4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * super.c contains code to handle: - mount structures
8 * - filesystem drivers list
10 * - umount system call
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/smp_lock.h>
27 #include <linux/acct.h>
28 #include <linux/blkdev.h>
29 #include <linux/quotaops.h>
30 #include <linux/namei.h>
31 #include <linux/mount.h>
32 #include <linux/security.h>
33 #include <linux/syscalls.h>
34 #include <linux/vfs.h>
35 #include <linux/writeback.h> /* for the emergency remount stuff */
36 #include <linux/idr.h>
37 #include <linux/kobject.h>
38 #include <linux/mutex.h>
39 #include <linux/file.h>
40 #include <asm/uaccess.h>
44 LIST_HEAD(super_blocks
);
45 DEFINE_SPINLOCK(sb_lock
);
48 * alloc_super - create new superblock
49 * @type: filesystem type superblock should belong to
51 * Allocates and initializes a new &struct super_block. alloc_super()
52 * returns a pointer new superblock or %NULL if allocation had failed.
54 static struct super_block
*alloc_super(struct file_system_type
*type
)
56 struct super_block
*s
= kzalloc(sizeof(struct super_block
), GFP_USER
);
57 static const struct super_operations default_op
;
60 if (security_sb_alloc(s
)) {
65 INIT_LIST_HEAD(&s
->s_files
);
66 INIT_LIST_HEAD(&s
->s_instances
);
67 INIT_HLIST_HEAD(&s
->s_anon
);
68 INIT_LIST_HEAD(&s
->s_inodes
);
69 INIT_LIST_HEAD(&s
->s_dentry_lru
);
70 init_rwsem(&s
->s_umount
);
71 mutex_init(&s
->s_lock
);
72 lockdep_set_class(&s
->s_umount
, &type
->s_umount_key
);
74 * The locking rules for s_lock are up to the
75 * filesystem. For example ext3fs has different
76 * lock ordering than usbfs:
78 lockdep_set_class(&s
->s_lock
, &type
->s_lock_key
);
80 * sget() can have s_umount recursion.
82 * When it cannot find a suitable sb, it allocates a new
83 * one (this one), and tries again to find a suitable old
86 * In case that succeeds, it will acquire the s_umount
87 * lock of the old one. Since these are clearly distrinct
88 * locks, and this object isn't exposed yet, there's no
91 * Annotate this by putting this lock in a different
94 down_write_nested(&s
->s_umount
, SINGLE_DEPTH_NESTING
);
96 atomic_set(&s
->s_active
, 1);
97 mutex_init(&s
->s_vfs_rename_mutex
);
98 lockdep_set_class(&s
->s_vfs_rename_mutex
, &type
->s_vfs_rename_key
);
99 mutex_init(&s
->s_dquot
.dqio_mutex
);
100 mutex_init(&s
->s_dquot
.dqonoff_mutex
);
101 init_rwsem(&s
->s_dquot
.dqptr_sem
);
102 init_waitqueue_head(&s
->s_wait_unfrozen
);
103 s
->s_maxbytes
= MAX_NON_LFS
;
104 s
->dq_op
= sb_dquot_ops
;
105 s
->s_qcop
= sb_quotactl_ops
;
106 s
->s_op
= &default_op
;
107 s
->s_time_gran
= 1000000000;
114 * destroy_super - frees a superblock
115 * @s: superblock to free
117 * Frees a superblock.
119 static inline void destroy_super(struct super_block
*s
)
127 /* Superblock refcounting */
130 * Drop a superblock's refcount. Returns non-zero if the superblock was
131 * destroyed. The caller must hold sb_lock.
133 static int __put_super(struct super_block
*sb
)
137 if (!--sb
->s_count
) {
145 * Drop a superblock's refcount.
146 * Returns non-zero if the superblock is about to be destroyed and
147 * at least is already removed from super_blocks list, so if we are
148 * making a loop through super blocks then we need to restart.
149 * The caller must hold sb_lock.
151 int __put_super_and_need_restart(struct super_block
*sb
)
153 /* check for race with generic_shutdown_super() */
154 if (list_empty(&sb
->s_list
)) {
155 /* super block is removed, need to restart... */
159 /* can't be the last, since s_list is still in use */
161 BUG_ON(sb
->s_count
== 0);
166 * put_super - drop a temporary reference to superblock
167 * @sb: superblock in question
169 * Drops a temporary reference, frees superblock if there's no
172 void put_super(struct super_block
*sb
)
176 spin_unlock(&sb_lock
);
181 * deactivate_super - drop an active reference to superblock
182 * @s: superblock to deactivate
184 * Drops an active reference to superblock, acquiring a temprory one if
185 * there is no active references left. In that case we lock superblock,
186 * tell fs driver to shut it down and drop the temporary reference we
189 void deactivate_super(struct super_block
*s
)
191 struct file_system_type
*fs
= s
->s_type
;
192 if (atomic_dec_and_lock(&s
->s_active
, &sb_lock
)) {
193 s
->s_count
-= S_BIAS
-1;
194 spin_unlock(&sb_lock
);
196 down_write(&s
->s_umount
);
203 EXPORT_SYMBOL(deactivate_super
);
206 * deactivate_locked_super - drop an active reference to superblock
207 * @s: superblock to deactivate
209 * Equivalent of up_write(&s->s_umount); deactivate_super(s);, except that
210 * it does not unlock it until it's all over. As the result, it's safe to
211 * use to dispose of new superblock on ->get_sb() failure exits - nobody
212 * will see the sucker until it's all over. Equivalent using up_write +
213 * deactivate_super is safe for that purpose only if superblock is either
214 * safe to use or has NULL ->s_root when we unlock.
216 void deactivate_locked_super(struct super_block
*s
)
218 struct file_system_type
*fs
= s
->s_type
;
219 if (atomic_dec_and_lock(&s
->s_active
, &sb_lock
)) {
220 s
->s_count
-= S_BIAS
-1;
221 spin_unlock(&sb_lock
);
227 up_write(&s
->s_umount
);
231 EXPORT_SYMBOL(deactivate_locked_super
);
234 * grab_super - acquire an active reference
235 * @s: reference we are trying to make active
237 * Tries to acquire an active reference. grab_super() is used when we
238 * had just found a superblock in super_blocks or fs_type->fs_supers
239 * and want to turn it into a full-blown active reference. grab_super()
240 * is called with sb_lock held and drops it. Returns 1 in case of
241 * success, 0 if we had failed (superblock contents was already dead or
242 * dying when grab_super() had been called).
244 static int grab_super(struct super_block
*s
) __releases(sb_lock
)
247 spin_unlock(&sb_lock
);
248 down_write(&s
->s_umount
);
251 if (s
->s_count
> S_BIAS
) {
252 atomic_inc(&s
->s_active
);
254 spin_unlock(&sb_lock
);
257 spin_unlock(&sb_lock
);
259 up_write(&s
->s_umount
);
266 * Superblock locking. We really ought to get rid of these two.
268 void lock_super(struct super_block
* sb
)
271 mutex_lock(&sb
->s_lock
);
274 void unlock_super(struct super_block
* sb
)
277 mutex_unlock(&sb
->s_lock
);
280 EXPORT_SYMBOL(lock_super
);
281 EXPORT_SYMBOL(unlock_super
);
284 * generic_shutdown_super - common helper for ->kill_sb()
285 * @sb: superblock to kill
287 * generic_shutdown_super() does all fs-independent work on superblock
288 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
289 * that need destruction out of superblock, call generic_shutdown_super()
290 * and release aforementioned objects. Note: dentries and inodes _are_
291 * taken care of and do not need specific handling.
293 * Upon calling this function, the filesystem may no longer alter or
294 * rearrange the set of dentries belonging to this super_block, nor may it
295 * change the attachments of dentries to inodes.
297 void generic_shutdown_super(struct super_block
*sb
)
299 const struct super_operations
*sop
= sb
->s_op
;
303 shrink_dcache_for_umount(sb
);
306 sb
->s_flags
&= ~MS_ACTIVE
;
308 /* bad name - it should be evict_inodes() */
309 invalidate_inodes(sb
);
314 /* Forget any remaining inodes */
315 if (invalidate_inodes(sb
)) {
316 printk("VFS: Busy inodes after unmount of %s. "
317 "Self-destruct in 5 seconds. Have a nice day...\n",
323 /* should be initialized for __put_super_and_need_restart() */
324 list_del_init(&sb
->s_list
);
325 list_del(&sb
->s_instances
);
326 spin_unlock(&sb_lock
);
327 up_write(&sb
->s_umount
);
330 EXPORT_SYMBOL(generic_shutdown_super
);
333 * sget - find or create a superblock
334 * @type: filesystem type superblock should belong to
335 * @test: comparison callback
336 * @set: setup callback
337 * @data: argument to each of them
339 struct super_block
*sget(struct file_system_type
*type
,
340 int (*test
)(struct super_block
*,void *),
341 int (*set
)(struct super_block
*,void *),
344 struct super_block
*s
= NULL
;
345 struct super_block
*old
;
351 list_for_each_entry(old
, &type
->fs_supers
, s_instances
) {
352 if (!test(old
, data
))
354 if (!grab_super(old
))
357 up_write(&s
->s_umount
);
364 spin_unlock(&sb_lock
);
365 s
= alloc_super(type
);
367 return ERR_PTR(-ENOMEM
);
373 spin_unlock(&sb_lock
);
374 up_write(&s
->s_umount
);
379 strlcpy(s
->s_id
, type
->name
, sizeof(s
->s_id
));
380 list_add_tail(&s
->s_list
, &super_blocks
);
381 list_add(&s
->s_instances
, &type
->fs_supers
);
382 spin_unlock(&sb_lock
);
383 get_filesystem(type
);
389 void drop_super(struct super_block
*sb
)
391 up_read(&sb
->s_umount
);
395 EXPORT_SYMBOL(drop_super
);
398 * sync_supers - helper for periodic superblock writeback
400 * Call the write_super method if present on all dirty superblocks in
401 * the system. This is for the periodic writeback used by most older
402 * filesystems. For data integrity superblock writeback use
403 * sync_filesystems() instead.
405 * Note: check the dirty flag before waiting, so we don't
406 * hold up the sync while mounting a device. (The newly
407 * mounted device won't need syncing.)
409 void sync_supers(void)
411 struct super_block
*sb
;
415 list_for_each_entry(sb
, &super_blocks
, s_list
) {
416 if (sb
->s_op
->write_super
&& sb
->s_dirt
) {
418 spin_unlock(&sb_lock
);
420 down_read(&sb
->s_umount
);
421 if (sb
->s_root
&& sb
->s_dirt
)
422 sb
->s_op
->write_super(sb
);
423 up_read(&sb
->s_umount
);
426 if (__put_super_and_need_restart(sb
))
430 spin_unlock(&sb_lock
);
434 * get_super - get the superblock of a device
435 * @bdev: device to get the superblock for
437 * Scans the superblock list and finds the superblock of the file system
438 * mounted on the device given. %NULL is returned if no match is found.
441 struct super_block
* get_super(struct block_device
*bdev
)
443 struct super_block
*sb
;
450 list_for_each_entry(sb
, &super_blocks
, s_list
) {
451 if (sb
->s_bdev
== bdev
) {
453 spin_unlock(&sb_lock
);
454 down_read(&sb
->s_umount
);
457 up_read(&sb
->s_umount
);
458 /* restart only when sb is no longer on the list */
460 if (__put_super_and_need_restart(sb
))
464 spin_unlock(&sb_lock
);
468 EXPORT_SYMBOL(get_super
);
471 * get_active_super - get an active reference to the superblock of a device
472 * @bdev: device to get the superblock for
474 * Scans the superblock list and finds the superblock of the file system
475 * mounted on the device given. Returns the superblock with an active
476 * reference and s_umount held exclusively or %NULL if none was found.
478 struct super_block
*get_active_super(struct block_device
*bdev
)
480 struct super_block
*sb
;
486 list_for_each_entry(sb
, &super_blocks
, s_list
) {
487 if (sb
->s_bdev
!= bdev
)
491 spin_unlock(&sb_lock
);
492 down_write(&sb
->s_umount
);
495 if (sb
->s_count
> S_BIAS
) {
496 atomic_inc(&sb
->s_active
);
498 spin_unlock(&sb_lock
);
501 spin_unlock(&sb_lock
);
503 up_write(&sb
->s_umount
);
508 spin_unlock(&sb_lock
);
512 struct super_block
* user_get_super(dev_t dev
)
514 struct super_block
*sb
;
518 list_for_each_entry(sb
, &super_blocks
, s_list
) {
519 if (sb
->s_dev
== dev
) {
521 spin_unlock(&sb_lock
);
522 down_read(&sb
->s_umount
);
525 up_read(&sb
->s_umount
);
526 /* restart only when sb is no longer on the list */
528 if (__put_super_and_need_restart(sb
))
532 spin_unlock(&sb_lock
);
536 SYSCALL_DEFINE2(ustat
, unsigned, dev
, struct ustat __user
*, ubuf
)
538 struct super_block
*s
;
543 s
= user_get_super(new_decode_dev(dev
));
546 err
= vfs_statfs(s
->s_root
, &sbuf
);
551 memset(&tmp
,0,sizeof(struct ustat
));
552 tmp
.f_tfree
= sbuf
.f_bfree
;
553 tmp
.f_tinode
= sbuf
.f_ffree
;
555 err
= copy_to_user(ubuf
,&tmp
,sizeof(struct ustat
)) ? -EFAULT
: 0;
561 * do_remount_sb - asks filesystem to change mount options.
562 * @sb: superblock in question
563 * @flags: numeric part of options
564 * @data: the rest of options
565 * @force: whether or not to force the change
567 * Alters the mount options of a mounted file system.
569 int do_remount_sb(struct super_block
*sb
, int flags
, void *data
, int force
)
572 int remount_rw
, remount_ro
;
574 if (sb
->s_frozen
!= SB_UNFROZEN
)
578 if (!(flags
& MS_RDONLY
) && bdev_read_only(sb
->s_bdev
))
582 if (flags
& MS_RDONLY
)
584 shrink_dcache_sb(sb
);
587 remount_ro
= (flags
& MS_RDONLY
) && !(sb
->s_flags
& MS_RDONLY
);
588 remount_rw
= !(flags
& MS_RDONLY
) && (sb
->s_flags
& MS_RDONLY
);
590 /* If we are remounting RDONLY and current sb is read/write,
591 make sure there are no rw files opened */
595 else if (!fs_may_remount_ro(sb
))
597 retval
= vfs_dq_off(sb
, 1);
598 if (retval
< 0 && retval
!= -ENOSYS
)
602 if (sb
->s_op
->remount_fs
) {
603 retval
= sb
->s_op
->remount_fs(sb
, &flags
, data
);
607 sb
->s_flags
= (sb
->s_flags
& ~MS_RMT_MASK
) | (flags
& MS_RMT_MASK
);
609 vfs_dq_quota_on_remount(sb
);
611 * Some filesystems modify their metadata via some other path than the
612 * bdev buffer cache (eg. use a private mapping, or directories in
613 * pagecache, etc). Also file data modifications go via their own
614 * mappings. So If we try to mount readonly then copy the filesystem
615 * from bdev, we could get stale data, so invalidate it to give a best
616 * effort at coherency.
618 if (remount_ro
&& sb
->s_bdev
)
619 invalidate_bdev(sb
->s_bdev
);
623 static void do_emergency_remount(struct work_struct
*work
)
625 struct super_block
*sb
;
628 list_for_each_entry(sb
, &super_blocks
, s_list
) {
630 spin_unlock(&sb_lock
);
631 down_write(&sb
->s_umount
);
632 if (sb
->s_root
&& sb
->s_bdev
&& !(sb
->s_flags
& MS_RDONLY
)) {
634 * ->remount_fs needs lock_kernel().
636 * What lock protects sb->s_flags??
638 do_remount_sb(sb
, MS_RDONLY
, NULL
, 1);
640 up_write(&sb
->s_umount
);
644 spin_unlock(&sb_lock
);
646 printk("Emergency Remount complete\n");
649 void emergency_remount(void)
651 struct work_struct
*work
;
653 work
= kmalloc(sizeof(*work
), GFP_ATOMIC
);
655 INIT_WORK(work
, do_emergency_remount
);
661 * Unnamed block devices are dummy devices used by virtual
662 * filesystems which don't use real block-devices. -- jrs
665 static DEFINE_IDA(unnamed_dev_ida
);
666 static DEFINE_SPINLOCK(unnamed_dev_lock
);/* protects the above */
667 static int unnamed_dev_start
= 0; /* don't bother trying below it */
669 int set_anon_super(struct super_block
*s
, void *data
)
675 if (ida_pre_get(&unnamed_dev_ida
, GFP_ATOMIC
) == 0)
677 spin_lock(&unnamed_dev_lock
);
678 error
= ida_get_new_above(&unnamed_dev_ida
, unnamed_dev_start
, &dev
);
680 unnamed_dev_start
= dev
+ 1;
681 spin_unlock(&unnamed_dev_lock
);
682 if (error
== -EAGAIN
)
683 /* We raced and lost with another CPU. */
688 if ((dev
& MAX_ID_MASK
) == (1 << MINORBITS
)) {
689 spin_lock(&unnamed_dev_lock
);
690 ida_remove(&unnamed_dev_ida
, dev
);
691 if (unnamed_dev_start
> dev
)
692 unnamed_dev_start
= dev
;
693 spin_unlock(&unnamed_dev_lock
);
696 s
->s_dev
= MKDEV(0, dev
& MINORMASK
);
700 EXPORT_SYMBOL(set_anon_super
);
702 void kill_anon_super(struct super_block
*sb
)
704 int slot
= MINOR(sb
->s_dev
);
706 generic_shutdown_super(sb
);
707 spin_lock(&unnamed_dev_lock
);
708 ida_remove(&unnamed_dev_ida
, slot
);
709 if (slot
< unnamed_dev_start
)
710 unnamed_dev_start
= slot
;
711 spin_unlock(&unnamed_dev_lock
);
714 EXPORT_SYMBOL(kill_anon_super
);
716 void kill_litter_super(struct super_block
*sb
)
719 d_genocide(sb
->s_root
);
723 EXPORT_SYMBOL(kill_litter_super
);
725 static int ns_test_super(struct super_block
*sb
, void *data
)
727 return sb
->s_fs_info
== data
;
730 static int ns_set_super(struct super_block
*sb
, void *data
)
732 sb
->s_fs_info
= data
;
733 return set_anon_super(sb
, NULL
);
736 int get_sb_ns(struct file_system_type
*fs_type
, int flags
, void *data
,
737 int (*fill_super
)(struct super_block
*, void *, int),
738 struct vfsmount
*mnt
)
740 struct super_block
*sb
;
742 sb
= sget(fs_type
, ns_test_super
, ns_set_super
, data
);
749 err
= fill_super(sb
, data
, flags
& MS_SILENT
? 1 : 0);
751 deactivate_locked_super(sb
);
755 sb
->s_flags
|= MS_ACTIVE
;
758 simple_set_mnt(mnt
, sb
);
762 EXPORT_SYMBOL(get_sb_ns
);
765 static int set_bdev_super(struct super_block
*s
, void *data
)
768 s
->s_dev
= s
->s_bdev
->bd_dev
;
771 * We set the bdi here to the queue backing, file systems can
772 * overwrite this in ->fill_super()
774 s
->s_bdi
= &bdev_get_queue(s
->s_bdev
)->backing_dev_info
;
778 static int test_bdev_super(struct super_block
*s
, void *data
)
780 return (void *)s
->s_bdev
== data
;
783 int get_sb_bdev(struct file_system_type
*fs_type
,
784 int flags
, const char *dev_name
, void *data
,
785 int (*fill_super
)(struct super_block
*, void *, int),
786 struct vfsmount
*mnt
)
788 struct block_device
*bdev
;
789 struct super_block
*s
;
790 fmode_t mode
= FMODE_READ
;
793 if (!(flags
& MS_RDONLY
))
796 bdev
= open_bdev_exclusive(dev_name
, mode
, fs_type
);
798 return PTR_ERR(bdev
);
801 * once the super is inserted into the list by sget, s_umount
802 * will protect the lockfs code from trying to start a snapshot
803 * while we are mounting
805 mutex_lock(&bdev
->bd_fsfreeze_mutex
);
806 if (bdev
->bd_fsfreeze_count
> 0) {
807 mutex_unlock(&bdev
->bd_fsfreeze_mutex
);
811 s
= sget(fs_type
, test_bdev_super
, set_bdev_super
, bdev
);
812 mutex_unlock(&bdev
->bd_fsfreeze_mutex
);
817 if ((flags
^ s
->s_flags
) & MS_RDONLY
) {
818 deactivate_locked_super(s
);
823 close_bdev_exclusive(bdev
, mode
);
825 char b
[BDEVNAME_SIZE
];
829 strlcpy(s
->s_id
, bdevname(bdev
, b
), sizeof(s
->s_id
));
830 sb_set_blocksize(s
, block_size(bdev
));
831 error
= fill_super(s
, data
, flags
& MS_SILENT
? 1 : 0);
833 deactivate_locked_super(s
);
837 s
->s_flags
|= MS_ACTIVE
;
841 simple_set_mnt(mnt
, s
);
847 close_bdev_exclusive(bdev
, mode
);
852 EXPORT_SYMBOL(get_sb_bdev
);
854 void kill_block_super(struct super_block
*sb
)
856 struct block_device
*bdev
= sb
->s_bdev
;
857 fmode_t mode
= sb
->s_mode
;
859 bdev
->bd_super
= NULL
;
860 generic_shutdown_super(sb
);
862 close_bdev_exclusive(bdev
, mode
);
865 EXPORT_SYMBOL(kill_block_super
);
868 int get_sb_nodev(struct file_system_type
*fs_type
,
869 int flags
, void *data
,
870 int (*fill_super
)(struct super_block
*, void *, int),
871 struct vfsmount
*mnt
)
874 struct super_block
*s
= sget(fs_type
, NULL
, set_anon_super
, NULL
);
881 error
= fill_super(s
, data
, flags
& MS_SILENT
? 1 : 0);
883 deactivate_locked_super(s
);
886 s
->s_flags
|= MS_ACTIVE
;
887 simple_set_mnt(mnt
, s
);
891 EXPORT_SYMBOL(get_sb_nodev
);
893 static int compare_single(struct super_block
*s
, void *p
)
898 int get_sb_single(struct file_system_type
*fs_type
,
899 int flags
, void *data
,
900 int (*fill_super
)(struct super_block
*, void *, int),
901 struct vfsmount
*mnt
)
903 struct super_block
*s
;
906 s
= sget(fs_type
, compare_single
, set_anon_super
, NULL
);
911 error
= fill_super(s
, data
, flags
& MS_SILENT
? 1 : 0);
913 deactivate_locked_super(s
);
916 s
->s_flags
|= MS_ACTIVE
;
918 do_remount_sb(s
, flags
, data
, 0);
919 simple_set_mnt(mnt
, s
);
923 EXPORT_SYMBOL(get_sb_single
);
926 vfs_kern_mount(struct file_system_type
*type
, int flags
, const char *name
, void *data
)
928 struct vfsmount
*mnt
;
929 char *secdata
= NULL
;
933 return ERR_PTR(-ENODEV
);
936 mnt
= alloc_vfsmnt(name
);
940 if (data
&& !(type
->fs_flags
& FS_BINARY_MOUNTDATA
)) {
941 secdata
= alloc_secdata();
945 error
= security_sb_copy_data(data
, secdata
);
947 goto out_free_secdata
;
950 error
= type
->get_sb(type
, flags
, name
, data
, mnt
);
952 goto out_free_secdata
;
953 BUG_ON(!mnt
->mnt_sb
);
955 error
= security_sb_kern_mount(mnt
->mnt_sb
, flags
, secdata
);
960 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
961 * but s_maxbytes was an unsigned long long for many releases. Throw
962 * this warning for a little while to try and catch filesystems that
963 * violate this rule. This warning should be either removed or
964 * converted to a BUG() in 2.6.34.
966 WARN((mnt
->mnt_sb
->s_maxbytes
< 0), "%s set sb->s_maxbytes to "
967 "negative value (%lld)\n", type
->name
, mnt
->mnt_sb
->s_maxbytes
);
969 mnt
->mnt_mountpoint
= mnt
->mnt_root
;
970 mnt
->mnt_parent
= mnt
;
971 up_write(&mnt
->mnt_sb
->s_umount
);
972 free_secdata(secdata
);
976 deactivate_locked_super(mnt
->mnt_sb
);
978 free_secdata(secdata
);
982 return ERR_PTR(error
);
985 EXPORT_SYMBOL_GPL(vfs_kern_mount
);
987 static struct vfsmount
*fs_set_subtype(struct vfsmount
*mnt
, const char *fstype
)
990 const char *subtype
= strchr(fstype
, '.');
999 mnt
->mnt_sb
->s_subtype
= kstrdup(subtype
, GFP_KERNEL
);
1001 if (!mnt
->mnt_sb
->s_subtype
)
1007 return ERR_PTR(err
);
1011 do_kern_mount(const char *fstype
, int flags
, const char *name
, void *data
)
1013 struct file_system_type
*type
= get_fs_type(fstype
);
1014 struct vfsmount
*mnt
;
1016 return ERR_PTR(-ENODEV
);
1017 mnt
= vfs_kern_mount(type
, flags
, name
, data
);
1018 if (!IS_ERR(mnt
) && (type
->fs_flags
& FS_HAS_SUBTYPE
) &&
1019 !mnt
->mnt_sb
->s_subtype
)
1020 mnt
= fs_set_subtype(mnt
, fstype
);
1021 put_filesystem(type
);
1024 EXPORT_SYMBOL_GPL(do_kern_mount
);
1026 struct vfsmount
*kern_mount_data(struct file_system_type
*type
, void *data
)
1028 return vfs_kern_mount(type
, MS_KERNMOUNT
, type
->name
, data
);
1031 EXPORT_SYMBOL_GPL(kern_mount_data
);