 tail_start = tail_offset & (PAGE_CACHE_SIZE - 1);
533 tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
535 index = tail_offset >> PAGE_CACHE_SHIFT;
536 /* hole_page can be zero in case of direct_io, we are sure
537 that we cannot get here if we write with O_DIRECT into
538 tail page */
539 if (!hole_page || index != hole_page->index) {
540 tail_page = grab_cache_page(inode->i_mapping, index);
541 retval = -ENOMEM;
542 if (!tail_page) {
543 goto out;
545 } else {
546 tail_page = hole_page;
549 /* we don't have to make sure the conversion did not happen while
550 ** we were locking the page because anyone that could convert
551 ** must first take i_mutex.
553 ** We must fix the tail page for writing because it might have buffers
554 ** that are mapped, but have a block number of 0. This indicates tail
555 ** data that has been read directly into the page, and block_prepare_write
556 ** won't trigger a get_block in this case.
558 fix_tail_page_for_writing(tail_page);
559 retval = reiserfs_prepare_write(NULL, tail_page, tail_start, tail_end);
560 if (retval)
561 goto unlock;
563 /* tail conversion might change the data in the page */
564 flush_dcache_page(tail_page);
566 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
568 unlock:
569 if (tail_page != hole_page) {
570 unlock_page(tail_page);
571 page_cache_release(tail_page);
573 out:
574 return retval;
577 static inline int _allocate_block(struct reiserfs_transaction_handle *th,
578 sector_t block,
579 struct inode *inode,
580 b_blocknr_t * allocated_block_nr,
581 struct treepath *path, int flags)
583 BUG_ON(!th->t_trans_id);
585 #ifdef REISERFS_PREALLOCATE
586 if (!(flags & GET_BLOCK_NO_IMUX)) {
587 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
588 path, block);
590 #endif
591 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
592 block);
595 int reiserfs_get_block(struct inode *inode, sector_t block,
596 struct buffer_head *bh_result, int create)
598 int repeat, retval = 0;
599 b_blocknr_t allocated_block_nr = 0; // b_blocknr_t is (unsigned) 32 bit int
600 INITIALIZE_PATH(path);
601 int pos_in_item;
602 struct cpu_key key;
603 struct buffer_head *bh, *unbh = NULL;
604 struct item_head *ih, tmp_ih;
605 __le32 *item;
606 int done;
607 int fs_gen;
608 int lock_depth;
609 struct reiserfs_transaction_handle *th = NULL;
610 /* space reserved in transaction batch:
611 . 3 balancings in direct->indirect conversion
612 . 1 block involved into reiserfs_update_sd()
613 XXX in practically impossible worst case direct2indirect()
614 can incur (much) more than 3 balancings.
615 quota update for user, group */
616 int jbegin_count =
617 JOURNAL_PER_BALANCE_CNT * 3 + 1 +
618 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
619 int version;
620 int dangle = 1;
621 loff_t new_offset =
622 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
624 lock_depth = reiserfs_write_lock_once(inode->i_sb);
625 version = get_inode_item_key_version(inode);
627 if (!file_capable(inode, block)) {
628 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
629 return -EFBIG;
632 /* if !create, we aren't changing the FS, so we don't need to
633 ** log anything, so we don't need to start a transaction
635 if (!(create & GET_BLOCK_CREATE)) {
636 int ret;
637 /* find number of block-th logical block of the file */
638 ret = _get_block_create_0(inode, block, bh_result,
639 create | GET_BLOCK_READ_DIRECT);
640 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
641 return ret;
644 * if we're already in a transaction, make sure to close
645 * any new transactions we start in this func
647 if ((create & GET_BLOCK_NO_DANGLE) ||
648 reiserfs_transaction_running(inode->i_sb))
649 dangle = 0;
651 /* If file is of such a size, that it might have a tail and tails are enabled
652 ** we should mark it as possibly needing tail packing on close
654 if ((have_large_tails(inode->i_sb)
655 && inode->i_size < i_block_size(inode) * 4)
656 || (have_small_tails(inode->i_sb)
657 && inode->i_size < i_block_size(inode)))
658 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
660 /* set the key of the first byte in the 'block'-th block of file */
661 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
662 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
663 start_trans:
664 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
665 if (!th) {
666 retval = -ENOMEM;
667 goto failure;
669 reiserfs_update_inode_transaction(inode);
671 research:
673 retval = search_for_position_by_key(inode->i_sb, &key, &path);
674 if (retval == IO_ERROR) {
675 retval = -EIO;
676 goto failure;
679 bh = get_last_bh(&path);
680 ih = get_ih(&path);
681 item = get_item(&path);
682 pos_in_item = path.pos_in_item;
684 fs_gen = get_generation(inode->i_sb);
685 copy_item_head(&tmp_ih, ih);
687 if (allocation_needed
688 (retval, allocated_block_nr, ih, item, pos_in_item)) {
689 /* we have to allocate block for the unformatted node */
690 if (!th) {
691 pathrelse(&path);
692 goto start_trans;
695 repeat =
696 _allocate_block(th, block, inode, &allocated_block_nr,
697 &path, create);
699 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
700 /* restart the transaction to give the journal a chance to free
701 ** some blocks. releases the path, so we have to go back to
702 ** research if we succeed on the second try
704 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
705 retval = restart_transaction(th, inode, &path);
706 if (retval)
707 goto failure;
708 repeat =
709 _allocate_block(th, block, inode,
710 &allocated_block_nr, NULL, create);
712 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
713 goto research;
715 if (repeat == QUOTA_EXCEEDED)
716 retval = -EDQUOT;
717 else
718 retval = -ENOSPC;
719 goto failure;
722 if (fs_changed(fs_gen, inode->i_sb)
723 && item_moved(&tmp_ih, &path)) {
724 goto research;
728 if (indirect_item_found(retval, ih)) {
729 b_blocknr_t unfm_ptr;
730 /* 'block'-th block is in the file already (there is
731 corresponding cell in some indirect item). But it may be
732 zero unformatted node pointer (hole) */
733 unfm_ptr = get_block_num(item, pos_in_item);
734 if (unfm_ptr == 0) {
735 /* use allocated block to plug the hole */
736 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
737 if (fs_changed(fs_gen, inode->i_sb)
738 && item_moved(&tmp_ih, &path)) {
739 reiserfs_restore_prepared_buffer(inode->i_sb,
740 bh);
741 goto research;
743 set_buffer_new(bh_result);
744 if (buffer_dirty(bh_result)
745 && reiserfs_data_ordered(inode->i_sb))
746 reiserfs_add_ordered_list(inode, bh_result);
747 put_block_num(item, pos_in_item, allocated_block_nr);
748 unfm_ptr = allocated_block_nr;
749 journal_mark_dirty(th, inode->i_sb, bh);
750 reiserfs_update_sd(th, inode);
752 set_block_dev_mapped(bh_result, unfm_ptr, inode);
753 pathrelse(&path);
754 retval = 0;
755 if (!dangle && th)
756 retval = reiserfs_end_persistent_transaction(th);
758 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
760 /* the item was found, so new blocks were not added to the file
761 ** there is no need to make sure the inode is updated with this
762 ** transaction
764 return retval;
767 if (!th) {
768 pathrelse(&path);
769 goto start_trans;
772 /* desired position is not found or is in the direct item. We have
773 to append file with holes up to 'block'-th block converting
774 direct items to indirect one if necessary */
775 done = 0;
776 do {
777 if (is_statdata_le_ih(ih)) {
778 __le32 unp = 0;
779 struct cpu_key tmp_key;
781 /* indirect item has to be inserted */
782 make_le_item_head(&tmp_ih, &key, version, 1,
783 TYPE_INDIRECT, UNFM_P_SIZE,
784 0 /* free_space */ );
786 if (cpu_key_k_offset(&key) == 1) {
787 /* we are going to add 'block'-th block to the file. Use
788 allocated block for that */
789 unp = cpu_to_le32(allocated_block_nr);
790 set_block_dev_mapped(bh_result,
791 allocated_block_nr, inode);
792 set_buffer_new(bh_result);
793 done = 1;
795 tmp_key = key; // ;)
796 set_cpu_key_k_offset(&tmp_key, 1);
797 PATH_LAST_POSITION(&path)++;
799 retval =
800 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
801 inode, (char *)&unp);
802 if (retval) {
803 reiserfs_free_block(th, inode,
804 allocated_block_nr, 1);
805 goto failure; // retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST
807 //mark_tail_converted (inode);
808 } else if (is_direct_le_ih(ih)) {
809 /* direct item has to be converted */
810 loff_t tail_offset;
812 tail_offset =
813 ((le_ih_k_offset(ih) -
814 1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
815 if (tail_offset == cpu_key_k_offset(&key)) {
816 /* direct item we just found fits into block we have
817 to map. Convert it into unformatted node: use
818 bh_result for the conversion */
819 set_block_dev_mapped(bh_result,
820 allocated_block_nr, inode);
821 unbh = bh_result;
822 done = 1;
823 } else {
824 /* we have to padd file tail stored in direct item(s)
825 up to block size and convert it to unformatted
826 node. FIXME: this should also get into page cache */
828 pathrelse(&path);
830 * ugly, but we can only end the transaction if
831 * we aren't nested
833 BUG_ON(!th->t_refcount);
834 if (th->t_refcount == 1) {
835 retval =
836 reiserfs_end_persistent_transaction
837 (th);
838 th = NULL;
839 if (retval)
840 goto failure;
843 retval =
844 convert_tail_for_hole(inode, bh_result,
845 tail_offset);
846 if (retval) {
847 if (retval != -ENOSPC)
848 reiserfs_error(inode->i_sb,
849 "clm-6004",
850 "convert tail failed "
851 "inode %lu, error %d",
852 inode->i_ino,
853 retval);
854 if (allocated_block_nr) {
855 /* the bitmap, the super, and the stat data == 3 */
856 if (!th)
857 th = reiserfs_persistent_transaction(inode->i_sb, 3);
858 if (th)
859 reiserfs_free_block(th,
860 inode,
861 allocated_block_nr,
864 goto failure;
866 goto research;
868 retval =
869 direct2indirect(th, inode, &path, unbh,
870 tail_offset);
871 if (retval) {
872 reiserfs_unmap_buffer(unbh);
873 reiserfs_free_block(th, inode,
874 allocated_block_nr, 1);
875 goto failure;
877 /* it is important the set_buffer_uptodate is done after
878 ** the direct2indirect. The buffer might contain valid
879 ** data newer than the data on disk (read by readpage, changed,
880 ** and then sent here by writepage). direct2indirect needs
881 ** to know if unbh was already up to date, so it can decide
882 ** if the data in unbh needs to be replaced with data from
883 ** the disk
885 set_buffer_uptodate(unbh);
887 /* unbh->b_page == NULL in case of DIRECT_IO request, this means
888 buffer will disappear shortly, so it should not be added to
890 if (unbh->b_page) {
891 /* we've converted the tail, so we must
892 ** flush unbh before the transaction commits
894 reiserfs_add_tail_list(inode, unbh);
896 /* mark it dirty now to prevent commit_write from adding
897 ** this buffer to the inode's dirty buffer list
900 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty().
901 * It's still atomic, but it sets the page dirty too,
902 * which makes it eligible for writeback at any time by the
903 * VM (which was also the case with __mark_buffer_dirty())
905 mark_buffer_dirty(unbh);
907 } else {
908 /* append indirect item with holes if needed, when appending
909 pointer to 'block'-th block use block, which is already
910 allocated */
911 struct cpu_key tmp_key;
912 unp_t unf_single = 0; // We use this in case we need to allocate only
913 // one block which is a fastpath
914 unp_t *un;
915 __u64 max_to_insert =
916 MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
917 UNFM_P_SIZE;
918 __u64 blocks_needed;
920 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
921 "vs-804: invalid position for append");
922 /* indirect item has to be appended, set up key of that position */
923 make_cpu_key(&tmp_key, inode,
924 le_key_k_offset(version,
925 &(ih->ih_key)) +
926 op_bytes_number(ih,
927 inode->i_sb->s_blocksize),
928 //pos_in_item * inode->i_sb->s_blocksize,
929 TYPE_INDIRECT, 3); // key type is unimportant
931 RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
932 "green-805: invalid offset");
933 blocks_needed =
935 ((cpu_key_k_offset(&key) -
936 cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
937 s_blocksize_bits);
939 if (blocks_needed == 1) {
940 un = &unf_single;
941 } else {
942 un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_ATOMIC); // We need to avoid scheduling.
943 if (!un) {
944 un = &unf_single;
945 blocks_needed = 1;
946 max_to_insert = 0;
949 if (blocks_needed <= max_to_insert) {
950 /* we are going to add target block to the file. Use allocated
951 block for that */
952 un[blocks_needed - 1] =
953 cpu_to_le32(allocated_block_nr);
954 set_block_dev_mapped(bh_result,
955 allocated_block_nr, inode);
956 set_buffer_new(bh_result);
957 done = 1;
958 } else {
959 /* paste hole to the indirect item */
960 /* If kmalloc failed, max_to_insert becomes zero and it means we
961 only have space for one block */
962 blocks_needed =
963 max_to_insert ? max_to_insert : 1;
965 retval =
966 reiserfs_paste_into_item(th, &path, &tmp_key, inode,
967 (char *)un,
968 UNFM_P_SIZE *
969 blocks_needed);
971 if (blocks_needed != 1)
972 kfree(un);
974 if (retval) {
975 reiserfs_free_block(th, inode,
976 allocated_block_nr, 1);
977 goto failure;
979 if (!done) {
980 /* We need to mark new file size in case this function will be
981 interrupted/aborted later on. And we may do this only for
982 holes. */
983 inode->i_size +=
984 inode->i_sb->s_blocksize * blocks_needed;
988 if (done == 1)
989 break;
991 /* this loop could log more blocks than we had originally asked
992 ** for. So, we have to allow the transaction to end if it is
993 ** too big or too full. Update the inode so things are
994 ** consistent if we crash before the function returns
996 ** release the path so that anybody waiting on the path before
997 ** ending their transaction will be able to continue.
999 if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1000 retval = restart_transaction(th, inode, &path);
1001 if (retval)
1002 goto failure;
1005 * inserting indirect pointers for a hole can take a
1006 * long time. reschedule if needed and also release the write
1007 * lock for others.
1009 if (need_resched()) {
1010 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1011 schedule();
1012 lock_depth = reiserfs_write_lock_once(inode->i_sb);
1015 retval = search_for_position_by_key(inode->i_sb, &key, &path);
1016 if (retval == IO_ERROR) {
1017 retval = -EIO;
1018 goto failure;
1020 if (retval == POSITION_FOUND) {
1021 reiserfs_warning(inode->i_sb, "vs-825",
1022 "%K should not be found", &key);
1023 retval = -EEXIST;
1024 if (allocated_block_nr)
1025 reiserfs_free_block(th, inode,
1026 allocated_block_nr, 1);
1027 pathrelse(&path);
1028 goto failure;
1030 bh = get_last_bh(&path);
1031 ih = get_ih(&path);
1032 item = get_item(&path);
1033 pos_in_item = path.pos_in_item;
1034 } while (1);
1036 retval = 0;
1038 failure:
1039 if (th && (!dangle || (retval && !th->t_trans_id))) {
1040 int err;
1041 if (th->t_trans_id)
1042 reiserfs_update_sd(th, inode);
1043 err = reiserfs_end_persistent_transaction(th);
1044 if (err)
1045 retval = err;
1048 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1049 reiserfs_check_path(&path);
1050 return retval;
1053 static int
1054 reiserfs_readpages(struct file *file, struct address_space *mapping,
1055 struct list_head *pages, unsigned nr_pages)
1057 return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1060 /* Compute real number of used bytes by file
1061 * Following three functions can go away when we'll have enough space in stat item
1063 static int real_space_diff(struct inode *inode, int sd_size)
1065 int bytes;
1066 loff_t blocksize = inode->i_sb->s_blocksize;
1068 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1069 return sd_size;
1071 /* End of file is also in full block with indirect reference, so round
1072 ** up to the next block.
1074 ** there is just no way to know if the tail is actually packed
1075 ** on the file, so we have to assume it isn't. When we pack the
1076 ** tail, we add 4 bytes to pretend there really is an unformatted
1077 ** node pointer
1079 bytes =
1080 ((inode->i_size +
1081 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1082 sd_size;
1083 return bytes;
1086 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1087 int sd_size)
1089 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1090 return inode->i_size +
1091 (loff_t) (real_space_diff(inode, sd_size));
1093 return ((loff_t) real_space_diff(inode, sd_size)) +
1094 (((loff_t) blocks) << 9);
1097 /* Compute number of blocks used by file in ReiserFS counting */
1098 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1100 loff_t bytes = inode_get_bytes(inode);
1101 loff_t real_space = real_space_diff(inode, sd_size);
1103 /* keeps fsck and non-quota versions of reiserfs happy */
1104 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1105 bytes += (loff_t) 511;
1108 /* files from before the quota patch might i_blocks such that
1109 ** bytes < real_space. Deal with that here to prevent it from
1110 ** going negative.
1112 if (bytes < real_space)
1113 return 0;
1114 return (bytes - real_space) >> 9;
1118 // BAD: new directories have stat data of new type and all other items
1119 // of old type. Version stored in the inode says about body items, so
1120 // in update_stat_data we can not rely on inode, but have to check
1121 // item version directly
1124 // called by read_locked_inode
1125 static void init_inode(struct inode *inode, struct treepath *path)
1127 struct buffer_head *bh;
1128 struct item_head *ih;
1129 __u32 rdev;
1130 //int version = ITEM_VERSION_1;
1132 bh = PATH_PLAST_BUFFER(path);
1133 ih = PATH_PITEM_HEAD(path);
1135 copy_key(INODE_PKEY(inode), &(ih->ih_key));
1137 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1138 REISERFS_I(inode)->i_flags = 0;
1139 REISERFS_I(inode)->i_prealloc_block = 0;
1140 REISERFS_I(inode)->i_prealloc_count = 0;
1141 REISERFS_I(inode)->i_trans_id = 0;
1142 REISERFS_I(inode)->i_jl = NULL;
1143 mutex_init(&(REISERFS_I(inode)->i_mmap));
1144 reiserfs_init_xattr_rwsem(inode);
1146 if (stat_data_v1(ih)) {
1147 struct stat_data_v1 *sd =
1148 (struct stat_data_v1 *)B_I_PITEM(bh, ih);
1149 unsigned long blocks;
1151 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1152 set_inode_sd_version(inode, STAT_DATA_V1);
1153 inode->i_mode = sd_v1_mode(sd);
1154 inode->i_nlink = sd_v1_nlink(sd);
1155 inode->i_uid = sd_v1_uid(sd);
1156 inode->i_gid = sd_v1_gid(sd);
1157 inode->i_size = sd_v1_size(sd);
1158 inode->i_atime.tv_sec = sd_v1_atime(sd);
1159 inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1160 inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1161 inode->i_atime.tv_nsec = 0;
1162 inode->i_ctime.tv_nsec = 0;
1163 inode->i_mtime.tv_nsec = 0;
1165 inode->i_blocks = sd_v1_blocks(sd);
1166 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1167 blocks = (inode->i_size + 511) >> 9;
1168 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1169 if (inode->i_blocks > blocks) {
1170 // there was a bug in <=3.5.23 when i_blocks could take negative
1171 // values. Starting from 3.5.17 this value could even be stored in
1172 // stat data. For such files we set i_blocks based on file
1173 // size. Just 2 notes: this can be wrong for sparce files. On-disk value will be
1174 // only updated if file's inode will ever change
1175 inode->i_blocks = blocks;
1178 rdev = sd_v1_rdev(sd);
1179 REISERFS_I(inode)->i_first_direct_byte =
1180 sd_v1_first_direct_byte(sd);
1181 /* an early bug in the quota code can give us an odd number for the
1182 ** block count. This is incorrect, fix it here.
1184 if (inode->i_blocks & 1) {
1185 inode->i_blocks++;
1187 inode_set_bytes(inode,
1188 to_real_used_space(inode, inode->i_blocks,
1189 SD_V1_SIZE));
1190 /* nopack is initially zero for v1 objects. For v2 objects,
1191 nopack is initialised from sd_attrs */
1192 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1193 } else {
1194 // new stat data found, but object may have old items
1195 // (directories and symlinks)
1196 struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih);
1198 inode->i_mode = sd_v2_mode(sd);
1199 inode->i_nlink = sd_v2_nlink(sd);
1200 inode->i_uid = sd_v2_uid(sd);
1201 inode->i_size = sd_v2_size(sd);
1202 inode->i_gid = sd_v2_gid(sd);
1203 inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1204 inode->i_atime.tv_sec = sd_v2_atime(sd);
1205 inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1206 inode->i_ctime.tv_nsec = 0;
1207 inode->i_mtime.tv_nsec = 0;
1208 inode->i_atime.tv_nsec = 0;
1209 inode->i_blocks = sd_v2_blocks(sd);
1210 rdev = sd_v2_rdev(sd);
1211 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1212 inode->i_generation =
1213 le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1214 else
1215 inode->i_generation = sd_v2_generation(sd);
1217 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1218 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1219 else
1220 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1221 REISERFS_I(inode)->i_first_direct_byte = 0;
1222 set_inode_sd_version(inode, STAT_DATA_V2);
1223 inode_set_bytes(inode,
1224 to_real_used_space(inode, inode->i_blocks,
1225 SD_V2_SIZE));
1226 /* read persistent inode attributes from sd and initalise
1227 generic inode flags from them */
1228 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1229 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1232 pathrelse(path);
1233 if (S_ISREG(inode->i_mode)) {
1234 inode->i_op = &reiserfs_file_inode_operations;
1235 inode->i_fop = &reiserfs_file_operations;
1236 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1237 } else if (S_ISDIR(inode->i_mode)) {
1238 inode->i_op = &reiserfs_dir_inode_operations;
1239 inode->i_fop = &reiserfs_dir_operations;
1240 } else if (S_ISLNK(inode->i_mode)) {
1241 inode->i_op = &reiserfs_symlink_inode_operations;
1242 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1243 } else {
1244 inode->i_blocks = 0;
1245 inode->i_op = &reiserfs_special_inode_operations;
1246 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1250 // update new stat data with inode fields
1251 static void inode2sd(void *sd, struct inode *inode, loff_t size)
1253 struct stat_data *sd_v2 = (struct stat_data *)sd;
1254 __u16 flags;
1256 set_sd_v2_mode(sd_v2, inode->i_mode);
1257 set_sd_v2_nlink(sd_v2, inode->i_nlink);
1258 set_sd_v2_uid(sd_v2, inode->i_uid);
1259 set_sd_v2_size(sd_v2, size);
1260 set_sd_v2_gid(sd_v2, inode->i_gid);
1261 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1262 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1263 set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1264 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1265 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1266 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1267 else
1268 set_sd_v2_generation(sd_v2, inode->i_generation);
1269 flags = REISERFS_I(inode)->i_attrs;
1270 i_attrs_to_sd_attrs(inode, &flags);
1271 set_sd_v2_attrs(sd_v2, flags);
1274 // used to copy inode's fields to old stat data
1275 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1277 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1279 set_sd_v1_mode(sd_v1, inode->i_mode);
1280 set_sd_v1_uid(sd_v1, inode->i_uid);
1281 set_sd_v1_gid(sd_v1, inode->i_gid);
1282 set_sd_v1_nlink(sd_v1, inode->i_nlink);
1283 set_sd_v1_size(sd_v1, size);
1284 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1285 set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1286 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1288 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1289 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1290 else
1291 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1293 // Sigh. i_first_direct_byte is back
1294 set_sd_v1_first_direct_byte(sd_v1,
1295 REISERFS_I(inode)->i_first_direct_byte);
1298 /* NOTE, you must prepare the buffer head before sending it here,
1299 ** and then log it after the call
1301 static void update_stat_data(struct treepath *path, struct inode *inode,
1302 loff_t size)
1304 struct buffer_head *bh;
1305 struct item_head *ih;
1307 bh = PATH_PLAST_BUFFER(path);
1308 ih = PATH_PITEM_HEAD(path);
1310 if (!is_statdata_le_ih(ih))
1311 reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1312 INODE_PKEY(inode), ih);
1314 if (stat_data_v1(ih)) {
1315 // path points to old stat data
1316 inode2sd_v1(B_I_PITEM(bh, ih), inode, size);
1317 } else {
1318 inode2sd(B_I_PITEM(bh, ih), inode, size);
1321 return;
1324 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1325 struct inode *inode, loff_t size)
1327 struct cpu_key key;
1328 INITIALIZE_PATH(path);
1329 struct buffer_head *bh;
1330 int fs_gen;
1331 struct item_head *ih, tmp_ih;
1332 int retval;
1334 BUG_ON(!th->t_trans_id);
1336 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3); //key type is unimportant
1338 for (;;) {
1339 int pos;
1340 /* look for the object's stat data */
1341 retval = search_item(inode->i_sb, &key, &path);
1342 if (retval == IO_ERROR) {
1343 reiserfs_error(inode->i_sb, "vs-13050",
1344 "i/o failure occurred trying to "
1345 "update %K stat data", &key);
1346 return;
1348 if (retval == ITEM_NOT_FOUND) {
1349 pos = PATH_LAST_POSITION(&path);
1350 pathrelse(&path);
1351 if (inode->i_nlink == 0) {
1352 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1353 return;
1355 reiserfs_warning(inode->i_sb, "vs-13060",
1356 "stat data of object %k (nlink == %d) "
1357 "not found (pos %d)",
1358 INODE_PKEY(inode), inode->i_nlink,
1359 pos);
1360 reiserfs_check_path(&path);
1361 return;
1364 /* sigh, prepare_for_journal might schedule. When it schedules the
1365 ** FS might change. We have to detect that, and loop back to the
1366 ** search if the stat data item has moved
1368 bh = get_last_bh(&path);
1369 ih = get_ih(&path);
1370 copy_item_head(&tmp_ih, ih);
1371 fs_gen = get_generation(inode->i_sb);
1372 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1373 if (fs_changed(fs_gen, inode->i_sb)
1374 && item_moved(&tmp_ih, &path)) {
1375 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1376 continue; /* Stat_data item has been moved after scheduling. */
1378 break;
1380 update_stat_data(&path, inode, size);
1381 journal_mark_dirty(th, th->t_super, bh);
1382 pathrelse(&path);
1383 return;
1386 /* reiserfs_read_locked_inode is called to read the inode off disk, and it
1387 ** does a make_bad_inode when things go wrong. But, we need to make sure
1388 ** and clear the key in the private portion of the inode, otherwise a
1389 ** corresponding iput might try to delete whatever object the inode last
1390 ** represented.
1392 static void reiserfs_make_bad_inode(struct inode *inode)
1394 memset(INODE_PKEY(inode), 0, KEY_SIZE);
1395 make_bad_inode(inode);
1399 // initially this function was derived from minix or ext2's analog and
1400 // evolved as the prototype did
1403 int reiserfs_init_locked_inode(struct inode *inode, void *p)
1405 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1406 inode->i_ino = args->objectid;
1407 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1408 return 0;
1411 /* looks for stat data in the tree, and fills up the fields of in-core
1412 inode stat data fields */
1413 void reiserfs_read_locked_inode(struct inode *inode,
1414 struct reiserfs_iget_args *args)
1416 INITIALIZE_PATH(path_to_sd);
1417 struct cpu_key key;
1418 unsigned long dirino;
1419 int retval;
1421 dirino = args->dirid;
1423 /* set version 1, version 2 could be used too, because stat data
1424 key is the same in both versions */
1425 key.version = KEY_FORMAT_3_5;
1426 key.on_disk_key.k_dir_id = dirino;
1427 key.on_disk_key.k_objectid = inode->i_ino;
1428 key.on_disk_key.k_offset = 0;
1429 key.on_disk_key.k_type = 0;
1431 /* look for the object's stat data */
1432 retval = search_item(inode->i_sb, &key, &path_to_sd);
1433 if (retval == IO_ERROR) {
1434 reiserfs_error(inode->i_sb, "vs-13070",
1435 "i/o failure occurred trying to find "
1436 "stat data of %K", &key);
1437 reiserfs_make_bad_inode(inode);
1438 return;
1440 if (retval != ITEM_FOUND) {
1441 /* a stale NFS handle can trigger this without it being an error */
1442 pathrelse(&path_to_sd);
1443 reiserfs_make_bad_inode(inode);
1444 inode->i_nlink = 0;
1445 return;
1448 init_inode(inode, &path_to_sd);
1450 /* It is possible that knfsd is trying to access inode of a file
1451 that is being removed from the disk by some other thread. As we
1452 update sd on unlink all that is required is to check for nlink
1453 here. This bug was first found by Sizif when debugging
1454 SquidNG/Butterfly, forgotten, and found again after Philippe
1455 Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1457 More logical fix would require changes in fs/inode.c:iput() to
1458 remove inode from hash-table _after_ fs cleaned disk stuff up and
1459 in iget() to return NULL if I_FREEING inode is found in
1460 hash-table. */
1461 /* Currently there is one place where it's ok to meet inode with
1462 nlink==0: processing of open-unlinked and half-truncated files
1463 during mount (fs/reiserfs/super.c:finish_unfinished()). */
1464 if ((inode->i_nlink == 0) &&
1465 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1466 reiserfs_warning(inode->i_sb, "vs-13075",
1467 "dead inode read from disk %K. "
1468 "This is likely to be race with knfsd. Ignore",
1469 &key);
1470 reiserfs_make_bad_inode(inode);
1473 reiserfs_check_path(&path_to_sd); /* init inode should be relsing */
1478 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1480 * @inode: inode from hash table to check
1481 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1483 * This function is called by iget5_locked() to distinguish reiserfs inodes
1484 * having the same inode numbers. Such inodes can only exist due to some
1485 * error condition. One of them should be bad. Inodes with identical
1486 * inode numbers (objectids) are distinguished by parent directory ids.
1489 int reiserfs_find_actor(struct inode *inode, void *opaque)
1491 struct reiserfs_iget_args *args;
1493 args = opaque;
1494 /* args is already in CPU order */
1495 return (inode->i_ino == args->objectid) &&
1496 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1499 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1501 struct inode *inode;
1502 struct reiserfs_iget_args args;
1504 args.objectid = key->on_disk_key.k_objectid;
1505 args.dirid = key->on_disk_key.k_dir_id;
1506 inode = iget5_locked(s, key->on_disk_key.k_objectid,
1507 reiserfs_find_actor, reiserfs_init_locked_inode,
1508 (void *)(&args));
1509 if (!inode)
1510 return ERR_PTR(-ENOMEM);
1512 if (inode->i_state & I_NEW) {
1513 reiserfs_read_locked_inode(inode, &args);
1514 unlock_new_inode(inode);
1517 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1518 /* either due to i/o error or a stale NFS handle */
1519 iput(inode);
1520 inode = NULL;
1522 return inode;
1525 static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1526 u32 objectid, u32 dir_id, u32 generation)
1529 struct cpu_key key;
1530 struct inode *inode;
1532 key.on_disk_key.k_objectid = objectid;
1533 key.on_disk_key.k_dir_id = dir_id;
1534 reiserfs_write_lock(sb);
1535 inode = reiserfs_iget(sb, &key);
1536 if (inode && !IS_ERR(inode) && generation != 0 &&
1537 generation != inode->i_generation) {
1538 iput(inode);
1539 inode = NULL;
1541 reiserfs_write_unlock(sb);
1543 return d_obtain_alias(inode);
1546 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1547 int fh_len, int fh_type)
1549 /* fhtype happens to reflect the number of u32s encoded.
1550 * due to a bug in earlier code, fhtype might indicate there
1551 * are more u32s then actually fitted.
1552 * so if fhtype seems to be more than len, reduce fhtype.
1553 * Valid types are:
1554 * 2 - objectid + dir_id - legacy support
1555 * 3 - objectid + dir_id + generation
1556 * 4 - objectid + dir_id + objectid and dirid of parent - legacy
1557 * 5 - objectid + dir_id + generation + objectid and dirid of parent
1558 * 6 - as above plus generation of directory
1559 * 6 does not fit in NFSv2 handles
1561 if (fh_type > fh_len) {
1562 if (fh_type != 6 || fh_len != 5)
1563 reiserfs_warning(sb, "reiserfs-13077",
1564 "nfsd/reiserfs, fhtype=%d, len=%d - odd",
1565 fh_type, fh_len);
1566 fh_type = 5;
1569 return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1570 (fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1573 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1574 int fh_len, int fh_type)
1576 if (fh_type < 4)
1577 return NULL;
1579 return reiserfs_get_dentry(sb,
1580 (fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1581 (fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1582 (fh_type == 6) ? fid->raw[5] : 0);
1585 int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp,
1586 int need_parent)
1588 struct inode *inode = dentry->d_inode;
1589 int maxlen = *lenp;
1591 if (maxlen < 3)
1592 return 255;
1594 data[0] = inode->i_ino;
1595 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1596 data[2] = inode->i_generation;
1597 *lenp = 3;
1598 /* no room for directory info? return what we've stored so far */
1599 if (maxlen < 5 || !need_parent)
1600 return 3;
1602 spin_lock(&dentry->d_lock);
1603 inode = dentry->d_parent->d_inode;
1604 data[3] = inode->i_ino;
1605 data[4] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1606 *lenp = 5;
1607 if (maxlen >= 6) {
1608 data[5] = inode->i_generation;
1609 *lenp = 6;
1611 spin_unlock(&dentry->d_lock);
1612 return *lenp;
1615 /* looks for stat data, then copies fields to it, marks the buffer
1616 containing stat data as dirty */
1617 /* reiserfs inodes are never really dirty, since the dirty inode call
1618 ** always logs them. This call allows the VFS inode marking routines
1619 ** to properly mark inodes for datasync and such, but only actually
1620 ** does something when called for a synchronous update.
1622 int reiserfs_write_inode(struct inode *inode, int do_sync)
1624 struct reiserfs_transaction_handle th;
1625 int jbegin_count = 1;
1627 if (inode->i_sb->s_flags & MS_RDONLY)
1628 return -EROFS;
1629 /* memory pressure can sometimes initiate write_inode calls with sync == 1,
1630 ** these cases are just when the system needs ram, not when the
1631 ** inode needs to reach disk for safety, and they can safely be
1632 ** ignored because the altered inode has already been logged.
1634 if (do_sync && !(current->flags & PF_MEMALLOC)) {
1635 reiserfs_write_lock(inode->i_sb);
1636 if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1637 reiserfs_update_sd(&th, inode);
1638 journal_end_sync(&th, inode->i_sb, jbegin_count);
1640 reiserfs_write_unlock(inode->i_sb);
1642 return 0;
1645 /* stat data of new object is inserted already, this inserts the item
1646 containing "." and ".." entries */
1647 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1648 struct inode *inode,
1649 struct item_head *ih, struct treepath *path,
1650 struct inode *dir)
1652 struct super_block *sb = th->t_super;
1653 char empty_dir[EMPTY_DIR_SIZE];
1654 char *body = empty_dir;
1655 struct cpu_key key;
1656 int retval;
1658 BUG_ON(!th->t_trans_id);
1660 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1661 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1662 TYPE_DIRENTRY, 3 /*key length */ );
1664 /* compose item head for new item. Directories consist of items of
1665 old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1666 is done by reiserfs_new_inode */
1667 if (old_format_only(sb)) {
1668 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1669 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1671 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1672 ih->ih_key.k_objectid,
1673 INODE_PKEY(dir)->k_dir_id,
1674 INODE_PKEY(dir)->k_objectid);
1675 } else {
1676 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1677 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1679 make_empty_dir_item(body, ih->ih_key.k_dir_id,
1680 ih->ih_key.k_objectid,
1681 INODE_PKEY(dir)->k_dir_id,
1682 INODE_PKEY(dir)->k_objectid);
1685 /* look for place in the tree for new item */
1686 retval = search_item(sb, &key, path);
1687 if (retval == IO_ERROR) {
1688 reiserfs_error(sb, "vs-13080",
1689 "i/o failure occurred creating new directory");
1690 return -EIO;
1692 if (retval == ITEM_FOUND) {
1693 pathrelse(path);
1694 reiserfs_warning(sb, "vs-13070",
1695 "object with this key exists (%k)",
1696 &(ih->ih_key));
1697 return -EEXIST;
1700 /* insert item, that is empty directory item */
1701 return reiserfs_insert_item(th, path, &key, ih, inode, body);
1704 /* stat data of object has been inserted, this inserts the item
1705 containing the body of symlink */
1706 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode, /* Inode of symlink */
1707 struct item_head *ih,
1708 struct treepath *path, const char *symname,
1709 int item_len)
1711 struct super_block *sb = th->t_super;
1712 struct cpu_key key;
1713 int retval;
1715 BUG_ON(!th->t_trans_id);
1717 _make_cpu_key(&key, KEY_FORMAT_3_5,
1718 le32_to_cpu(ih->ih_key.k_dir_id),
1719 le32_to_cpu(ih->ih_key.k_objectid),
1720 1, TYPE_DIRECT, 3 /*key length */ );
1722 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1723 0 /*free_space */ );
1725 /* look for place in the tree for new item */
1726 retval = search_item(sb, &key, path);
1727 if (retval == IO_ERROR) {
1728 reiserfs_error(sb, "vs-13080",
1729 "i/o failure occurred creating new symlink");
1730 return -EIO;
1732 if (retval == ITEM_FOUND) {
1733 pathrelse(path);
1734 reiserfs_warning(sb, "vs-13080",
1735 "object with this key exists (%k)",
1736 &(ih->ih_key));
1737 return -EEXIST;
1740 /* insert item, that is body of symlink */
1741 return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1744 /* inserts the stat data into the tree, and then calls
1745 reiserfs_new_directory (to insert ".", ".." item if new object is
1746 directory) or reiserfs_new_symlink (to insert symlink body if new
1747 object is symlink) or nothing (if new object is regular file)
1749 NOTE! uid and gid must already be set in the inode. If we return
1750 non-zero due to an error, we have to drop the quota previously allocated
1751 for the fresh inode. This can only be done outside a transaction, so
1752 if we return non-zero, we also end the transaction. */
1753 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1754 struct inode *dir, int mode, const char *symname,
1755 /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1756 strlen (symname) for symlinks) */
1757 loff_t i_size, struct dentry *dentry,
1758 struct inode *inode,
1759 struct reiserfs_security_handle *security)
1761 struct super_block *sb;
1762 struct reiserfs_iget_args args;
1763 INITIALIZE_PATH(path_to_key);
1764 struct cpu_key key;
1765 struct item_head ih;
1766 struct stat_data sd;
1767 int retval;
1768 int err;
1770 BUG_ON(!th->t_trans_id);
1772 if (vfs_dq_alloc_inode(inode)) {
1773 err = -EDQUOT;
1774 goto out_end_trans;
1776 if (!dir->i_nlink) {
1777 err = -EPERM;
1778 goto out_bad_inode;
1781 sb = dir->i_sb;
1783 /* item head of new item */
1784 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1785 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1786 if (!ih.ih_key.k_objectid) {
1787 err = -ENOMEM;
1788 goto out_bad_inode;
1790 args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1791 if (old_format_only(sb))
1792 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1793 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1794 else
1795 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1796 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1797 memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE);
1798 args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1799 if (insert_inode_locked4(inode, args.objectid,
1800 reiserfs_find_actor, &args) < 0) {
1801 err = -EINVAL;
1802 goto out_bad_inode;
1804 if (old_format_only(sb))
1805 /* not a perfect generation count, as object ids can be reused, but
1806 ** this is as good as reiserfs can do right now.
1807 ** note that the private part of inode isn't filled in yet, we have
1808 ** to use the directory.
1810 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1811 else
1812 #if defined( USE_INODE_GENERATION_COUNTER )
1813 inode->i_generation =
1814 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1815 #else
1816 inode->i_generation = ++event;
1817 #endif
1819 /* fill stat data */
1820 inode->i_nlink = (S_ISDIR(mode) ? 2 : 1);
1822 /* uid and gid must already be set by the caller for quota init */
1824 /* symlink cannot be immutable or append only, right? */
1825 if (S_ISLNK(inode->i_mode))
1826 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
1828 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
1829 inode->i_size = i_size;
1830 inode->i_blocks = 0;
1831 inode->i_bytes = 0;
1832 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1833 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1835 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1836 REISERFS_I(inode)->i_flags = 0;
1837 REISERFS_I(inode)->i_prealloc_block = 0;
1838 REISERFS_I(inode)->i_prealloc_count = 0;
1839 REISERFS_I(inode)->i_trans_id = 0;
1840 REISERFS_I(inode)->i_jl = NULL;
1841 REISERFS_I(inode)->i_attrs =
1842 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1843 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
1844 mutex_init(&(REISERFS_I(inode)->i_mmap));
1845 reiserfs_init_xattr_rwsem(inode);
1847 /* key to search for correct place for new stat data */
1848 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
1849 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
1850 TYPE_STAT_DATA, 3 /*key length */ );
1852 /* find proper place for inserting of stat data */
1853 retval = search_item(sb, &key, &path_to_key);
1854 if (retval == IO_ERROR) {
1855 err = -EIO;
1856 goto out_bad_inode;
1858 if (retval == ITEM_FOUND) {
1859 pathrelse(&path_to_key);
1860 err = -EEXIST;
1861 goto out_bad_inode;
1863 if (old_format_only(sb)) {
1864 if (inode->i_uid & ~0xffff || inode->i_gid & ~0xffff) {
1865 pathrelse(&path_to_key);
1866 /* i_uid or i_gid is too big to be stored in stat data v3.5 */
1867 err = -EINVAL;
1868 goto out_bad_inode;
1870 inode2sd_v1(&sd, inode, inode->i_size);
1871 } else {
1872 inode2sd(&sd, inode, inode->i_size);
1874 // store in in-core inode the key of stat data and version all
1875 // object items will have (directory items will have old offset
1876 // format, other new objects will consist of new items)
1877 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
1878 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1879 else
1880 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1881 if (old_format_only(sb))
1882 set_inode_sd_version(inode, STAT_DATA_V1);
1883 else
1884 set_inode_sd_version(inode, STAT_DATA_V2);
1886 /* insert the stat data into the tree */
1887 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1888 if (REISERFS_I(dir)->new_packing_locality)
1889 th->displace_new_blocks = 1;
1890 #endif
1891 retval =
1892 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
1893 (char *)(&sd));
1894 if (retval) {
1895 err = retval;
1896 reiserfs_check_path(&path_to_key);
1897 goto out_bad_inode;
1899 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1900 if (!th->displace_new_blocks)
1901 REISERFS_I(dir)->new_packing_locality = 0;
1902 #endif
1903 if (S_ISDIR(mode)) {
1904 /* insert item with "." and ".." */
1905 retval =
1906 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
1909 if (S_ISLNK(mode)) {
1910 /* insert body of symlink */
1911 if (!old_format_only(sb))
1912 i_size = ROUND_UP(i_size);
1913 retval =
1914 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
1915 i_size);
1917 if (retval) {
1918 err = retval;
1919 reiserfs_check_path(&path_to_key);
1920 journal_end(th, th->t_super, th->t_blocks_allocated);
1921 goto out_inserted_sd;
1924 if (reiserfs_posixacl(inode->i_sb)) {
1925 retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
1926 if (retval) {
1927 err = retval;
1928 reiserfs_check_path(&path_to_key);
1929 journal_end(th, th->t_super, th->t_blocks_allocated);
1930 goto out_inserted_sd;
1932 } else if (inode->i_sb->s_flags & MS_POSIXACL) {
1933 reiserfs_warning(inode->i_sb, "jdm-13090",
1934 "ACLs aren't enabled in the fs, "
1935 "but vfs thinks they are!");
1936 } else if (IS_PRIVATE(dir))
1937 inode->i_flags |= S_PRIVATE;
1939 if (security->name) {
1940 retval = reiserfs_security_write(th, inode, security);
1941 if (retval) {
1942 err = retval;
1943 reiserfs_check_path(&path_to_key);
1944 retval = journal_end(th, th->t_super,
1945 th->t_blocks_allocated);
1946 if (retval)
1947 err = retval;
1948 goto out_inserted_sd;
1952 reiserfs_update_sd(th, inode);
1953 reiserfs_check_path(&path_to_key);
1955 return 0;
1957 /* it looks like you can easily compress these two goto targets into
1958 * one. Keeping it like this doesn't actually hurt anything, and they
1959 * are place holders for what the quota code actually needs.
1961 out_bad_inode:
1962 /* Invalidate the object, nothing was inserted yet */
1963 INODE_PKEY(inode)->k_objectid = 0;
1965 /* Quota change must be inside a transaction for journaling */
1966 vfs_dq_free_inode(inode);
1968 out_end_trans:
1969 journal_end(th, th->t_super, th->t_blocks_allocated);
1970 /* Drop can be outside and it needs more credits so it's better to have it outside */
1971 vfs_dq_drop(inode);
1972 inode->i_flags |= S_NOQUOTA;
1973 make_bad_inode(inode);
1975 out_inserted_sd:
1976 inode->i_nlink = 0;
1977 th->t_trans_id = 0; /* so the caller can't use this handle later */
1978 unlock_new_inode(inode); /* OK to do even if we hadn't locked it */
1979 iput(inode);
1980 return err;
1984 ** finds the tail page in the page cache,
1985 ** reads the last block in.
1987 ** On success, page_result is set to a locked, pinned page, and bh_result
1988 ** is set to an up to date buffer for the last block in the file. returns 0.
1990 ** tail conversion is not done, so bh_result might not be valid for writing
1991 ** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
1992 ** trying to write the block.
1994 ** on failure, nonzero is returned, page_result and bh_result are untouched.
1996 static int grab_tail_page(struct inode *inode,
1997 struct page **page_result,
1998 struct buffer_head **bh_result)
2001 /* we want the page with the last byte in the file,
2002 ** not the page that will hold the next byte for appending
2004 unsigned long index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT;
2005 unsigned long pos = 0;
2006 unsigned long start = 0;
2007 unsigned long blocksize = inode->i_sb->s_blocksize;
2008 unsigned long offset = (inode->i_size) & (PAGE_CACHE_SIZE - 1);
2009 struct buffer_head *bh;
2010 struct buffer_head *head;
2011 struct page *page;
2012 int error;
2014 /* we know that we are only called with inode->i_size > 0.
2015 ** we also know that a file tail can never be as big as a block
2016 ** If i_size % blocksize == 0, our file is currently block aligned
2017 ** and it won't need converting or zeroing after a truncate.
2019 if ((offset & (blocksize - 1)) == 0) {
2020 return -ENOENT;
2022 page = grab_cache_page(inode->i_mapping, index);
2023 error = -ENOMEM;
2024 if (!page) {
2025 goto out;
2027 /* start within the page of the last block in the file */
2028 start = (offset / blocksize) * blocksize;
2030 error = block_prepare_write(page, start, offset,
2031 reiserfs_get_block_create_0);
2032 if (error)
2033 goto unlock;
2035 head = page_buffers(page);
2036 bh = head;
2037 do {
2038 if (pos >= start) {
2039 break;
2041 bh = bh->b_this_page;
2042 pos += blocksize;
2043 } while (bh != head);
2045 if (!buffer_uptodate(bh)) {
2046 /* note, this should never happen, prepare_write should
2047 ** be taking care of this for us. If the buffer isn't up to date,
2048 ** I've screwed up the code to find the buffer, or the code to
2049 ** call prepare_write
2051 reiserfs_error(inode->i_sb, "clm-6000",
2052 "error reading block %lu", bh->b_blocknr);
2053 error = -EIO;
2054 goto unlock;
2056 *bh_result = bh;
2057 *page_result = page;
2059 out:
2060 return error;
2062 unlock:
2063 unlock_page(page);
2064 page_cache_release(page);
2065 return error;
2069 ** vfs version of truncate file. Must NOT be called with
2070 ** a transaction already started.
2072 ** some code taken from block_truncate_page
2074 int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2076 struct reiserfs_transaction_handle th;
2077 /* we want the offset for the first byte after the end of the file */
2078 unsigned long offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2079 unsigned blocksize = inode->i_sb->s_blocksize;
2080 unsigned length;
2081 struct page *page = NULL;
2082 int error;
2083 struct buffer_head *bh = NULL;
2084 int err2;
2085 int lock_depth;
2087 lock_depth = reiserfs_write_lock_once(inode->i_sb);
2089 if (inode->i_size > 0) {
2090 error = grab_tail_page(inode, &page, &bh);
2091 if (error) {
2092 // -ENOENT means we truncated past the end of the file,
2093 // and get_block_create_0 could not find a block to read in,
2094 // which is ok.
2095 if (error != -ENOENT)
2096 reiserfs_error(inode->i_sb, "clm-6001",
2097 "grab_tail_page failed %d",
2098 error);
2099 page = NULL;
2100 bh = NULL;
2104 /* so, if page != NULL, we have a buffer head for the offset at
2105 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2106 ** then we have an unformatted node. Otherwise, we have a direct item,
2107 ** and no zeroing is required on disk. We zero after the truncate,
2108 ** because the truncate might pack the item anyway
2109 ** (it will unmap bh if it packs).
2111 /* it is enough to reserve space in transaction for 2 balancings:
2112 one for "save" link adding and another for the first
2113 cut_from_item. 1 is for update_sd */
2114 error = journal_begin(&th, inode->i_sb,
2115 JOURNAL_PER_BALANCE_CNT * 2 + 1);
2116 if (error)
2117 goto out;
2118 reiserfs_update_inode_transaction(inode);
2119 if (update_timestamps)
2120 /* we are doing real truncate: if the system crashes before the last
2121 transaction of truncating gets committed - on reboot the file
2122 either appears truncated properly or not truncated at all */
2123 add_save_link(&th, inode, 1);
2124 err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2125 error =
2126 journal_end(&th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1);
2127 if (error)
2128 goto out;
2130 /* check reiserfs_do_truncate after ending the transaction */
2131 if (err2) {
2132 error = err2;
2133 goto out;
2136 if (update_timestamps) {
2137 error = remove_save_link(inode, 1 /* truncate */);
2138 if (error)
2139 goto out;
2142 if (page) {
2143 length = offset & (blocksize - 1);
2144 /* if we are not on a block boundary */
2145 if (length) {
2146 length = blocksize - length;
2147 zero_user(page, offset, length);
2148 if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2149 mark_buffer_dirty(bh);
2152 unlock_page(page);
2153 page_cache_release(page);
2156 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2158 return 0;
2159 out:
2160 if (page) {
2161 unlock_page(page);
2162 page_cache_release(page);
2165 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2167 return error;
2170 static int map_block_for_writepage(struct inode *inode,
2171 struct buffer_head *bh_result,
2172 unsigned long block)
2174 struct reiserfs_transaction_handle th;
2175 int fs_gen;
2176 struct item_head tmp_ih;
2177 struct item_head *ih;
2178 struct buffer_head *bh;
2179 __le32 *item;
2180 struct cpu_key key;
2181 INITIALIZE_PATH(path);
2182 int pos_in_item;
2183 int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2184 loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2185 int retval;
2186 int use_get_block = 0;
2187 int bytes_copied = 0;
2188 int copy_size;
2189 int trans_running = 0;
2191 /* catch places below that try to log something without starting a trans */
2192 th.t_trans_id = 0;
2194 if (!buffer_uptodate(bh_result)) {
2195 return -EIO;
2198 kmap(bh_result->b_page);
2199 start_over:
2200 reiserfs_write_lock(inode->i_sb);
2201 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2203 research:
2204 retval = search_for_position_by_key(inode->i_sb, &key, &path);
2205 if (retval != POSITION_FOUND) {
2206 use_get_block = 1;
2207 goto out;
2210 bh = get_last_bh(&path);
2211 ih = get_ih(&path);
2212 item = get_item(&path);
2213 pos_in_item = path.pos_in_item;
2215 /* we've found an unformatted node */
2216 if (indirect_item_found(retval, ih)) {
2217 if (bytes_copied > 0) {
2218 reiserfs_warning(inode->i_sb, "clm-6002",
2219 "bytes_copied %d", bytes_copied);
2221 if (!get_block_num(item, pos_in_item)) {
2222 /* crap, we are writing to a hole */
2223 use_get_block = 1;
2224 goto out;
2226 set_block_dev_mapped(bh_result,
2227 get_block_num(item, pos_in_item), inode);
2228 } else if (is_direct_le_ih(ih)) {
2229 char *p;
2230 p = page_address(bh_result->b_page);
2231 p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1);
2232 copy_size = ih_item_len(ih) - pos_in_item;
2234 fs_gen = get_generation(inode->i_sb);
2235 copy_item_head(&tmp_ih, ih);
2237 if (!trans_running) {
2238 /* vs-3050 is gone, no need to drop the path */
2239 retval = journal_begin(&th, inode->i_sb, jbegin_count);
2240 if (retval)
2241 goto out;
2242 reiserfs_update_inode_transaction(inode);
2243 trans_running = 1;
2244 if (fs_changed(fs_gen, inode->i_sb)
2245 && item_moved(&tmp_ih, &path)) {
2246 reiserfs_restore_prepared_buffer(inode->i_sb,
2247 bh);
2248 goto research;
2252 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2254 if (fs_changed(fs_gen, inode->i_sb)
2255 && item_moved(&tmp_ih, &path)) {
2256 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2257 goto research;
2260 memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied,
2261 copy_size);
2263 journal_mark_dirty(&th, inode->i_sb, bh);
2264 bytes_copied += copy_size;
2265 set_block_dev_mapped(bh_result, 0, inode);
2267 /* are there still bytes left? */
2268 if (bytes_copied < bh_result->b_size &&
2269 (byte_offset + bytes_copied) < inode->i_size) {
2270 set_cpu_key_k_offset(&key,
2271 cpu_key_k_offset(&key) +
2272 copy_size);
2273 goto research;
2275 } else {
2276 reiserfs_warning(inode->i_sb, "clm-6003",
2277 "bad item inode %lu", inode->i_ino);
2278 retval = -EIO;
2279 goto out;
2281 retval = 0;
2283 out:
2284 pathrelse(&path);
2285 if (trans_running) {
2286 int err = journal_end(&th, inode->i_sb, jbegin_count);
2287 if (err)
2288 retval = err;
2289 trans_running = 0;
2291 reiserfs_write_unlock(inode->i_sb);
2293 /* this is where we fill in holes in the file. */
2294 if (use_get_block) {
2295 retval = reiserfs_get_block(inode, block, bh_result,
2296 GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2297 | GET_BLOCK_NO_DANGLE);
2298 if (!retval) {
2299 if (!buffer_mapped(bh_result)
2300 || bh_result->b_blocknr == 0) {
2301 /* get_block failed to find a mapped unformatted node. */
2302 use_get_block = 0;
2303 goto start_over;
2307 kunmap(bh_result->b_page);
2309 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2310 /* we've copied data from the page into the direct item, so the
2311 * buffer in the page is now clean, mark it to reflect that.
2313 lock_buffer(bh_result);
2314 clear_buffer_dirty(bh_result);
2315 unlock_buffer(bh_result);
2317 return retval;
2321 * mason@suse.com: updated in 2.5.54 to follow the same general io
2322 * start/recovery path as __block_write_full_page, along with special
2323 * code to handle reiserfs tails.
2325 static int reiserfs_write_full_page(struct page *page,
2326 struct writeback_control *wbc)
2328 struct inode *inode = page->mapping->host;
2329 unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT;
2330 int error = 0;
2331 unsigned long block;
2332 sector_t last_block;
2333 struct buffer_head *head, *bh;
2334 int partial = 0;
2335 int nr = 0;
2336 int checked = PageChecked(page);
2337 struct reiserfs_transaction_handle th;
2338 struct super_block *s = inode->i_sb;
2339 int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
2340 th.t_trans_id = 0;
2342 /* no logging allowed when nonblocking or from PF_MEMALLOC */
2343 if (checked && (current->flags & PF_MEMALLOC)) {
2344 redirty_page_for_writepage(wbc, page);
2345 unlock_page(page);
2346 return 0;
2349 /* The page dirty bit is cleared before writepage is called, which
2350 * means we have to tell create_empty_buffers to make dirty buffers
2351 * The page really should be up to date at this point, so tossing
2352 * in the BH_Uptodate is just a sanity check.
2354 if (!page_has_buffers(page)) {
2355 create_empty_buffers(page, s->s_blocksize,
2356 (1 << BH_Dirty) | (1 << BH_Uptodate));
2358 head = page_buffers(page);
2360 /* last page in the file, zero out any contents past the
2361 ** last byte in the file
2363 if (page->index >= end_index) {
2364 unsigned last_offset;
2366 last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2367 /* no file contents in this page */
2368 if (page->index >= end_index + 1 || !last_offset) {
2369 unlock_page(page);
2370 return 0;
2372 zero_user_segment(page, last_offset, PAGE_CACHE_SIZE);
2374 bh = head;
2375 block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits);
2376 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2377 /* first map all the buffers, logging any direct items we find */
2378 do {
2379 if (block > last_block) {
2381 * This can happen when the block size is less than
2382 * the page size. The corresponding bytes in the page
2383 * were zero filled above
2385 clear_buffer_dirty(bh);
2386 set_buffer_uptodate(bh);
2387 } else if ((checked || buffer_dirty(bh)) &&
2388 (!buffer_mapped(bh) || (buffer_mapped(bh)
2389 && bh->b_blocknr ==
2390 0))) {
2391 /* not mapped yet, or it points to a direct item, search
2392 * the btree for the mapping info, and log any direct
2393 * items found
2395 if ((error = map_block_for_writepage(inode, bh, block))) {
2396 goto fail;
2399 bh = bh->b_this_page;
2400 block++;
2401 } while (bh != head);
2404 * we start the transaction after map_block_for_writepage,
2405 * because it can create holes in the file (an unbounded operation).
2406 * starting it here, we can make a reliable estimate for how many
2407 * blocks we're going to log
2409 if (checked) {
2410 ClearPageChecked(page);
2411 reiserfs_write_lock(s);
2412 error = journal_begin(&th, s, bh_per_page + 1);
2413 if (error) {
2414 reiserfs_write_unlock(s);
2415 goto fail;
2417 reiserfs_update_inode_transaction(inode);
2419 /* now go through and lock any dirty buffers on the page */
2420 do {
2421 get_bh(bh);
2422 if (!buffer_mapped(bh))
2423 continue;
2424 if (buffer_mapped(bh) && bh->b_blocknr == 0)
2425 continue;
2427 if (checked) {
2428 reiserfs_prepare_for_journal(s, bh, 1);
2429 journal_mark_dirty(&th, s, bh);
2430 continue;
2432 /* from this point on, we know the buffer is mapped to a
2433 * real block and not a direct item
2435 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
2436 lock_buffer(bh);
2437 } else {
2438 if (!trylock_buffer(bh)) {
2439 redirty_page_for_writepage(wbc, page);
2440 continue;
2443 if (test_clear_buffer_dirty(bh)) {
2444 mark_buffer_async_write(bh);
2445 } else {
2446 unlock_buffer(bh);
2448 } while ((bh = bh->b_this_page) != head);
2450 if (checked) {
2451 error = journal_end(&th, s, bh_per_page + 1);
2452 reiserfs_write_unlock(s);
2453 if (error)
2454 goto fail;
2456 BUG_ON(PageWriteback(page));
2457 set_page_writeback(page);
2458 unlock_page(page);
2461 * since any buffer might be the only dirty buffer on the page,
2462 * the first submit_bh can bring the page out of writeback.
2463 * be careful with the buffers.
2465 do {
2466 struct buffer_head *next = bh->b_this_page;
2467 if (buffer_async_write(bh)) {
2468 submit_bh(WRITE, bh);
2469 nr++;
2471 put_bh(bh);
2472 bh = next;
2473 } while (bh != head);
2475 error = 0;
2476 done:
2477 if (nr == 0) {
2479 * if this page only had a direct item, it is very possible for
2480 * no io to be required without there being an error. Or,
2481 * someone else could have locked them and sent them down the
2482 * pipe without locking the page
2484 bh = head;
2485 do {
2486 if (!buffer_uptodate(bh)) {
2487 partial = 1;
2488 break;
2490 bh = bh->b_this_page;
2491 } while (bh != head);
2492 if (!partial)
2493 SetPageUptodate(page);
2494 end_page_writeback(page);
2496 return error;
2498 fail:
2499 /* catches various errors, we need to make sure any valid dirty blocks
2500 * get to the media. The page is currently locked and not marked for
2501 * writeback
2503 ClearPageUptodate(page);
2504 bh = head;
2505 do {
2506 get_bh(bh);
2507 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2508 lock_buffer(bh);
2509 mark_buffer_async_write(bh);
2510 } else {
2512 * clear any dirty bits that might have come from getting
2513 * attached to a dirty page
2515 clear_buffer_dirty(bh);
2517 bh = bh->b_this_page;
2518 } while (bh != head);
2519 SetPageError(page);
2520 BUG_ON(PageWriteback(page));
2521 set_page_writeback(page);
2522 unlock_page(page);
2523 do {
2524 struct buffer_head *next = bh->b_this_page;
2525 if (buffer_async_write(bh)) {
2526 clear_buffer_dirty(bh);
2527 submit_bh(WRITE, bh);
2528 nr++;
2530 put_bh(bh);
2531 bh = next;
2532 } while (bh != head);
2533 goto done;
2536 static int reiserfs_readpage(struct file *f, struct page *page)
2538 return block_read_full_page(page, reiserfs_get_block);
2541 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2543 struct inode *inode = page->mapping->host;
2544 reiserfs_wait_on_write_block(inode->i_sb);
2545 return reiserfs_write_full_page(page, wbc);
2548 static int reiserfs_write_begin(struct file *file,
2549 struct address_space *mapping,
2550 loff_t pos, unsigned len, unsigned flags,
2551 struct page **pagep, void **fsdata)
2553 struct inode *inode;
2554 struct page *page;
2555 pgoff_t index;
2556 int ret;
2557 int old_ref = 0;
2559 inode = mapping->host;
2560 *fsdata = 0;
2561 if (flags & AOP_FLAG_CONT_EXPAND &&
2562 (pos & (inode->i_sb->s_blocksize - 1)) == 0) {
2563 pos ++;
2564 *fsdata = (void *)(unsigned long)flags;
2567 index = pos >> PAGE_CACHE_SHIFT;
2568 page = grab_cache_page_write_begin(mapping, index, flags);
2569 if (!page)
2570 return -ENOMEM;
2571 *pagep = page;
2573 reiserfs_wait_on_write_block(inode->i_sb);
2574 fix_tail_page_for_writing(page);
2575 if (reiserfs_transaction_running(inode->i_sb)) {
2576 struct reiserfs_transaction_handle *th;
2577 th = (struct reiserfs_transaction_handle *)current->
2578 journal_info;
2579 BUG_ON(!th->t_refcount);
2580 BUG_ON(!th->t_trans_id);
2581 old_ref = th->t_refcount;
2582 th->t_refcount++;
2584 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2585 reiserfs_get_block);
2586 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2587 struct reiserfs_transaction_handle *th = current->journal_info;
2588 /* this gets a little ugly. If reiserfs_get_block returned an
2589 * error and left a transacstion running, we've got to close it,
2590 * and we've got to free handle if it was a persistent transaction.
2592 * But, if we had nested into an existing transaction, we need
2593 * to just drop the ref count on the handle.
2595 * If old_ref == 0, the transaction is from reiserfs_get_block,
2596 * and it was a persistent trans. Otherwise, it was nested above.
2598 if (th->t_refcount > old_ref) {
2599 if (old_ref)
2600 th->t_refcount--;
2601 else {
2602 int err;
2603 reiserfs_write_lock(inode->i_sb);
2604 err = reiserfs_end_persistent_transaction(th);
2605 reiserfs_write_unlock(inode->i_sb);
2606 if (err)
2607 ret = err;
2611 if (ret) {
2612 unlock_page(page);
2613 page_cache_release(page);
2614 /* Truncate allocated blocks */
2615 reiserfs_truncate_file(inode, 0);
2617 return ret;
2620 int reiserfs_prepare_write(struct file *f, struct page *page,
2621 unsigned from, unsigned to)
2623 struct inode *inode = page->mapping->host;
2624 int ret;
2625 int old_ref = 0;
2627 reiserfs_write_unlock(inode->i_sb);
2628 reiserfs_wait_on_write_block(inode->i_sb);
2629 reiserfs_write_lock(inode->i_sb);
2631 fix_tail_page_for_writing(page);
2632 if (reiserfs_transaction_running(inode->i_sb)) {
2633 struct reiserfs_transaction_handle *th;
2634 th = (struct reiserfs_transaction_handle *)current->
2635 journal_info;
2636 BUG_ON(!th->t_refcount);
2637 BUG_ON(!th->t_trans_id);
2638 old_ref = th->t_refcount;
2639 th->t_refcount++;
2642 ret = block_prepare_write(page, from, to, reiserfs_get_block);
2643 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2644 struct reiserfs_transaction_handle *th = current->journal_info;
2645 /* this gets a little ugly. If reiserfs_get_block returned an
2646 * error and left a transacstion running, we've got to close it,
2647 * and we've got to free handle if it was a persistent transaction.
2649 * But, if we had nested into an existing transaction, we need
2650 * to just drop the ref count on the handle.
2652 * If old_ref == 0, the transaction is from reiserfs_get_block,
2653 * and it was a persistent trans. Otherwise, it was nested above.
2655 if (th->t_refcount > old_ref) {
2656 if (old_ref)
2657 th->t_refcount--;
2658 else {
2659 int err;
2660 reiserfs_write_lock(inode->i_sb);
2661 err = reiserfs_end_persistent_transaction(th);
2662 reiserfs_write_unlock(inode->i_sb);
2663 if (err)
2664 ret = err;
2668 return ret;
2672 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2674 return generic_block_bmap(as, block, reiserfs_bmap);
2677 static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2678 loff_t pos, unsigned len, unsigned copied,
2679 struct page *page, void *fsdata)
2681 struct inode *inode = page->mapping->host;
2682 int ret = 0;
2683 int update_sd = 0;
2684 struct reiserfs_transaction_handle *th;
2685 unsigned start;
2686 int lock_depth = 0;
2687 bool locked = false;
2689 if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND)
2690 pos ++;
2692 reiserfs_wait_on_write_block(inode->i_sb);
2693 if (reiserfs_transaction_running(inode->i_sb))
2694 th = current->journal_info;
2695 else
2696 th = NULL;
2698 start = pos & (PAGE_CACHE_SIZE - 1);
2699 if (unlikely(copied < len)) {
2700 if (!PageUptodate(page))
2701 copied = 0;
2703 page_zero_new_buffers(page, start + copied, start + len);
2705 flush_dcache_page(page);
2707 reiserfs_commit_page(inode, page, start, start + copied);
2709 /* generic_commit_write does this for us, but does not update the
2710 ** transaction tracking stuff when the size changes. So, we have
2711 ** to do the i_size updates here.
2713 if (pos + copied > inode->i_size) {
2714 struct reiserfs_transaction_handle myth;
2715 lock_depth = reiserfs_write_lock_once(inode->i_sb);
2716 locked = true;
2717 /* If the file have grown beyond the border where it
2718 can have a tail, unmark it as needing a tail
2719 packing */
2720 if ((have_large_tails(inode->i_sb)
2721 && inode->i_size > i_block_size(inode) * 4)
2722 || (have_small_tails(inode->i_sb)
2723 && inode->i_size > i_block_size(inode)))
2724 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2726 ret = journal_begin(&myth, inode->i_sb, 1);
2727 if (ret)
2728 goto journal_error;
2730 reiserfs_update_inode_transaction(inode);
2731 inode->i_size = pos + copied;
2733 * this will just nest into our transaction. It's important
2734 * to use mark_inode_dirty so the inode gets pushed around on the
2735 * dirty lists, and so that O_SYNC works as expected
2737 mark_inode_dirty(inode);
2738 reiserfs_update_sd(&myth, inode);
2739 update_sd = 1;
2740 ret = journal_end(&myth, inode->i_sb, 1);
2741 if (ret)
2742 goto journal_error;
2744 if (th) {
2745 if (!locked) {
2746 lock_depth = reiserfs_write_lock_once(inode->i_sb);
2747 locked = true;
2749 if (!update_sd)
2750 mark_inode_dirty(inode);
2751 ret = reiserfs_end_persistent_transaction(th);
2752 if (ret)
2753 goto out;
2756 out:
2757 if (locked)
2758 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2759 unlock_page(page);
2760 page_cache_release(page);
2762 if (pos + len > inode->i_size)
2763 reiserfs_truncate_file(inode, 0);
2765 return ret == 0 ? copied : ret;
2767 journal_error:
2768 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2769 locked = false;
2770 if (th) {
2771 if (!update_sd)
2772 reiserfs_update_sd(th, inode);
2773 ret = reiserfs_end_persistent_transaction(th);
2775 goto out;
2778 int reiserfs_commit_write(struct file *f, struct page *page,
2779 unsigned from, unsigned to)
2781 struct inode *inode = page->mapping->host;
2782 loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to;
2783 int ret = 0;
2784 int update_sd = 0;
2785 struct reiserfs_transaction_handle *th = NULL;
2787 reiserfs_write_unlock(inode->i_sb);
2788 reiserfs_wait_on_write_block(inode->i_sb);
2789 reiserfs_write_lock(inode->i_sb);
2791 if (reiserfs_transaction_running(inode->i_sb)) {
2792 th = current->journal_info;
2794 reiserfs_commit_page(inode, page, from, to);
2796 /* generic_commit_write does this for us, but does not update the
2797 ** transaction tracking stuff when the size changes. So, we have
2798 ** to do the i_size updates here.
2800 if (pos > inode->i_size) {
2801 struct reiserfs_transaction_handle myth;
2802 /* If the file have grown beyond the border where it
2803 can have a tail, unmark it as needing a tail
2804 packing */
2805 if ((have_large_tails(inode->i_sb)
2806 && inode->i_size > i_block_size(inode) * 4)
2807 || (have_small_tails(inode->i_sb)
2808 && inode->i_size > i_block_size(inode)))
2809 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2811 ret = journal_begin(&myth, inode->i_sb, 1);
2812 if (ret)
2813 goto journal_error;
2815 reiserfs_update_inode_transaction(inode);
2816 inode->i_size = pos;
2818 * this will just nest into our transaction. It's important
2819 * to use mark_inode_dirty so the inode gets pushed around on the
2820 * dirty lists, and so that O_SYNC works as expected
2822 mark_inode_dirty(inode);
2823 reiserfs_update_sd(&myth, inode);
2824 update_sd = 1;
2825 ret = journal_end(&myth, inode->i_sb, 1);
2826 if (ret)
2827 goto journal_error;
2829 if (th) {
2830 if (!update_sd)
2831 mark_inode_dirty(inode);
2832 ret = reiserfs_end_persistent_transaction(th);
2833 if (ret)
2834 goto out;
2837 out:
2838 return ret;
2840 journal_error:
2841 if (th) {
2842 if (!update_sd)
2843 reiserfs_update_sd(th, inode);
2844 ret = reiserfs_end_persistent_transaction(th);
2847 return ret;
2850 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
2852 if (reiserfs_attrs(inode->i_sb)) {
2853 if (sd_attrs & REISERFS_SYNC_FL)
2854 inode->i_flags |= S_SYNC;
2855 else
2856 inode->i_flags &= ~S_SYNC;
2857 if (sd_attrs & REISERFS_IMMUTABLE_FL)
2858 inode->i_flags |= S_IMMUTABLE;
2859 else
2860 inode->i_flags &= ~S_IMMUTABLE;
2861 if (sd_attrs & REISERFS_APPEND_FL)
2862 inode->i_flags |= S_APPEND;
2863 else
2864 inode->i_flags &= ~S_APPEND;
2865 if (sd_attrs & REISERFS_NOATIME_FL)
2866 inode->i_flags |= S_NOATIME;
2867 else
2868 inode->i_flags &= ~S_NOATIME;
2869 if (sd_attrs & REISERFS_NOTAIL_FL)
2870 REISERFS_I(inode)->i_flags |= i_nopack_mask;
2871 else
2872 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
2876 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
2878 if (reiserfs_attrs(inode->i_sb)) {
2879 if (inode->i_flags & S_IMMUTABLE)
2880 *sd_attrs |= REISERFS_IMMUTABLE_FL;
2881 else
2882 *sd_attrs &= ~REISERFS_IMMUTABLE_FL;
2883 if (inode->i_flags & S_SYNC)
2884 *sd_attrs |= REISERFS_SYNC_FL;
2885 else
2886 *sd_attrs &= ~REISERFS_SYNC_FL;
2887 if (inode->i_flags & S_NOATIME)
2888 *sd_attrs |= REISERFS_NOATIME_FL;
2889 else
2890 *sd_attrs &= ~REISERFS_NOATIME_FL;
2891 if (REISERFS_I(inode)->i_flags & i_nopack_mask)
2892 *sd_attrs |= REISERFS_NOTAIL_FL;
2893 else
2894 *sd_attrs &= ~REISERFS_NOTAIL_FL;
2898 /* decide if this buffer needs to stay around for data logging or ordered
2899 ** write purposes
2901 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
2903 int ret = 1;
2904 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2906 lock_buffer(bh);
2907 spin_lock(&j->j_dirty_buffers_lock);
2908 if (!buffer_mapped(bh)) {
2909 goto free_jh;
2911 /* the page is locked, and the only places that log a data buffer
2912 * also lock the page.
2914 if (reiserfs_file_data_log(inode)) {
2916 * very conservative, leave the buffer pinned if
2917 * anyone might need it.
2919 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
2920 ret = 0;
2922 } else if (buffer_dirty(bh)) {
2923 struct reiserfs_journal_list *jl;
2924 struct reiserfs_jh *jh = bh->b_private;
2926 /* why is this safe?
2927 * reiserfs_setattr updates i_size in the on disk
2928 * stat data before allowing vmtruncate to be called.
2930 * If buffer was put onto the ordered list for this
2931 * transaction, we know for sure either this transaction
2932 * or an older one already has updated i_size on disk,
2933 * and this ordered data won't be referenced in the file
2934 * if we crash.
2936 * if the buffer was put onto the ordered list for an older
2937 * transaction, we need to leave it around
2939 if (jh && (jl = jh->jl)
2940 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
2941 ret = 0;
2943 free_jh:
2944 if (ret && bh->b_private) {
2945 reiserfs_free_jh(bh);
2947 spin_unlock(&j->j_dirty_buffers_lock);
2948 unlock_buffer(bh);
2949 return ret;
2952 /* clm -- taken from fs/buffer.c:block_invalidate_page */
2953 static void reiserfs_invalidatepage(struct page *page, unsigned long offset)
2955 struct buffer_head *head, *bh, *next;
2956 struct inode *inode = page->mapping->host;
2957 unsigned int curr_off = 0;
2958 int ret = 1;
2960 BUG_ON(!PageLocked(page));
2962 if (offset == 0)
2963 ClearPageChecked(page);
2965 if (!page_has_buffers(page))
2966 goto out;
2968 head = page_buffers(page);
2969 bh = head;
2970 do {
2971 unsigned int next_off = curr_off + bh->b_size;
2972 next = bh->b_this_page;
2975 * is this block fully invalidated?
2977 if (offset <= curr_off) {
2978 if (invalidatepage_can_drop(inode, bh))
2979 reiserfs_unmap_buffer(bh);
2980 else
2981 ret = 0;
2983 curr_off = next_off;
2984 bh = next;
2985 } while (bh != head);
2988 * We release buffers only if the entire page is being invalidated.
2989 * The get_block cached value has been unconditionally invalidated,
2990 * so real IO is not possible anymore.
2992 if (!offset && ret) {
2993 ret = try_to_release_page(page, 0);
2994 /* maybe should BUG_ON(!ret); - neilb */
2996 out:
2997 return;
3000 static int reiserfs_set_page_dirty(struct page *page)
3002 struct inode *inode = page->mapping->host;
3003 if (reiserfs_file_data_log(inode)) {
3004 SetPageChecked(page);
3005 return __set_page_dirty_nobuffers(page);
3007 return __set_page_dirty_buffers(page);
3011 * Returns 1 if the page's buffers were dropped. The page is locked.
3013 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3014 * in the buffers at page_buffers(page).
3016 * even in -o notail mode, we can't be sure an old mount without -o notail
3017 * didn't create files with tails.
3019 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
3021 struct inode *inode = page->mapping->host;
3022 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3023 struct buffer_head *head;
3024 struct buffer_head *bh;
3025 int ret = 1;
3027 WARN_ON(PageChecked(page));
3028 spin_lock(&j->j_dirty_buffers_lock);
3029 head = page_buffers(page);
3030 bh = head;
3031 do {
3032 if (bh->b_private) {
3033 if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3034 reiserfs_free_jh(bh);
3035 } else {
3036 ret = 0;
3037 break;
3040 bh = bh->b_this_page;
3041 } while (bh != head);
3042 if (ret)
3043 ret = try_to_free_buffers(page);
3044 spin_unlock(&j->j_dirty_buffers_lock);
3045 return ret;
3048 /* We thank Mingming Cao for helping us understand in great detail what
3049 to do in this section of the code. */
3050 static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb,
3051 const struct iovec *iov, loff_t offset,
3052 unsigned long nr_segs)
3054 struct file *file = iocb->ki_filp;
3055 struct inode *inode = file->f_mapping->host;
3057 return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3058 offset, nr_segs,
3059 reiserfs_get_blocks_direct_io, NULL);
3062 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
3064 struct inode *inode = dentry->d_inode;
3065 int error;
3066 unsigned int ia_valid;
3068 /* must be turned off for recursive notify_change calls */
3069 ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3071 reiserfs_write_lock(inode->i_sb);
3072 if (attr->ia_valid & ATTR_SIZE) {
3073 /* version 2 items will be caught by the s_maxbytes check
3074 ** done for us in vmtruncate
3076 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3077 attr->ia_size > MAX_NON_LFS) {
3078 error = -EFBIG;
3079 goto out;
3081 /* fill in hole pointers in the expanding truncate case. */
3082 if (attr->ia_size > inode->i_size) {
3083 error = generic_cont_expand_simple(inode, attr->ia_size);
3084 if (REISERFS_I(inode)->i_prealloc_count > 0) {
3085 int err;
3086 struct reiserfs_transaction_handle th;
3087 /* we're changing at most 2 bitmaps, inode + super */
3088 err = journal_begin(&th, inode->i_sb, 4);
3089 if (!err) {
3090 reiserfs_discard_prealloc(&th, inode);
3091 err = journal_end(&th, inode->i_sb, 4);
3093 if (err)
3094 error = err;
3096 if (error)
3097 goto out;
3099 * file size is changed, ctime and mtime are
3100 * to be updated
3102 attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3106 if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) ||
3107 ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) &&
3108 (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3109 /* stat data of format v3.5 has 16 bit uid and gid */
3110 error = -EINVAL;
3111 goto out;
3114 error = inode_change_ok(inode, attr);
3115 if (!error) {
3116 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3117 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3118 error = reiserfs_chown_xattrs(inode, attr);
3120 if (!error) {
3121 struct reiserfs_transaction_handle th;
3122 int jbegin_count =
3124 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3125 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3128 /* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */
3129 error =
3130 journal_begin(&th, inode->i_sb,
3131 jbegin_count);
3132 if (error)
3133 goto out;
3134 error =
3135 vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
3136 if (error) {
3137 journal_end(&th, inode->i_sb,
3138 jbegin_count);
3139 goto out;
3141 /* Update corresponding info in inode so that everything is in
3142 * one transaction */
3143 if (attr->ia_valid & ATTR_UID)
3144 inode->i_uid = attr->ia_uid;
3145 if (attr->ia_valid & ATTR_GID)
3146 inode->i_gid = attr->ia_gid;
3147 mark_inode_dirty(inode);
3148 error =
3149 journal_end(&th, inode->i_sb, jbegin_count);
3152 if (!error)
3153 error = inode_setattr(inode, attr);
3156 if (!error && reiserfs_posixacl(inode->i_sb)) {
3157 if (attr->ia_valid & ATTR_MODE)
3158 error = reiserfs_acl_chmod(inode);
3161 out:
3162 reiserfs_write_unlock(inode->i_sb);
3163 return error;
3166 const struct address_space_operations reiserfs_address_space_operations = {
3167 .writepage = reiserfs_writepage,
3168 .readpage = reiserfs_readpage,
3169 .readpages = reiserfs_readpages,
3170 .releasepage = reiserfs_releasepage,
3171 .invalidatepage = reiserfs_invalidatepage,
3172 .sync_page = block_sync_page,
3173 .write_begin = reiserfs_write_begin,
3174 .write_end = reiserfs_write_end,
3175 .bmap = reiserfs_aop_bmap,
3176 .direct_IO = reiserfs_direct_IO,
3177 .set_page_dirty = reiserfs_set_page_dirty,