On Tue, Nov 06, 2007 at 02:33:53AM -0800, akpm@linux-foundation.org wrote:
[mmotm.git] / kernel / kprobes.c
blob5240d75f4c60e95f95eb55e0cc46b448e2d6eb7c
1 /*
2 * Kernel Probes (KProbes)
3 * kernel/kprobes.c
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 * Copyright (C) IBM Corporation, 2002, 2004
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
23 * Rusty Russell).
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/module.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/kdebug.h>
46 #include <linux/memory.h>
48 #include <asm-generic/sections.h>
49 #include <asm/cacheflush.h>
50 #include <asm/errno.h>
51 #include <asm/uaccess.h>
53 #define KPROBE_HASH_BITS 6
54 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
58 * Some oddball architectures like 64bit powerpc have function descriptors
59 * so this must be overridable.
61 #ifndef kprobe_lookup_name
62 #define kprobe_lookup_name(name, addr) \
63 addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
64 #endif
66 static int kprobes_initialized;
67 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
68 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
70 /* NOTE: change this value only with kprobe_mutex held */
71 static bool kprobes_all_disarmed;
73 static DEFINE_MUTEX(kprobe_mutex); /* Protects kprobe_table */
74 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
75 static struct {
76 spinlock_t lock ____cacheline_aligned_in_smp;
77 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
79 static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
81 return &(kretprobe_table_locks[hash].lock);
85 * Normally, functions that we'd want to prohibit kprobes in, are marked
86 * __kprobes. But, there are cases where such functions already belong to
87 * a different section (__sched for preempt_schedule)
89 * For such cases, we now have a blacklist
91 static struct kprobe_blackpoint kprobe_blacklist[] = {
92 {"preempt_schedule",},
93 {NULL} /* Terminator */
96 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
98 * kprobe->ainsn.insn points to the copy of the instruction to be
99 * single-stepped. x86_64, POWER4 and above have no-exec support and
100 * stepping on the instruction on a vmalloced/kmalloced/data page
101 * is a recipe for disaster
103 #define INSNS_PER_PAGE (PAGE_SIZE/(MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
105 struct kprobe_insn_page {
106 struct list_head list;
107 kprobe_opcode_t *insns; /* Page of instruction slots */
108 char slot_used[INSNS_PER_PAGE];
109 int nused;
110 int ngarbage;
113 enum kprobe_slot_state {
114 SLOT_CLEAN = 0,
115 SLOT_DIRTY = 1,
116 SLOT_USED = 2,
119 static DEFINE_MUTEX(kprobe_insn_mutex); /* Protects kprobe_insn_pages */
120 static LIST_HEAD(kprobe_insn_pages);
121 static int kprobe_garbage_slots;
122 static int collect_garbage_slots(void);
124 static int __kprobes check_safety(void)
126 int ret = 0;
127 #if defined(CONFIG_PREEMPT) && defined(CONFIG_FREEZER)
128 ret = freeze_processes();
129 if (ret == 0) {
130 struct task_struct *p, *q;
131 do_each_thread(p, q) {
132 if (p != current && p->state == TASK_RUNNING &&
133 p->pid != 0) {
134 printk("Check failed: %s is running\n",p->comm);
135 ret = -1;
136 goto loop_end;
138 } while_each_thread(p, q);
140 loop_end:
141 thaw_processes();
142 #else
143 synchronize_sched();
144 #endif
145 return ret;
149 * __get_insn_slot() - Find a slot on an executable page for an instruction.
150 * We allocate an executable page if there's no room on existing ones.
152 static kprobe_opcode_t __kprobes *__get_insn_slot(void)
154 struct kprobe_insn_page *kip;
156 retry:
157 list_for_each_entry(kip, &kprobe_insn_pages, list) {
158 if (kip->nused < INSNS_PER_PAGE) {
159 int i;
160 for (i = 0; i < INSNS_PER_PAGE; i++) {
161 if (kip->slot_used[i] == SLOT_CLEAN) {
162 kip->slot_used[i] = SLOT_USED;
163 kip->nused++;
164 return kip->insns + (i * MAX_INSN_SIZE);
167 /* Surprise! No unused slots. Fix kip->nused. */
168 kip->nused = INSNS_PER_PAGE;
172 /* If there are any garbage slots, collect it and try again. */
173 if (kprobe_garbage_slots && collect_garbage_slots() == 0) {
174 goto retry;
176 /* All out of space. Need to allocate a new page. Use slot 0. */
177 kip = kmalloc(sizeof(struct kprobe_insn_page), GFP_KERNEL);
178 if (!kip)
179 return NULL;
182 * Use module_alloc so this page is within +/- 2GB of where the
183 * kernel image and loaded module images reside. This is required
184 * so x86_64 can correctly handle the %rip-relative fixups.
186 kip->insns = module_alloc(PAGE_SIZE);
187 if (!kip->insns) {
188 kfree(kip);
189 return NULL;
191 INIT_LIST_HEAD(&kip->list);
192 list_add(&kip->list, &kprobe_insn_pages);
193 memset(kip->slot_used, SLOT_CLEAN, INSNS_PER_PAGE);
194 kip->slot_used[0] = SLOT_USED;
195 kip->nused = 1;
196 kip->ngarbage = 0;
197 return kip->insns;
200 kprobe_opcode_t __kprobes *get_insn_slot(void)
202 kprobe_opcode_t *ret;
203 mutex_lock(&kprobe_insn_mutex);
204 ret = __get_insn_slot();
205 mutex_unlock(&kprobe_insn_mutex);
206 return ret;
209 /* Return 1 if all garbages are collected, otherwise 0. */
210 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
212 kip->slot_used[idx] = SLOT_CLEAN;
213 kip->nused--;
214 if (kip->nused == 0) {
216 * Page is no longer in use. Free it unless
217 * it's the last one. We keep the last one
218 * so as not to have to set it up again the
219 * next time somebody inserts a probe.
221 if (!list_is_singular(&kprobe_insn_pages)) {
222 list_del(&kip->list);
223 module_free(NULL, kip->insns);
224 kfree(kip);
226 return 1;
228 return 0;
231 static int __kprobes collect_garbage_slots(void)
233 struct kprobe_insn_page *kip, *next;
235 /* Ensure no-one is preepmted on the garbages */
236 if (check_safety())
237 return -EAGAIN;
239 list_for_each_entry_safe(kip, next, &kprobe_insn_pages, list) {
240 int i;
241 if (kip->ngarbage == 0)
242 continue;
243 kip->ngarbage = 0; /* we will collect all garbages */
244 for (i = 0; i < INSNS_PER_PAGE; i++) {
245 if (kip->slot_used[i] == SLOT_DIRTY &&
246 collect_one_slot(kip, i))
247 break;
250 kprobe_garbage_slots = 0;
251 return 0;
254 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
256 struct kprobe_insn_page *kip;
258 mutex_lock(&kprobe_insn_mutex);
259 list_for_each_entry(kip, &kprobe_insn_pages, list) {
260 if (kip->insns <= slot &&
261 slot < kip->insns + (INSNS_PER_PAGE * MAX_INSN_SIZE)) {
262 int i = (slot - kip->insns) / MAX_INSN_SIZE;
263 if (dirty) {
264 kip->slot_used[i] = SLOT_DIRTY;
265 kip->ngarbage++;
266 } else
267 collect_one_slot(kip, i);
268 break;
272 if (dirty && ++kprobe_garbage_slots > INSNS_PER_PAGE)
273 collect_garbage_slots();
275 mutex_unlock(&kprobe_insn_mutex);
277 #endif
279 /* We have preemption disabled.. so it is safe to use __ versions */
280 static inline void set_kprobe_instance(struct kprobe *kp)
282 __get_cpu_var(kprobe_instance) = kp;
285 static inline void reset_kprobe_instance(void)
287 __get_cpu_var(kprobe_instance) = NULL;
291 * This routine is called either:
292 * - under the kprobe_mutex - during kprobe_[un]register()
293 * OR
294 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
296 struct kprobe __kprobes *get_kprobe(void *addr)
298 struct hlist_head *head;
299 struct hlist_node *node;
300 struct kprobe *p;
302 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
303 hlist_for_each_entry_rcu(p, node, head, hlist) {
304 if (p->addr == addr)
305 return p;
307 return NULL;
310 /* Arm a kprobe with text_mutex */
311 static void __kprobes arm_kprobe(struct kprobe *kp)
313 mutex_lock(&text_mutex);
314 arch_arm_kprobe(kp);
315 mutex_unlock(&text_mutex);
318 /* Disarm a kprobe with text_mutex */
319 static void __kprobes disarm_kprobe(struct kprobe *kp)
321 mutex_lock(&text_mutex);
322 arch_disarm_kprobe(kp);
323 mutex_unlock(&text_mutex);
327 * Aggregate handlers for multiple kprobes support - these handlers
328 * take care of invoking the individual kprobe handlers on p->list
330 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
332 struct kprobe *kp;
334 list_for_each_entry_rcu(kp, &p->list, list) {
335 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
336 set_kprobe_instance(kp);
337 if (kp->pre_handler(kp, regs))
338 return 1;
340 reset_kprobe_instance();
342 return 0;
345 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
346 unsigned long flags)
348 struct kprobe *kp;
350 list_for_each_entry_rcu(kp, &p->list, list) {
351 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
352 set_kprobe_instance(kp);
353 kp->post_handler(kp, regs, flags);
354 reset_kprobe_instance();
359 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
360 int trapnr)
362 struct kprobe *cur = __get_cpu_var(kprobe_instance);
365 * if we faulted "during" the execution of a user specified
366 * probe handler, invoke just that probe's fault handler
368 if (cur && cur->fault_handler) {
369 if (cur->fault_handler(cur, regs, trapnr))
370 return 1;
372 return 0;
375 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
377 struct kprobe *cur = __get_cpu_var(kprobe_instance);
378 int ret = 0;
380 if (cur && cur->break_handler) {
381 if (cur->break_handler(cur, regs))
382 ret = 1;
384 reset_kprobe_instance();
385 return ret;
388 /* Walks the list and increments nmissed count for multiprobe case */
389 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
391 struct kprobe *kp;
392 if (p->pre_handler != aggr_pre_handler) {
393 p->nmissed++;
394 } else {
395 list_for_each_entry_rcu(kp, &p->list, list)
396 kp->nmissed++;
398 return;
401 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
402 struct hlist_head *head)
404 struct kretprobe *rp = ri->rp;
406 /* remove rp inst off the rprobe_inst_table */
407 hlist_del(&ri->hlist);
408 INIT_HLIST_NODE(&ri->hlist);
409 if (likely(rp)) {
410 spin_lock(&rp->lock);
411 hlist_add_head(&ri->hlist, &rp->free_instances);
412 spin_unlock(&rp->lock);
413 } else
414 /* Unregistering */
415 hlist_add_head(&ri->hlist, head);
418 void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
419 struct hlist_head **head, unsigned long *flags)
421 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
422 spinlock_t *hlist_lock;
424 *head = &kretprobe_inst_table[hash];
425 hlist_lock = kretprobe_table_lock_ptr(hash);
426 spin_lock_irqsave(hlist_lock, *flags);
429 static void __kprobes kretprobe_table_lock(unsigned long hash,
430 unsigned long *flags)
432 spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
433 spin_lock_irqsave(hlist_lock, *flags);
436 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
437 unsigned long *flags)
439 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
440 spinlock_t *hlist_lock;
442 hlist_lock = kretprobe_table_lock_ptr(hash);
443 spin_unlock_irqrestore(hlist_lock, *flags);
446 void __kprobes kretprobe_table_unlock(unsigned long hash, unsigned long *flags)
448 spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
449 spin_unlock_irqrestore(hlist_lock, *flags);
453 * This function is called from finish_task_switch when task tk becomes dead,
454 * so that we can recycle any function-return probe instances associated
455 * with this task. These left over instances represent probed functions
456 * that have been called but will never return.
458 void __kprobes kprobe_flush_task(struct task_struct *tk)
460 struct kretprobe_instance *ri;
461 struct hlist_head *head, empty_rp;
462 struct hlist_node *node, *tmp;
463 unsigned long hash, flags = 0;
465 if (unlikely(!kprobes_initialized))
466 /* Early boot. kretprobe_table_locks not yet initialized. */
467 return;
469 hash = hash_ptr(tk, KPROBE_HASH_BITS);
470 head = &kretprobe_inst_table[hash];
471 kretprobe_table_lock(hash, &flags);
472 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
473 if (ri->task == tk)
474 recycle_rp_inst(ri, &empty_rp);
476 kretprobe_table_unlock(hash, &flags);
477 INIT_HLIST_HEAD(&empty_rp);
478 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
479 hlist_del(&ri->hlist);
480 kfree(ri);
484 static inline void free_rp_inst(struct kretprobe *rp)
486 struct kretprobe_instance *ri;
487 struct hlist_node *pos, *next;
489 hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
490 hlist_del(&ri->hlist);
491 kfree(ri);
495 static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
497 unsigned long flags, hash;
498 struct kretprobe_instance *ri;
499 struct hlist_node *pos, *next;
500 struct hlist_head *head;
502 /* No race here */
503 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
504 kretprobe_table_lock(hash, &flags);
505 head = &kretprobe_inst_table[hash];
506 hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
507 if (ri->rp == rp)
508 ri->rp = NULL;
510 kretprobe_table_unlock(hash, &flags);
512 free_rp_inst(rp);
516 * Keep all fields in the kprobe consistent
518 static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p)
520 memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t));
521 memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn));
525 * Add the new probe to ap->list. Fail if this is the
526 * second jprobe at the address - two jprobes can't coexist
528 static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
530 BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
531 if (p->break_handler) {
532 if (ap->break_handler)
533 return -EEXIST;
534 list_add_tail_rcu(&p->list, &ap->list);
535 ap->break_handler = aggr_break_handler;
536 } else
537 list_add_rcu(&p->list, &ap->list);
538 if (p->post_handler && !ap->post_handler)
539 ap->post_handler = aggr_post_handler;
541 if (kprobe_disabled(ap) && !kprobe_disabled(p)) {
542 ap->flags &= ~KPROBE_FLAG_DISABLED;
543 if (!kprobes_all_disarmed)
544 /* Arm the breakpoint again. */
545 arm_kprobe(ap);
547 return 0;
551 * Fill in the required fields of the "manager kprobe". Replace the
552 * earlier kprobe in the hlist with the manager kprobe
554 static inline void add_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
556 copy_kprobe(p, ap);
557 flush_insn_slot(ap);
558 ap->addr = p->addr;
559 ap->flags = p->flags;
560 ap->pre_handler = aggr_pre_handler;
561 ap->fault_handler = aggr_fault_handler;
562 /* We don't care the kprobe which has gone. */
563 if (p->post_handler && !kprobe_gone(p))
564 ap->post_handler = aggr_post_handler;
565 if (p->break_handler && !kprobe_gone(p))
566 ap->break_handler = aggr_break_handler;
568 INIT_LIST_HEAD(&ap->list);
569 list_add_rcu(&p->list, &ap->list);
571 hlist_replace_rcu(&p->hlist, &ap->hlist);
575 * This is the second or subsequent kprobe at the address - handle
576 * the intricacies
578 static int __kprobes register_aggr_kprobe(struct kprobe *old_p,
579 struct kprobe *p)
581 int ret = 0;
582 struct kprobe *ap = old_p;
584 if (old_p->pre_handler != aggr_pre_handler) {
585 /* If old_p is not an aggr_probe, create new aggr_kprobe. */
586 ap = kzalloc(sizeof(struct kprobe), GFP_KERNEL);
587 if (!ap)
588 return -ENOMEM;
589 add_aggr_kprobe(ap, old_p);
592 if (kprobe_gone(ap)) {
594 * Attempting to insert new probe at the same location that
595 * had a probe in the module vaddr area which already
596 * freed. So, the instruction slot has already been
597 * released. We need a new slot for the new probe.
599 ret = arch_prepare_kprobe(ap);
600 if (ret)
602 * Even if fail to allocate new slot, don't need to
603 * free aggr_probe. It will be used next time, or
604 * freed by unregister_kprobe.
606 return ret;
609 * Clear gone flag to prevent allocating new slot again, and
610 * set disabled flag because it is not armed yet.
612 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
613 | KPROBE_FLAG_DISABLED;
616 copy_kprobe(ap, p);
617 return add_new_kprobe(ap, p);
620 /* Try to disable aggr_kprobe, and return 1 if succeeded.*/
621 static int __kprobes try_to_disable_aggr_kprobe(struct kprobe *p)
623 struct kprobe *kp;
625 list_for_each_entry_rcu(kp, &p->list, list) {
626 if (!kprobe_disabled(kp))
628 * There is an active probe on the list.
629 * We can't disable aggr_kprobe.
631 return 0;
633 p->flags |= KPROBE_FLAG_DISABLED;
634 return 1;
637 static int __kprobes in_kprobes_functions(unsigned long addr)
639 struct kprobe_blackpoint *kb;
641 if (addr >= (unsigned long)__kprobes_text_start &&
642 addr < (unsigned long)__kprobes_text_end)
643 return -EINVAL;
645 * If there exists a kprobe_blacklist, verify and
646 * fail any probe registration in the prohibited area
648 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
649 if (kb->start_addr) {
650 if (addr >= kb->start_addr &&
651 addr < (kb->start_addr + kb->range))
652 return -EINVAL;
655 return 0;
659 * If we have a symbol_name argument, look it up and add the offset field
660 * to it. This way, we can specify a relative address to a symbol.
662 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
664 kprobe_opcode_t *addr = p->addr;
665 if (p->symbol_name) {
666 if (addr)
667 return NULL;
668 kprobe_lookup_name(p->symbol_name, addr);
671 if (!addr)
672 return NULL;
673 return (kprobe_opcode_t *)(((char *)addr) + p->offset);
676 int __kprobes register_kprobe(struct kprobe *p)
678 int ret = 0;
679 struct kprobe *old_p;
680 struct module *probed_mod;
681 kprobe_opcode_t *addr;
683 addr = kprobe_addr(p);
684 if (!addr)
685 return -EINVAL;
686 p->addr = addr;
688 preempt_disable();
689 if (!kernel_text_address((unsigned long) p->addr) ||
690 in_kprobes_functions((unsigned long) p->addr)) {
691 preempt_enable();
692 return -EINVAL;
695 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
696 p->flags &= KPROBE_FLAG_DISABLED;
699 * Check if are we probing a module.
701 probed_mod = __module_text_address((unsigned long) p->addr);
702 if (probed_mod) {
704 * We must hold a refcount of the probed module while updating
705 * its code to prohibit unexpected unloading.
707 if (unlikely(!try_module_get(probed_mod))) {
708 preempt_enable();
709 return -EINVAL;
712 * If the module freed .init.text, we couldn't insert
713 * kprobes in there.
715 if (within_module_init((unsigned long)p->addr, probed_mod) &&
716 probed_mod->state != MODULE_STATE_COMING) {
717 module_put(probed_mod);
718 preempt_enable();
719 return -EINVAL;
722 preempt_enable();
724 p->nmissed = 0;
725 INIT_LIST_HEAD(&p->list);
726 mutex_lock(&kprobe_mutex);
727 old_p = get_kprobe(p->addr);
728 if (old_p) {
729 ret = register_aggr_kprobe(old_p, p);
730 goto out;
733 mutex_lock(&text_mutex);
734 ret = arch_prepare_kprobe(p);
735 if (ret)
736 goto out_unlock_text;
738 INIT_HLIST_NODE(&p->hlist);
739 hlist_add_head_rcu(&p->hlist,
740 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
742 if (!kprobes_all_disarmed && !kprobe_disabled(p))
743 arch_arm_kprobe(p);
745 out_unlock_text:
746 mutex_unlock(&text_mutex);
747 out:
748 mutex_unlock(&kprobe_mutex);
750 if (probed_mod)
751 module_put(probed_mod);
753 return ret;
755 EXPORT_SYMBOL_GPL(register_kprobe);
757 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
758 static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
760 struct kprobe *old_p, *list_p;
762 old_p = get_kprobe(p->addr);
763 if (unlikely(!old_p))
764 return NULL;
766 if (p != old_p) {
767 list_for_each_entry_rcu(list_p, &old_p->list, list)
768 if (list_p == p)
769 /* kprobe p is a valid probe */
770 goto valid;
771 return NULL;
773 valid:
774 return old_p;
778 * Unregister a kprobe without a scheduler synchronization.
780 static int __kprobes __unregister_kprobe_top(struct kprobe *p)
782 struct kprobe *old_p, *list_p;
784 old_p = __get_valid_kprobe(p);
785 if (old_p == NULL)
786 return -EINVAL;
788 if (old_p == p ||
789 (old_p->pre_handler == aggr_pre_handler &&
790 list_is_singular(&old_p->list))) {
792 * Only probe on the hash list. Disarm only if kprobes are
793 * enabled and not gone - otherwise, the breakpoint would
794 * already have been removed. We save on flushing icache.
796 if (!kprobes_all_disarmed && !kprobe_disabled(old_p))
797 disarm_kprobe(p);
798 hlist_del_rcu(&old_p->hlist);
799 } else {
800 if (p->break_handler && !kprobe_gone(p))
801 old_p->break_handler = NULL;
802 if (p->post_handler && !kprobe_gone(p)) {
803 list_for_each_entry_rcu(list_p, &old_p->list, list) {
804 if ((list_p != p) && (list_p->post_handler))
805 goto noclean;
807 old_p->post_handler = NULL;
809 noclean:
810 list_del_rcu(&p->list);
811 if (!kprobe_disabled(old_p)) {
812 try_to_disable_aggr_kprobe(old_p);
813 if (!kprobes_all_disarmed && kprobe_disabled(old_p))
814 disarm_kprobe(old_p);
817 return 0;
820 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
822 struct kprobe *old_p;
824 if (list_empty(&p->list))
825 arch_remove_kprobe(p);
826 else if (list_is_singular(&p->list)) {
827 /* "p" is the last child of an aggr_kprobe */
828 old_p = list_entry(p->list.next, struct kprobe, list);
829 list_del(&p->list);
830 arch_remove_kprobe(old_p);
831 kfree(old_p);
835 int __kprobes register_kprobes(struct kprobe **kps, int num)
837 int i, ret = 0;
839 if (num <= 0)
840 return -EINVAL;
841 for (i = 0; i < num; i++) {
842 ret = register_kprobe(kps[i]);
843 if (ret < 0) {
844 if (i > 0)
845 unregister_kprobes(kps, i);
846 break;
849 return ret;
851 EXPORT_SYMBOL_GPL(register_kprobes);
853 void __kprobes unregister_kprobe(struct kprobe *p)
855 unregister_kprobes(&p, 1);
857 EXPORT_SYMBOL_GPL(unregister_kprobe);
859 void __kprobes unregister_kprobes(struct kprobe **kps, int num)
861 int i;
863 if (num <= 0)
864 return;
865 mutex_lock(&kprobe_mutex);
866 for (i = 0; i < num; i++)
867 if (__unregister_kprobe_top(kps[i]) < 0)
868 kps[i]->addr = NULL;
869 mutex_unlock(&kprobe_mutex);
871 synchronize_sched();
872 for (i = 0; i < num; i++)
873 if (kps[i]->addr)
874 __unregister_kprobe_bottom(kps[i]);
876 EXPORT_SYMBOL_GPL(unregister_kprobes);
878 static struct notifier_block kprobe_exceptions_nb = {
879 .notifier_call = kprobe_exceptions_notify,
880 .priority = 0x7fffffff /* we need to be notified first */
883 unsigned long __weak arch_deref_entry_point(void *entry)
885 return (unsigned long)entry;
888 int __kprobes register_jprobes(struct jprobe **jps, int num)
890 struct jprobe *jp;
891 int ret = 0, i;
893 if (num <= 0)
894 return -EINVAL;
895 for (i = 0; i < num; i++) {
896 unsigned long addr;
897 jp = jps[i];
898 addr = arch_deref_entry_point(jp->entry);
900 if (!kernel_text_address(addr))
901 ret = -EINVAL;
902 else {
903 /* Todo: Verify probepoint is a function entry point */
904 jp->kp.pre_handler = setjmp_pre_handler;
905 jp->kp.break_handler = longjmp_break_handler;
906 ret = register_kprobe(&jp->kp);
908 if (ret < 0) {
909 if (i > 0)
910 unregister_jprobes(jps, i);
911 break;
914 return ret;
916 EXPORT_SYMBOL_GPL(register_jprobes);
918 int __kprobes register_jprobe(struct jprobe *jp)
920 return register_jprobes(&jp, 1);
922 EXPORT_SYMBOL_GPL(register_jprobe);
924 void __kprobes unregister_jprobe(struct jprobe *jp)
926 unregister_jprobes(&jp, 1);
928 EXPORT_SYMBOL_GPL(unregister_jprobe);
930 void __kprobes unregister_jprobes(struct jprobe **jps, int num)
932 int i;
934 if (num <= 0)
935 return;
936 mutex_lock(&kprobe_mutex);
937 for (i = 0; i < num; i++)
938 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
939 jps[i]->kp.addr = NULL;
940 mutex_unlock(&kprobe_mutex);
942 synchronize_sched();
943 for (i = 0; i < num; i++) {
944 if (jps[i]->kp.addr)
945 __unregister_kprobe_bottom(&jps[i]->kp);
948 EXPORT_SYMBOL_GPL(unregister_jprobes);
950 #ifdef CONFIG_KRETPROBES
952 * This kprobe pre_handler is registered with every kretprobe. When probe
953 * hits it will set up the return probe.
955 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
956 struct pt_regs *regs)
958 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
959 unsigned long hash, flags = 0;
960 struct kretprobe_instance *ri;
962 /*TODO: consider to only swap the RA after the last pre_handler fired */
963 hash = hash_ptr(current, KPROBE_HASH_BITS);
964 spin_lock_irqsave(&rp->lock, flags);
965 if (!hlist_empty(&rp->free_instances)) {
966 ri = hlist_entry(rp->free_instances.first,
967 struct kretprobe_instance, hlist);
968 hlist_del(&ri->hlist);
969 spin_unlock_irqrestore(&rp->lock, flags);
971 ri->rp = rp;
972 ri->task = current;
974 if (rp->entry_handler && rp->entry_handler(ri, regs))
975 return 0;
977 arch_prepare_kretprobe(ri, regs);
979 /* XXX(hch): why is there no hlist_move_head? */
980 INIT_HLIST_NODE(&ri->hlist);
981 kretprobe_table_lock(hash, &flags);
982 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
983 kretprobe_table_unlock(hash, &flags);
984 } else {
985 rp->nmissed++;
986 spin_unlock_irqrestore(&rp->lock, flags);
988 return 0;
991 int __kprobes register_kretprobe(struct kretprobe *rp)
993 int ret = 0;
994 struct kretprobe_instance *inst;
995 int i;
996 void *addr;
998 if (kretprobe_blacklist_size) {
999 addr = kprobe_addr(&rp->kp);
1000 if (!addr)
1001 return -EINVAL;
1003 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1004 if (kretprobe_blacklist[i].addr == addr)
1005 return -EINVAL;
1009 rp->kp.pre_handler = pre_handler_kretprobe;
1010 rp->kp.post_handler = NULL;
1011 rp->kp.fault_handler = NULL;
1012 rp->kp.break_handler = NULL;
1014 /* Pre-allocate memory for max kretprobe instances */
1015 if (rp->maxactive <= 0) {
1016 #ifdef CONFIG_PREEMPT
1017 rp->maxactive = max(10, 2 * NR_CPUS);
1018 #else
1019 rp->maxactive = NR_CPUS;
1020 #endif
1022 spin_lock_init(&rp->lock);
1023 INIT_HLIST_HEAD(&rp->free_instances);
1024 for (i = 0; i < rp->maxactive; i++) {
1025 inst = kmalloc(sizeof(struct kretprobe_instance) +
1026 rp->data_size, GFP_KERNEL);
1027 if (inst == NULL) {
1028 free_rp_inst(rp);
1029 return -ENOMEM;
1031 INIT_HLIST_NODE(&inst->hlist);
1032 hlist_add_head(&inst->hlist, &rp->free_instances);
1035 rp->nmissed = 0;
1036 /* Establish function entry probe point */
1037 ret = register_kprobe(&rp->kp);
1038 if (ret != 0)
1039 free_rp_inst(rp);
1040 return ret;
1042 EXPORT_SYMBOL_GPL(register_kretprobe);
1044 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1046 int ret = 0, i;
1048 if (num <= 0)
1049 return -EINVAL;
1050 for (i = 0; i < num; i++) {
1051 ret = register_kretprobe(rps[i]);
1052 if (ret < 0) {
1053 if (i > 0)
1054 unregister_kretprobes(rps, i);
1055 break;
1058 return ret;
1060 EXPORT_SYMBOL_GPL(register_kretprobes);
1062 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1064 unregister_kretprobes(&rp, 1);
1066 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1068 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1070 int i;
1072 if (num <= 0)
1073 return;
1074 mutex_lock(&kprobe_mutex);
1075 for (i = 0; i < num; i++)
1076 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1077 rps[i]->kp.addr = NULL;
1078 mutex_unlock(&kprobe_mutex);
1080 synchronize_sched();
1081 for (i = 0; i < num; i++) {
1082 if (rps[i]->kp.addr) {
1083 __unregister_kprobe_bottom(&rps[i]->kp);
1084 cleanup_rp_inst(rps[i]);
1088 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1090 #else /* CONFIG_KRETPROBES */
1091 int __kprobes register_kretprobe(struct kretprobe *rp)
1093 return -ENOSYS;
1095 EXPORT_SYMBOL_GPL(register_kretprobe);
1097 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1099 return -ENOSYS;
1101 EXPORT_SYMBOL_GPL(register_kretprobes);
1103 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1106 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1108 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1111 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1113 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1114 struct pt_regs *regs)
1116 return 0;
1119 #endif /* CONFIG_KRETPROBES */
1121 /* Set the kprobe gone and remove its instruction buffer. */
1122 static void __kprobes kill_kprobe(struct kprobe *p)
1124 struct kprobe *kp;
1126 p->flags |= KPROBE_FLAG_GONE;
1127 if (p->pre_handler == aggr_pre_handler) {
1129 * If this is an aggr_kprobe, we have to list all the
1130 * chained probes and mark them GONE.
1132 list_for_each_entry_rcu(kp, &p->list, list)
1133 kp->flags |= KPROBE_FLAG_GONE;
1134 p->post_handler = NULL;
1135 p->break_handler = NULL;
1138 * Here, we can remove insn_slot safely, because no thread calls
1139 * the original probed function (which will be freed soon) any more.
1141 arch_remove_kprobe(p);
1144 /* Module notifier call back, checking kprobes on the module */
1145 static int __kprobes kprobes_module_callback(struct notifier_block *nb,
1146 unsigned long val, void *data)
1148 struct module *mod = data;
1149 struct hlist_head *head;
1150 struct hlist_node *node;
1151 struct kprobe *p;
1152 unsigned int i;
1153 int checkcore = (val == MODULE_STATE_GOING);
1155 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
1156 return NOTIFY_DONE;
1159 * When MODULE_STATE_GOING was notified, both of module .text and
1160 * .init.text sections would be freed. When MODULE_STATE_LIVE was
1161 * notified, only .init.text section would be freed. We need to
1162 * disable kprobes which have been inserted in the sections.
1164 mutex_lock(&kprobe_mutex);
1165 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1166 head = &kprobe_table[i];
1167 hlist_for_each_entry_rcu(p, node, head, hlist)
1168 if (within_module_init((unsigned long)p->addr, mod) ||
1169 (checkcore &&
1170 within_module_core((unsigned long)p->addr, mod))) {
1172 * The vaddr this probe is installed will soon
1173 * be vfreed buy not synced to disk. Hence,
1174 * disarming the breakpoint isn't needed.
1176 kill_kprobe(p);
1179 mutex_unlock(&kprobe_mutex);
1180 return NOTIFY_DONE;
1183 static struct notifier_block kprobe_module_nb = {
1184 .notifier_call = kprobes_module_callback,
1185 .priority = 0
1188 static int __init init_kprobes(void)
1190 int i, err = 0;
1191 unsigned long offset = 0, size = 0;
1192 char *modname, namebuf[128];
1193 const char *symbol_name;
1194 void *addr;
1195 struct kprobe_blackpoint *kb;
1197 /* FIXME allocate the probe table, currently defined statically */
1198 /* initialize all list heads */
1199 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1200 INIT_HLIST_HEAD(&kprobe_table[i]);
1201 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
1202 spin_lock_init(&(kretprobe_table_locks[i].lock));
1206 * Lookup and populate the kprobe_blacklist.
1208 * Unlike the kretprobe blacklist, we'll need to determine
1209 * the range of addresses that belong to the said functions,
1210 * since a kprobe need not necessarily be at the beginning
1211 * of a function.
1213 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1214 kprobe_lookup_name(kb->name, addr);
1215 if (!addr)
1216 continue;
1218 kb->start_addr = (unsigned long)addr;
1219 symbol_name = kallsyms_lookup(kb->start_addr,
1220 &size, &offset, &modname, namebuf);
1221 if (!symbol_name)
1222 kb->range = 0;
1223 else
1224 kb->range = size;
1227 if (kretprobe_blacklist_size) {
1228 /* lookup the function address from its name */
1229 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1230 kprobe_lookup_name(kretprobe_blacklist[i].name,
1231 kretprobe_blacklist[i].addr);
1232 if (!kretprobe_blacklist[i].addr)
1233 printk("kretprobe: lookup failed: %s\n",
1234 kretprobe_blacklist[i].name);
1238 /* By default, kprobes are armed */
1239 kprobes_all_disarmed = false;
1241 err = arch_init_kprobes();
1242 if (!err)
1243 err = register_die_notifier(&kprobe_exceptions_nb);
1244 if (!err)
1245 err = register_module_notifier(&kprobe_module_nb);
1247 kprobes_initialized = (err == 0);
1249 if (!err)
1250 init_test_probes();
1251 return err;
1254 #ifdef CONFIG_DEBUG_FS
1255 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
1256 const char *sym, int offset,char *modname)
1258 char *kprobe_type;
1260 if (p->pre_handler == pre_handler_kretprobe)
1261 kprobe_type = "r";
1262 else if (p->pre_handler == setjmp_pre_handler)
1263 kprobe_type = "j";
1264 else
1265 kprobe_type = "k";
1266 if (sym)
1267 seq_printf(pi, "%p %s %s+0x%x %s %s%s\n",
1268 p->addr, kprobe_type, sym, offset,
1269 (modname ? modname : " "),
1270 (kprobe_gone(p) ? "[GONE]" : ""),
1271 ((kprobe_disabled(p) && !kprobe_gone(p)) ?
1272 "[DISABLED]" : ""));
1273 else
1274 seq_printf(pi, "%p %s %p %s%s\n",
1275 p->addr, kprobe_type, p->addr,
1276 (kprobe_gone(p) ? "[GONE]" : ""),
1277 ((kprobe_disabled(p) && !kprobe_gone(p)) ?
1278 "[DISABLED]" : ""));
1281 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
1283 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
1286 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
1288 (*pos)++;
1289 if (*pos >= KPROBE_TABLE_SIZE)
1290 return NULL;
1291 return pos;
1294 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
1296 /* Nothing to do */
1299 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
1301 struct hlist_head *head;
1302 struct hlist_node *node;
1303 struct kprobe *p, *kp;
1304 const char *sym = NULL;
1305 unsigned int i = *(loff_t *) v;
1306 unsigned long offset = 0;
1307 char *modname, namebuf[128];
1309 head = &kprobe_table[i];
1310 preempt_disable();
1311 hlist_for_each_entry_rcu(p, node, head, hlist) {
1312 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
1313 &offset, &modname, namebuf);
1314 if (p->pre_handler == aggr_pre_handler) {
1315 list_for_each_entry_rcu(kp, &p->list, list)
1316 report_probe(pi, kp, sym, offset, modname);
1317 } else
1318 report_probe(pi, p, sym, offset, modname);
1320 preempt_enable();
1321 return 0;
1324 static const struct seq_operations kprobes_seq_ops = {
1325 .start = kprobe_seq_start,
1326 .next = kprobe_seq_next,
1327 .stop = kprobe_seq_stop,
1328 .show = show_kprobe_addr
1331 static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
1333 return seq_open(filp, &kprobes_seq_ops);
1336 static const struct file_operations debugfs_kprobes_operations = {
1337 .open = kprobes_open,
1338 .read = seq_read,
1339 .llseek = seq_lseek,
1340 .release = seq_release,
1343 /* Disable one kprobe */
1344 int __kprobes disable_kprobe(struct kprobe *kp)
1346 int ret = 0;
1347 struct kprobe *p;
1349 mutex_lock(&kprobe_mutex);
1351 /* Check whether specified probe is valid. */
1352 p = __get_valid_kprobe(kp);
1353 if (unlikely(p == NULL)) {
1354 ret = -EINVAL;
1355 goto out;
1358 /* If the probe is already disabled (or gone), just return */
1359 if (kprobe_disabled(kp))
1360 goto out;
1362 kp->flags |= KPROBE_FLAG_DISABLED;
1363 if (p != kp)
1364 /* When kp != p, p is always enabled. */
1365 try_to_disable_aggr_kprobe(p);
1367 if (!kprobes_all_disarmed && kprobe_disabled(p))
1368 disarm_kprobe(p);
1369 out:
1370 mutex_unlock(&kprobe_mutex);
1371 return ret;
1373 EXPORT_SYMBOL_GPL(disable_kprobe);
1375 /* Enable one kprobe */
1376 int __kprobes enable_kprobe(struct kprobe *kp)
1378 int ret = 0;
1379 struct kprobe *p;
1381 mutex_lock(&kprobe_mutex);
1383 /* Check whether specified probe is valid. */
1384 p = __get_valid_kprobe(kp);
1385 if (unlikely(p == NULL)) {
1386 ret = -EINVAL;
1387 goto out;
1390 if (kprobe_gone(kp)) {
1391 /* This kprobe has gone, we couldn't enable it. */
1392 ret = -EINVAL;
1393 goto out;
1396 if (!kprobes_all_disarmed && kprobe_disabled(p))
1397 arm_kprobe(p);
1399 p->flags &= ~KPROBE_FLAG_DISABLED;
1400 if (p != kp)
1401 kp->flags &= ~KPROBE_FLAG_DISABLED;
1402 out:
1403 mutex_unlock(&kprobe_mutex);
1404 return ret;
1406 EXPORT_SYMBOL_GPL(enable_kprobe);
1408 static void __kprobes arm_all_kprobes(void)
1410 struct hlist_head *head;
1411 struct hlist_node *node;
1412 struct kprobe *p;
1413 unsigned int i;
1415 mutex_lock(&kprobe_mutex);
1417 /* If kprobes are armed, just return */
1418 if (!kprobes_all_disarmed)
1419 goto already_enabled;
1421 mutex_lock(&text_mutex);
1422 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1423 head = &kprobe_table[i];
1424 hlist_for_each_entry_rcu(p, node, head, hlist)
1425 if (!kprobe_disabled(p))
1426 arch_arm_kprobe(p);
1428 mutex_unlock(&text_mutex);
1430 kprobes_all_disarmed = false;
1431 printk(KERN_INFO "Kprobes globally enabled\n");
1433 already_enabled:
1434 mutex_unlock(&kprobe_mutex);
1435 return;
1438 static void __kprobes disarm_all_kprobes(void)
1440 struct hlist_head *head;
1441 struct hlist_node *node;
1442 struct kprobe *p;
1443 unsigned int i;
1445 mutex_lock(&kprobe_mutex);
1447 /* If kprobes are already disarmed, just return */
1448 if (kprobes_all_disarmed)
1449 goto already_disabled;
1451 kprobes_all_disarmed = true;
1452 printk(KERN_INFO "Kprobes globally disabled\n");
1453 mutex_lock(&text_mutex);
1454 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1455 head = &kprobe_table[i];
1456 hlist_for_each_entry_rcu(p, node, head, hlist) {
1457 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
1458 arch_disarm_kprobe(p);
1462 mutex_unlock(&text_mutex);
1463 mutex_unlock(&kprobe_mutex);
1464 /* Allow all currently running kprobes to complete */
1465 synchronize_sched();
1466 return;
1468 already_disabled:
1469 mutex_unlock(&kprobe_mutex);
1470 return;
1474 * XXX: The debugfs bool file interface doesn't allow for callbacks
1475 * when the bool state is switched. We can reuse that facility when
1476 * available
1478 static ssize_t read_enabled_file_bool(struct file *file,
1479 char __user *user_buf, size_t count, loff_t *ppos)
1481 char buf[3];
1483 if (!kprobes_all_disarmed)
1484 buf[0] = '1';
1485 else
1486 buf[0] = '0';
1487 buf[1] = '\n';
1488 buf[2] = 0x00;
1489 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
1492 static ssize_t write_enabled_file_bool(struct file *file,
1493 const char __user *user_buf, size_t count, loff_t *ppos)
1495 char buf[32];
1496 int buf_size;
1498 buf_size = min(count, (sizeof(buf)-1));
1499 if (copy_from_user(buf, user_buf, buf_size))
1500 return -EFAULT;
1502 switch (buf[0]) {
1503 case 'y':
1504 case 'Y':
1505 case '1':
1506 arm_all_kprobes();
1507 break;
1508 case 'n':
1509 case 'N':
1510 case '0':
1511 disarm_all_kprobes();
1512 break;
1515 return count;
1518 static const struct file_operations fops_kp = {
1519 .read = read_enabled_file_bool,
1520 .write = write_enabled_file_bool,
1523 static int __kprobes debugfs_kprobe_init(void)
1525 struct dentry *dir, *file;
1526 unsigned int value = 1;
1528 dir = debugfs_create_dir("kprobes", NULL);
1529 if (!dir)
1530 return -ENOMEM;
1532 file = debugfs_create_file("list", 0444, dir, NULL,
1533 &debugfs_kprobes_operations);
1534 if (!file) {
1535 debugfs_remove(dir);
1536 return -ENOMEM;
1539 file = debugfs_create_file("enabled", 0600, dir,
1540 &value, &fops_kp);
1541 if (!file) {
1542 debugfs_remove(dir);
1543 return -ENOMEM;
1546 return 0;
1549 late_initcall(debugfs_kprobe_init);
1550 #endif /* CONFIG_DEBUG_FS */
1552 module_init(init_kprobes);
1554 /* defined in arch/.../kernel/kprobes.c */
1555 EXPORT_SYMBOL_GPL(jprobe_return);