mm-only debug patch...
[mmotm.git] / arch / blackfin / kernel / setup.c
blobc202a44d141696e2873edc1c9aa670396c91118b
1 /*
2 * Copyright 2004-2009 Analog Devices Inc.
4 * Licensed under the GPL-2 or later.
5 */
7 #include <linux/delay.h>
8 #include <linux/console.h>
9 #include <linux/bootmem.h>
10 #include <linux/seq_file.h>
11 #include <linux/cpu.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/tty.h>
15 #include <linux/pfn.h>
17 #ifdef CONFIG_MTD_UCLINUX
18 #include <linux/mtd/map.h>
19 #include <linux/ext2_fs.h>
20 #include <linux/cramfs_fs.h>
21 #include <linux/romfs_fs.h>
22 #endif
24 #include <asm/cplb.h>
25 #include <asm/cacheflush.h>
26 #include <asm/blackfin.h>
27 #include <asm/cplbinit.h>
28 #include <asm/div64.h>
29 #include <asm/cpu.h>
30 #include <asm/fixed_code.h>
31 #include <asm/early_printk.h>
33 u16 _bfin_swrst;
34 EXPORT_SYMBOL(_bfin_swrst);
36 unsigned long memory_start, memory_end, physical_mem_end;
37 unsigned long _rambase, _ramstart, _ramend;
38 unsigned long reserved_mem_dcache_on;
39 unsigned long reserved_mem_icache_on;
40 EXPORT_SYMBOL(memory_start);
41 EXPORT_SYMBOL(memory_end);
42 EXPORT_SYMBOL(physical_mem_end);
43 EXPORT_SYMBOL(_ramend);
44 EXPORT_SYMBOL(reserved_mem_dcache_on);
46 #ifdef CONFIG_MTD_UCLINUX
47 extern struct map_info uclinux_ram_map;
48 unsigned long memory_mtd_end, memory_mtd_start, mtd_size;
49 unsigned long _ebss;
50 EXPORT_SYMBOL(memory_mtd_end);
51 EXPORT_SYMBOL(memory_mtd_start);
52 EXPORT_SYMBOL(mtd_size);
53 #endif
55 char __initdata command_line[COMMAND_LINE_SIZE];
56 void __initdata *init_retx, *init_saved_retx, *init_saved_seqstat,
57 *init_saved_icplb_fault_addr, *init_saved_dcplb_fault_addr;
59 /* boot memmap, for parsing "memmap=" */
60 #define BFIN_MEMMAP_MAX 128 /* number of entries in bfin_memmap */
61 #define BFIN_MEMMAP_RAM 1
62 #define BFIN_MEMMAP_RESERVED 2
63 static struct bfin_memmap {
64 int nr_map;
65 struct bfin_memmap_entry {
66 unsigned long long addr; /* start of memory segment */
67 unsigned long long size;
68 unsigned long type;
69 } map[BFIN_MEMMAP_MAX];
70 } bfin_memmap __initdata;
72 /* for memmap sanitization */
73 struct change_member {
74 struct bfin_memmap_entry *pentry; /* pointer to original entry */
75 unsigned long long addr; /* address for this change point */
77 static struct change_member change_point_list[2*BFIN_MEMMAP_MAX] __initdata;
78 static struct change_member *change_point[2*BFIN_MEMMAP_MAX] __initdata;
79 static struct bfin_memmap_entry *overlap_list[BFIN_MEMMAP_MAX] __initdata;
80 static struct bfin_memmap_entry new_map[BFIN_MEMMAP_MAX] __initdata;
82 DEFINE_PER_CPU(struct blackfin_cpudata, cpu_data);
84 static int early_init_clkin_hz(char *buf);
86 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
87 void __init generate_cplb_tables(void)
89 unsigned int cpu;
91 generate_cplb_tables_all();
92 /* Generate per-CPU I&D CPLB tables */
93 for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
94 generate_cplb_tables_cpu(cpu);
96 #endif
98 void __cpuinit bfin_setup_caches(unsigned int cpu)
100 #ifdef CONFIG_BFIN_ICACHE
101 bfin_icache_init(icplb_tbl[cpu]);
102 #endif
104 #ifdef CONFIG_BFIN_DCACHE
105 bfin_dcache_init(dcplb_tbl[cpu]);
106 #endif
109 * In cache coherence emulation mode, we need to have the
110 * D-cache enabled before running any atomic operation which
111 * might involve cache invalidation (i.e. spinlock, rwlock).
112 * So printk's are deferred until then.
114 #ifdef CONFIG_BFIN_ICACHE
115 printk(KERN_INFO "Instruction Cache Enabled for CPU%u\n", cpu);
116 printk(KERN_INFO " External memory:"
117 # ifdef CONFIG_BFIN_EXTMEM_ICACHEABLE
118 " cacheable"
119 # else
120 " uncacheable"
121 # endif
122 " in instruction cache\n");
123 if (L2_LENGTH)
124 printk(KERN_INFO " L2 SRAM :"
125 # ifdef CONFIG_BFIN_L2_ICACHEABLE
126 " cacheable"
127 # else
128 " uncacheable"
129 # endif
130 " in instruction cache\n");
132 #else
133 printk(KERN_INFO "Instruction Cache Disabled for CPU%u\n", cpu);
134 #endif
136 #ifdef CONFIG_BFIN_DCACHE
137 printk(KERN_INFO "Data Cache Enabled for CPU%u\n", cpu);
138 printk(KERN_INFO " External memory:"
139 # if defined CONFIG_BFIN_EXTMEM_WRITEBACK
140 " cacheable (write-back)"
141 # elif defined CONFIG_BFIN_EXTMEM_WRITETHROUGH
142 " cacheable (write-through)"
143 # else
144 " uncacheable"
145 # endif
146 " in data cache\n");
147 if (L2_LENGTH)
148 printk(KERN_INFO " L2 SRAM :"
149 # if defined CONFIG_BFIN_L2_WRITEBACK
150 " cacheable (write-back)"
151 # elif defined CONFIG_BFIN_L2_WRITETHROUGH
152 " cacheable (write-through)"
153 # else
154 " uncacheable"
155 # endif
156 " in data cache\n");
157 #else
158 printk(KERN_INFO "Data Cache Disabled for CPU%u\n", cpu);
159 #endif
162 void __cpuinit bfin_setup_cpudata(unsigned int cpu)
164 struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu);
166 cpudata->idle = current;
167 cpudata->imemctl = bfin_read_IMEM_CONTROL();
168 cpudata->dmemctl = bfin_read_DMEM_CONTROL();
171 void __init bfin_cache_init(void)
173 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
174 generate_cplb_tables();
175 #endif
176 bfin_setup_caches(0);
179 void __init bfin_relocate_l1_mem(void)
181 unsigned long l1_code_length;
182 unsigned long l1_data_a_length;
183 unsigned long l1_data_b_length;
184 unsigned long l2_length;
186 early_shadow_stamp();
189 * due to the ALIGN(4) in the arch/blackfin/kernel/vmlinux.lds.S
190 * we know that everything about l1 text/data is nice and aligned,
191 * so copy by 4 byte chunks, and don't worry about overlapping
192 * src/dest.
194 * We can't use the dma_memcpy functions, since they can call
195 * scheduler functions which might be in L1 :( and core writes
196 * into L1 instruction cause bad access errors, so we are stuck,
197 * we are required to use DMA, but can't use the common dma
198 * functions. We can't use memcpy either - since that might be
199 * going to be in the relocated L1
202 blackfin_dma_early_init();
204 /* if necessary, copy _stext_l1 to _etext_l1 to L1 instruction SRAM */
205 l1_code_length = _etext_l1 - _stext_l1;
206 if (l1_code_length)
207 early_dma_memcpy(_stext_l1, _l1_lma_start, l1_code_length);
209 /* if necessary, copy _sdata_l1 to _sbss_l1 to L1 data bank A SRAM */
210 l1_data_a_length = _sbss_l1 - _sdata_l1;
211 if (l1_data_a_length)
212 early_dma_memcpy(_sdata_l1, _l1_lma_start + l1_code_length, l1_data_a_length);
214 /* if necessary, copy _sdata_b_l1 to _sbss_b_l1 to L1 data bank B SRAM */
215 l1_data_b_length = _sbss_b_l1 - _sdata_b_l1;
216 if (l1_data_b_length)
217 early_dma_memcpy(_sdata_b_l1, _l1_lma_start + l1_code_length +
218 l1_data_a_length, l1_data_b_length);
220 early_dma_memcpy_done();
222 /* if necessary, copy _stext_l2 to _edata_l2 to L2 SRAM */
223 if (L2_LENGTH != 0) {
224 l2_length = _sbss_l2 - _stext_l2;
225 if (l2_length)
226 memcpy(_stext_l2, _l2_lma_start, l2_length);
230 /* add_memory_region to memmap */
231 static void __init add_memory_region(unsigned long long start,
232 unsigned long long size, int type)
234 int i;
236 i = bfin_memmap.nr_map;
238 if (i == BFIN_MEMMAP_MAX) {
239 printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
240 return;
243 bfin_memmap.map[i].addr = start;
244 bfin_memmap.map[i].size = size;
245 bfin_memmap.map[i].type = type;
246 bfin_memmap.nr_map++;
250 * Sanitize the boot memmap, removing overlaps.
252 static int __init sanitize_memmap(struct bfin_memmap_entry *map, int *pnr_map)
254 struct change_member *change_tmp;
255 unsigned long current_type, last_type;
256 unsigned long long last_addr;
257 int chgidx, still_changing;
258 int overlap_entries;
259 int new_entry;
260 int old_nr, new_nr, chg_nr;
261 int i;
264 Visually we're performing the following (1,2,3,4 = memory types)
266 Sample memory map (w/overlaps):
267 ____22__________________
268 ______________________4_
269 ____1111________________
270 _44_____________________
271 11111111________________
272 ____________________33__
273 ___________44___________
274 __________33333_________
275 ______________22________
276 ___________________2222_
277 _________111111111______
278 _____________________11_
279 _________________4______
281 Sanitized equivalent (no overlap):
282 1_______________________
283 _44_____________________
284 ___1____________________
285 ____22__________________
286 ______11________________
287 _________1______________
288 __________3_____________
289 ___________44___________
290 _____________33_________
291 _______________2________
292 ________________1_______
293 _________________4______
294 ___________________2____
295 ____________________33__
296 ______________________4_
298 /* if there's only one memory region, don't bother */
299 if (*pnr_map < 2)
300 return -1;
302 old_nr = *pnr_map;
304 /* bail out if we find any unreasonable addresses in memmap */
305 for (i = 0; i < old_nr; i++)
306 if (map[i].addr + map[i].size < map[i].addr)
307 return -1;
309 /* create pointers for initial change-point information (for sorting) */
310 for (i = 0; i < 2*old_nr; i++)
311 change_point[i] = &change_point_list[i];
313 /* record all known change-points (starting and ending addresses),
314 omitting those that are for empty memory regions */
315 chgidx = 0;
316 for (i = 0; i < old_nr; i++) {
317 if (map[i].size != 0) {
318 change_point[chgidx]->addr = map[i].addr;
319 change_point[chgidx++]->pentry = &map[i];
320 change_point[chgidx]->addr = map[i].addr + map[i].size;
321 change_point[chgidx++]->pentry = &map[i];
324 chg_nr = chgidx; /* true number of change-points */
326 /* sort change-point list by memory addresses (low -> high) */
327 still_changing = 1;
328 while (still_changing) {
329 still_changing = 0;
330 for (i = 1; i < chg_nr; i++) {
331 /* if <current_addr> > <last_addr>, swap */
332 /* or, if current=<start_addr> & last=<end_addr>, swap */
333 if ((change_point[i]->addr < change_point[i-1]->addr) ||
334 ((change_point[i]->addr == change_point[i-1]->addr) &&
335 (change_point[i]->addr == change_point[i]->pentry->addr) &&
336 (change_point[i-1]->addr != change_point[i-1]->pentry->addr))
338 change_tmp = change_point[i];
339 change_point[i] = change_point[i-1];
340 change_point[i-1] = change_tmp;
341 still_changing = 1;
346 /* create a new memmap, removing overlaps */
347 overlap_entries = 0; /* number of entries in the overlap table */
348 new_entry = 0; /* index for creating new memmap entries */
349 last_type = 0; /* start with undefined memory type */
350 last_addr = 0; /* start with 0 as last starting address */
351 /* loop through change-points, determining affect on the new memmap */
352 for (chgidx = 0; chgidx < chg_nr; chgidx++) {
353 /* keep track of all overlapping memmap entries */
354 if (change_point[chgidx]->addr == change_point[chgidx]->pentry->addr) {
355 /* add map entry to overlap list (> 1 entry implies an overlap) */
356 overlap_list[overlap_entries++] = change_point[chgidx]->pentry;
357 } else {
358 /* remove entry from list (order independent, so swap with last) */
359 for (i = 0; i < overlap_entries; i++) {
360 if (overlap_list[i] == change_point[chgidx]->pentry)
361 overlap_list[i] = overlap_list[overlap_entries-1];
363 overlap_entries--;
365 /* if there are overlapping entries, decide which "type" to use */
366 /* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */
367 current_type = 0;
368 for (i = 0; i < overlap_entries; i++)
369 if (overlap_list[i]->type > current_type)
370 current_type = overlap_list[i]->type;
371 /* continue building up new memmap based on this information */
372 if (current_type != last_type) {
373 if (last_type != 0) {
374 new_map[new_entry].size =
375 change_point[chgidx]->addr - last_addr;
376 /* move forward only if the new size was non-zero */
377 if (new_map[new_entry].size != 0)
378 if (++new_entry >= BFIN_MEMMAP_MAX)
379 break; /* no more space left for new entries */
381 if (current_type != 0) {
382 new_map[new_entry].addr = change_point[chgidx]->addr;
383 new_map[new_entry].type = current_type;
384 last_addr = change_point[chgidx]->addr;
386 last_type = current_type;
389 new_nr = new_entry; /* retain count for new entries */
391 /* copy new mapping into original location */
392 memcpy(map, new_map, new_nr*sizeof(struct bfin_memmap_entry));
393 *pnr_map = new_nr;
395 return 0;
398 static void __init print_memory_map(char *who)
400 int i;
402 for (i = 0; i < bfin_memmap.nr_map; i++) {
403 printk(KERN_DEBUG " %s: %016Lx - %016Lx ", who,
404 bfin_memmap.map[i].addr,
405 bfin_memmap.map[i].addr + bfin_memmap.map[i].size);
406 switch (bfin_memmap.map[i].type) {
407 case BFIN_MEMMAP_RAM:
408 printk(KERN_CONT "(usable)\n");
409 break;
410 case BFIN_MEMMAP_RESERVED:
411 printk(KERN_CONT "(reserved)\n");
412 break;
413 default:
414 printk(KERN_CONT "type %lu\n", bfin_memmap.map[i].type);
415 break;
420 static __init int parse_memmap(char *arg)
422 unsigned long long start_at, mem_size;
424 if (!arg)
425 return -EINVAL;
427 mem_size = memparse(arg, &arg);
428 if (*arg == '@') {
429 start_at = memparse(arg+1, &arg);
430 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RAM);
431 } else if (*arg == '$') {
432 start_at = memparse(arg+1, &arg);
433 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RESERVED);
436 return 0;
440 * Initial parsing of the command line. Currently, we support:
441 * - Controlling the linux memory size: mem=xxx[KMG]
442 * - Controlling the physical memory size: max_mem=xxx[KMG][$][#]
443 * $ -> reserved memory is dcacheable
444 * # -> reserved memory is icacheable
445 * - "memmap=XXX[KkmM][@][$]XXX[KkmM]" defines a memory region
446 * @ from <start> to <start>+<mem>, type RAM
447 * $ from <start> to <start>+<mem>, type RESERVED
449 static __init void parse_cmdline_early(char *cmdline_p)
451 char c = ' ', *to = cmdline_p;
452 unsigned int memsize;
453 for (;;) {
454 if (c == ' ') {
455 if (!memcmp(to, "mem=", 4)) {
456 to += 4;
457 memsize = memparse(to, &to);
458 if (memsize)
459 _ramend = memsize;
461 } else if (!memcmp(to, "max_mem=", 8)) {
462 to += 8;
463 memsize = memparse(to, &to);
464 if (memsize) {
465 physical_mem_end = memsize;
466 if (*to != ' ') {
467 if (*to == '$'
468 || *(to + 1) == '$')
469 reserved_mem_dcache_on = 1;
470 if (*to == '#'
471 || *(to + 1) == '#')
472 reserved_mem_icache_on = 1;
475 } else if (!memcmp(to, "clkin_hz=", 9)) {
476 to += 9;
477 early_init_clkin_hz(to);
478 #ifdef CONFIG_EARLY_PRINTK
479 } else if (!memcmp(to, "earlyprintk=", 12)) {
480 to += 12;
481 setup_early_printk(to);
482 #endif
483 } else if (!memcmp(to, "memmap=", 7)) {
484 to += 7;
485 parse_memmap(to);
488 c = *(to++);
489 if (!c)
490 break;
495 * Setup memory defaults from user config.
496 * The physical memory layout looks like:
498 * [_rambase, _ramstart]: kernel image
499 * [memory_start, memory_end]: dynamic memory managed by kernel
500 * [memory_end, _ramend]: reserved memory
501 * [memory_mtd_start(memory_end),
502 * memory_mtd_start + mtd_size]: rootfs (if any)
503 * [_ramend - DMA_UNCACHED_REGION,
504 * _ramend]: uncached DMA region
505 * [_ramend, physical_mem_end]: memory not managed by kernel
507 static __init void memory_setup(void)
509 #ifdef CONFIG_MTD_UCLINUX
510 unsigned long mtd_phys = 0;
511 #endif
512 unsigned long max_mem;
514 _rambase = (unsigned long)_stext;
515 _ramstart = (unsigned long)_end;
517 if (DMA_UNCACHED_REGION > (_ramend - _ramstart)) {
518 console_init();
519 panic("DMA region exceeds memory limit: %lu.",
520 _ramend - _ramstart);
522 max_mem = memory_end = _ramend - DMA_UNCACHED_REGION;
524 #if (defined(CONFIG_BFIN_EXTMEM_ICACHEABLE) && ANOMALY_05000263)
525 /* Due to a Hardware Anomaly we need to limit the size of usable
526 * instruction memory to max 60MB, 56 if HUNT_FOR_ZERO is on
527 * 05000263 - Hardware loop corrupted when taking an ICPLB exception
529 # if (defined(CONFIG_DEBUG_HUNT_FOR_ZERO))
530 if (max_mem >= 56 * 1024 * 1024)
531 max_mem = 56 * 1024 * 1024;
532 # else
533 if (max_mem >= 60 * 1024 * 1024)
534 max_mem = 60 * 1024 * 1024;
535 # endif /* CONFIG_DEBUG_HUNT_FOR_ZERO */
536 #endif /* ANOMALY_05000263 */
539 #ifdef CONFIG_MPU
540 /* Round up to multiple of 4MB */
541 memory_start = (_ramstart + 0x3fffff) & ~0x3fffff;
542 #else
543 memory_start = PAGE_ALIGN(_ramstart);
544 #endif
546 #if defined(CONFIG_MTD_UCLINUX)
547 /* generic memory mapped MTD driver */
548 memory_mtd_end = memory_end;
550 mtd_phys = _ramstart;
551 mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 8)));
553 # if defined(CONFIG_EXT2_FS) || defined(CONFIG_EXT3_FS)
554 if (*((unsigned short *)(mtd_phys + 0x438)) == EXT2_SUPER_MAGIC)
555 mtd_size =
556 PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x404)) << 10);
557 # endif
559 # if defined(CONFIG_CRAMFS)
560 if (*((unsigned long *)(mtd_phys)) == CRAMFS_MAGIC)
561 mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x4)));
562 # endif
564 # if defined(CONFIG_ROMFS_FS)
565 if (((unsigned long *)mtd_phys)[0] == ROMSB_WORD0
566 && ((unsigned long *)mtd_phys)[1] == ROMSB_WORD1) {
567 mtd_size =
568 PAGE_ALIGN(be32_to_cpu(((unsigned long *)mtd_phys)[2]));
570 /* ROM_FS is XIP, so if we found it, we need to limit memory */
571 if (memory_end > max_mem) {
572 pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n", max_mem >> 20);
573 memory_end = max_mem;
576 # endif /* CONFIG_ROMFS_FS */
578 /* Since the default MTD_UCLINUX has no magic number, we just blindly
579 * read 8 past the end of the kernel's image, and look at it.
580 * When no image is attached, mtd_size is set to a random number
581 * Do some basic sanity checks before operating on things
583 if (mtd_size == 0 || memory_end <= mtd_size) {
584 pr_emerg("Could not find valid ram mtd attached.\n");
585 } else {
586 memory_end -= mtd_size;
588 /* Relocate MTD image to the top of memory after the uncached memory area */
589 uclinux_ram_map.phys = memory_mtd_start = memory_end;
590 uclinux_ram_map.size = mtd_size;
591 pr_info("Found mtd parition at 0x%p, (len=0x%lx), moving to 0x%p\n",
592 _end, mtd_size, (void *)memory_mtd_start);
593 dma_memcpy((void *)uclinux_ram_map.phys, _end, uclinux_ram_map.size);
595 #endif /* CONFIG_MTD_UCLINUX */
597 /* We need lo limit memory, since everything could have a text section
598 * of userspace in it, and expose anomaly 05000263. If the anomaly
599 * doesn't exist, or we don't need to - then dont.
601 if (memory_end > max_mem) {
602 pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n", max_mem >> 20);
603 memory_end = max_mem;
606 #ifdef CONFIG_MPU
607 page_mask_nelts = ((_ramend >> PAGE_SHIFT) + 31) / 32;
608 page_mask_order = get_order(3 * page_mask_nelts * sizeof(long));
609 #endif
611 #if !defined(CONFIG_MTD_UCLINUX)
612 /*In case there is no valid CPLB behind memory_end make sure we don't get to close*/
613 memory_end -= SIZE_4K;
614 #endif
616 init_mm.start_code = (unsigned long)_stext;
617 init_mm.end_code = (unsigned long)_etext;
618 init_mm.end_data = (unsigned long)_edata;
619 init_mm.brk = (unsigned long)0;
621 printk(KERN_INFO "Board Memory: %ldMB\n", physical_mem_end >> 20);
622 printk(KERN_INFO "Kernel Managed Memory: %ldMB\n", _ramend >> 20);
624 printk(KERN_INFO "Memory map:\n"
625 " fixedcode = 0x%p-0x%p\n"
626 " text = 0x%p-0x%p\n"
627 " rodata = 0x%p-0x%p\n"
628 " bss = 0x%p-0x%p\n"
629 " data = 0x%p-0x%p\n"
630 " stack = 0x%p-0x%p\n"
631 " init = 0x%p-0x%p\n"
632 " available = 0x%p-0x%p\n"
633 #ifdef CONFIG_MTD_UCLINUX
634 " rootfs = 0x%p-0x%p\n"
635 #endif
636 #if DMA_UNCACHED_REGION > 0
637 " DMA Zone = 0x%p-0x%p\n"
638 #endif
639 , (void *)FIXED_CODE_START, (void *)FIXED_CODE_END,
640 _stext, _etext,
641 __start_rodata, __end_rodata,
642 __bss_start, __bss_stop,
643 _sdata, _edata,
644 (void *)&init_thread_union,
645 (void *)((int)(&init_thread_union) + 0x2000),
646 __init_begin, __init_end,
647 (void *)_ramstart, (void *)memory_end
648 #ifdef CONFIG_MTD_UCLINUX
649 , (void *)memory_mtd_start, (void *)(memory_mtd_start + mtd_size)
650 #endif
651 #if DMA_UNCACHED_REGION > 0
652 , (void *)(_ramend - DMA_UNCACHED_REGION), (void *)(_ramend)
653 #endif
658 * Find the lowest, highest page frame number we have available
660 void __init find_min_max_pfn(void)
662 int i;
664 max_pfn = 0;
665 min_low_pfn = memory_end;
667 for (i = 0; i < bfin_memmap.nr_map; i++) {
668 unsigned long start, end;
669 /* RAM? */
670 if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
671 continue;
672 start = PFN_UP(bfin_memmap.map[i].addr);
673 end = PFN_DOWN(bfin_memmap.map[i].addr +
674 bfin_memmap.map[i].size);
675 if (start >= end)
676 continue;
677 if (end > max_pfn)
678 max_pfn = end;
679 if (start < min_low_pfn)
680 min_low_pfn = start;
684 static __init void setup_bootmem_allocator(void)
686 int bootmap_size;
687 int i;
688 unsigned long start_pfn, end_pfn;
689 unsigned long curr_pfn, last_pfn, size;
691 /* mark memory between memory_start and memory_end usable */
692 add_memory_region(memory_start,
693 memory_end - memory_start, BFIN_MEMMAP_RAM);
694 /* sanity check for overlap */
695 sanitize_memmap(bfin_memmap.map, &bfin_memmap.nr_map);
696 print_memory_map("boot memmap");
698 /* initialize globals in linux/bootmem.h */
699 find_min_max_pfn();
700 /* pfn of the last usable page frame */
701 if (max_pfn > memory_end >> PAGE_SHIFT)
702 max_pfn = memory_end >> PAGE_SHIFT;
703 /* pfn of last page frame directly mapped by kernel */
704 max_low_pfn = max_pfn;
705 /* pfn of the first usable page frame after kernel image*/
706 if (min_low_pfn < memory_start >> PAGE_SHIFT)
707 min_low_pfn = memory_start >> PAGE_SHIFT;
709 start_pfn = PAGE_OFFSET >> PAGE_SHIFT;
710 end_pfn = memory_end >> PAGE_SHIFT;
713 * give all the memory to the bootmap allocator, tell it to put the
714 * boot mem_map at the start of memory.
716 bootmap_size = init_bootmem_node(NODE_DATA(0),
717 memory_start >> PAGE_SHIFT, /* map goes here */
718 start_pfn, end_pfn);
720 /* register the memmap regions with the bootmem allocator */
721 for (i = 0; i < bfin_memmap.nr_map; i++) {
723 * Reserve usable memory
725 if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
726 continue;
728 * We are rounding up the start address of usable memory:
730 curr_pfn = PFN_UP(bfin_memmap.map[i].addr);
731 if (curr_pfn >= end_pfn)
732 continue;
734 * ... and at the end of the usable range downwards:
736 last_pfn = PFN_DOWN(bfin_memmap.map[i].addr +
737 bfin_memmap.map[i].size);
739 if (last_pfn > end_pfn)
740 last_pfn = end_pfn;
743 * .. finally, did all the rounding and playing
744 * around just make the area go away?
746 if (last_pfn <= curr_pfn)
747 continue;
749 size = last_pfn - curr_pfn;
750 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(size));
753 /* reserve memory before memory_start, including bootmap */
754 reserve_bootmem(PAGE_OFFSET,
755 memory_start + bootmap_size + PAGE_SIZE - 1 - PAGE_OFFSET,
756 BOOTMEM_DEFAULT);
759 #define EBSZ_TO_MEG(ebsz) \
760 ({ \
761 int meg = 0; \
762 switch (ebsz & 0xf) { \
763 case 0x1: meg = 16; break; \
764 case 0x3: meg = 32; break; \
765 case 0x5: meg = 64; break; \
766 case 0x7: meg = 128; break; \
767 case 0x9: meg = 256; break; \
768 case 0xb: meg = 512; break; \
770 meg; \
772 static inline int __init get_mem_size(void)
774 #if defined(EBIU_SDBCTL)
775 # if defined(BF561_FAMILY)
776 int ret = 0;
777 u32 sdbctl = bfin_read_EBIU_SDBCTL();
778 ret += EBSZ_TO_MEG(sdbctl >> 0);
779 ret += EBSZ_TO_MEG(sdbctl >> 8);
780 ret += EBSZ_TO_MEG(sdbctl >> 16);
781 ret += EBSZ_TO_MEG(sdbctl >> 24);
782 return ret;
783 # else
784 return EBSZ_TO_MEG(bfin_read_EBIU_SDBCTL());
785 # endif
786 #elif defined(EBIU_DDRCTL1)
787 u32 ddrctl = bfin_read_EBIU_DDRCTL1();
788 int ret = 0;
789 switch (ddrctl & 0xc0000) {
790 case DEVSZ_64: ret = 64 / 8;
791 case DEVSZ_128: ret = 128 / 8;
792 case DEVSZ_256: ret = 256 / 8;
793 case DEVSZ_512: ret = 512 / 8;
795 switch (ddrctl & 0x30000) {
796 case DEVWD_4: ret *= 2;
797 case DEVWD_8: ret *= 2;
798 case DEVWD_16: break;
800 if ((ddrctl & 0xc000) == 0x4000)
801 ret *= 2;
802 return ret;
803 #endif
804 BUG();
807 void __init setup_arch(char **cmdline_p)
809 unsigned long sclk, cclk;
811 enable_shadow_console();
813 /* Check to make sure we are running on the right processor */
814 if (unlikely(CPUID != bfin_cpuid()))
815 printk(KERN_ERR "ERROR: Not running on ADSP-%s: unknown CPUID 0x%04x Rev 0.%d\n",
816 CPU, bfin_cpuid(), bfin_revid());
818 #ifdef CONFIG_DUMMY_CONSOLE
819 conswitchp = &dummy_con;
820 #endif
822 #if defined(CONFIG_CMDLINE_BOOL)
823 strncpy(&command_line[0], CONFIG_CMDLINE, sizeof(command_line));
824 command_line[sizeof(command_line) - 1] = 0;
825 #endif
827 /* Keep a copy of command line */
828 *cmdline_p = &command_line[0];
829 memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
830 boot_command_line[COMMAND_LINE_SIZE - 1] = '\0';
832 memset(&bfin_memmap, 0, sizeof(bfin_memmap));
834 /* If the user does not specify things on the command line, use
835 * what the bootloader set things up as
837 physical_mem_end = 0;
838 parse_cmdline_early(&command_line[0]);
840 if (_ramend == 0)
841 _ramend = get_mem_size() * 1024 * 1024;
843 if (physical_mem_end == 0)
844 physical_mem_end = _ramend;
846 memory_setup();
848 /* Initialize Async memory banks */
849 bfin_write_EBIU_AMBCTL0(AMBCTL0VAL);
850 bfin_write_EBIU_AMBCTL1(AMBCTL1VAL);
851 bfin_write_EBIU_AMGCTL(AMGCTLVAL);
852 #ifdef CONFIG_EBIU_MBSCTLVAL
853 bfin_write_EBIU_MBSCTL(CONFIG_EBIU_MBSCTLVAL);
854 bfin_write_EBIU_MODE(CONFIG_EBIU_MODEVAL);
855 bfin_write_EBIU_FCTL(CONFIG_EBIU_FCTLVAL);
856 #endif
858 cclk = get_cclk();
859 sclk = get_sclk();
861 if ((ANOMALY_05000273 || ANOMALY_05000274) && (cclk >> 1) < sclk)
862 panic("ANOMALY 05000273 or 05000274: CCLK must be >= 2*SCLK");
864 #ifdef BF561_FAMILY
865 if (ANOMALY_05000266) {
866 bfin_read_IMDMA_D0_IRQ_STATUS();
867 bfin_read_IMDMA_D1_IRQ_STATUS();
869 #endif
870 printk(KERN_INFO "Hardware Trace ");
871 if (bfin_read_TBUFCTL() & 0x1)
872 printk(KERN_CONT "Active ");
873 else
874 printk(KERN_CONT "Off ");
875 if (bfin_read_TBUFCTL() & 0x2)
876 printk(KERN_CONT "and Enabled\n");
877 else
878 printk(KERN_CONT "and Disabled\n");
880 printk(KERN_INFO "Boot Mode: %i\n", bfin_read_SYSCR() & 0xF);
882 /* Newer parts mirror SWRST bits in SYSCR */
883 #if defined(CONFIG_BF53x) || defined(CONFIG_BF561) || \
884 defined(CONFIG_BF538) || defined(CONFIG_BF539)
885 _bfin_swrst = bfin_read_SWRST();
886 #else
887 /* Clear boot mode field */
888 _bfin_swrst = bfin_read_SYSCR() & ~0xf;
889 #endif
891 #ifdef CONFIG_DEBUG_DOUBLEFAULT_PRINT
892 bfin_write_SWRST(_bfin_swrst & ~DOUBLE_FAULT);
893 #endif
894 #ifdef CONFIG_DEBUG_DOUBLEFAULT_RESET
895 bfin_write_SWRST(_bfin_swrst | DOUBLE_FAULT);
896 #endif
898 #ifdef CONFIG_SMP
899 if (_bfin_swrst & SWRST_DBL_FAULT_A) {
900 #else
901 if (_bfin_swrst & RESET_DOUBLE) {
902 #endif
903 printk(KERN_EMERG "Recovering from DOUBLE FAULT event\n");
904 #ifdef CONFIG_DEBUG_DOUBLEFAULT
905 /* We assume the crashing kernel, and the current symbol table match */
906 printk(KERN_EMERG " While handling exception (EXCAUSE = 0x%x) at %pF\n",
907 (int)init_saved_seqstat & SEQSTAT_EXCAUSE, init_saved_retx);
908 printk(KERN_NOTICE " DCPLB_FAULT_ADDR: %pF\n", init_saved_dcplb_fault_addr);
909 printk(KERN_NOTICE " ICPLB_FAULT_ADDR: %pF\n", init_saved_icplb_fault_addr);
910 #endif
911 printk(KERN_NOTICE " The instruction at %pF caused a double exception\n",
912 init_retx);
913 } else if (_bfin_swrst & RESET_WDOG)
914 printk(KERN_INFO "Recovering from Watchdog event\n");
915 else if (_bfin_swrst & RESET_SOFTWARE)
916 printk(KERN_NOTICE "Reset caused by Software reset\n");
918 printk(KERN_INFO "Blackfin support (C) 2004-2009 Analog Devices, Inc.\n");
919 if (bfin_compiled_revid() == 0xffff)
920 printk(KERN_INFO "Compiled for ADSP-%s Rev any\n", CPU);
921 else if (bfin_compiled_revid() == -1)
922 printk(KERN_INFO "Compiled for ADSP-%s Rev none\n", CPU);
923 else
924 printk(KERN_INFO "Compiled for ADSP-%s Rev 0.%d\n", CPU, bfin_compiled_revid());
926 if (likely(CPUID == bfin_cpuid())) {
927 if (bfin_revid() != bfin_compiled_revid()) {
928 if (bfin_compiled_revid() == -1)
929 printk(KERN_ERR "Warning: Compiled for Rev none, but running on Rev %d\n",
930 bfin_revid());
931 else if (bfin_compiled_revid() != 0xffff) {
932 printk(KERN_ERR "Warning: Compiled for Rev %d, but running on Rev %d\n",
933 bfin_compiled_revid(), bfin_revid());
934 if (bfin_compiled_revid() > bfin_revid())
935 panic("Error: you are missing anomaly workarounds for this rev");
938 if (bfin_revid() < CONFIG_BF_REV_MIN || bfin_revid() > CONFIG_BF_REV_MAX)
939 printk(KERN_ERR "Warning: Unsupported Chip Revision ADSP-%s Rev 0.%d detected\n",
940 CPU, bfin_revid());
943 printk(KERN_INFO "Blackfin Linux support by http://blackfin.uclinux.org/\n");
945 printk(KERN_INFO "Processor Speed: %lu MHz core clock and %lu MHz System Clock\n",
946 cclk / 1000000, sclk / 1000000);
948 setup_bootmem_allocator();
950 paging_init();
952 /* Copy atomic sequences to their fixed location, and sanity check that
953 these locations are the ones that we advertise to userspace. */
954 memcpy((void *)FIXED_CODE_START, &fixed_code_start,
955 FIXED_CODE_END - FIXED_CODE_START);
956 BUG_ON((char *)&sigreturn_stub - (char *)&fixed_code_start
957 != SIGRETURN_STUB - FIXED_CODE_START);
958 BUG_ON((char *)&atomic_xchg32 - (char *)&fixed_code_start
959 != ATOMIC_XCHG32 - FIXED_CODE_START);
960 BUG_ON((char *)&atomic_cas32 - (char *)&fixed_code_start
961 != ATOMIC_CAS32 - FIXED_CODE_START);
962 BUG_ON((char *)&atomic_add32 - (char *)&fixed_code_start
963 != ATOMIC_ADD32 - FIXED_CODE_START);
964 BUG_ON((char *)&atomic_sub32 - (char *)&fixed_code_start
965 != ATOMIC_SUB32 - FIXED_CODE_START);
966 BUG_ON((char *)&atomic_ior32 - (char *)&fixed_code_start
967 != ATOMIC_IOR32 - FIXED_CODE_START);
968 BUG_ON((char *)&atomic_and32 - (char *)&fixed_code_start
969 != ATOMIC_AND32 - FIXED_CODE_START);
970 BUG_ON((char *)&atomic_xor32 - (char *)&fixed_code_start
971 != ATOMIC_XOR32 - FIXED_CODE_START);
972 BUG_ON((char *)&safe_user_instruction - (char *)&fixed_code_start
973 != SAFE_USER_INSTRUCTION - FIXED_CODE_START);
975 #ifdef CONFIG_SMP
976 platform_init_cpus();
977 #endif
978 init_exception_vectors();
979 bfin_cache_init(); /* Initialize caches for the boot CPU */
982 static int __init topology_init(void)
984 unsigned int cpu;
985 /* Record CPU-private information for the boot processor. */
986 bfin_setup_cpudata(0);
988 for_each_possible_cpu(cpu) {
989 register_cpu(&per_cpu(cpu_data, cpu).cpu, cpu);
992 return 0;
995 subsys_initcall(topology_init);
997 /* Get the input clock frequency */
998 static u_long cached_clkin_hz = CONFIG_CLKIN_HZ;
999 static u_long get_clkin_hz(void)
1001 return cached_clkin_hz;
1003 static int __init early_init_clkin_hz(char *buf)
1005 cached_clkin_hz = simple_strtoul(buf, NULL, 0);
1006 #ifdef BFIN_KERNEL_CLOCK
1007 if (cached_clkin_hz != CONFIG_CLKIN_HZ)
1008 panic("cannot change clkin_hz when reprogramming clocks");
1009 #endif
1010 return 1;
1012 early_param("clkin_hz=", early_init_clkin_hz);
1014 /* Get the voltage input multiplier */
1015 static u_long get_vco(void)
1017 static u_long cached_vco;
1018 u_long msel, pll_ctl;
1020 /* The assumption here is that VCO never changes at runtime.
1021 * If, someday, we support that, then we'll have to change this.
1023 if (cached_vco)
1024 return cached_vco;
1026 pll_ctl = bfin_read_PLL_CTL();
1027 msel = (pll_ctl >> 9) & 0x3F;
1028 if (0 == msel)
1029 msel = 64;
1031 cached_vco = get_clkin_hz();
1032 cached_vco >>= (1 & pll_ctl); /* DF bit */
1033 cached_vco *= msel;
1034 return cached_vco;
1037 /* Get the Core clock */
1038 u_long get_cclk(void)
1040 static u_long cached_cclk_pll_div, cached_cclk;
1041 u_long csel, ssel;
1043 if (bfin_read_PLL_STAT() & 0x1)
1044 return get_clkin_hz();
1046 ssel = bfin_read_PLL_DIV();
1047 if (ssel == cached_cclk_pll_div)
1048 return cached_cclk;
1049 else
1050 cached_cclk_pll_div = ssel;
1052 csel = ((ssel >> 4) & 0x03);
1053 ssel &= 0xf;
1054 if (ssel && ssel < (1 << csel)) /* SCLK > CCLK */
1055 cached_cclk = get_vco() / ssel;
1056 else
1057 cached_cclk = get_vco() >> csel;
1058 return cached_cclk;
1060 EXPORT_SYMBOL(get_cclk);
1062 /* Get the System clock */
1063 u_long get_sclk(void)
1065 static u_long cached_sclk;
1066 u_long ssel;
1068 /* The assumption here is that SCLK never changes at runtime.
1069 * If, someday, we support that, then we'll have to change this.
1071 if (cached_sclk)
1072 return cached_sclk;
1074 if (bfin_read_PLL_STAT() & 0x1)
1075 return get_clkin_hz();
1077 ssel = bfin_read_PLL_DIV() & 0xf;
1078 if (0 == ssel) {
1079 printk(KERN_WARNING "Invalid System Clock\n");
1080 ssel = 1;
1083 cached_sclk = get_vco() / ssel;
1084 return cached_sclk;
1086 EXPORT_SYMBOL(get_sclk);
1088 unsigned long sclk_to_usecs(unsigned long sclk)
1090 u64 tmp = USEC_PER_SEC * (u64)sclk;
1091 do_div(tmp, get_sclk());
1092 return tmp;
1094 EXPORT_SYMBOL(sclk_to_usecs);
1096 unsigned long usecs_to_sclk(unsigned long usecs)
1098 u64 tmp = get_sclk() * (u64)usecs;
1099 do_div(tmp, USEC_PER_SEC);
1100 return tmp;
1102 EXPORT_SYMBOL(usecs_to_sclk);
1105 * Get CPU information for use by the procfs.
1107 static int show_cpuinfo(struct seq_file *m, void *v)
1109 char *cpu, *mmu, *fpu, *vendor, *cache;
1110 uint32_t revid;
1111 int cpu_num = *(unsigned int *)v;
1112 u_long sclk, cclk;
1113 u_int icache_size = BFIN_ICACHESIZE / 1024, dcache_size = 0, dsup_banks = 0;
1114 struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu_num);
1116 cpu = CPU;
1117 mmu = "none";
1118 fpu = "none";
1119 revid = bfin_revid();
1121 sclk = get_sclk();
1122 cclk = get_cclk();
1124 switch (bfin_read_CHIPID() & CHIPID_MANUFACTURE) {
1125 case 0xca:
1126 vendor = "Analog Devices";
1127 break;
1128 default:
1129 vendor = "unknown";
1130 break;
1133 seq_printf(m, "processor\t: %d\n" "vendor_id\t: %s\n", cpu_num, vendor);
1135 if (CPUID == bfin_cpuid())
1136 seq_printf(m, "cpu family\t: 0x%04x\n", CPUID);
1137 else
1138 seq_printf(m, "cpu family\t: Compiled for:0x%04x, running on:0x%04x\n",
1139 CPUID, bfin_cpuid());
1141 seq_printf(m, "model name\t: ADSP-%s %lu(MHz CCLK) %lu(MHz SCLK) (%s)\n"
1142 "stepping\t: %d ",
1143 cpu, cclk/1000000, sclk/1000000,
1144 #ifdef CONFIG_MPU
1145 "mpu on",
1146 #else
1147 "mpu off",
1148 #endif
1149 revid);
1151 if (bfin_revid() != bfin_compiled_revid()) {
1152 if (bfin_compiled_revid() == -1)
1153 seq_printf(m, "(Compiled for Rev none)");
1154 else if (bfin_compiled_revid() == 0xffff)
1155 seq_printf(m, "(Compiled for Rev any)");
1156 else
1157 seq_printf(m, "(Compiled for Rev %d)", bfin_compiled_revid());
1160 seq_printf(m, "\ncpu MHz\t\t: %lu.%03lu/%lu.%03lu\n",
1161 cclk/1000000, cclk%1000000,
1162 sclk/1000000, sclk%1000000);
1163 seq_printf(m, "bogomips\t: %lu.%02lu\n"
1164 "Calibration\t: %lu loops\n",
1165 (loops_per_jiffy * HZ) / 500000,
1166 ((loops_per_jiffy * HZ) / 5000) % 100,
1167 (loops_per_jiffy * HZ));
1169 /* Check Cache configutation */
1170 switch (cpudata->dmemctl & (1 << DMC0_P | 1 << DMC1_P)) {
1171 case ACACHE_BSRAM:
1172 cache = "dbank-A/B\t: cache/sram";
1173 dcache_size = 16;
1174 dsup_banks = 1;
1175 break;
1176 case ACACHE_BCACHE:
1177 cache = "dbank-A/B\t: cache/cache";
1178 dcache_size = 32;
1179 dsup_banks = 2;
1180 break;
1181 case ASRAM_BSRAM:
1182 cache = "dbank-A/B\t: sram/sram";
1183 dcache_size = 0;
1184 dsup_banks = 0;
1185 break;
1186 default:
1187 cache = "unknown";
1188 dcache_size = 0;
1189 dsup_banks = 0;
1190 break;
1193 /* Is it turned on? */
1194 if ((cpudata->dmemctl & (ENDCPLB | DMC_ENABLE)) != (ENDCPLB | DMC_ENABLE))
1195 dcache_size = 0;
1197 if ((cpudata->imemctl & (IMC | ENICPLB)) != (IMC | ENICPLB))
1198 icache_size = 0;
1200 seq_printf(m, "cache size\t: %d KB(L1 icache) "
1201 "%d KB(L1 dcache) %d KB(L2 cache)\n",
1202 icache_size, dcache_size, 0);
1203 seq_printf(m, "%s\n", cache);
1204 seq_printf(m, "external memory\t: "
1205 #if defined(CONFIG_BFIN_EXTMEM_ICACHEABLE)
1206 "cacheable"
1207 #else
1208 "uncacheable"
1209 #endif
1210 " in instruction cache\n");
1211 seq_printf(m, "external memory\t: "
1212 #if defined(CONFIG_BFIN_EXTMEM_WRITEBACK)
1213 "cacheable (write-back)"
1214 #elif defined(CONFIG_BFIN_EXTMEM_WRITETHROUGH)
1215 "cacheable (write-through)"
1216 #else
1217 "uncacheable"
1218 #endif
1219 " in data cache\n");
1221 if (icache_size)
1222 seq_printf(m, "icache setup\t: %d Sub-banks/%d Ways, %d Lines/Way\n",
1223 BFIN_ISUBBANKS, BFIN_IWAYS, BFIN_ILINES);
1224 else
1225 seq_printf(m, "icache setup\t: off\n");
1227 seq_printf(m,
1228 "dcache setup\t: %d Super-banks/%d Sub-banks/%d Ways, %d Lines/Way\n",
1229 dsup_banks, BFIN_DSUBBANKS, BFIN_DWAYS,
1230 BFIN_DLINES);
1231 #ifdef __ARCH_SYNC_CORE_DCACHE
1232 seq_printf(m, "SMP Dcache Flushes\t: %lu\n\n", cpudata->dcache_invld_count);
1233 #endif
1234 #ifdef __ARCH_SYNC_CORE_ICACHE
1235 seq_printf(m, "SMP Icache Flushes\t: %lu\n\n", cpudata->icache_invld_count);
1236 #endif
1238 if (cpu_num != num_possible_cpus() - 1)
1239 return 0;
1241 if (L2_LENGTH) {
1242 seq_printf(m, "L2 SRAM\t\t: %dKB\n", L2_LENGTH/0x400);
1243 seq_printf(m, "L2 SRAM\t\t: "
1244 #if defined(CONFIG_BFIN_L2_ICACHEABLE)
1245 "cacheable"
1246 #else
1247 "uncacheable"
1248 #endif
1249 " in instruction cache\n");
1250 seq_printf(m, "L2 SRAM\t\t: "
1251 #if defined(CONFIG_BFIN_L2_WRITEBACK)
1252 "cacheable (write-back)"
1253 #elif defined(CONFIG_BFIN_L2_WRITETHROUGH)
1254 "cacheable (write-through)"
1255 #else
1256 "uncacheable"
1257 #endif
1258 " in data cache\n");
1260 seq_printf(m, "board name\t: %s\n", bfin_board_name);
1261 seq_printf(m, "board memory\t: %ld kB (0x%p -> 0x%p)\n",
1262 physical_mem_end >> 10, (void *)0, (void *)physical_mem_end);
1263 seq_printf(m, "kernel memory\t: %d kB (0x%p -> 0x%p)\n",
1264 ((int)memory_end - (int)_stext) >> 10,
1265 _stext,
1266 (void *)memory_end);
1267 seq_printf(m, "\n");
1269 return 0;
1272 static void *c_start(struct seq_file *m, loff_t *pos)
1274 if (*pos == 0)
1275 *pos = first_cpu(cpu_online_map);
1276 if (*pos >= num_online_cpus())
1277 return NULL;
1279 return pos;
1282 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1284 *pos = next_cpu(*pos, cpu_online_map);
1286 return c_start(m, pos);
1289 static void c_stop(struct seq_file *m, void *v)
1293 const struct seq_operations cpuinfo_op = {
1294 .start = c_start,
1295 .next = c_next,
1296 .stop = c_stop,
1297 .show = show_cpuinfo,
1300 void __init cmdline_init(const char *r0)
1302 early_shadow_stamp();
1303 if (r0)
1304 strncpy(command_line, r0, COMMAND_LINE_SIZE);