mm-only debug patch...
[mmotm.git] / arch / powerpc / kernel / time.c
blob92dc844299b65ff5b7d934b14e4e110a6d956547
1 /*
2 * Common time routines among all ppc machines.
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
35 #include <linux/errno.h>
36 #include <linux/module.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/param.h>
40 #include <linux/string.h>
41 #include <linux/mm.h>
42 #include <linux/interrupt.h>
43 #include <linux/timex.h>
44 #include <linux/kernel_stat.h>
45 #include <linux/time.h>
46 #include <linux/init.h>
47 #include <linux/profile.h>
48 #include <linux/cpu.h>
49 #include <linux/security.h>
50 #include <linux/percpu.h>
51 #include <linux/rtc.h>
52 #include <linux/jiffies.h>
53 #include <linux/posix-timers.h>
54 #include <linux/irq.h>
55 #include <linux/delay.h>
56 #include <linux/perf_event.h>
58 #include <asm/io.h>
59 #include <asm/processor.h>
60 #include <asm/nvram.h>
61 #include <asm/cache.h>
62 #include <asm/machdep.h>
63 #include <asm/uaccess.h>
64 #include <asm/time.h>
65 #include <asm/prom.h>
66 #include <asm/irq.h>
67 #include <asm/div64.h>
68 #include <asm/smp.h>
69 #include <asm/vdso_datapage.h>
70 #include <asm/firmware.h>
71 #include <asm/cputime.h>
72 #ifdef CONFIG_PPC_ISERIES
73 #include <asm/iseries/it_lp_queue.h>
74 #include <asm/iseries/hv_call_xm.h>
75 #endif
77 /* powerpc clocksource/clockevent code */
79 #include <linux/clockchips.h>
80 #include <linux/clocksource.h>
82 static cycle_t rtc_read(struct clocksource *);
83 static struct clocksource clocksource_rtc = {
84 .name = "rtc",
85 .rating = 400,
86 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
87 .mask = CLOCKSOURCE_MASK(64),
88 .shift = 22,
89 .mult = 0, /* To be filled in */
90 .read = rtc_read,
93 static cycle_t timebase_read(struct clocksource *);
94 static struct clocksource clocksource_timebase = {
95 .name = "timebase",
96 .rating = 400,
97 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
98 .mask = CLOCKSOURCE_MASK(64),
99 .shift = 22,
100 .mult = 0, /* To be filled in */
101 .read = timebase_read,
104 #define DECREMENTER_MAX 0x7fffffff
106 static int decrementer_set_next_event(unsigned long evt,
107 struct clock_event_device *dev);
108 static void decrementer_set_mode(enum clock_event_mode mode,
109 struct clock_event_device *dev);
111 static struct clock_event_device decrementer_clockevent = {
112 .name = "decrementer",
113 .rating = 200,
114 .shift = 0, /* To be filled in */
115 .mult = 0, /* To be filled in */
116 .irq = 0,
117 .set_next_event = decrementer_set_next_event,
118 .set_mode = decrementer_set_mode,
119 .features = CLOCK_EVT_FEAT_ONESHOT,
122 struct decrementer_clock {
123 struct clock_event_device event;
124 u64 next_tb;
127 static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
129 #ifdef CONFIG_PPC_ISERIES
130 static unsigned long __initdata iSeries_recal_titan;
131 static signed long __initdata iSeries_recal_tb;
133 /* Forward declaration is only needed for iSereis compiles */
134 static void __init clocksource_init(void);
135 #endif
137 #define XSEC_PER_SEC (1024*1024)
139 #ifdef CONFIG_PPC64
140 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
141 #else
142 /* compute ((xsec << 12) * max) >> 32 */
143 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
144 #endif
146 unsigned long tb_ticks_per_jiffy;
147 unsigned long tb_ticks_per_usec = 100; /* sane default */
148 EXPORT_SYMBOL(tb_ticks_per_usec);
149 unsigned long tb_ticks_per_sec;
150 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
151 u64 tb_to_xs;
152 unsigned tb_to_us;
154 #define TICKLEN_SCALE NTP_SCALE_SHIFT
155 static u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
156 static u64 ticklen_to_xs; /* 0.64 fraction */
158 /* If last_tick_len corresponds to about 1/HZ seconds, then
159 last_tick_len << TICKLEN_SHIFT will be about 2^63. */
160 #define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
162 DEFINE_SPINLOCK(rtc_lock);
163 EXPORT_SYMBOL_GPL(rtc_lock);
165 static u64 tb_to_ns_scale __read_mostly;
166 static unsigned tb_to_ns_shift __read_mostly;
167 static unsigned long boot_tb __read_mostly;
169 extern struct timezone sys_tz;
170 static long timezone_offset;
172 unsigned long ppc_proc_freq;
173 EXPORT_SYMBOL(ppc_proc_freq);
174 unsigned long ppc_tb_freq;
176 static u64 tb_last_jiffy __cacheline_aligned_in_smp;
177 static DEFINE_PER_CPU(u64, last_jiffy);
179 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
181 * Factors for converting from cputime_t (timebase ticks) to
182 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
183 * These are all stored as 0.64 fixed-point binary fractions.
185 u64 __cputime_jiffies_factor;
186 EXPORT_SYMBOL(__cputime_jiffies_factor);
187 u64 __cputime_msec_factor;
188 EXPORT_SYMBOL(__cputime_msec_factor);
189 u64 __cputime_sec_factor;
190 EXPORT_SYMBOL(__cputime_sec_factor);
191 u64 __cputime_clockt_factor;
192 EXPORT_SYMBOL(__cputime_clockt_factor);
193 DEFINE_PER_CPU(unsigned long, cputime_last_delta);
194 DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
196 cputime_t cputime_one_jiffy;
198 static void calc_cputime_factors(void)
200 struct div_result res;
202 div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
203 __cputime_jiffies_factor = res.result_low;
204 div128_by_32(1000, 0, tb_ticks_per_sec, &res);
205 __cputime_msec_factor = res.result_low;
206 div128_by_32(1, 0, tb_ticks_per_sec, &res);
207 __cputime_sec_factor = res.result_low;
208 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
209 __cputime_clockt_factor = res.result_low;
213 * Read the PURR on systems that have it, otherwise the timebase.
215 static u64 read_purr(void)
217 if (cpu_has_feature(CPU_FTR_PURR))
218 return mfspr(SPRN_PURR);
219 return mftb();
223 * Read the SPURR on systems that have it, otherwise the purr
225 static u64 read_spurr(u64 purr)
228 * cpus without PURR won't have a SPURR
229 * We already know the former when we use this, so tell gcc
231 if (cpu_has_feature(CPU_FTR_PURR) && cpu_has_feature(CPU_FTR_SPURR))
232 return mfspr(SPRN_SPURR);
233 return purr;
237 * Account time for a transition between system, hard irq
238 * or soft irq state.
240 void account_system_vtime(struct task_struct *tsk)
242 u64 now, nowscaled, delta, deltascaled, sys_time;
243 unsigned long flags;
245 local_irq_save(flags);
246 now = read_purr();
247 nowscaled = read_spurr(now);
248 delta = now - get_paca()->startpurr;
249 deltascaled = nowscaled - get_paca()->startspurr;
250 get_paca()->startpurr = now;
251 get_paca()->startspurr = nowscaled;
252 if (!in_interrupt()) {
253 /* deltascaled includes both user and system time.
254 * Hence scale it based on the purr ratio to estimate
255 * the system time */
256 sys_time = get_paca()->system_time;
257 if (get_paca()->user_time)
258 deltascaled = deltascaled * sys_time /
259 (sys_time + get_paca()->user_time);
260 delta += sys_time;
261 get_paca()->system_time = 0;
263 if (in_irq() || idle_task(smp_processor_id()) != tsk)
264 account_system_time(tsk, 0, delta, deltascaled);
265 else
266 account_idle_time(delta);
267 per_cpu(cputime_last_delta, smp_processor_id()) = delta;
268 per_cpu(cputime_scaled_last_delta, smp_processor_id()) = deltascaled;
269 local_irq_restore(flags);
273 * Transfer the user and system times accumulated in the paca
274 * by the exception entry and exit code to the generic process
275 * user and system time records.
276 * Must be called with interrupts disabled.
278 void account_process_tick(struct task_struct *tsk, int user_tick)
280 cputime_t utime, utimescaled;
282 utime = get_paca()->user_time;
283 get_paca()->user_time = 0;
284 utimescaled = cputime_to_scaled(utime);
285 account_user_time(tsk, utime, utimescaled);
289 * Stuff for accounting stolen time.
291 struct cpu_purr_data {
292 int initialized; /* thread is running */
293 u64 tb; /* last TB value read */
294 u64 purr; /* last PURR value read */
295 u64 spurr; /* last SPURR value read */
299 * Each entry in the cpu_purr_data array is manipulated only by its
300 * "owner" cpu -- usually in the timer interrupt but also occasionally
301 * in process context for cpu online. As long as cpus do not touch
302 * each others' cpu_purr_data, disabling local interrupts is
303 * sufficient to serialize accesses.
305 static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
307 static void snapshot_tb_and_purr(void *data)
309 unsigned long flags;
310 struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
312 local_irq_save(flags);
313 p->tb = get_tb_or_rtc();
314 p->purr = mfspr(SPRN_PURR);
315 wmb();
316 p->initialized = 1;
317 local_irq_restore(flags);
321 * Called during boot when all cpus have come up.
323 void snapshot_timebases(void)
325 if (!cpu_has_feature(CPU_FTR_PURR))
326 return;
327 on_each_cpu(snapshot_tb_and_purr, NULL, 1);
331 * Must be called with interrupts disabled.
333 void calculate_steal_time(void)
335 u64 tb, purr;
336 s64 stolen;
337 struct cpu_purr_data *pme;
339 pme = &__get_cpu_var(cpu_purr_data);
340 if (!pme->initialized)
341 return; /* !CPU_FTR_PURR or early in early boot */
342 tb = mftb();
343 purr = mfspr(SPRN_PURR);
344 stolen = (tb - pme->tb) - (purr - pme->purr);
345 if (stolen > 0) {
346 if (idle_task(smp_processor_id()) != current)
347 account_steal_time(stolen);
348 else
349 account_idle_time(stolen);
351 pme->tb = tb;
352 pme->purr = purr;
355 #ifdef CONFIG_PPC_SPLPAR
357 * Must be called before the cpu is added to the online map when
358 * a cpu is being brought up at runtime.
360 static void snapshot_purr(void)
362 struct cpu_purr_data *pme;
363 unsigned long flags;
365 if (!cpu_has_feature(CPU_FTR_PURR))
366 return;
367 local_irq_save(flags);
368 pme = &__get_cpu_var(cpu_purr_data);
369 pme->tb = mftb();
370 pme->purr = mfspr(SPRN_PURR);
371 pme->initialized = 1;
372 local_irq_restore(flags);
375 #endif /* CONFIG_PPC_SPLPAR */
377 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
378 #define calc_cputime_factors()
379 #define calculate_steal_time() do { } while (0)
380 #endif
382 #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
383 #define snapshot_purr() do { } while (0)
384 #endif
387 * Called when a cpu comes up after the system has finished booting,
388 * i.e. as a result of a hotplug cpu action.
390 void snapshot_timebase(void)
392 __get_cpu_var(last_jiffy) = get_tb_or_rtc();
393 snapshot_purr();
396 void __delay(unsigned long loops)
398 unsigned long start;
399 int diff;
401 if (__USE_RTC()) {
402 start = get_rtcl();
403 do {
404 /* the RTCL register wraps at 1000000000 */
405 diff = get_rtcl() - start;
406 if (diff < 0)
407 diff += 1000000000;
408 } while (diff < loops);
409 } else {
410 start = get_tbl();
411 while (get_tbl() - start < loops)
412 HMT_low();
413 HMT_medium();
416 EXPORT_SYMBOL(__delay);
418 void udelay(unsigned long usecs)
420 __delay(tb_ticks_per_usec * usecs);
422 EXPORT_SYMBOL(udelay);
424 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
425 u64 new_tb_to_xs)
428 * tb_update_count is used to allow the userspace gettimeofday code
429 * to assure itself that it sees a consistent view of the tb_to_xs and
430 * stamp_xsec variables. It reads the tb_update_count, then reads
431 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
432 * the two values of tb_update_count match and are even then the
433 * tb_to_xs and stamp_xsec values are consistent. If not, then it
434 * loops back and reads them again until this criteria is met.
435 * We expect the caller to have done the first increment of
436 * vdso_data->tb_update_count already.
438 vdso_data->tb_orig_stamp = new_tb_stamp;
439 vdso_data->stamp_xsec = new_stamp_xsec;
440 vdso_data->tb_to_xs = new_tb_to_xs;
441 vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
442 vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
443 vdso_data->stamp_xtime = xtime;
444 smp_wmb();
445 ++(vdso_data->tb_update_count);
448 #ifdef CONFIG_SMP
449 unsigned long profile_pc(struct pt_regs *regs)
451 unsigned long pc = instruction_pointer(regs);
453 if (in_lock_functions(pc))
454 return regs->link;
456 return pc;
458 EXPORT_SYMBOL(profile_pc);
459 #endif
461 #ifdef CONFIG_PPC_ISERIES
464 * This function recalibrates the timebase based on the 49-bit time-of-day
465 * value in the Titan chip. The Titan is much more accurate than the value
466 * returned by the service processor for the timebase frequency.
469 static int __init iSeries_tb_recal(void)
471 struct div_result divres;
472 unsigned long titan, tb;
474 /* Make sure we only run on iSeries */
475 if (!firmware_has_feature(FW_FEATURE_ISERIES))
476 return -ENODEV;
478 tb = get_tb();
479 titan = HvCallXm_loadTod();
480 if ( iSeries_recal_titan ) {
481 unsigned long tb_ticks = tb - iSeries_recal_tb;
482 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
483 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
484 unsigned long new_tb_ticks_per_jiffy =
485 DIV_ROUND_CLOSEST(new_tb_ticks_per_sec, HZ);
486 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
487 char sign = '+';
488 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
489 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
491 if ( tick_diff < 0 ) {
492 tick_diff = -tick_diff;
493 sign = '-';
495 if ( tick_diff ) {
496 if ( tick_diff < tb_ticks_per_jiffy/25 ) {
497 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
498 new_tb_ticks_per_jiffy, sign, tick_diff );
499 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
500 tb_ticks_per_sec = new_tb_ticks_per_sec;
501 calc_cputime_factors();
502 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
503 tb_to_xs = divres.result_low;
504 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
505 vdso_data->tb_to_xs = tb_to_xs;
506 setup_cputime_one_jiffy();
508 else {
509 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
510 " new tb_ticks_per_jiffy = %lu\n"
511 " old tb_ticks_per_jiffy = %lu\n",
512 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
516 iSeries_recal_titan = titan;
517 iSeries_recal_tb = tb;
519 /* Called here as now we know accurate values for the timebase */
520 clocksource_init();
521 return 0;
523 late_initcall(iSeries_tb_recal);
525 /* Called from platform early init */
526 void __init iSeries_time_init_early(void)
528 iSeries_recal_tb = get_tb();
529 iSeries_recal_titan = HvCallXm_loadTod();
531 #endif /* CONFIG_PPC_ISERIES */
533 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_PPC32)
534 DEFINE_PER_CPU(u8, perf_event_pending);
536 void set_perf_event_pending(void)
538 get_cpu_var(perf_event_pending) = 1;
539 set_dec(1);
540 put_cpu_var(perf_event_pending);
543 #define test_perf_event_pending() __get_cpu_var(perf_event_pending)
544 #define clear_perf_event_pending() __get_cpu_var(perf_event_pending) = 0
546 #else /* CONFIG_PERF_EVENTS && CONFIG_PPC32 */
548 #define test_perf_event_pending() 0
549 #define clear_perf_event_pending()
551 #endif /* CONFIG_PERF_EVENTS && CONFIG_PPC32 */
554 * For iSeries shared processors, we have to let the hypervisor
555 * set the hardware decrementer. We set a virtual decrementer
556 * in the lppaca and call the hypervisor if the virtual
557 * decrementer is less than the current value in the hardware
558 * decrementer. (almost always the new decrementer value will
559 * be greater than the current hardware decementer so the hypervisor
560 * call will not be needed)
564 * timer_interrupt - gets called when the decrementer overflows,
565 * with interrupts disabled.
567 void timer_interrupt(struct pt_regs * regs)
569 struct pt_regs *old_regs;
570 struct decrementer_clock *decrementer = &__get_cpu_var(decrementers);
571 struct clock_event_device *evt = &decrementer->event;
572 u64 now;
574 /* Ensure a positive value is written to the decrementer, or else
575 * some CPUs will continuue to take decrementer exceptions */
576 set_dec(DECREMENTER_MAX);
578 #ifdef CONFIG_PPC32
579 if (test_perf_event_pending()) {
580 clear_perf_event_pending();
581 perf_event_do_pending();
583 if (atomic_read(&ppc_n_lost_interrupts) != 0)
584 do_IRQ(regs);
585 #endif
587 now = get_tb_or_rtc();
588 if (now < decrementer->next_tb) {
589 /* not time for this event yet */
590 now = decrementer->next_tb - now;
591 if (now <= DECREMENTER_MAX)
592 set_dec((int)now);
593 return;
595 old_regs = set_irq_regs(regs);
596 irq_enter();
598 calculate_steal_time();
600 #ifdef CONFIG_PPC_ISERIES
601 if (firmware_has_feature(FW_FEATURE_ISERIES))
602 get_lppaca()->int_dword.fields.decr_int = 0;
603 #endif
605 if (evt->event_handler)
606 evt->event_handler(evt);
608 #ifdef CONFIG_PPC_ISERIES
609 if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
610 process_hvlpevents();
611 #endif
613 #ifdef CONFIG_PPC64
614 /* collect purr register values often, for accurate calculations */
615 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
616 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
617 cu->current_tb = mfspr(SPRN_PURR);
619 #endif
621 irq_exit();
622 set_irq_regs(old_regs);
625 void wakeup_decrementer(void)
627 unsigned long ticks;
630 * The timebase gets saved on sleep and restored on wakeup,
631 * so all we need to do is to reset the decrementer.
633 ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
634 if (ticks < tb_ticks_per_jiffy)
635 ticks = tb_ticks_per_jiffy - ticks;
636 else
637 ticks = 1;
638 set_dec(ticks);
641 #ifdef CONFIG_SUSPEND
642 void generic_suspend_disable_irqs(void)
644 preempt_disable();
646 /* Disable the decrementer, so that it doesn't interfere
647 * with suspending.
650 set_dec(0x7fffffff);
651 local_irq_disable();
652 set_dec(0x7fffffff);
655 void generic_suspend_enable_irqs(void)
657 wakeup_decrementer();
659 local_irq_enable();
660 preempt_enable();
663 /* Overrides the weak version in kernel/power/main.c */
664 void arch_suspend_disable_irqs(void)
666 if (ppc_md.suspend_disable_irqs)
667 ppc_md.suspend_disable_irqs();
668 generic_suspend_disable_irqs();
671 /* Overrides the weak version in kernel/power/main.c */
672 void arch_suspend_enable_irqs(void)
674 generic_suspend_enable_irqs();
675 if (ppc_md.suspend_enable_irqs)
676 ppc_md.suspend_enable_irqs();
678 #endif
680 #ifdef CONFIG_SMP
681 void __init smp_space_timers(unsigned int max_cpus)
683 int i;
684 u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
686 /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
687 previous_tb -= tb_ticks_per_jiffy;
689 for_each_possible_cpu(i) {
690 if (i == boot_cpuid)
691 continue;
692 per_cpu(last_jiffy, i) = previous_tb;
695 #endif
698 * Scheduler clock - returns current time in nanosec units.
700 * Note: mulhdu(a, b) (multiply high double unsigned) returns
701 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
702 * are 64-bit unsigned numbers.
704 unsigned long long sched_clock(void)
706 if (__USE_RTC())
707 return get_rtc();
708 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
711 static int __init get_freq(char *name, int cells, unsigned long *val)
713 struct device_node *cpu;
714 const unsigned int *fp;
715 int found = 0;
717 /* The cpu node should have timebase and clock frequency properties */
718 cpu = of_find_node_by_type(NULL, "cpu");
720 if (cpu) {
721 fp = of_get_property(cpu, name, NULL);
722 if (fp) {
723 found = 1;
724 *val = of_read_ulong(fp, cells);
727 of_node_put(cpu);
730 return found;
733 /* should become __cpuinit when secondary_cpu_time_init also is */
734 void start_cpu_decrementer(void)
736 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
737 /* Clear any pending timer interrupts */
738 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
740 /* Enable decrementer interrupt */
741 mtspr(SPRN_TCR, TCR_DIE);
742 #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
745 void __init generic_calibrate_decr(void)
747 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
749 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
750 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
752 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
753 "(not found)\n");
756 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
758 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
759 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
761 printk(KERN_ERR "WARNING: Estimating processor frequency "
762 "(not found)\n");
766 int update_persistent_clock(struct timespec now)
768 struct rtc_time tm;
770 if (!ppc_md.set_rtc_time)
771 return 0;
773 to_tm(now.tv_sec + 1 + timezone_offset, &tm);
774 tm.tm_year -= 1900;
775 tm.tm_mon -= 1;
777 return ppc_md.set_rtc_time(&tm);
780 void read_persistent_clock(struct timespec *ts)
782 struct rtc_time tm;
783 static int first = 1;
785 ts->tv_nsec = 0;
786 /* XXX this is a litle fragile but will work okay in the short term */
787 if (first) {
788 first = 0;
789 if (ppc_md.time_init)
790 timezone_offset = ppc_md.time_init();
792 /* get_boot_time() isn't guaranteed to be safe to call late */
793 if (ppc_md.get_boot_time) {
794 ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
795 return;
798 if (!ppc_md.get_rtc_time) {
799 ts->tv_sec = 0;
800 return;
802 ppc_md.get_rtc_time(&tm);
803 ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
804 tm.tm_hour, tm.tm_min, tm.tm_sec);
807 /* clocksource code */
808 static cycle_t rtc_read(struct clocksource *cs)
810 return (cycle_t)get_rtc();
813 static cycle_t timebase_read(struct clocksource *cs)
815 return (cycle_t)get_tb();
818 void update_vsyscall(struct timespec *wall_time, struct clocksource *clock)
820 u64 t2x, stamp_xsec;
822 if (clock != &clocksource_timebase)
823 return;
825 /* Make userspace gettimeofday spin until we're done. */
826 ++vdso_data->tb_update_count;
827 smp_mb();
829 /* XXX this assumes clock->shift == 22 */
830 /* 4611686018 ~= 2^(20+64-22) / 1e9 */
831 t2x = (u64) clock->mult * 4611686018ULL;
832 stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
833 do_div(stamp_xsec, 1000000000);
834 stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
835 update_gtod(clock->cycle_last, stamp_xsec, t2x);
838 void update_vsyscall_tz(void)
840 /* Make userspace gettimeofday spin until we're done. */
841 ++vdso_data->tb_update_count;
842 smp_mb();
843 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
844 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
845 smp_mb();
846 ++vdso_data->tb_update_count;
849 static void __init clocksource_init(void)
851 struct clocksource *clock;
853 if (__USE_RTC())
854 clock = &clocksource_rtc;
855 else
856 clock = &clocksource_timebase;
858 clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
860 if (clocksource_register(clock)) {
861 printk(KERN_ERR "clocksource: %s is already registered\n",
862 clock->name);
863 return;
866 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
867 clock->name, clock->mult, clock->shift);
870 static int decrementer_set_next_event(unsigned long evt,
871 struct clock_event_device *dev)
873 __get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
874 set_dec(evt);
875 return 0;
878 static void decrementer_set_mode(enum clock_event_mode mode,
879 struct clock_event_device *dev)
881 if (mode != CLOCK_EVT_MODE_ONESHOT)
882 decrementer_set_next_event(DECREMENTER_MAX, dev);
885 static void __init setup_clockevent_multiplier(unsigned long hz)
887 u64 mult, shift = 32;
889 while (1) {
890 mult = div_sc(hz, NSEC_PER_SEC, shift);
891 if (mult && (mult >> 32UL) == 0UL)
892 break;
894 shift--;
897 decrementer_clockevent.shift = shift;
898 decrementer_clockevent.mult = mult;
901 static void register_decrementer_clockevent(int cpu)
903 struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
905 *dec = decrementer_clockevent;
906 dec->cpumask = cpumask_of(cpu);
908 printk(KERN_DEBUG "clockevent: %s mult[%lx] shift[%d] cpu[%d]\n",
909 dec->name, dec->mult, dec->shift, cpu);
911 clockevents_register_device(dec);
914 static void __init init_decrementer_clockevent(void)
916 int cpu = smp_processor_id();
918 setup_clockevent_multiplier(ppc_tb_freq);
919 decrementer_clockevent.max_delta_ns =
920 clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
921 decrementer_clockevent.min_delta_ns =
922 clockevent_delta2ns(2, &decrementer_clockevent);
924 register_decrementer_clockevent(cpu);
927 void secondary_cpu_time_init(void)
929 /* Start the decrementer on CPUs that have manual control
930 * such as BookE
932 start_cpu_decrementer();
934 /* FIME: Should make unrelatred change to move snapshot_timebase
935 * call here ! */
936 register_decrementer_clockevent(smp_processor_id());
939 /* This function is only called on the boot processor */
940 void __init time_init(void)
942 unsigned long flags;
943 struct div_result res;
944 u64 scale, x;
945 unsigned shift;
947 if (__USE_RTC()) {
948 /* 601 processor: dec counts down by 128 every 128ns */
949 ppc_tb_freq = 1000000000;
950 tb_last_jiffy = get_rtcl();
951 } else {
952 /* Normal PowerPC with timebase register */
953 ppc_md.calibrate_decr();
954 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
955 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
956 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
957 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
958 tb_last_jiffy = get_tb();
961 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
962 tb_ticks_per_sec = ppc_tb_freq;
963 tb_ticks_per_usec = ppc_tb_freq / 1000000;
964 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
965 calc_cputime_factors();
966 setup_cputime_one_jiffy();
969 * Calculate the length of each tick in ns. It will not be
970 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
971 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
972 * rounded up.
974 x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
975 do_div(x, ppc_tb_freq);
976 tick_nsec = x;
977 last_tick_len = x << TICKLEN_SCALE;
980 * Compute ticklen_to_xs, which is a factor which gets multiplied
981 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
982 * It is computed as:
983 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
984 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
985 * which turns out to be N = 51 - SHIFT_HZ.
986 * This gives the result as a 0.64 fixed-point fraction.
987 * That value is reduced by an offset amounting to 1 xsec per
988 * 2^31 timebase ticks to avoid problems with time going backwards
989 * by 1 xsec when we do timer_recalc_offset due to losing the
990 * fractional xsec. That offset is equal to ppc_tb_freq/2^51
991 * since there are 2^20 xsec in a second.
993 div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
994 tb_ticks_per_jiffy << SHIFT_HZ, &res);
995 div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
996 ticklen_to_xs = res.result_low;
998 /* Compute tb_to_xs from tick_nsec */
999 tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
1002 * Compute scale factor for sched_clock.
1003 * The calibrate_decr() function has set tb_ticks_per_sec,
1004 * which is the timebase frequency.
1005 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
1006 * the 128-bit result as a 64.64 fixed-point number.
1007 * We then shift that number right until it is less than 1.0,
1008 * giving us the scale factor and shift count to use in
1009 * sched_clock().
1011 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
1012 scale = res.result_low;
1013 for (shift = 0; res.result_high != 0; ++shift) {
1014 scale = (scale >> 1) | (res.result_high << 63);
1015 res.result_high >>= 1;
1017 tb_to_ns_scale = scale;
1018 tb_to_ns_shift = shift;
1019 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1020 boot_tb = get_tb_or_rtc();
1022 write_seqlock_irqsave(&xtime_lock, flags);
1024 /* If platform provided a timezone (pmac), we correct the time */
1025 if (timezone_offset) {
1026 sys_tz.tz_minuteswest = -timezone_offset / 60;
1027 sys_tz.tz_dsttime = 0;
1030 vdso_data->tb_orig_stamp = tb_last_jiffy;
1031 vdso_data->tb_update_count = 0;
1032 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1033 vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
1034 vdso_data->tb_to_xs = tb_to_xs;
1036 write_sequnlock_irqrestore(&xtime_lock, flags);
1038 /* Start the decrementer on CPUs that have manual control
1039 * such as BookE
1041 start_cpu_decrementer();
1043 /* Register the clocksource, if we're not running on iSeries */
1044 if (!firmware_has_feature(FW_FEATURE_ISERIES))
1045 clocksource_init();
1047 init_decrementer_clockevent();
1051 #define FEBRUARY 2
1052 #define STARTOFTIME 1970
1053 #define SECDAY 86400L
1054 #define SECYR (SECDAY * 365)
1055 #define leapyear(year) ((year) % 4 == 0 && \
1056 ((year) % 100 != 0 || (year) % 400 == 0))
1057 #define days_in_year(a) (leapyear(a) ? 366 : 365)
1058 #define days_in_month(a) (month_days[(a) - 1])
1060 static int month_days[12] = {
1061 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1065 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1067 void GregorianDay(struct rtc_time * tm)
1069 int leapsToDate;
1070 int lastYear;
1071 int day;
1072 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1074 lastYear = tm->tm_year - 1;
1077 * Number of leap corrections to apply up to end of last year
1079 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1082 * This year is a leap year if it is divisible by 4 except when it is
1083 * divisible by 100 unless it is divisible by 400
1085 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1087 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1089 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1090 tm->tm_mday;
1092 tm->tm_wday = day % 7;
1095 void to_tm(int tim, struct rtc_time * tm)
1097 register int i;
1098 register long hms, day;
1100 day = tim / SECDAY;
1101 hms = tim % SECDAY;
1103 /* Hours, minutes, seconds are easy */
1104 tm->tm_hour = hms / 3600;
1105 tm->tm_min = (hms % 3600) / 60;
1106 tm->tm_sec = (hms % 3600) % 60;
1108 /* Number of years in days */
1109 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1110 day -= days_in_year(i);
1111 tm->tm_year = i;
1113 /* Number of months in days left */
1114 if (leapyear(tm->tm_year))
1115 days_in_month(FEBRUARY) = 29;
1116 for (i = 1; day >= days_in_month(i); i++)
1117 day -= days_in_month(i);
1118 days_in_month(FEBRUARY) = 28;
1119 tm->tm_mon = i;
1121 /* Days are what is left over (+1) from all that. */
1122 tm->tm_mday = day + 1;
1125 * Determine the day of week
1127 GregorianDay(tm);
1130 /* Auxiliary function to compute scaling factors */
1131 /* Actually the choice of a timebase running at 1/4 the of the bus
1132 * frequency giving resolution of a few tens of nanoseconds is quite nice.
1133 * It makes this computation very precise (27-28 bits typically) which
1134 * is optimistic considering the stability of most processor clock
1135 * oscillators and the precision with which the timebase frequency
1136 * is measured but does not harm.
1138 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1140 unsigned mlt=0, tmp, err;
1141 /* No concern for performance, it's done once: use a stupid
1142 * but safe and compact method to find the multiplier.
1145 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
1146 if (mulhwu(inscale, mlt|tmp) < outscale)
1147 mlt |= tmp;
1150 /* We might still be off by 1 for the best approximation.
1151 * A side effect of this is that if outscale is too large
1152 * the returned value will be zero.
1153 * Many corner cases have been checked and seem to work,
1154 * some might have been forgotten in the test however.
1157 err = inscale * (mlt+1);
1158 if (err <= inscale/2)
1159 mlt++;
1160 return mlt;
1164 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1165 * result.
1167 void div128_by_32(u64 dividend_high, u64 dividend_low,
1168 unsigned divisor, struct div_result *dr)
1170 unsigned long a, b, c, d;
1171 unsigned long w, x, y, z;
1172 u64 ra, rb, rc;
1174 a = dividend_high >> 32;
1175 b = dividend_high & 0xffffffff;
1176 c = dividend_low >> 32;
1177 d = dividend_low & 0xffffffff;
1179 w = a / divisor;
1180 ra = ((u64)(a - (w * divisor)) << 32) + b;
1182 rb = ((u64) do_div(ra, divisor) << 32) + c;
1183 x = ra;
1185 rc = ((u64) do_div(rb, divisor) << 32) + d;
1186 y = rb;
1188 do_div(rc, divisor);
1189 z = rc;
1191 dr->result_high = ((u64)w << 32) + x;
1192 dr->result_low = ((u64)y << 32) + z;
1196 /* We don't need to calibrate delay, we use the CPU timebase for that */
1197 void calibrate_delay(void)
1199 /* Some generic code (such as spinlock debug) use loops_per_jiffy
1200 * as the number of __delay(1) in a jiffy, so make it so
1202 loops_per_jiffy = tb_ticks_per_jiffy;
1205 static int __init rtc_init(void)
1207 struct platform_device *pdev;
1209 if (!ppc_md.get_rtc_time)
1210 return -ENODEV;
1212 pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
1213 if (IS_ERR(pdev))
1214 return PTR_ERR(pdev);
1216 return 0;
1219 module_init(rtc_init);