2 * linux/arch/alpha/kernel/time.c
4 * Copyright (C) 1991, 1992, 1995, 1999, 2000 Linus Torvalds
6 * This file contains the PC-specific time handling details:
7 * reading the RTC at bootup, etc..
8 * 1994-07-02 Alan Modra
9 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10 * 1995-03-26 Markus Kuhn
11 * fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887
12 * precision CMOS clock update
13 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
14 * "A Kernel Model for Precision Timekeeping" by Dave Mills
15 * 1997-01-09 Adrian Sun
16 * use interval timer if CONFIG_RTC=y
17 * 1997-10-29 John Bowman (bowman@math.ualberta.ca)
18 * fixed tick loss calculation in timer_interrupt
19 * (round system clock to nearest tick instead of truncating)
20 * fixed algorithm in time_init for getting time from CMOS clock
21 * 1999-04-16 Thorsten Kranzkowski (dl8bcu@gmx.net)
22 * fixed algorithm in do_gettimeofday() for calculating the precise time
23 * from processor cycle counter (now taking lost_ticks into account)
24 * 2000-08-13 Jan-Benedict Glaw <jbglaw@lug-owl.de>
25 * Fixed time_init to be aware of epoches != 1900. This prevents
26 * booting up in 2048 for me;) Code is stolen from rtc.c.
27 * 2003-06-03 R. Scott Bailey <scott.bailey@eds.com>
28 * Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM
30 #include <linux/errno.h>
31 #include <linux/module.h>
32 #include <linux/sched.h>
33 #include <linux/kernel.h>
34 #include <linux/param.h>
35 #include <linux/string.h>
37 #include <linux/delay.h>
38 #include <linux/ioport.h>
39 #include <linux/irq.h>
40 #include <linux/interrupt.h>
41 #include <linux/init.h>
42 #include <linux/bcd.h>
43 #include <linux/profile.h>
45 #include <asm/uaccess.h>
47 #include <asm/hwrpb.h>
48 #include <asm/8253pit.h>
51 #include <linux/mc146818rtc.h>
52 #include <linux/time.h>
53 #include <linux/timex.h>
58 static int set_rtc_mmss(unsigned long);
60 DEFINE_SPINLOCK(rtc_lock
);
61 EXPORT_SYMBOL(rtc_lock
);
63 #define TICK_SIZE (tick_nsec / 1000)
66 * Shift amount by which scaled_ticks_per_cycle is scaled. Shifting
67 * by 48 gives us 16 bits for HZ while keeping the accuracy good even
68 * for large CPU clock rates.
72 /* lump static variables together for more efficient access: */
74 /* cycle counter last time it got invoked */
76 /* ticks/cycle * 2^48 */
77 unsigned long scaled_ticks_per_cycle
;
78 /* last time the CMOS clock got updated */
79 time_t last_rtc_update
;
80 /* partial unused tick */
81 unsigned long partial_tick
;
84 unsigned long est_cycle_freq
;
87 static inline __u32
rpcc(void)
90 asm volatile ("rpcc %0" : "=r"(result
));
95 * timer_interrupt() needs to keep up the real-time clock,
96 * as well as call the "do_timer()" routine every clocktick
98 irqreturn_t
timer_interrupt(int irq
, void *dev
)
105 /* Not SMP, do kernel PC profiling here. */
106 profile_tick(CPU_PROFILING
);
109 write_seqlock(&xtime_lock
);
112 * Calculate how many ticks have passed since the last update,
113 * including any previous partial leftover. Save any resulting
114 * fraction for the next pass.
117 delta
= now
- state
.last_time
;
118 state
.last_time
= now
;
119 delta
= delta
* state
.scaled_ticks_per_cycle
+ state
.partial_tick
;
120 state
.partial_tick
= delta
& ((1UL << FIX_SHIFT
) - 1);
121 nticks
= delta
>> FIX_SHIFT
;
127 * If we have an externally synchronized Linux clock, then update
128 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
129 * called as close as possible to 500 ms before the new second starts.
132 && xtime
.tv_sec
> state
.last_rtc_update
+ 660
133 && xtime
.tv_nsec
>= 500000 - ((unsigned) TICK_SIZE
) / 2
134 && xtime
.tv_nsec
<= 500000 + ((unsigned) TICK_SIZE
) / 2) {
135 int tmp
= set_rtc_mmss(xtime
.tv_sec
);
136 state
.last_rtc_update
= xtime
.tv_sec
- (tmp
? 600 : 0);
139 write_sequnlock(&xtime_lock
);
143 update_process_times(user_mode(get_irq_regs()));
150 common_init_rtc(void)
154 /* Reset periodic interrupt frequency. */
155 x
= CMOS_READ(RTC_FREQ_SELECT
) & 0x3f;
156 /* Test includes known working values on various platforms
157 where 0x26 is wrong; we refuse to change those. */
158 if (x
!= 0x26 && x
!= 0x25 && x
!= 0x19 && x
!= 0x06) {
159 printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x
);
160 CMOS_WRITE(0x26, RTC_FREQ_SELECT
);
163 /* Turn on periodic interrupts. */
164 x
= CMOS_READ(RTC_CONTROL
);
165 if (!(x
& RTC_PIE
)) {
166 printk("Turning on RTC interrupts.\n");
168 x
&= ~(RTC_AIE
| RTC_UIE
);
169 CMOS_WRITE(x
, RTC_CONTROL
);
171 (void) CMOS_READ(RTC_INTR_FLAGS
);
173 outb(0x36, 0x43); /* pit counter 0: system timer */
177 outb(0xb6, 0x43); /* pit counter 2: speaker */
184 unsigned int common_get_rtc_time(struct rtc_time
*time
)
186 return __get_rtc_time(time
);
189 int common_set_rtc_time(struct rtc_time
*time
)
191 return __set_rtc_time(time
);
194 /* Validate a computed cycle counter result against the known bounds for
195 the given processor core. There's too much brokenness in the way of
196 timing hardware for any one method to work everywhere. :-(
198 Return 0 if the result cannot be trusted, otherwise return the argument. */
200 static unsigned long __init
201 validate_cc_value(unsigned long cc
)
203 static struct bounds
{
204 unsigned int min
, max
;
205 } cpu_hz
[] __initdata
= {
206 [EV3_CPU
] = { 50000000, 200000000 }, /* guess */
207 [EV4_CPU
] = { 100000000, 300000000 },
208 [LCA4_CPU
] = { 100000000, 300000000 }, /* guess */
209 [EV45_CPU
] = { 200000000, 300000000 },
210 [EV5_CPU
] = { 250000000, 433000000 },
211 [EV56_CPU
] = { 333000000, 667000000 },
212 [PCA56_CPU
] = { 400000000, 600000000 }, /* guess */
213 [PCA57_CPU
] = { 500000000, 600000000 }, /* guess */
214 [EV6_CPU
] = { 466000000, 600000000 },
215 [EV67_CPU
] = { 600000000, 750000000 },
216 [EV68AL_CPU
] = { 750000000, 940000000 },
217 [EV68CB_CPU
] = { 1000000000, 1333333333 },
218 /* None of the following are shipping as of 2001-11-01. */
219 [EV68CX_CPU
] = { 1000000000, 1700000000 }, /* guess */
220 [EV69_CPU
] = { 1000000000, 1700000000 }, /* guess */
221 [EV7_CPU
] = { 800000000, 1400000000 }, /* guess */
222 [EV79_CPU
] = { 1000000000, 2000000000 }, /* guess */
225 /* Allow for some drift in the crystal. 10MHz is more than enough. */
226 const unsigned int deviation
= 10000000;
228 struct percpu_struct
*cpu
;
231 cpu
= (struct percpu_struct
*)((char*)hwrpb
+ hwrpb
->processor_offset
);
232 index
= cpu
->type
& 0xffffffff;
234 /* If index out of bounds, no way to validate. */
235 if (index
>= ARRAY_SIZE(cpu_hz
))
238 /* If index contains no data, no way to validate. */
239 if (cpu_hz
[index
].max
== 0)
242 if (cc
< cpu_hz
[index
].min
- deviation
243 || cc
> cpu_hz
[index
].max
+ deviation
)
251 * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from
255 #define CALIBRATE_LATCH 0xffff
256 #define TIMEOUT_COUNT 0x100000
258 static unsigned long __init
259 calibrate_cc_with_pit(void)
263 /* Set the Gate high, disable speaker */
264 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
267 * Now let's take care of CTC channel 2
269 * Set the Gate high, program CTC channel 2 for mode 0,
270 * (interrupt on terminal count mode), binary count,
271 * load 5 * LATCH count, (LSB and MSB) to begin countdown.
273 outb(0xb0, 0x43); /* binary, mode 0, LSB/MSB, Ch 2 */
274 outb(CALIBRATE_LATCH
& 0xff, 0x42); /* LSB of count */
275 outb(CALIBRATE_LATCH
>> 8, 0x42); /* MSB of count */
280 } while ((inb(0x61) & 0x20) == 0 && count
< TIMEOUT_COUNT
);
283 /* Error: ECTCNEVERSET or ECPUTOOFAST. */
284 if (count
<= 1 || count
== TIMEOUT_COUNT
)
287 return ((long)cc
* PIT_TICK_RATE
) / (CALIBRATE_LATCH
+ 1);
290 /* The Linux interpretation of the CMOS clock register contents:
291 When the Update-In-Progress (UIP) flag goes from 1 to 0, the
292 RTC registers show the second which has precisely just started.
293 Let's hope other operating systems interpret the RTC the same way. */
295 static unsigned long __init
296 rpcc_after_update_in_progress(void)
298 do { } while (!(CMOS_READ(RTC_FREQ_SELECT
) & RTC_UIP
));
299 do { } while (CMOS_READ(RTC_FREQ_SELECT
) & RTC_UIP
);
307 unsigned int year
, mon
, day
, hour
, min
, sec
, cc1
, cc2
, epoch
;
308 unsigned long cycle_freq
, tolerance
;
311 /* Calibrate CPU clock -- attempt #1. */
313 est_cycle_freq
= validate_cc_value(calibrate_cc_with_pit());
317 /* Calibrate CPU clock -- attempt #2. */
318 if (!est_cycle_freq
) {
319 cc1
= rpcc_after_update_in_progress();
320 cc2
= rpcc_after_update_in_progress();
321 est_cycle_freq
= validate_cc_value(cc2
- cc1
);
325 cycle_freq
= hwrpb
->cycle_freq
;
326 if (est_cycle_freq
) {
327 /* If the given value is within 250 PPM of what we calculated,
328 accept it. Otherwise, use what we found. */
329 tolerance
= cycle_freq
/ 4000;
330 diff
= cycle_freq
- est_cycle_freq
;
333 if ((unsigned long)diff
> tolerance
) {
334 cycle_freq
= est_cycle_freq
;
335 printk("HWRPB cycle frequency bogus. "
336 "Estimated %lu Hz\n", cycle_freq
);
340 } else if (! validate_cc_value (cycle_freq
)) {
341 printk("HWRPB cycle frequency bogus, "
342 "and unable to estimate a proper value!\n");
345 /* From John Bowman <bowman@math.ualberta.ca>: allow the values
346 to settle, as the Update-In-Progress bit going low isn't good
347 enough on some hardware. 2ms is our guess; we haven't found
348 bogomips yet, but this is close on a 500Mhz box. */
351 sec
= CMOS_READ(RTC_SECONDS
);
352 min
= CMOS_READ(RTC_MINUTES
);
353 hour
= CMOS_READ(RTC_HOURS
);
354 day
= CMOS_READ(RTC_DAY_OF_MONTH
);
355 mon
= CMOS_READ(RTC_MONTH
);
356 year
= CMOS_READ(RTC_YEAR
);
358 if (!(CMOS_READ(RTC_CONTROL
) & RTC_DM_BINARY
) || RTC_ALWAYS_BCD
) {
361 hour
= bcd2bin(hour
);
364 year
= bcd2bin(year
);
367 /* PC-like is standard; used for year >= 70 */
371 else if (year
>= 20 && year
< 48)
374 else if (year
>= 48 && year
< 70)
375 /* Digital UNIX epoch */
378 printk(KERN_INFO
"Using epoch = %d\n", epoch
);
380 if ((year
+= epoch
) < 1970)
383 xtime
.tv_sec
= mktime(year
, mon
, day
, hour
, min
, sec
);
386 wall_to_monotonic
.tv_sec
-= xtime
.tv_sec
;
387 wall_to_monotonic
.tv_nsec
= 0;
390 extern void __you_loose (void);
394 state
.last_time
= cc1
;
395 state
.scaled_ticks_per_cycle
396 = ((unsigned long) HZ
<< FIX_SHIFT
) / cycle_freq
;
397 state
.last_rtc_update
= 0;
398 state
.partial_tick
= 0L;
400 /* Startup the timer source. */
405 * Use the cycle counter to estimate an displacement from the last time
406 * tick. Unfortunately the Alpha designers made only the low 32-bits of
407 * the cycle counter active, so we overflow on 8.2 seconds on a 500MHz
408 * part. So we can't do the "find absolute time in terms of cycles" thing
409 * that the other ports do.
411 u32
arch_gettimeoffset(void)
414 /* Until and unless we figure out how to get cpu cycle counters
415 in sync and keep them there, we can't use the rpcc tricks. */
418 unsigned long delta_cycles
, delta_usec
, partial_tick
;
420 delta_cycles
= rpcc() - state
.last_time
;
421 partial_tick
= state
.partial_tick
;
423 * usec = cycles * ticks_per_cycle * 2**48 * 1e6 / (2**48 * ticks)
424 * = cycles * (s_t_p_c) * 1e6 / (2**48 * ticks)
425 * = cycles * (s_t_p_c) * 15625 / (2**42 * ticks)
427 * which, given a 600MHz cycle and a 1024Hz tick, has a
428 * dynamic range of about 1.7e17, which is less than the
429 * 1.8e19 in an unsigned long, so we are safe from overflow.
431 * Round, but with .5 up always, since .5 to even is harder
432 * with no clear gain.
435 delta_usec
= (delta_cycles
* state
.scaled_ticks_per_cycle
436 + partial_tick
) * 15625;
437 delta_usec
= ((delta_usec
/ ((1UL << (FIX_SHIFT
-6-1)) * HZ
)) + 1) / 2;
438 return delta_usec
* 1000;
443 * In order to set the CMOS clock precisely, set_rtc_mmss has to be
444 * called 500 ms after the second nowtime has started, because when
445 * nowtime is written into the registers of the CMOS clock, it will
446 * jump to the next second precisely 500 ms later. Check the Motorola
447 * MC146818A or Dallas DS12887 data sheet for details.
449 * BUG: This routine does not handle hour overflow properly; it just
450 * sets the minutes. Usually you won't notice until after reboot!
455 set_rtc_mmss(unsigned long nowtime
)
458 int real_seconds
, real_minutes
, cmos_minutes
;
459 unsigned char save_control
, save_freq_select
;
461 /* irq are locally disabled here */
462 spin_lock(&rtc_lock
);
463 /* Tell the clock it's being set */
464 save_control
= CMOS_READ(RTC_CONTROL
);
465 CMOS_WRITE((save_control
|RTC_SET
), RTC_CONTROL
);
467 /* Stop and reset prescaler */
468 save_freq_select
= CMOS_READ(RTC_FREQ_SELECT
);
469 CMOS_WRITE((save_freq_select
|RTC_DIV_RESET2
), RTC_FREQ_SELECT
);
471 cmos_minutes
= CMOS_READ(RTC_MINUTES
);
472 if (!(save_control
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
)
473 cmos_minutes
= bcd2bin(cmos_minutes
);
476 * since we're only adjusting minutes and seconds,
477 * don't interfere with hour overflow. This avoids
478 * messing with unknown time zones but requires your
479 * RTC not to be off by more than 15 minutes
481 real_seconds
= nowtime
% 60;
482 real_minutes
= nowtime
/ 60;
483 if (((abs(real_minutes
- cmos_minutes
) + 15)/30) & 1) {
484 /* correct for half hour time zone */
489 if (abs(real_minutes
- cmos_minutes
) < 30) {
490 if (!(save_control
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
) {
491 real_seconds
= bin2bcd(real_seconds
);
492 real_minutes
= bin2bcd(real_minutes
);
494 CMOS_WRITE(real_seconds
,RTC_SECONDS
);
495 CMOS_WRITE(real_minutes
,RTC_MINUTES
);
498 "set_rtc_mmss: can't update from %d to %d\n",
499 cmos_minutes
, real_minutes
);
503 /* The following flags have to be released exactly in this order,
504 * otherwise the DS12887 (popular MC146818A clone with integrated
505 * battery and quartz) will not reset the oscillator and will not
506 * update precisely 500 ms later. You won't find this mentioned in
507 * the Dallas Semiconductor data sheets, but who believes data
508 * sheets anyway ... -- Markus Kuhn
510 CMOS_WRITE(save_control
, RTC_CONTROL
);
511 CMOS_WRITE(save_freq_select
, RTC_FREQ_SELECT
);
512 spin_unlock(&rtc_lock
);