On Tue, Nov 06, 2007 at 02:33:53AM -0800, akpm@linux-foundation.org wrote:
[mmotm.git] / kernel / auditsc.c
blobef0410c3c355774d73f7924bcf1591880ec73044
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <asm/atomic.h>
48 #include <linux/fs.h>
49 #include <linux/namei.h>
50 #include <linux/mm.h>
51 #include <linux/module.h>
52 #include <linux/mount.h>
53 #include <linux/socket.h>
54 #include <linux/mqueue.h>
55 #include <linux/audit.h>
56 #include <linux/personality.h>
57 #include <linux/time.h>
58 #include <linux/netlink.h>
59 #include <linux/compiler.h>
60 #include <asm/unistd.h>
61 #include <linux/security.h>
62 #include <linux/list.h>
63 #include <linux/tty.h>
64 #include <linux/binfmts.h>
65 #include <linux/highmem.h>
66 #include <linux/syscalls.h>
67 #include <linux/inotify.h>
68 #include <linux/capability.h>
69 #include <linux/fs_struct.h>
71 #include "audit.h"
73 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
74 * for saving names from getname(). */
75 #define AUDIT_NAMES 20
77 /* Indicates that audit should log the full pathname. */
78 #define AUDIT_NAME_FULL -1
80 /* no execve audit message should be longer than this (userspace limits) */
81 #define MAX_EXECVE_AUDIT_LEN 7500
83 /* number of audit rules */
84 int audit_n_rules;
86 /* determines whether we collect data for signals sent */
87 int audit_signals;
89 struct audit_cap_data {
90 kernel_cap_t permitted;
91 kernel_cap_t inheritable;
92 union {
93 unsigned int fE; /* effective bit of a file capability */
94 kernel_cap_t effective; /* effective set of a process */
98 /* When fs/namei.c:getname() is called, we store the pointer in name and
99 * we don't let putname() free it (instead we free all of the saved
100 * pointers at syscall exit time).
102 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
103 struct audit_names {
104 const char *name;
105 int name_len; /* number of name's characters to log */
106 unsigned name_put; /* call __putname() for this name */
107 unsigned long ino;
108 dev_t dev;
109 umode_t mode;
110 uid_t uid;
111 gid_t gid;
112 dev_t rdev;
113 u32 osid;
114 struct audit_cap_data fcap;
115 unsigned int fcap_ver;
118 struct audit_aux_data {
119 struct audit_aux_data *next;
120 int type;
123 #define AUDIT_AUX_IPCPERM 0
125 /* Number of target pids per aux struct. */
126 #define AUDIT_AUX_PIDS 16
128 struct audit_aux_data_execve {
129 struct audit_aux_data d;
130 int argc;
131 int envc;
132 struct mm_struct *mm;
135 struct audit_aux_data_pids {
136 struct audit_aux_data d;
137 pid_t target_pid[AUDIT_AUX_PIDS];
138 uid_t target_auid[AUDIT_AUX_PIDS];
139 uid_t target_uid[AUDIT_AUX_PIDS];
140 unsigned int target_sessionid[AUDIT_AUX_PIDS];
141 u32 target_sid[AUDIT_AUX_PIDS];
142 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
143 int pid_count;
146 struct audit_aux_data_bprm_fcaps {
147 struct audit_aux_data d;
148 struct audit_cap_data fcap;
149 unsigned int fcap_ver;
150 struct audit_cap_data old_pcap;
151 struct audit_cap_data new_pcap;
154 struct audit_aux_data_capset {
155 struct audit_aux_data d;
156 pid_t pid;
157 struct audit_cap_data cap;
160 struct audit_tree_refs {
161 struct audit_tree_refs *next;
162 struct audit_chunk *c[31];
165 /* The per-task audit context. */
166 struct audit_context {
167 int dummy; /* must be the first element */
168 int in_syscall; /* 1 if task is in a syscall */
169 enum audit_state state, current_state;
170 unsigned int serial; /* serial number for record */
171 int major; /* syscall number */
172 struct timespec ctime; /* time of syscall entry */
173 unsigned long argv[4]; /* syscall arguments */
174 long return_code;/* syscall return code */
175 u64 prio;
176 int return_valid; /* return code is valid */
177 int name_count;
178 struct audit_names names[AUDIT_NAMES];
179 char * filterkey; /* key for rule that triggered record */
180 struct path pwd;
181 struct audit_context *previous; /* For nested syscalls */
182 struct audit_aux_data *aux;
183 struct audit_aux_data *aux_pids;
184 struct sockaddr_storage *sockaddr;
185 size_t sockaddr_len;
186 /* Save things to print about task_struct */
187 pid_t pid, ppid;
188 uid_t uid, euid, suid, fsuid;
189 gid_t gid, egid, sgid, fsgid;
190 unsigned long personality;
191 int arch;
193 pid_t target_pid;
194 uid_t target_auid;
195 uid_t target_uid;
196 unsigned int target_sessionid;
197 u32 target_sid;
198 char target_comm[TASK_COMM_LEN];
200 struct audit_tree_refs *trees, *first_trees;
201 struct list_head killed_trees;
202 int tree_count;
204 int type;
205 union {
206 struct {
207 int nargs;
208 long args[6];
209 } socketcall;
210 struct {
211 uid_t uid;
212 gid_t gid;
213 mode_t mode;
214 u32 osid;
215 int has_perm;
216 uid_t perm_uid;
217 gid_t perm_gid;
218 mode_t perm_mode;
219 unsigned long qbytes;
220 } ipc;
221 struct {
222 mqd_t mqdes;
223 struct mq_attr mqstat;
224 } mq_getsetattr;
225 struct {
226 mqd_t mqdes;
227 int sigev_signo;
228 } mq_notify;
229 struct {
230 mqd_t mqdes;
231 size_t msg_len;
232 unsigned int msg_prio;
233 struct timespec abs_timeout;
234 } mq_sendrecv;
235 struct {
236 int oflag;
237 mode_t mode;
238 struct mq_attr attr;
239 } mq_open;
240 struct {
241 pid_t pid;
242 struct audit_cap_data cap;
243 } capset;
245 int fds[2];
247 #if AUDIT_DEBUG
248 int put_count;
249 int ino_count;
250 #endif
253 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
254 static inline int open_arg(int flags, int mask)
256 int n = ACC_MODE(flags);
257 if (flags & (O_TRUNC | O_CREAT))
258 n |= AUDIT_PERM_WRITE;
259 return n & mask;
262 static int audit_match_perm(struct audit_context *ctx, int mask)
264 unsigned n;
265 if (unlikely(!ctx))
266 return 0;
267 n = ctx->major;
269 switch (audit_classify_syscall(ctx->arch, n)) {
270 case 0: /* native */
271 if ((mask & AUDIT_PERM_WRITE) &&
272 audit_match_class(AUDIT_CLASS_WRITE, n))
273 return 1;
274 if ((mask & AUDIT_PERM_READ) &&
275 audit_match_class(AUDIT_CLASS_READ, n))
276 return 1;
277 if ((mask & AUDIT_PERM_ATTR) &&
278 audit_match_class(AUDIT_CLASS_CHATTR, n))
279 return 1;
280 return 0;
281 case 1: /* 32bit on biarch */
282 if ((mask & AUDIT_PERM_WRITE) &&
283 audit_match_class(AUDIT_CLASS_WRITE_32, n))
284 return 1;
285 if ((mask & AUDIT_PERM_READ) &&
286 audit_match_class(AUDIT_CLASS_READ_32, n))
287 return 1;
288 if ((mask & AUDIT_PERM_ATTR) &&
289 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
290 return 1;
291 return 0;
292 case 2: /* open */
293 return mask & ACC_MODE(ctx->argv[1]);
294 case 3: /* openat */
295 return mask & ACC_MODE(ctx->argv[2]);
296 case 4: /* socketcall */
297 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
298 case 5: /* execve */
299 return mask & AUDIT_PERM_EXEC;
300 default:
301 return 0;
305 static int audit_match_filetype(struct audit_context *ctx, int which)
307 unsigned index = which & ~S_IFMT;
308 mode_t mode = which & S_IFMT;
310 if (unlikely(!ctx))
311 return 0;
313 if (index >= ctx->name_count)
314 return 0;
315 if (ctx->names[index].ino == -1)
316 return 0;
317 if ((ctx->names[index].mode ^ mode) & S_IFMT)
318 return 0;
319 return 1;
323 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
324 * ->first_trees points to its beginning, ->trees - to the current end of data.
325 * ->tree_count is the number of free entries in array pointed to by ->trees.
326 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
327 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
328 * it's going to remain 1-element for almost any setup) until we free context itself.
329 * References in it _are_ dropped - at the same time we free/drop aux stuff.
332 #ifdef CONFIG_AUDIT_TREE
333 static void audit_set_auditable(struct audit_context *ctx)
335 if (!ctx->prio) {
336 ctx->prio = 1;
337 ctx->current_state = AUDIT_RECORD_CONTEXT;
341 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
343 struct audit_tree_refs *p = ctx->trees;
344 int left = ctx->tree_count;
345 if (likely(left)) {
346 p->c[--left] = chunk;
347 ctx->tree_count = left;
348 return 1;
350 if (!p)
351 return 0;
352 p = p->next;
353 if (p) {
354 p->c[30] = chunk;
355 ctx->trees = p;
356 ctx->tree_count = 30;
357 return 1;
359 return 0;
362 static int grow_tree_refs(struct audit_context *ctx)
364 struct audit_tree_refs *p = ctx->trees;
365 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
366 if (!ctx->trees) {
367 ctx->trees = p;
368 return 0;
370 if (p)
371 p->next = ctx->trees;
372 else
373 ctx->first_trees = ctx->trees;
374 ctx->tree_count = 31;
375 return 1;
377 #endif
379 static void unroll_tree_refs(struct audit_context *ctx,
380 struct audit_tree_refs *p, int count)
382 #ifdef CONFIG_AUDIT_TREE
383 struct audit_tree_refs *q;
384 int n;
385 if (!p) {
386 /* we started with empty chain */
387 p = ctx->first_trees;
388 count = 31;
389 /* if the very first allocation has failed, nothing to do */
390 if (!p)
391 return;
393 n = count;
394 for (q = p; q != ctx->trees; q = q->next, n = 31) {
395 while (n--) {
396 audit_put_chunk(q->c[n]);
397 q->c[n] = NULL;
400 while (n-- > ctx->tree_count) {
401 audit_put_chunk(q->c[n]);
402 q->c[n] = NULL;
404 ctx->trees = p;
405 ctx->tree_count = count;
406 #endif
409 static void free_tree_refs(struct audit_context *ctx)
411 struct audit_tree_refs *p, *q;
412 for (p = ctx->first_trees; p; p = q) {
413 q = p->next;
414 kfree(p);
418 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
420 #ifdef CONFIG_AUDIT_TREE
421 struct audit_tree_refs *p;
422 int n;
423 if (!tree)
424 return 0;
425 /* full ones */
426 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
427 for (n = 0; n < 31; n++)
428 if (audit_tree_match(p->c[n], tree))
429 return 1;
431 /* partial */
432 if (p) {
433 for (n = ctx->tree_count; n < 31; n++)
434 if (audit_tree_match(p->c[n], tree))
435 return 1;
437 #endif
438 return 0;
441 /* Determine if any context name data matches a rule's watch data */
442 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
443 * otherwise. */
444 static int audit_filter_rules(struct task_struct *tsk,
445 struct audit_krule *rule,
446 struct audit_context *ctx,
447 struct audit_names *name,
448 enum audit_state *state)
450 const struct cred *cred = get_task_cred(tsk);
451 int i, j, need_sid = 1;
452 u32 sid;
454 for (i = 0; i < rule->field_count; i++) {
455 struct audit_field *f = &rule->fields[i];
456 int result = 0;
458 switch (f->type) {
459 case AUDIT_PID:
460 result = audit_comparator(tsk->pid, f->op, f->val);
461 break;
462 case AUDIT_PPID:
463 if (ctx) {
464 if (!ctx->ppid)
465 ctx->ppid = sys_getppid();
466 result = audit_comparator(ctx->ppid, f->op, f->val);
468 break;
469 case AUDIT_UID:
470 result = audit_comparator(cred->uid, f->op, f->val);
471 break;
472 case AUDIT_EUID:
473 result = audit_comparator(cred->euid, f->op, f->val);
474 break;
475 case AUDIT_SUID:
476 result = audit_comparator(cred->suid, f->op, f->val);
477 break;
478 case AUDIT_FSUID:
479 result = audit_comparator(cred->fsuid, f->op, f->val);
480 break;
481 case AUDIT_GID:
482 result = audit_comparator(cred->gid, f->op, f->val);
483 break;
484 case AUDIT_EGID:
485 result = audit_comparator(cred->egid, f->op, f->val);
486 break;
487 case AUDIT_SGID:
488 result = audit_comparator(cred->sgid, f->op, f->val);
489 break;
490 case AUDIT_FSGID:
491 result = audit_comparator(cred->fsgid, f->op, f->val);
492 break;
493 case AUDIT_PERS:
494 result = audit_comparator(tsk->personality, f->op, f->val);
495 break;
496 case AUDIT_ARCH:
497 if (ctx)
498 result = audit_comparator(ctx->arch, f->op, f->val);
499 break;
501 case AUDIT_EXIT:
502 if (ctx && ctx->return_valid)
503 result = audit_comparator(ctx->return_code, f->op, f->val);
504 break;
505 case AUDIT_SUCCESS:
506 if (ctx && ctx->return_valid) {
507 if (f->val)
508 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
509 else
510 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
512 break;
513 case AUDIT_DEVMAJOR:
514 if (name)
515 result = audit_comparator(MAJOR(name->dev),
516 f->op, f->val);
517 else if (ctx) {
518 for (j = 0; j < ctx->name_count; j++) {
519 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
520 ++result;
521 break;
525 break;
526 case AUDIT_DEVMINOR:
527 if (name)
528 result = audit_comparator(MINOR(name->dev),
529 f->op, f->val);
530 else if (ctx) {
531 for (j = 0; j < ctx->name_count; j++) {
532 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
533 ++result;
534 break;
538 break;
539 case AUDIT_INODE:
540 if (name)
541 result = (name->ino == f->val);
542 else if (ctx) {
543 for (j = 0; j < ctx->name_count; j++) {
544 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
545 ++result;
546 break;
550 break;
551 case AUDIT_WATCH:
552 if (name)
553 result = audit_watch_compare(rule->watch, name->ino, name->dev);
554 break;
555 case AUDIT_DIR:
556 if (ctx)
557 result = match_tree_refs(ctx, rule->tree);
558 break;
559 case AUDIT_LOGINUID:
560 result = 0;
561 if (ctx)
562 result = audit_comparator(tsk->loginuid, f->op, f->val);
563 break;
564 case AUDIT_SUBJ_USER:
565 case AUDIT_SUBJ_ROLE:
566 case AUDIT_SUBJ_TYPE:
567 case AUDIT_SUBJ_SEN:
568 case AUDIT_SUBJ_CLR:
569 /* NOTE: this may return negative values indicating
570 a temporary error. We simply treat this as a
571 match for now to avoid losing information that
572 may be wanted. An error message will also be
573 logged upon error */
574 if (f->lsm_rule) {
575 if (need_sid) {
576 security_task_getsecid(tsk, &sid);
577 need_sid = 0;
579 result = security_audit_rule_match(sid, f->type,
580 f->op,
581 f->lsm_rule,
582 ctx);
584 break;
585 case AUDIT_OBJ_USER:
586 case AUDIT_OBJ_ROLE:
587 case AUDIT_OBJ_TYPE:
588 case AUDIT_OBJ_LEV_LOW:
589 case AUDIT_OBJ_LEV_HIGH:
590 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
591 also applies here */
592 if (f->lsm_rule) {
593 /* Find files that match */
594 if (name) {
595 result = security_audit_rule_match(
596 name->osid, f->type, f->op,
597 f->lsm_rule, ctx);
598 } else if (ctx) {
599 for (j = 0; j < ctx->name_count; j++) {
600 if (security_audit_rule_match(
601 ctx->names[j].osid,
602 f->type, f->op,
603 f->lsm_rule, ctx)) {
604 ++result;
605 break;
609 /* Find ipc objects that match */
610 if (!ctx || ctx->type != AUDIT_IPC)
611 break;
612 if (security_audit_rule_match(ctx->ipc.osid,
613 f->type, f->op,
614 f->lsm_rule, ctx))
615 ++result;
617 break;
618 case AUDIT_ARG0:
619 case AUDIT_ARG1:
620 case AUDIT_ARG2:
621 case AUDIT_ARG3:
622 if (ctx)
623 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
624 break;
625 case AUDIT_FILTERKEY:
626 /* ignore this field for filtering */
627 result = 1;
628 break;
629 case AUDIT_PERM:
630 result = audit_match_perm(ctx, f->val);
631 break;
632 case AUDIT_FILETYPE:
633 result = audit_match_filetype(ctx, f->val);
634 break;
637 if (!result) {
638 put_cred(cred);
639 return 0;
643 if (ctx) {
644 if (rule->prio <= ctx->prio)
645 return 0;
646 if (rule->filterkey) {
647 kfree(ctx->filterkey);
648 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
650 ctx->prio = rule->prio;
652 switch (rule->action) {
653 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
654 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
656 put_cred(cred);
657 return 1;
660 /* At process creation time, we can determine if system-call auditing is
661 * completely disabled for this task. Since we only have the task
662 * structure at this point, we can only check uid and gid.
664 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
666 struct audit_entry *e;
667 enum audit_state state;
669 rcu_read_lock();
670 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
671 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
672 if (state == AUDIT_RECORD_CONTEXT)
673 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
674 rcu_read_unlock();
675 return state;
678 rcu_read_unlock();
679 return AUDIT_BUILD_CONTEXT;
682 /* At syscall entry and exit time, this filter is called if the
683 * audit_state is not low enough that auditing cannot take place, but is
684 * also not high enough that we already know we have to write an audit
685 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
687 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
688 struct audit_context *ctx,
689 struct list_head *list)
691 struct audit_entry *e;
692 enum audit_state state;
694 if (audit_pid && tsk->tgid == audit_pid)
695 return AUDIT_DISABLED;
697 rcu_read_lock();
698 if (!list_empty(list)) {
699 int word = AUDIT_WORD(ctx->major);
700 int bit = AUDIT_BIT(ctx->major);
702 list_for_each_entry_rcu(e, list, list) {
703 if ((e->rule.mask[word] & bit) == bit &&
704 audit_filter_rules(tsk, &e->rule, ctx, NULL,
705 &state)) {
706 rcu_read_unlock();
707 ctx->current_state = state;
708 return state;
712 rcu_read_unlock();
713 return AUDIT_BUILD_CONTEXT;
716 /* At syscall exit time, this filter is called if any audit_names[] have been
717 * collected during syscall processing. We only check rules in sublists at hash
718 * buckets applicable to the inode numbers in audit_names[].
719 * Regarding audit_state, same rules apply as for audit_filter_syscall().
721 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
723 int i;
724 struct audit_entry *e;
725 enum audit_state state;
727 if (audit_pid && tsk->tgid == audit_pid)
728 return;
730 rcu_read_lock();
731 for (i = 0; i < ctx->name_count; i++) {
732 int word = AUDIT_WORD(ctx->major);
733 int bit = AUDIT_BIT(ctx->major);
734 struct audit_names *n = &ctx->names[i];
735 int h = audit_hash_ino((u32)n->ino);
736 struct list_head *list = &audit_inode_hash[h];
738 if (list_empty(list))
739 continue;
741 list_for_each_entry_rcu(e, list, list) {
742 if ((e->rule.mask[word] & bit) == bit &&
743 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
744 rcu_read_unlock();
745 ctx->current_state = state;
746 return;
750 rcu_read_unlock();
753 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
754 int return_valid,
755 long return_code)
757 struct audit_context *context = tsk->audit_context;
759 if (likely(!context))
760 return NULL;
761 context->return_valid = return_valid;
764 * we need to fix up the return code in the audit logs if the actual
765 * return codes are later going to be fixed up by the arch specific
766 * signal handlers
768 * This is actually a test for:
769 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
770 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
772 * but is faster than a bunch of ||
774 if (unlikely(return_code <= -ERESTARTSYS) &&
775 (return_code >= -ERESTART_RESTARTBLOCK) &&
776 (return_code != -ENOIOCTLCMD))
777 context->return_code = -EINTR;
778 else
779 context->return_code = return_code;
781 if (context->in_syscall && !context->dummy) {
782 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
783 audit_filter_inodes(tsk, context);
786 tsk->audit_context = NULL;
787 return context;
790 static inline void audit_free_names(struct audit_context *context)
792 int i;
794 #if AUDIT_DEBUG == 2
795 if (context->put_count + context->ino_count != context->name_count) {
796 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
797 " name_count=%d put_count=%d"
798 " ino_count=%d [NOT freeing]\n",
799 __FILE__, __LINE__,
800 context->serial, context->major, context->in_syscall,
801 context->name_count, context->put_count,
802 context->ino_count);
803 for (i = 0; i < context->name_count; i++) {
804 printk(KERN_ERR "names[%d] = %p = %s\n", i,
805 context->names[i].name,
806 context->names[i].name ?: "(null)");
808 dump_stack();
809 return;
811 #endif
812 #if AUDIT_DEBUG
813 context->put_count = 0;
814 context->ino_count = 0;
815 #endif
817 for (i = 0; i < context->name_count; i++) {
818 if (context->names[i].name && context->names[i].name_put)
819 __putname(context->names[i].name);
821 context->name_count = 0;
822 path_put(&context->pwd);
823 context->pwd.dentry = NULL;
824 context->pwd.mnt = NULL;
827 static inline void audit_free_aux(struct audit_context *context)
829 struct audit_aux_data *aux;
831 while ((aux = context->aux)) {
832 context->aux = aux->next;
833 kfree(aux);
835 while ((aux = context->aux_pids)) {
836 context->aux_pids = aux->next;
837 kfree(aux);
841 static inline void audit_zero_context(struct audit_context *context,
842 enum audit_state state)
844 memset(context, 0, sizeof(*context));
845 context->state = state;
846 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
849 static inline struct audit_context *audit_alloc_context(enum audit_state state)
851 struct audit_context *context;
853 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
854 return NULL;
855 audit_zero_context(context, state);
856 INIT_LIST_HEAD(&context->killed_trees);
857 return context;
861 * audit_alloc - allocate an audit context block for a task
862 * @tsk: task
864 * Filter on the task information and allocate a per-task audit context
865 * if necessary. Doing so turns on system call auditing for the
866 * specified task. This is called from copy_process, so no lock is
867 * needed.
869 int audit_alloc(struct task_struct *tsk)
871 struct audit_context *context;
872 enum audit_state state;
873 char *key = NULL;
875 if (likely(!audit_ever_enabled))
876 return 0; /* Return if not auditing. */
878 state = audit_filter_task(tsk, &key);
879 if (likely(state == AUDIT_DISABLED))
880 return 0;
882 if (!(context = audit_alloc_context(state))) {
883 kfree(key);
884 audit_log_lost("out of memory in audit_alloc");
885 return -ENOMEM;
887 context->filterkey = key;
889 tsk->audit_context = context;
890 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
891 return 0;
894 static inline void audit_free_context(struct audit_context *context)
896 struct audit_context *previous;
897 int count = 0;
899 do {
900 previous = context->previous;
901 if (previous || (count && count < 10)) {
902 ++count;
903 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
904 " freeing multiple contexts (%d)\n",
905 context->serial, context->major,
906 context->name_count, count);
908 audit_free_names(context);
909 unroll_tree_refs(context, NULL, 0);
910 free_tree_refs(context);
911 audit_free_aux(context);
912 kfree(context->filterkey);
913 kfree(context->sockaddr);
914 kfree(context);
915 context = previous;
916 } while (context);
917 if (count >= 10)
918 printk(KERN_ERR "audit: freed %d contexts\n", count);
921 void audit_log_task_context(struct audit_buffer *ab)
923 char *ctx = NULL;
924 unsigned len;
925 int error;
926 u32 sid;
928 security_task_getsecid(current, &sid);
929 if (!sid)
930 return;
932 error = security_secid_to_secctx(sid, &ctx, &len);
933 if (error) {
934 if (error != -EINVAL)
935 goto error_path;
936 return;
939 audit_log_format(ab, " subj=%s", ctx);
940 security_release_secctx(ctx, len);
941 return;
943 error_path:
944 audit_panic("error in audit_log_task_context");
945 return;
948 EXPORT_SYMBOL(audit_log_task_context);
950 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
952 char name[sizeof(tsk->comm)];
953 struct mm_struct *mm = tsk->mm;
954 struct vm_area_struct *vma;
956 /* tsk == current */
958 get_task_comm(name, tsk);
959 audit_log_format(ab, " comm=");
960 audit_log_untrustedstring(ab, name);
962 if (mm) {
963 down_read(&mm->mmap_sem);
964 vma = mm->mmap;
965 while (vma) {
966 if ((vma->vm_flags & VM_EXECUTABLE) &&
967 vma->vm_file) {
968 audit_log_d_path(ab, "exe=",
969 &vma->vm_file->f_path);
970 break;
972 vma = vma->vm_next;
974 up_read(&mm->mmap_sem);
976 audit_log_task_context(ab);
979 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
980 uid_t auid, uid_t uid, unsigned int sessionid,
981 u32 sid, char *comm)
983 struct audit_buffer *ab;
984 char *ctx = NULL;
985 u32 len;
986 int rc = 0;
988 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
989 if (!ab)
990 return rc;
992 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
993 uid, sessionid);
994 if (security_secid_to_secctx(sid, &ctx, &len)) {
995 audit_log_format(ab, " obj=(none)");
996 rc = 1;
997 } else {
998 audit_log_format(ab, " obj=%s", ctx);
999 security_release_secctx(ctx, len);
1001 audit_log_format(ab, " ocomm=");
1002 audit_log_untrustedstring(ab, comm);
1003 audit_log_end(ab);
1005 return rc;
1009 * to_send and len_sent accounting are very loose estimates. We aren't
1010 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1011 * within about 500 bytes (next page boundry)
1013 * why snprintf? an int is up to 12 digits long. if we just assumed when
1014 * logging that a[%d]= was going to be 16 characters long we would be wasting
1015 * space in every audit message. In one 7500 byte message we can log up to
1016 * about 1000 min size arguments. That comes down to about 50% waste of space
1017 * if we didn't do the snprintf to find out how long arg_num_len was.
1019 static int audit_log_single_execve_arg(struct audit_context *context,
1020 struct audit_buffer **ab,
1021 int arg_num,
1022 size_t *len_sent,
1023 const char __user *p,
1024 char *buf)
1026 char arg_num_len_buf[12];
1027 const char __user *tmp_p = p;
1028 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1029 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1030 size_t len, len_left, to_send;
1031 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1032 unsigned int i, has_cntl = 0, too_long = 0;
1033 int ret;
1035 /* strnlen_user includes the null we don't want to send */
1036 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1039 * We just created this mm, if we can't find the strings
1040 * we just copied into it something is _very_ wrong. Similar
1041 * for strings that are too long, we should not have created
1042 * any.
1044 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1045 WARN_ON(1);
1046 send_sig(SIGKILL, current, 0);
1047 return -1;
1050 /* walk the whole argument looking for non-ascii chars */
1051 do {
1052 if (len_left > MAX_EXECVE_AUDIT_LEN)
1053 to_send = MAX_EXECVE_AUDIT_LEN;
1054 else
1055 to_send = len_left;
1056 ret = copy_from_user(buf, tmp_p, to_send);
1058 * There is no reason for this copy to be short. We just
1059 * copied them here, and the mm hasn't been exposed to user-
1060 * space yet.
1062 if (ret) {
1063 WARN_ON(1);
1064 send_sig(SIGKILL, current, 0);
1065 return -1;
1067 buf[to_send] = '\0';
1068 has_cntl = audit_string_contains_control(buf, to_send);
1069 if (has_cntl) {
1071 * hex messages get logged as 2 bytes, so we can only
1072 * send half as much in each message
1074 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1075 break;
1077 len_left -= to_send;
1078 tmp_p += to_send;
1079 } while (len_left > 0);
1081 len_left = len;
1083 if (len > max_execve_audit_len)
1084 too_long = 1;
1086 /* rewalk the argument actually logging the message */
1087 for (i = 0; len_left > 0; i++) {
1088 int room_left;
1090 if (len_left > max_execve_audit_len)
1091 to_send = max_execve_audit_len;
1092 else
1093 to_send = len_left;
1095 /* do we have space left to send this argument in this ab? */
1096 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1097 if (has_cntl)
1098 room_left -= (to_send * 2);
1099 else
1100 room_left -= to_send;
1101 if (room_left < 0) {
1102 *len_sent = 0;
1103 audit_log_end(*ab);
1104 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1105 if (!*ab)
1106 return 0;
1110 * first record needs to say how long the original string was
1111 * so we can be sure nothing was lost.
1113 if ((i == 0) && (too_long))
1114 audit_log_format(*ab, " a%d_len=%zu", arg_num,
1115 has_cntl ? 2*len : len);
1118 * normally arguments are small enough to fit and we already
1119 * filled buf above when we checked for control characters
1120 * so don't bother with another copy_from_user
1122 if (len >= max_execve_audit_len)
1123 ret = copy_from_user(buf, p, to_send);
1124 else
1125 ret = 0;
1126 if (ret) {
1127 WARN_ON(1);
1128 send_sig(SIGKILL, current, 0);
1129 return -1;
1131 buf[to_send] = '\0';
1133 /* actually log it */
1134 audit_log_format(*ab, " a%d", arg_num);
1135 if (too_long)
1136 audit_log_format(*ab, "[%d]", i);
1137 audit_log_format(*ab, "=");
1138 if (has_cntl)
1139 audit_log_n_hex(*ab, buf, to_send);
1140 else
1141 audit_log_string(*ab, buf);
1143 p += to_send;
1144 len_left -= to_send;
1145 *len_sent += arg_num_len;
1146 if (has_cntl)
1147 *len_sent += to_send * 2;
1148 else
1149 *len_sent += to_send;
1151 /* include the null we didn't log */
1152 return len + 1;
1155 static void audit_log_execve_info(struct audit_context *context,
1156 struct audit_buffer **ab,
1157 struct audit_aux_data_execve *axi)
1159 int i;
1160 size_t len, len_sent = 0;
1161 const char __user *p;
1162 char *buf;
1164 if (axi->mm != current->mm)
1165 return; /* execve failed, no additional info */
1167 p = (const char __user *)axi->mm->arg_start;
1169 audit_log_format(*ab, "argc=%d", axi->argc);
1172 * we need some kernel buffer to hold the userspace args. Just
1173 * allocate one big one rather than allocating one of the right size
1174 * for every single argument inside audit_log_single_execve_arg()
1175 * should be <8k allocation so should be pretty safe.
1177 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1178 if (!buf) {
1179 audit_panic("out of memory for argv string\n");
1180 return;
1183 for (i = 0; i < axi->argc; i++) {
1184 len = audit_log_single_execve_arg(context, ab, i,
1185 &len_sent, p, buf);
1186 if (len <= 0)
1187 break;
1188 p += len;
1190 kfree(buf);
1193 static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1195 int i;
1197 audit_log_format(ab, " %s=", prefix);
1198 CAP_FOR_EACH_U32(i) {
1199 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1203 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1205 kernel_cap_t *perm = &name->fcap.permitted;
1206 kernel_cap_t *inh = &name->fcap.inheritable;
1207 int log = 0;
1209 if (!cap_isclear(*perm)) {
1210 audit_log_cap(ab, "cap_fp", perm);
1211 log = 1;
1213 if (!cap_isclear(*inh)) {
1214 audit_log_cap(ab, "cap_fi", inh);
1215 log = 1;
1218 if (log)
1219 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1222 static void show_special(struct audit_context *context, int *call_panic)
1224 struct audit_buffer *ab;
1225 int i;
1227 ab = audit_log_start(context, GFP_KERNEL, context->type);
1228 if (!ab)
1229 return;
1231 switch (context->type) {
1232 case AUDIT_SOCKETCALL: {
1233 int nargs = context->socketcall.nargs;
1234 audit_log_format(ab, "nargs=%d", nargs);
1235 for (i = 0; i < nargs; i++)
1236 audit_log_format(ab, " a%d=%lx", i,
1237 context->socketcall.args[i]);
1238 break; }
1239 case AUDIT_IPC: {
1240 u32 osid = context->ipc.osid;
1242 audit_log_format(ab, "ouid=%u ogid=%u mode=%#o",
1243 context->ipc.uid, context->ipc.gid, context->ipc.mode);
1244 if (osid) {
1245 char *ctx = NULL;
1246 u32 len;
1247 if (security_secid_to_secctx(osid, &ctx, &len)) {
1248 audit_log_format(ab, " osid=%u", osid);
1249 *call_panic = 1;
1250 } else {
1251 audit_log_format(ab, " obj=%s", ctx);
1252 security_release_secctx(ctx, len);
1255 if (context->ipc.has_perm) {
1256 audit_log_end(ab);
1257 ab = audit_log_start(context, GFP_KERNEL,
1258 AUDIT_IPC_SET_PERM);
1259 audit_log_format(ab,
1260 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1261 context->ipc.qbytes,
1262 context->ipc.perm_uid,
1263 context->ipc.perm_gid,
1264 context->ipc.perm_mode);
1265 if (!ab)
1266 return;
1268 break; }
1269 case AUDIT_MQ_OPEN: {
1270 audit_log_format(ab,
1271 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1272 "mq_msgsize=%ld mq_curmsgs=%ld",
1273 context->mq_open.oflag, context->mq_open.mode,
1274 context->mq_open.attr.mq_flags,
1275 context->mq_open.attr.mq_maxmsg,
1276 context->mq_open.attr.mq_msgsize,
1277 context->mq_open.attr.mq_curmsgs);
1278 break; }
1279 case AUDIT_MQ_SENDRECV: {
1280 audit_log_format(ab,
1281 "mqdes=%d msg_len=%zd msg_prio=%u "
1282 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1283 context->mq_sendrecv.mqdes,
1284 context->mq_sendrecv.msg_len,
1285 context->mq_sendrecv.msg_prio,
1286 context->mq_sendrecv.abs_timeout.tv_sec,
1287 context->mq_sendrecv.abs_timeout.tv_nsec);
1288 break; }
1289 case AUDIT_MQ_NOTIFY: {
1290 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1291 context->mq_notify.mqdes,
1292 context->mq_notify.sigev_signo);
1293 break; }
1294 case AUDIT_MQ_GETSETATTR: {
1295 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1296 audit_log_format(ab,
1297 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1298 "mq_curmsgs=%ld ",
1299 context->mq_getsetattr.mqdes,
1300 attr->mq_flags, attr->mq_maxmsg,
1301 attr->mq_msgsize, attr->mq_curmsgs);
1302 break; }
1303 case AUDIT_CAPSET: {
1304 audit_log_format(ab, "pid=%d", context->capset.pid);
1305 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1306 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1307 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1308 break; }
1310 audit_log_end(ab);
1313 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1315 const struct cred *cred;
1316 int i, call_panic = 0;
1317 struct audit_buffer *ab;
1318 struct audit_aux_data *aux;
1319 const char *tty;
1321 /* tsk == current */
1322 context->pid = tsk->pid;
1323 if (!context->ppid)
1324 context->ppid = sys_getppid();
1325 cred = current_cred();
1326 context->uid = cred->uid;
1327 context->gid = cred->gid;
1328 context->euid = cred->euid;
1329 context->suid = cred->suid;
1330 context->fsuid = cred->fsuid;
1331 context->egid = cred->egid;
1332 context->sgid = cred->sgid;
1333 context->fsgid = cred->fsgid;
1334 context->personality = tsk->personality;
1336 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1337 if (!ab)
1338 return; /* audit_panic has been called */
1339 audit_log_format(ab, "arch=%x syscall=%d",
1340 context->arch, context->major);
1341 if (context->personality != PER_LINUX)
1342 audit_log_format(ab, " per=%lx", context->personality);
1343 if (context->return_valid)
1344 audit_log_format(ab, " success=%s exit=%ld",
1345 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1346 context->return_code);
1348 spin_lock_irq(&tsk->sighand->siglock);
1349 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1350 tty = tsk->signal->tty->name;
1351 else
1352 tty = "(none)";
1353 spin_unlock_irq(&tsk->sighand->siglock);
1355 audit_log_format(ab,
1356 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1357 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1358 " euid=%u suid=%u fsuid=%u"
1359 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1360 context->argv[0],
1361 context->argv[1],
1362 context->argv[2],
1363 context->argv[3],
1364 context->name_count,
1365 context->ppid,
1366 context->pid,
1367 tsk->loginuid,
1368 context->uid,
1369 context->gid,
1370 context->euid, context->suid, context->fsuid,
1371 context->egid, context->sgid, context->fsgid, tty,
1372 tsk->sessionid);
1375 audit_log_task_info(ab, tsk);
1376 audit_log_key(ab, context->filterkey);
1377 audit_log_end(ab);
1379 for (aux = context->aux; aux; aux = aux->next) {
1381 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1382 if (!ab)
1383 continue; /* audit_panic has been called */
1385 switch (aux->type) {
1387 case AUDIT_EXECVE: {
1388 struct audit_aux_data_execve *axi = (void *)aux;
1389 audit_log_execve_info(context, &ab, axi);
1390 break; }
1392 case AUDIT_BPRM_FCAPS: {
1393 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1394 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1395 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1396 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1397 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1398 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1399 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1400 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1401 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1402 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1403 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1404 break; }
1407 audit_log_end(ab);
1410 if (context->type)
1411 show_special(context, &call_panic);
1413 if (context->fds[0] >= 0) {
1414 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1415 if (ab) {
1416 audit_log_format(ab, "fd0=%d fd1=%d",
1417 context->fds[0], context->fds[1]);
1418 audit_log_end(ab);
1422 if (context->sockaddr_len) {
1423 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1424 if (ab) {
1425 audit_log_format(ab, "saddr=");
1426 audit_log_n_hex(ab, (void *)context->sockaddr,
1427 context->sockaddr_len);
1428 audit_log_end(ab);
1432 for (aux = context->aux_pids; aux; aux = aux->next) {
1433 struct audit_aux_data_pids *axs = (void *)aux;
1435 for (i = 0; i < axs->pid_count; i++)
1436 if (audit_log_pid_context(context, axs->target_pid[i],
1437 axs->target_auid[i],
1438 axs->target_uid[i],
1439 axs->target_sessionid[i],
1440 axs->target_sid[i],
1441 axs->target_comm[i]))
1442 call_panic = 1;
1445 if (context->target_pid &&
1446 audit_log_pid_context(context, context->target_pid,
1447 context->target_auid, context->target_uid,
1448 context->target_sessionid,
1449 context->target_sid, context->target_comm))
1450 call_panic = 1;
1452 if (context->pwd.dentry && context->pwd.mnt) {
1453 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1454 if (ab) {
1455 audit_log_d_path(ab, "cwd=", &context->pwd);
1456 audit_log_end(ab);
1459 for (i = 0; i < context->name_count; i++) {
1460 struct audit_names *n = &context->names[i];
1462 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1463 if (!ab)
1464 continue; /* audit_panic has been called */
1466 audit_log_format(ab, "item=%d", i);
1468 if (n->name) {
1469 switch(n->name_len) {
1470 case AUDIT_NAME_FULL:
1471 /* log the full path */
1472 audit_log_format(ab, " name=");
1473 audit_log_untrustedstring(ab, n->name);
1474 break;
1475 case 0:
1476 /* name was specified as a relative path and the
1477 * directory component is the cwd */
1478 audit_log_d_path(ab, "name=", &context->pwd);
1479 break;
1480 default:
1481 /* log the name's directory component */
1482 audit_log_format(ab, " name=");
1483 audit_log_n_untrustedstring(ab, n->name,
1484 n->name_len);
1486 } else
1487 audit_log_format(ab, " name=(null)");
1489 if (n->ino != (unsigned long)-1) {
1490 audit_log_format(ab, " inode=%lu"
1491 " dev=%02x:%02x mode=%#o"
1492 " ouid=%u ogid=%u rdev=%02x:%02x",
1493 n->ino,
1494 MAJOR(n->dev),
1495 MINOR(n->dev),
1496 n->mode,
1497 n->uid,
1498 n->gid,
1499 MAJOR(n->rdev),
1500 MINOR(n->rdev));
1502 if (n->osid != 0) {
1503 char *ctx = NULL;
1504 u32 len;
1505 if (security_secid_to_secctx(
1506 n->osid, &ctx, &len)) {
1507 audit_log_format(ab, " osid=%u", n->osid);
1508 call_panic = 2;
1509 } else {
1510 audit_log_format(ab, " obj=%s", ctx);
1511 security_release_secctx(ctx, len);
1515 audit_log_fcaps(ab, n);
1517 audit_log_end(ab);
1520 /* Send end of event record to help user space know we are finished */
1521 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1522 if (ab)
1523 audit_log_end(ab);
1524 if (call_panic)
1525 audit_panic("error converting sid to string");
1529 * audit_free - free a per-task audit context
1530 * @tsk: task whose audit context block to free
1532 * Called from copy_process and do_exit
1534 void audit_free(struct task_struct *tsk)
1536 struct audit_context *context;
1538 context = audit_get_context(tsk, 0, 0);
1539 if (likely(!context))
1540 return;
1542 /* Check for system calls that do not go through the exit
1543 * function (e.g., exit_group), then free context block.
1544 * We use GFP_ATOMIC here because we might be doing this
1545 * in the context of the idle thread */
1546 /* that can happen only if we are called from do_exit() */
1547 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1548 audit_log_exit(context, tsk);
1549 if (!list_empty(&context->killed_trees))
1550 audit_kill_trees(&context->killed_trees);
1552 audit_free_context(context);
1556 * audit_syscall_entry - fill in an audit record at syscall entry
1557 * @arch: architecture type
1558 * @major: major syscall type (function)
1559 * @a1: additional syscall register 1
1560 * @a2: additional syscall register 2
1561 * @a3: additional syscall register 3
1562 * @a4: additional syscall register 4
1564 * Fill in audit context at syscall entry. This only happens if the
1565 * audit context was created when the task was created and the state or
1566 * filters demand the audit context be built. If the state from the
1567 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1568 * then the record will be written at syscall exit time (otherwise, it
1569 * will only be written if another part of the kernel requests that it
1570 * be written).
1572 void audit_syscall_entry(int arch, int major,
1573 unsigned long a1, unsigned long a2,
1574 unsigned long a3, unsigned long a4)
1576 struct task_struct *tsk = current;
1577 struct audit_context *context = tsk->audit_context;
1578 enum audit_state state;
1580 if (unlikely(!context))
1581 return;
1584 * This happens only on certain architectures that make system
1585 * calls in kernel_thread via the entry.S interface, instead of
1586 * with direct calls. (If you are porting to a new
1587 * architecture, hitting this condition can indicate that you
1588 * got the _exit/_leave calls backward in entry.S.)
1590 * i386 no
1591 * x86_64 no
1592 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1594 * This also happens with vm86 emulation in a non-nested manner
1595 * (entries without exits), so this case must be caught.
1597 if (context->in_syscall) {
1598 struct audit_context *newctx;
1600 #if AUDIT_DEBUG
1601 printk(KERN_ERR
1602 "audit(:%d) pid=%d in syscall=%d;"
1603 " entering syscall=%d\n",
1604 context->serial, tsk->pid, context->major, major);
1605 #endif
1606 newctx = audit_alloc_context(context->state);
1607 if (newctx) {
1608 newctx->previous = context;
1609 context = newctx;
1610 tsk->audit_context = newctx;
1611 } else {
1612 /* If we can't alloc a new context, the best we
1613 * can do is to leak memory (any pending putname
1614 * will be lost). The only other alternative is
1615 * to abandon auditing. */
1616 audit_zero_context(context, context->state);
1619 BUG_ON(context->in_syscall || context->name_count);
1621 if (!audit_enabled)
1622 return;
1624 context->arch = arch;
1625 context->major = major;
1626 context->argv[0] = a1;
1627 context->argv[1] = a2;
1628 context->argv[2] = a3;
1629 context->argv[3] = a4;
1631 state = context->state;
1632 context->dummy = !audit_n_rules;
1633 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1634 context->prio = 0;
1635 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1637 if (likely(state == AUDIT_DISABLED))
1638 return;
1640 context->serial = 0;
1641 context->ctime = CURRENT_TIME;
1642 context->in_syscall = 1;
1643 context->current_state = state;
1644 context->ppid = 0;
1647 void audit_finish_fork(struct task_struct *child)
1649 struct audit_context *ctx = current->audit_context;
1650 struct audit_context *p = child->audit_context;
1651 if (!p || !ctx)
1652 return;
1653 if (!ctx->in_syscall || ctx->current_state != AUDIT_RECORD_CONTEXT)
1654 return;
1655 p->arch = ctx->arch;
1656 p->major = ctx->major;
1657 memcpy(p->argv, ctx->argv, sizeof(ctx->argv));
1658 p->ctime = ctx->ctime;
1659 p->dummy = ctx->dummy;
1660 p->in_syscall = ctx->in_syscall;
1661 p->filterkey = kstrdup(ctx->filterkey, GFP_KERNEL);
1662 p->ppid = current->pid;
1663 p->prio = ctx->prio;
1664 p->current_state = ctx->current_state;
1668 * audit_syscall_exit - deallocate audit context after a system call
1669 * @valid: success/failure flag
1670 * @return_code: syscall return value
1672 * Tear down after system call. If the audit context has been marked as
1673 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1674 * filtering, or because some other part of the kernel write an audit
1675 * message), then write out the syscall information. In call cases,
1676 * free the names stored from getname().
1678 void audit_syscall_exit(int valid, long return_code)
1680 struct task_struct *tsk = current;
1681 struct audit_context *context;
1683 context = audit_get_context(tsk, valid, return_code);
1685 if (likely(!context))
1686 return;
1688 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1689 audit_log_exit(context, tsk);
1691 context->in_syscall = 0;
1692 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1694 if (!list_empty(&context->killed_trees))
1695 audit_kill_trees(&context->killed_trees);
1697 if (context->previous) {
1698 struct audit_context *new_context = context->previous;
1699 context->previous = NULL;
1700 audit_free_context(context);
1701 tsk->audit_context = new_context;
1702 } else {
1703 audit_free_names(context);
1704 unroll_tree_refs(context, NULL, 0);
1705 audit_free_aux(context);
1706 context->aux = NULL;
1707 context->aux_pids = NULL;
1708 context->target_pid = 0;
1709 context->target_sid = 0;
1710 context->sockaddr_len = 0;
1711 context->type = 0;
1712 context->fds[0] = -1;
1713 if (context->state != AUDIT_RECORD_CONTEXT) {
1714 kfree(context->filterkey);
1715 context->filterkey = NULL;
1717 tsk->audit_context = context;
1721 static inline void handle_one(const struct inode *inode)
1723 #ifdef CONFIG_AUDIT_TREE
1724 struct audit_context *context;
1725 struct audit_tree_refs *p;
1726 struct audit_chunk *chunk;
1727 int count;
1728 if (likely(hlist_empty(&inode->i_fsnotify_mark_entries)))
1729 return;
1730 context = current->audit_context;
1731 p = context->trees;
1732 count = context->tree_count;
1733 rcu_read_lock();
1734 chunk = audit_tree_lookup(inode);
1735 rcu_read_unlock();
1736 if (!chunk)
1737 return;
1738 if (likely(put_tree_ref(context, chunk)))
1739 return;
1740 if (unlikely(!grow_tree_refs(context))) {
1741 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1742 audit_set_auditable(context);
1743 audit_put_chunk(chunk);
1744 unroll_tree_refs(context, p, count);
1745 return;
1747 put_tree_ref(context, chunk);
1748 #endif
1751 static void handle_path(const struct dentry *dentry)
1753 #ifdef CONFIG_AUDIT_TREE
1754 struct audit_context *context;
1755 struct audit_tree_refs *p;
1756 const struct dentry *d, *parent;
1757 struct audit_chunk *drop;
1758 unsigned long seq;
1759 int count;
1761 context = current->audit_context;
1762 p = context->trees;
1763 count = context->tree_count;
1764 retry:
1765 drop = NULL;
1766 d = dentry;
1767 rcu_read_lock();
1768 seq = read_seqbegin(&rename_lock);
1769 for(;;) {
1770 struct inode *inode = d->d_inode;
1771 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_mark_entries))) {
1772 struct audit_chunk *chunk;
1773 chunk = audit_tree_lookup(inode);
1774 if (chunk) {
1775 if (unlikely(!put_tree_ref(context, chunk))) {
1776 drop = chunk;
1777 break;
1781 parent = d->d_parent;
1782 if (parent == d)
1783 break;
1784 d = parent;
1786 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1787 rcu_read_unlock();
1788 if (!drop) {
1789 /* just a race with rename */
1790 unroll_tree_refs(context, p, count);
1791 goto retry;
1793 audit_put_chunk(drop);
1794 if (grow_tree_refs(context)) {
1795 /* OK, got more space */
1796 unroll_tree_refs(context, p, count);
1797 goto retry;
1799 /* too bad */
1800 printk(KERN_WARNING
1801 "out of memory, audit has lost a tree reference\n");
1802 unroll_tree_refs(context, p, count);
1803 audit_set_auditable(context);
1804 return;
1806 rcu_read_unlock();
1807 #endif
1811 * audit_getname - add a name to the list
1812 * @name: name to add
1814 * Add a name to the list of audit names for this context.
1815 * Called from fs/namei.c:getname().
1817 void __audit_getname(const char *name)
1819 struct audit_context *context = current->audit_context;
1821 if (IS_ERR(name) || !name)
1822 return;
1824 if (!context->in_syscall) {
1825 #if AUDIT_DEBUG == 2
1826 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1827 __FILE__, __LINE__, context->serial, name);
1828 dump_stack();
1829 #endif
1830 return;
1832 BUG_ON(context->name_count >= AUDIT_NAMES);
1833 context->names[context->name_count].name = name;
1834 context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1835 context->names[context->name_count].name_put = 1;
1836 context->names[context->name_count].ino = (unsigned long)-1;
1837 context->names[context->name_count].osid = 0;
1838 ++context->name_count;
1839 if (!context->pwd.dentry) {
1840 read_lock(&current->fs->lock);
1841 context->pwd = current->fs->pwd;
1842 path_get(&current->fs->pwd);
1843 read_unlock(&current->fs->lock);
1848 /* audit_putname - intercept a putname request
1849 * @name: name to intercept and delay for putname
1851 * If we have stored the name from getname in the audit context,
1852 * then we delay the putname until syscall exit.
1853 * Called from include/linux/fs.h:putname().
1855 void audit_putname(const char *name)
1857 struct audit_context *context = current->audit_context;
1859 BUG_ON(!context);
1860 if (!context->in_syscall) {
1861 #if AUDIT_DEBUG == 2
1862 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1863 __FILE__, __LINE__, context->serial, name);
1864 if (context->name_count) {
1865 int i;
1866 for (i = 0; i < context->name_count; i++)
1867 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1868 context->names[i].name,
1869 context->names[i].name ?: "(null)");
1871 #endif
1872 __putname(name);
1874 #if AUDIT_DEBUG
1875 else {
1876 ++context->put_count;
1877 if (context->put_count > context->name_count) {
1878 printk(KERN_ERR "%s:%d(:%d): major=%d"
1879 " in_syscall=%d putname(%p) name_count=%d"
1880 " put_count=%d\n",
1881 __FILE__, __LINE__,
1882 context->serial, context->major,
1883 context->in_syscall, name, context->name_count,
1884 context->put_count);
1885 dump_stack();
1888 #endif
1891 static int audit_inc_name_count(struct audit_context *context,
1892 const struct inode *inode)
1894 if (context->name_count >= AUDIT_NAMES) {
1895 if (inode)
1896 printk(KERN_DEBUG "name_count maxed, losing inode data: "
1897 "dev=%02x:%02x, inode=%lu\n",
1898 MAJOR(inode->i_sb->s_dev),
1899 MINOR(inode->i_sb->s_dev),
1900 inode->i_ino);
1902 else
1903 printk(KERN_DEBUG "name_count maxed, losing inode data\n");
1904 return 1;
1906 context->name_count++;
1907 #if AUDIT_DEBUG
1908 context->ino_count++;
1909 #endif
1910 return 0;
1914 static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
1916 struct cpu_vfs_cap_data caps;
1917 int rc;
1919 memset(&name->fcap.permitted, 0, sizeof(kernel_cap_t));
1920 memset(&name->fcap.inheritable, 0, sizeof(kernel_cap_t));
1921 name->fcap.fE = 0;
1922 name->fcap_ver = 0;
1924 if (!dentry)
1925 return 0;
1927 rc = get_vfs_caps_from_disk(dentry, &caps);
1928 if (rc)
1929 return rc;
1931 name->fcap.permitted = caps.permitted;
1932 name->fcap.inheritable = caps.inheritable;
1933 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1934 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
1936 return 0;
1940 /* Copy inode data into an audit_names. */
1941 static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1942 const struct inode *inode)
1944 name->ino = inode->i_ino;
1945 name->dev = inode->i_sb->s_dev;
1946 name->mode = inode->i_mode;
1947 name->uid = inode->i_uid;
1948 name->gid = inode->i_gid;
1949 name->rdev = inode->i_rdev;
1950 security_inode_getsecid(inode, &name->osid);
1951 audit_copy_fcaps(name, dentry);
1955 * audit_inode - store the inode and device from a lookup
1956 * @name: name being audited
1957 * @dentry: dentry being audited
1959 * Called from fs/namei.c:path_lookup().
1961 void __audit_inode(const char *name, const struct dentry *dentry)
1963 int idx;
1964 struct audit_context *context = current->audit_context;
1965 const struct inode *inode = dentry->d_inode;
1967 if (!context->in_syscall)
1968 return;
1969 if (context->name_count
1970 && context->names[context->name_count-1].name
1971 && context->names[context->name_count-1].name == name)
1972 idx = context->name_count - 1;
1973 else if (context->name_count > 1
1974 && context->names[context->name_count-2].name
1975 && context->names[context->name_count-2].name == name)
1976 idx = context->name_count - 2;
1977 else {
1978 /* FIXME: how much do we care about inodes that have no
1979 * associated name? */
1980 if (audit_inc_name_count(context, inode))
1981 return;
1982 idx = context->name_count - 1;
1983 context->names[idx].name = NULL;
1985 handle_path(dentry);
1986 audit_copy_inode(&context->names[idx], dentry, inode);
1990 * audit_inode_child - collect inode info for created/removed objects
1991 * @dname: inode's dentry name
1992 * @dentry: dentry being audited
1993 * @parent: inode of dentry parent
1995 * For syscalls that create or remove filesystem objects, audit_inode
1996 * can only collect information for the filesystem object's parent.
1997 * This call updates the audit context with the child's information.
1998 * Syscalls that create a new filesystem object must be hooked after
1999 * the object is created. Syscalls that remove a filesystem object
2000 * must be hooked prior, in order to capture the target inode during
2001 * unsuccessful attempts.
2003 void __audit_inode_child(const char *dname, const struct dentry *dentry,
2004 const struct inode *parent)
2006 int idx;
2007 struct audit_context *context = current->audit_context;
2008 const char *found_parent = NULL, *found_child = NULL;
2009 const struct inode *inode = dentry->d_inode;
2010 int dirlen = 0;
2012 if (!context->in_syscall)
2013 return;
2015 if (inode)
2016 handle_one(inode);
2017 /* determine matching parent */
2018 if (!dname)
2019 goto add_names;
2021 /* parent is more likely, look for it first */
2022 for (idx = 0; idx < context->name_count; idx++) {
2023 struct audit_names *n = &context->names[idx];
2025 if (!n->name)
2026 continue;
2028 if (n->ino == parent->i_ino &&
2029 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2030 n->name_len = dirlen; /* update parent data in place */
2031 found_parent = n->name;
2032 goto add_names;
2036 /* no matching parent, look for matching child */
2037 for (idx = 0; idx < context->name_count; idx++) {
2038 struct audit_names *n = &context->names[idx];
2040 if (!n->name)
2041 continue;
2043 /* strcmp() is the more likely scenario */
2044 if (!strcmp(dname, n->name) ||
2045 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2046 if (inode)
2047 audit_copy_inode(n, NULL, inode);
2048 else
2049 n->ino = (unsigned long)-1;
2050 found_child = n->name;
2051 goto add_names;
2055 add_names:
2056 if (!found_parent) {
2057 if (audit_inc_name_count(context, parent))
2058 return;
2059 idx = context->name_count - 1;
2060 context->names[idx].name = NULL;
2061 audit_copy_inode(&context->names[idx], NULL, parent);
2064 if (!found_child) {
2065 if (audit_inc_name_count(context, inode))
2066 return;
2067 idx = context->name_count - 1;
2069 /* Re-use the name belonging to the slot for a matching parent
2070 * directory. All names for this context are relinquished in
2071 * audit_free_names() */
2072 if (found_parent) {
2073 context->names[idx].name = found_parent;
2074 context->names[idx].name_len = AUDIT_NAME_FULL;
2075 /* don't call __putname() */
2076 context->names[idx].name_put = 0;
2077 } else {
2078 context->names[idx].name = NULL;
2081 if (inode)
2082 audit_copy_inode(&context->names[idx], NULL, inode);
2083 else
2084 context->names[idx].ino = (unsigned long)-1;
2087 EXPORT_SYMBOL_GPL(__audit_inode_child);
2090 * auditsc_get_stamp - get local copies of audit_context values
2091 * @ctx: audit_context for the task
2092 * @t: timespec to store time recorded in the audit_context
2093 * @serial: serial value that is recorded in the audit_context
2095 * Also sets the context as auditable.
2097 int auditsc_get_stamp(struct audit_context *ctx,
2098 struct timespec *t, unsigned int *serial)
2100 if (!ctx->in_syscall)
2101 return 0;
2102 if (!ctx->serial)
2103 ctx->serial = audit_serial();
2104 t->tv_sec = ctx->ctime.tv_sec;
2105 t->tv_nsec = ctx->ctime.tv_nsec;
2106 *serial = ctx->serial;
2107 if (!ctx->prio) {
2108 ctx->prio = 1;
2109 ctx->current_state = AUDIT_RECORD_CONTEXT;
2111 return 1;
2114 /* global counter which is incremented every time something logs in */
2115 static atomic_t session_id = ATOMIC_INIT(0);
2118 * audit_set_loginuid - set a task's audit_context loginuid
2119 * @task: task whose audit context is being modified
2120 * @loginuid: loginuid value
2122 * Returns 0.
2124 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2126 int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
2128 unsigned int sessionid = atomic_inc_return(&session_id);
2129 struct audit_context *context = task->audit_context;
2131 if (context && context->in_syscall) {
2132 struct audit_buffer *ab;
2134 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2135 if (ab) {
2136 audit_log_format(ab, "login pid=%d uid=%u "
2137 "old auid=%u new auid=%u"
2138 " old ses=%u new ses=%u",
2139 task->pid, task_uid(task),
2140 task->loginuid, loginuid,
2141 task->sessionid, sessionid);
2142 audit_log_end(ab);
2145 task->sessionid = sessionid;
2146 task->loginuid = loginuid;
2147 return 0;
2151 * __audit_mq_open - record audit data for a POSIX MQ open
2152 * @oflag: open flag
2153 * @mode: mode bits
2154 * @attr: queue attributes
2157 void __audit_mq_open(int oflag, mode_t mode, struct mq_attr *attr)
2159 struct audit_context *context = current->audit_context;
2161 if (attr)
2162 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2163 else
2164 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2166 context->mq_open.oflag = oflag;
2167 context->mq_open.mode = mode;
2169 context->type = AUDIT_MQ_OPEN;
2173 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2174 * @mqdes: MQ descriptor
2175 * @msg_len: Message length
2176 * @msg_prio: Message priority
2177 * @abs_timeout: Message timeout in absolute time
2180 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2181 const struct timespec *abs_timeout)
2183 struct audit_context *context = current->audit_context;
2184 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2186 if (abs_timeout)
2187 memcpy(p, abs_timeout, sizeof(struct timespec));
2188 else
2189 memset(p, 0, sizeof(struct timespec));
2191 context->mq_sendrecv.mqdes = mqdes;
2192 context->mq_sendrecv.msg_len = msg_len;
2193 context->mq_sendrecv.msg_prio = msg_prio;
2195 context->type = AUDIT_MQ_SENDRECV;
2199 * __audit_mq_notify - record audit data for a POSIX MQ notify
2200 * @mqdes: MQ descriptor
2201 * @notification: Notification event
2205 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2207 struct audit_context *context = current->audit_context;
2209 if (notification)
2210 context->mq_notify.sigev_signo = notification->sigev_signo;
2211 else
2212 context->mq_notify.sigev_signo = 0;
2214 context->mq_notify.mqdes = mqdes;
2215 context->type = AUDIT_MQ_NOTIFY;
2219 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2220 * @mqdes: MQ descriptor
2221 * @mqstat: MQ flags
2224 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2226 struct audit_context *context = current->audit_context;
2227 context->mq_getsetattr.mqdes = mqdes;
2228 context->mq_getsetattr.mqstat = *mqstat;
2229 context->type = AUDIT_MQ_GETSETATTR;
2233 * audit_ipc_obj - record audit data for ipc object
2234 * @ipcp: ipc permissions
2237 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2239 struct audit_context *context = current->audit_context;
2240 context->ipc.uid = ipcp->uid;
2241 context->ipc.gid = ipcp->gid;
2242 context->ipc.mode = ipcp->mode;
2243 context->ipc.has_perm = 0;
2244 security_ipc_getsecid(ipcp, &context->ipc.osid);
2245 context->type = AUDIT_IPC;
2249 * audit_ipc_set_perm - record audit data for new ipc permissions
2250 * @qbytes: msgq bytes
2251 * @uid: msgq user id
2252 * @gid: msgq group id
2253 * @mode: msgq mode (permissions)
2255 * Called only after audit_ipc_obj().
2257 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
2259 struct audit_context *context = current->audit_context;
2261 context->ipc.qbytes = qbytes;
2262 context->ipc.perm_uid = uid;
2263 context->ipc.perm_gid = gid;
2264 context->ipc.perm_mode = mode;
2265 context->ipc.has_perm = 1;
2268 int audit_bprm(struct linux_binprm *bprm)
2270 struct audit_aux_data_execve *ax;
2271 struct audit_context *context = current->audit_context;
2273 if (likely(!audit_enabled || !context || context->dummy))
2274 return 0;
2276 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2277 if (!ax)
2278 return -ENOMEM;
2280 ax->argc = bprm->argc;
2281 ax->envc = bprm->envc;
2282 ax->mm = bprm->mm;
2283 ax->d.type = AUDIT_EXECVE;
2284 ax->d.next = context->aux;
2285 context->aux = (void *)ax;
2286 return 0;
2291 * audit_socketcall - record audit data for sys_socketcall
2292 * @nargs: number of args
2293 * @args: args array
2296 void audit_socketcall(int nargs, unsigned long *args)
2298 struct audit_context *context = current->audit_context;
2300 if (likely(!context || context->dummy))
2301 return;
2303 context->type = AUDIT_SOCKETCALL;
2304 context->socketcall.nargs = nargs;
2305 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2309 * __audit_fd_pair - record audit data for pipe and socketpair
2310 * @fd1: the first file descriptor
2311 * @fd2: the second file descriptor
2314 void __audit_fd_pair(int fd1, int fd2)
2316 struct audit_context *context = current->audit_context;
2317 context->fds[0] = fd1;
2318 context->fds[1] = fd2;
2322 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2323 * @len: data length in user space
2324 * @a: data address in kernel space
2326 * Returns 0 for success or NULL context or < 0 on error.
2328 int audit_sockaddr(int len, void *a)
2330 struct audit_context *context = current->audit_context;
2332 if (likely(!context || context->dummy))
2333 return 0;
2335 if (!context->sockaddr) {
2336 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2337 if (!p)
2338 return -ENOMEM;
2339 context->sockaddr = p;
2342 context->sockaddr_len = len;
2343 memcpy(context->sockaddr, a, len);
2344 return 0;
2347 void __audit_ptrace(struct task_struct *t)
2349 struct audit_context *context = current->audit_context;
2351 context->target_pid = t->pid;
2352 context->target_auid = audit_get_loginuid(t);
2353 context->target_uid = task_uid(t);
2354 context->target_sessionid = audit_get_sessionid(t);
2355 security_task_getsecid(t, &context->target_sid);
2356 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2360 * audit_signal_info - record signal info for shutting down audit subsystem
2361 * @sig: signal value
2362 * @t: task being signaled
2364 * If the audit subsystem is being terminated, record the task (pid)
2365 * and uid that is doing that.
2367 int __audit_signal_info(int sig, struct task_struct *t)
2369 struct audit_aux_data_pids *axp;
2370 struct task_struct *tsk = current;
2371 struct audit_context *ctx = tsk->audit_context;
2372 uid_t uid = current_uid(), t_uid = task_uid(t);
2374 if (audit_pid && t->tgid == audit_pid) {
2375 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2376 audit_sig_pid = tsk->pid;
2377 if (tsk->loginuid != -1)
2378 audit_sig_uid = tsk->loginuid;
2379 else
2380 audit_sig_uid = uid;
2381 security_task_getsecid(tsk, &audit_sig_sid);
2383 if (!audit_signals || audit_dummy_context())
2384 return 0;
2387 /* optimize the common case by putting first signal recipient directly
2388 * in audit_context */
2389 if (!ctx->target_pid) {
2390 ctx->target_pid = t->tgid;
2391 ctx->target_auid = audit_get_loginuid(t);
2392 ctx->target_uid = t_uid;
2393 ctx->target_sessionid = audit_get_sessionid(t);
2394 security_task_getsecid(t, &ctx->target_sid);
2395 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2396 return 0;
2399 axp = (void *)ctx->aux_pids;
2400 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2401 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2402 if (!axp)
2403 return -ENOMEM;
2405 axp->d.type = AUDIT_OBJ_PID;
2406 axp->d.next = ctx->aux_pids;
2407 ctx->aux_pids = (void *)axp;
2409 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2411 axp->target_pid[axp->pid_count] = t->tgid;
2412 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2413 axp->target_uid[axp->pid_count] = t_uid;
2414 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2415 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2416 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2417 axp->pid_count++;
2419 return 0;
2423 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2424 * @bprm: pointer to the bprm being processed
2425 * @new: the proposed new credentials
2426 * @old: the old credentials
2428 * Simply check if the proc already has the caps given by the file and if not
2429 * store the priv escalation info for later auditing at the end of the syscall
2431 * -Eric
2433 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2434 const struct cred *new, const struct cred *old)
2436 struct audit_aux_data_bprm_fcaps *ax;
2437 struct audit_context *context = current->audit_context;
2438 struct cpu_vfs_cap_data vcaps;
2439 struct dentry *dentry;
2441 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2442 if (!ax)
2443 return -ENOMEM;
2445 ax->d.type = AUDIT_BPRM_FCAPS;
2446 ax->d.next = context->aux;
2447 context->aux = (void *)ax;
2449 dentry = dget(bprm->file->f_dentry);
2450 get_vfs_caps_from_disk(dentry, &vcaps);
2451 dput(dentry);
2453 ax->fcap.permitted = vcaps.permitted;
2454 ax->fcap.inheritable = vcaps.inheritable;
2455 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2456 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2458 ax->old_pcap.permitted = old->cap_permitted;
2459 ax->old_pcap.inheritable = old->cap_inheritable;
2460 ax->old_pcap.effective = old->cap_effective;
2462 ax->new_pcap.permitted = new->cap_permitted;
2463 ax->new_pcap.inheritable = new->cap_inheritable;
2464 ax->new_pcap.effective = new->cap_effective;
2465 return 0;
2469 * __audit_log_capset - store information about the arguments to the capset syscall
2470 * @pid: target pid of the capset call
2471 * @new: the new credentials
2472 * @old: the old (current) credentials
2474 * Record the aguments userspace sent to sys_capset for later printing by the
2475 * audit system if applicable
2477 void __audit_log_capset(pid_t pid,
2478 const struct cred *new, const struct cred *old)
2480 struct audit_context *context = current->audit_context;
2481 context->capset.pid = pid;
2482 context->capset.cap.effective = new->cap_effective;
2483 context->capset.cap.inheritable = new->cap_effective;
2484 context->capset.cap.permitted = new->cap_permitted;
2485 context->type = AUDIT_CAPSET;
2489 * audit_core_dumps - record information about processes that end abnormally
2490 * @signr: signal value
2492 * If a process ends with a core dump, something fishy is going on and we
2493 * should record the event for investigation.
2495 void audit_core_dumps(long signr)
2497 struct audit_buffer *ab;
2498 u32 sid;
2499 uid_t auid = audit_get_loginuid(current), uid;
2500 gid_t gid;
2501 unsigned int sessionid = audit_get_sessionid(current);
2503 if (!audit_enabled)
2504 return;
2506 if (signr == SIGQUIT) /* don't care for those */
2507 return;
2509 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2510 current_uid_gid(&uid, &gid);
2511 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2512 auid, uid, gid, sessionid);
2513 security_task_getsecid(current, &sid);
2514 if (sid) {
2515 char *ctx = NULL;
2516 u32 len;
2518 if (security_secid_to_secctx(sid, &ctx, &len))
2519 audit_log_format(ab, " ssid=%u", sid);
2520 else {
2521 audit_log_format(ab, " subj=%s", ctx);
2522 security_release_secctx(ctx, len);
2525 audit_log_format(ab, " pid=%d comm=", current->pid);
2526 audit_log_untrustedstring(ab, current->comm);
2527 audit_log_format(ab, " sig=%ld", signr);
2528 audit_log_end(ab);
2531 struct list_head *audit_killed_trees(void)
2533 struct audit_context *ctx = current->audit_context;
2534 if (likely(!ctx || !ctx->in_syscall))
2535 return NULL;
2536 return &ctx->killed_trees;