mm-only debug patch...
[mmotm.git] / arch / sh / kernel / dwarf.c
blobc274039e9c8d6a2f3d5683bef5f3c3143bcd141a
1 /*
2 * Copyright (C) 2009 Matt Fleming <matt@console-pimps.org>
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
8 * This is an implementation of a DWARF unwinder. Its main purpose is
9 * for generating stacktrace information. Based on the DWARF 3
10 * specification from http://www.dwarfstd.org.
12 * TODO:
13 * - DWARF64 doesn't work.
14 * - Registers with DWARF_VAL_OFFSET rules aren't handled properly.
17 /* #define DEBUG */
18 #include <linux/kernel.h>
19 #include <linux/io.h>
20 #include <linux/list.h>
21 #include <linux/mempool.h>
22 #include <linux/mm.h>
23 #include <asm/dwarf.h>
24 #include <asm/unwinder.h>
25 #include <asm/sections.h>
26 #include <asm/unaligned.h>
27 #include <asm/stacktrace.h>
29 /* Reserve enough memory for two stack frames */
30 #define DWARF_FRAME_MIN_REQ 2
31 /* ... with 4 registers per frame. */
32 #define DWARF_REG_MIN_REQ (DWARF_FRAME_MIN_REQ * 4)
34 static struct kmem_cache *dwarf_frame_cachep;
35 static mempool_t *dwarf_frame_pool;
37 static struct kmem_cache *dwarf_reg_cachep;
38 static mempool_t *dwarf_reg_pool;
40 static LIST_HEAD(dwarf_cie_list);
41 static DEFINE_SPINLOCK(dwarf_cie_lock);
43 static LIST_HEAD(dwarf_fde_list);
44 static DEFINE_SPINLOCK(dwarf_fde_lock);
46 static struct dwarf_cie *cached_cie;
48 /**
49 * dwarf_frame_alloc_reg - allocate memory for a DWARF register
50 * @frame: the DWARF frame whose list of registers we insert on
51 * @reg_num: the register number
53 * Allocate space for, and initialise, a dwarf reg from
54 * dwarf_reg_pool and insert it onto the (unsorted) linked-list of
55 * dwarf registers for @frame.
57 * Return the initialised DWARF reg.
59 static struct dwarf_reg *dwarf_frame_alloc_reg(struct dwarf_frame *frame,
60 unsigned int reg_num)
62 struct dwarf_reg *reg;
64 reg = mempool_alloc(dwarf_reg_pool, GFP_ATOMIC);
65 if (!reg) {
66 printk(KERN_WARNING "Unable to allocate a DWARF register\n");
68 * Let's just bomb hard here, we have no way to
69 * gracefully recover.
71 UNWINDER_BUG();
74 reg->number = reg_num;
75 reg->addr = 0;
76 reg->flags = 0;
78 list_add(&reg->link, &frame->reg_list);
80 return reg;
83 static void dwarf_frame_free_regs(struct dwarf_frame *frame)
85 struct dwarf_reg *reg, *n;
87 list_for_each_entry_safe(reg, n, &frame->reg_list, link) {
88 list_del(&reg->link);
89 mempool_free(reg, dwarf_reg_pool);
93 /**
94 * dwarf_frame_reg - return a DWARF register
95 * @frame: the DWARF frame to search in for @reg_num
96 * @reg_num: the register number to search for
98 * Lookup and return the dwarf reg @reg_num for this frame. Return
99 * NULL if @reg_num is an register invalid number.
101 static struct dwarf_reg *dwarf_frame_reg(struct dwarf_frame *frame,
102 unsigned int reg_num)
104 struct dwarf_reg *reg;
106 list_for_each_entry(reg, &frame->reg_list, link) {
107 if (reg->number == reg_num)
108 return reg;
111 return NULL;
115 * dwarf_read_addr - read dwarf data
116 * @src: source address of data
117 * @dst: destination address to store the data to
119 * Read 'n' bytes from @src, where 'n' is the size of an address on
120 * the native machine. We return the number of bytes read, which
121 * should always be 'n'. We also have to be careful when reading
122 * from @src and writing to @dst, because they can be arbitrarily
123 * aligned. Return 'n' - the number of bytes read.
125 static inline int dwarf_read_addr(unsigned long *src, unsigned long *dst)
127 u32 val = get_unaligned(src);
128 put_unaligned(val, dst);
129 return sizeof(unsigned long *);
133 * dwarf_read_uleb128 - read unsigned LEB128 data
134 * @addr: the address where the ULEB128 data is stored
135 * @ret: address to store the result
137 * Decode an unsigned LEB128 encoded datum. The algorithm is taken
138 * from Appendix C of the DWARF 3 spec. For information on the
139 * encodings refer to section "7.6 - Variable Length Data". Return
140 * the number of bytes read.
142 static inline unsigned long dwarf_read_uleb128(char *addr, unsigned int *ret)
144 unsigned int result;
145 unsigned char byte;
146 int shift, count;
148 result = 0;
149 shift = 0;
150 count = 0;
152 while (1) {
153 byte = __raw_readb(addr);
154 addr++;
155 count++;
157 result |= (byte & 0x7f) << shift;
158 shift += 7;
160 if (!(byte & 0x80))
161 break;
164 *ret = result;
166 return count;
170 * dwarf_read_leb128 - read signed LEB128 data
171 * @addr: the address of the LEB128 encoded data
172 * @ret: address to store the result
174 * Decode signed LEB128 data. The algorithm is taken from Appendix
175 * C of the DWARF 3 spec. Return the number of bytes read.
177 static inline unsigned long dwarf_read_leb128(char *addr, int *ret)
179 unsigned char byte;
180 int result, shift;
181 int num_bits;
182 int count;
184 result = 0;
185 shift = 0;
186 count = 0;
188 while (1) {
189 byte = __raw_readb(addr);
190 addr++;
191 result |= (byte & 0x7f) << shift;
192 shift += 7;
193 count++;
195 if (!(byte & 0x80))
196 break;
199 /* The number of bits in a signed integer. */
200 num_bits = 8 * sizeof(result);
202 if ((shift < num_bits) && (byte & 0x40))
203 result |= (-1 << shift);
205 *ret = result;
207 return count;
211 * dwarf_read_encoded_value - return the decoded value at @addr
212 * @addr: the address of the encoded value
213 * @val: where to write the decoded value
214 * @encoding: the encoding with which we can decode @addr
216 * GCC emits encoded address in the .eh_frame FDE entries. Decode
217 * the value at @addr using @encoding. The decoded value is written
218 * to @val and the number of bytes read is returned.
220 static int dwarf_read_encoded_value(char *addr, unsigned long *val,
221 char encoding)
223 unsigned long decoded_addr = 0;
224 int count = 0;
226 switch (encoding & 0x70) {
227 case DW_EH_PE_absptr:
228 break;
229 case DW_EH_PE_pcrel:
230 decoded_addr = (unsigned long)addr;
231 break;
232 default:
233 pr_debug("encoding=0x%x\n", (encoding & 0x70));
234 UNWINDER_BUG();
237 if ((encoding & 0x07) == 0x00)
238 encoding |= DW_EH_PE_udata4;
240 switch (encoding & 0x0f) {
241 case DW_EH_PE_sdata4:
242 case DW_EH_PE_udata4:
243 count += 4;
244 decoded_addr += get_unaligned((u32 *)addr);
245 __raw_writel(decoded_addr, val);
246 break;
247 default:
248 pr_debug("encoding=0x%x\n", encoding);
249 UNWINDER_BUG();
252 return count;
256 * dwarf_entry_len - return the length of an FDE or CIE
257 * @addr: the address of the entry
258 * @len: the length of the entry
260 * Read the initial_length field of the entry and store the size of
261 * the entry in @len. We return the number of bytes read. Return a
262 * count of 0 on error.
264 static inline int dwarf_entry_len(char *addr, unsigned long *len)
266 u32 initial_len;
267 int count;
269 initial_len = get_unaligned((u32 *)addr);
270 count = 4;
273 * An initial length field value in the range DW_LEN_EXT_LO -
274 * DW_LEN_EXT_HI indicates an extension, and should not be
275 * interpreted as a length. The only extension that we currently
276 * understand is the use of DWARF64 addresses.
278 if (initial_len >= DW_EXT_LO && initial_len <= DW_EXT_HI) {
280 * The 64-bit length field immediately follows the
281 * compulsory 32-bit length field.
283 if (initial_len == DW_EXT_DWARF64) {
284 *len = get_unaligned((u64 *)addr + 4);
285 count = 12;
286 } else {
287 printk(KERN_WARNING "Unknown DWARF extension\n");
288 count = 0;
290 } else
291 *len = initial_len;
293 return count;
297 * dwarf_lookup_cie - locate the cie
298 * @cie_ptr: pointer to help with lookup
300 static struct dwarf_cie *dwarf_lookup_cie(unsigned long cie_ptr)
302 struct dwarf_cie *cie;
303 unsigned long flags;
305 spin_lock_irqsave(&dwarf_cie_lock, flags);
308 * We've cached the last CIE we looked up because chances are
309 * that the FDE wants this CIE.
311 if (cached_cie && cached_cie->cie_pointer == cie_ptr) {
312 cie = cached_cie;
313 goto out;
316 list_for_each_entry(cie, &dwarf_cie_list, link) {
317 if (cie->cie_pointer == cie_ptr) {
318 cached_cie = cie;
319 break;
323 /* Couldn't find the entry in the list. */
324 if (&cie->link == &dwarf_cie_list)
325 cie = NULL;
326 out:
327 spin_unlock_irqrestore(&dwarf_cie_lock, flags);
328 return cie;
332 * dwarf_lookup_fde - locate the FDE that covers pc
333 * @pc: the program counter
335 struct dwarf_fde *dwarf_lookup_fde(unsigned long pc)
337 struct dwarf_fde *fde;
338 unsigned long flags;
340 spin_lock_irqsave(&dwarf_fde_lock, flags);
342 list_for_each_entry(fde, &dwarf_fde_list, link) {
343 unsigned long start, end;
345 start = fde->initial_location;
346 end = fde->initial_location + fde->address_range;
348 if (pc >= start && pc < end)
349 break;
352 /* Couldn't find the entry in the list. */
353 if (&fde->link == &dwarf_fde_list)
354 fde = NULL;
356 spin_unlock_irqrestore(&dwarf_fde_lock, flags);
358 return fde;
362 * dwarf_cfa_execute_insns - execute instructions to calculate a CFA
363 * @insn_start: address of the first instruction
364 * @insn_end: address of the last instruction
365 * @cie: the CIE for this function
366 * @fde: the FDE for this function
367 * @frame: the instructions calculate the CFA for this frame
368 * @pc: the program counter of the address we're interested in
370 * Execute the Call Frame instruction sequence starting at
371 * @insn_start and ending at @insn_end. The instructions describe
372 * how to calculate the Canonical Frame Address of a stackframe.
373 * Store the results in @frame.
375 static int dwarf_cfa_execute_insns(unsigned char *insn_start,
376 unsigned char *insn_end,
377 struct dwarf_cie *cie,
378 struct dwarf_fde *fde,
379 struct dwarf_frame *frame,
380 unsigned long pc)
382 unsigned char insn;
383 unsigned char *current_insn;
384 unsigned int count, delta, reg, expr_len, offset;
385 struct dwarf_reg *regp;
387 current_insn = insn_start;
389 while (current_insn < insn_end && frame->pc <= pc) {
390 insn = __raw_readb(current_insn++);
393 * Firstly, handle the opcodes that embed their operands
394 * in the instructions.
396 switch (DW_CFA_opcode(insn)) {
397 case DW_CFA_advance_loc:
398 delta = DW_CFA_operand(insn);
399 delta *= cie->code_alignment_factor;
400 frame->pc += delta;
401 continue;
402 /* NOTREACHED */
403 case DW_CFA_offset:
404 reg = DW_CFA_operand(insn);
405 count = dwarf_read_uleb128(current_insn, &offset);
406 current_insn += count;
407 offset *= cie->data_alignment_factor;
408 regp = dwarf_frame_alloc_reg(frame, reg);
409 regp->addr = offset;
410 regp->flags |= DWARF_REG_OFFSET;
411 continue;
412 /* NOTREACHED */
413 case DW_CFA_restore:
414 reg = DW_CFA_operand(insn);
415 continue;
416 /* NOTREACHED */
420 * Secondly, handle the opcodes that don't embed their
421 * operands in the instruction.
423 switch (insn) {
424 case DW_CFA_nop:
425 continue;
426 case DW_CFA_advance_loc1:
427 delta = *current_insn++;
428 frame->pc += delta * cie->code_alignment_factor;
429 break;
430 case DW_CFA_advance_loc2:
431 delta = get_unaligned((u16 *)current_insn);
432 current_insn += 2;
433 frame->pc += delta * cie->code_alignment_factor;
434 break;
435 case DW_CFA_advance_loc4:
436 delta = get_unaligned((u32 *)current_insn);
437 current_insn += 4;
438 frame->pc += delta * cie->code_alignment_factor;
439 break;
440 case DW_CFA_offset_extended:
441 count = dwarf_read_uleb128(current_insn, &reg);
442 current_insn += count;
443 count = dwarf_read_uleb128(current_insn, &offset);
444 current_insn += count;
445 offset *= cie->data_alignment_factor;
446 break;
447 case DW_CFA_restore_extended:
448 count = dwarf_read_uleb128(current_insn, &reg);
449 current_insn += count;
450 break;
451 case DW_CFA_undefined:
452 count = dwarf_read_uleb128(current_insn, &reg);
453 current_insn += count;
454 regp = dwarf_frame_alloc_reg(frame, reg);
455 regp->flags |= DWARF_UNDEFINED;
456 break;
457 case DW_CFA_def_cfa:
458 count = dwarf_read_uleb128(current_insn,
459 &frame->cfa_register);
460 current_insn += count;
461 count = dwarf_read_uleb128(current_insn,
462 &frame->cfa_offset);
463 current_insn += count;
465 frame->flags |= DWARF_FRAME_CFA_REG_OFFSET;
466 break;
467 case DW_CFA_def_cfa_register:
468 count = dwarf_read_uleb128(current_insn,
469 &frame->cfa_register);
470 current_insn += count;
471 frame->flags |= DWARF_FRAME_CFA_REG_OFFSET;
472 break;
473 case DW_CFA_def_cfa_offset:
474 count = dwarf_read_uleb128(current_insn, &offset);
475 current_insn += count;
476 frame->cfa_offset = offset;
477 break;
478 case DW_CFA_def_cfa_expression:
479 count = dwarf_read_uleb128(current_insn, &expr_len);
480 current_insn += count;
482 frame->cfa_expr = current_insn;
483 frame->cfa_expr_len = expr_len;
484 current_insn += expr_len;
486 frame->flags |= DWARF_FRAME_CFA_REG_EXP;
487 break;
488 case DW_CFA_offset_extended_sf:
489 count = dwarf_read_uleb128(current_insn, &reg);
490 current_insn += count;
491 count = dwarf_read_leb128(current_insn, &offset);
492 current_insn += count;
493 offset *= cie->data_alignment_factor;
494 regp = dwarf_frame_alloc_reg(frame, reg);
495 regp->flags |= DWARF_REG_OFFSET;
496 regp->addr = offset;
497 break;
498 case DW_CFA_val_offset:
499 count = dwarf_read_uleb128(current_insn, &reg);
500 current_insn += count;
501 count = dwarf_read_leb128(current_insn, &offset);
502 offset *= cie->data_alignment_factor;
503 regp = dwarf_frame_alloc_reg(frame, reg);
504 regp->flags |= DWARF_VAL_OFFSET;
505 regp->addr = offset;
506 break;
507 case DW_CFA_GNU_args_size:
508 count = dwarf_read_uleb128(current_insn, &offset);
509 current_insn += count;
510 break;
511 case DW_CFA_GNU_negative_offset_extended:
512 count = dwarf_read_uleb128(current_insn, &reg);
513 current_insn += count;
514 count = dwarf_read_uleb128(current_insn, &offset);
515 offset *= cie->data_alignment_factor;
517 regp = dwarf_frame_alloc_reg(frame, reg);
518 regp->flags |= DWARF_REG_OFFSET;
519 regp->addr = -offset;
520 break;
521 default:
522 pr_debug("unhandled DWARF instruction 0x%x\n", insn);
523 UNWINDER_BUG();
524 break;
528 return 0;
532 * dwarf_free_frame - free the memory allocated for @frame
533 * @frame: the frame to free
535 void dwarf_free_frame(struct dwarf_frame *frame)
537 dwarf_frame_free_regs(frame);
538 mempool_free(frame, dwarf_frame_pool);
542 * dwarf_unwind_stack - unwind the stack
544 * @pc: address of the function to unwind
545 * @prev: struct dwarf_frame of the previous stackframe on the callstack
547 * Return a struct dwarf_frame representing the most recent frame
548 * on the callstack. Each of the lower (older) stack frames are
549 * linked via the "prev" member.
551 struct dwarf_frame * dwarf_unwind_stack(unsigned long pc,
552 struct dwarf_frame *prev)
554 struct dwarf_frame *frame;
555 struct dwarf_cie *cie;
556 struct dwarf_fde *fde;
557 struct dwarf_reg *reg;
558 unsigned long addr;
561 * If we're starting at the top of the stack we need get the
562 * contents of a physical register to get the CFA in order to
563 * begin the virtual unwinding of the stack.
565 * NOTE: the return address is guaranteed to be setup by the
566 * time this function makes its first function call.
568 if (!pc && !prev)
569 pc = (unsigned long)current_text_addr();
571 frame = mempool_alloc(dwarf_frame_pool, GFP_ATOMIC);
572 if (!frame) {
573 printk(KERN_ERR "Unable to allocate a dwarf frame\n");
574 UNWINDER_BUG();
577 INIT_LIST_HEAD(&frame->reg_list);
578 frame->flags = 0;
579 frame->prev = prev;
580 frame->return_addr = 0;
582 fde = dwarf_lookup_fde(pc);
583 if (!fde) {
585 * This is our normal exit path. There are two reasons
586 * why we might exit here,
588 * a) pc has no asscociated DWARF frame info and so
589 * we don't know how to unwind this frame. This is
590 * usually the case when we're trying to unwind a
591 * frame that was called from some assembly code
592 * that has no DWARF info, e.g. syscalls.
594 * b) the DEBUG info for pc is bogus. There's
595 * really no way to distinguish this case from the
596 * case above, which sucks because we could print a
597 * warning here.
599 goto bail;
602 cie = dwarf_lookup_cie(fde->cie_pointer);
604 frame->pc = fde->initial_location;
606 /* CIE initial instructions */
607 dwarf_cfa_execute_insns(cie->initial_instructions,
608 cie->instructions_end, cie, fde,
609 frame, pc);
611 /* FDE instructions */
612 dwarf_cfa_execute_insns(fde->instructions, fde->end, cie,
613 fde, frame, pc);
615 /* Calculate the CFA */
616 switch (frame->flags) {
617 case DWARF_FRAME_CFA_REG_OFFSET:
618 if (prev) {
619 reg = dwarf_frame_reg(prev, frame->cfa_register);
620 UNWINDER_BUG_ON(!reg);
621 UNWINDER_BUG_ON(reg->flags != DWARF_REG_OFFSET);
623 addr = prev->cfa + reg->addr;
624 frame->cfa = __raw_readl(addr);
626 } else {
628 * Again, we're starting from the top of the
629 * stack. We need to physically read
630 * the contents of a register in order to get
631 * the Canonical Frame Address for this
632 * function.
634 frame->cfa = dwarf_read_arch_reg(frame->cfa_register);
637 frame->cfa += frame->cfa_offset;
638 break;
639 default:
640 UNWINDER_BUG();
643 reg = dwarf_frame_reg(frame, DWARF_ARCH_RA_REG);
646 * If we haven't seen the return address register or the return
647 * address column is undefined then we must assume that this is
648 * the end of the callstack.
650 if (!reg || reg->flags == DWARF_UNDEFINED)
651 goto bail;
653 UNWINDER_BUG_ON(reg->flags != DWARF_REG_OFFSET);
655 addr = frame->cfa + reg->addr;
656 frame->return_addr = __raw_readl(addr);
658 return frame;
660 bail:
661 dwarf_free_frame(frame);
662 return NULL;
665 static int dwarf_parse_cie(void *entry, void *p, unsigned long len,
666 unsigned char *end, struct module *mod)
668 struct dwarf_cie *cie;
669 unsigned long flags;
670 int count;
672 cie = kzalloc(sizeof(*cie), GFP_KERNEL);
673 if (!cie)
674 return -ENOMEM;
676 cie->length = len;
679 * Record the offset into the .eh_frame section
680 * for this CIE. It allows this CIE to be
681 * quickly and easily looked up from the
682 * corresponding FDE.
684 cie->cie_pointer = (unsigned long)entry;
686 cie->version = *(char *)p++;
687 UNWINDER_BUG_ON(cie->version != 1);
689 cie->augmentation = p;
690 p += strlen(cie->augmentation) + 1;
692 count = dwarf_read_uleb128(p, &cie->code_alignment_factor);
693 p += count;
695 count = dwarf_read_leb128(p, &cie->data_alignment_factor);
696 p += count;
699 * Which column in the rule table contains the
700 * return address?
702 if (cie->version == 1) {
703 cie->return_address_reg = __raw_readb(p);
704 p++;
705 } else {
706 count = dwarf_read_uleb128(p, &cie->return_address_reg);
707 p += count;
710 if (cie->augmentation[0] == 'z') {
711 unsigned int length, count;
712 cie->flags |= DWARF_CIE_Z_AUGMENTATION;
714 count = dwarf_read_uleb128(p, &length);
715 p += count;
717 UNWINDER_BUG_ON((unsigned char *)p > end);
719 cie->initial_instructions = p + length;
720 cie->augmentation++;
723 while (*cie->augmentation) {
725 * "L" indicates a byte showing how the
726 * LSDA pointer is encoded. Skip it.
728 if (*cie->augmentation == 'L') {
729 p++;
730 cie->augmentation++;
731 } else if (*cie->augmentation == 'R') {
733 * "R" indicates a byte showing
734 * how FDE addresses are
735 * encoded.
737 cie->encoding = *(char *)p++;
738 cie->augmentation++;
739 } else if (*cie->augmentation == 'P') {
741 * "R" indicates a personality
742 * routine in the CIE
743 * augmentation.
745 UNWINDER_BUG();
746 } else if (*cie->augmentation == 'S') {
747 UNWINDER_BUG();
748 } else {
750 * Unknown augmentation. Assume
751 * 'z' augmentation.
753 p = cie->initial_instructions;
754 UNWINDER_BUG_ON(!p);
755 break;
759 cie->initial_instructions = p;
760 cie->instructions_end = end;
762 cie->mod = mod;
764 /* Add to list */
765 spin_lock_irqsave(&dwarf_cie_lock, flags);
766 list_add_tail(&cie->link, &dwarf_cie_list);
767 spin_unlock_irqrestore(&dwarf_cie_lock, flags);
769 return 0;
772 static int dwarf_parse_fde(void *entry, u32 entry_type,
773 void *start, unsigned long len,
774 unsigned char *end, struct module *mod)
776 struct dwarf_fde *fde;
777 struct dwarf_cie *cie;
778 unsigned long flags;
779 int count;
780 void *p = start;
782 fde = kzalloc(sizeof(*fde), GFP_KERNEL);
783 if (!fde)
784 return -ENOMEM;
786 fde->length = len;
789 * In a .eh_frame section the CIE pointer is the
790 * delta between the address within the FDE
792 fde->cie_pointer = (unsigned long)(p - entry_type - 4);
794 cie = dwarf_lookup_cie(fde->cie_pointer);
795 fde->cie = cie;
797 if (cie->encoding)
798 count = dwarf_read_encoded_value(p, &fde->initial_location,
799 cie->encoding);
800 else
801 count = dwarf_read_addr(p, &fde->initial_location);
803 p += count;
805 if (cie->encoding)
806 count = dwarf_read_encoded_value(p, &fde->address_range,
807 cie->encoding & 0x0f);
808 else
809 count = dwarf_read_addr(p, &fde->address_range);
811 p += count;
813 if (fde->cie->flags & DWARF_CIE_Z_AUGMENTATION) {
814 unsigned int length;
815 count = dwarf_read_uleb128(p, &length);
816 p += count + length;
819 /* Call frame instructions. */
820 fde->instructions = p;
821 fde->end = end;
823 fde->mod = mod;
825 /* Add to list. */
826 spin_lock_irqsave(&dwarf_fde_lock, flags);
827 list_add_tail(&fde->link, &dwarf_fde_list);
828 spin_unlock_irqrestore(&dwarf_fde_lock, flags);
830 return 0;
833 static void dwarf_unwinder_dump(struct task_struct *task,
834 struct pt_regs *regs,
835 unsigned long *sp,
836 const struct stacktrace_ops *ops,
837 void *data)
839 struct dwarf_frame *frame, *_frame;
840 unsigned long return_addr;
842 _frame = NULL;
843 return_addr = 0;
845 while (1) {
846 frame = dwarf_unwind_stack(return_addr, _frame);
848 if (_frame)
849 dwarf_free_frame(_frame);
851 _frame = frame;
853 if (!frame || !frame->return_addr)
854 break;
856 return_addr = frame->return_addr;
857 ops->address(data, return_addr, 1);
860 if (frame)
861 dwarf_free_frame(frame);
864 static struct unwinder dwarf_unwinder = {
865 .name = "dwarf-unwinder",
866 .dump = dwarf_unwinder_dump,
867 .rating = 150,
870 static void dwarf_unwinder_cleanup(void)
872 struct dwarf_cie *cie;
873 struct dwarf_fde *fde;
876 * Deallocate all the memory allocated for the DWARF unwinder.
877 * Traverse all the FDE/CIE lists and remove and free all the
878 * memory associated with those data structures.
880 list_for_each_entry(cie, &dwarf_cie_list, link)
881 kfree(cie);
883 list_for_each_entry(fde, &dwarf_fde_list, link)
884 kfree(fde);
886 kmem_cache_destroy(dwarf_reg_cachep);
887 kmem_cache_destroy(dwarf_frame_cachep);
891 * dwarf_parse_section - parse DWARF section
892 * @eh_frame_start: start address of the .eh_frame section
893 * @eh_frame_end: end address of the .eh_frame section
894 * @mod: the kernel module containing the .eh_frame section
896 * Parse the information in a .eh_frame section.
898 int dwarf_parse_section(char *eh_frame_start, char *eh_frame_end,
899 struct module *mod)
901 u32 entry_type;
902 void *p, *entry;
903 int count, err = 0;
904 unsigned long len;
905 unsigned int c_entries, f_entries;
906 unsigned char *end;
908 c_entries = 0;
909 f_entries = 0;
910 entry = eh_frame_start;
912 while ((char *)entry < eh_frame_end) {
913 p = entry;
915 count = dwarf_entry_len(p, &len);
916 if (count == 0) {
918 * We read a bogus length field value. There is
919 * nothing we can do here apart from disabling
920 * the DWARF unwinder. We can't even skip this
921 * entry and move to the next one because 'len'
922 * tells us where our next entry is.
924 err = -EINVAL;
925 goto out;
926 } else
927 p += count;
929 /* initial length does not include itself */
930 end = p + len;
932 entry_type = get_unaligned((u32 *)p);
933 p += 4;
935 if (entry_type == DW_EH_FRAME_CIE) {
936 err = dwarf_parse_cie(entry, p, len, end, mod);
937 if (err < 0)
938 goto out;
939 else
940 c_entries++;
941 } else {
942 err = dwarf_parse_fde(entry, entry_type, p, len,
943 end, mod);
944 if (err < 0)
945 goto out;
946 else
947 f_entries++;
950 entry = (char *)entry + len + 4;
953 printk(KERN_INFO "DWARF unwinder initialised: read %u CIEs, %u FDEs\n",
954 c_entries, f_entries);
956 return 0;
958 out:
959 return err;
963 * dwarf_module_unload - remove FDE/CIEs associated with @mod
964 * @mod: the module that is being unloaded
966 * Remove any FDEs and CIEs from the global lists that came from
967 * @mod's .eh_frame section because @mod is being unloaded.
969 void dwarf_module_unload(struct module *mod)
971 struct dwarf_fde *fde;
972 struct dwarf_cie *cie;
973 unsigned long flags;
975 spin_lock_irqsave(&dwarf_cie_lock, flags);
977 again_cie:
978 list_for_each_entry(cie, &dwarf_cie_list, link) {
979 if (cie->mod == mod)
980 break;
983 if (&cie->link != &dwarf_cie_list) {
984 list_del(&cie->link);
985 kfree(cie);
986 goto again_cie;
989 spin_unlock_irqrestore(&dwarf_cie_lock, flags);
991 spin_lock_irqsave(&dwarf_fde_lock, flags);
993 again_fde:
994 list_for_each_entry(fde, &dwarf_fde_list, link) {
995 if (fde->mod == mod)
996 break;
999 if (&fde->link != &dwarf_fde_list) {
1000 list_del(&fde->link);
1001 kfree(fde);
1002 goto again_fde;
1005 spin_unlock_irqrestore(&dwarf_fde_lock, flags);
1009 * dwarf_unwinder_init - initialise the dwarf unwinder
1011 * Build the data structures describing the .dwarf_frame section to
1012 * make it easier to lookup CIE and FDE entries. Because the
1013 * .eh_frame section is packed as tightly as possible it is not
1014 * easy to lookup the FDE for a given PC, so we build a list of FDE
1015 * and CIE entries that make it easier.
1017 static int __init dwarf_unwinder_init(void)
1019 int err;
1020 INIT_LIST_HEAD(&dwarf_cie_list);
1021 INIT_LIST_HEAD(&dwarf_fde_list);
1023 dwarf_frame_cachep = kmem_cache_create("dwarf_frames",
1024 sizeof(struct dwarf_frame), 0,
1025 SLAB_PANIC | SLAB_HWCACHE_ALIGN | SLAB_NOTRACK, NULL);
1027 dwarf_reg_cachep = kmem_cache_create("dwarf_regs",
1028 sizeof(struct dwarf_reg), 0,
1029 SLAB_PANIC | SLAB_HWCACHE_ALIGN | SLAB_NOTRACK, NULL);
1031 dwarf_frame_pool = mempool_create(DWARF_FRAME_MIN_REQ,
1032 mempool_alloc_slab,
1033 mempool_free_slab,
1034 dwarf_frame_cachep);
1036 dwarf_reg_pool = mempool_create(DWARF_REG_MIN_REQ,
1037 mempool_alloc_slab,
1038 mempool_free_slab,
1039 dwarf_reg_cachep);
1041 err = dwarf_parse_section(__start_eh_frame, __stop_eh_frame, NULL);
1042 if (err)
1043 goto out;
1045 err = unwinder_register(&dwarf_unwinder);
1046 if (err)
1047 goto out;
1049 return 0;
1051 out:
1052 printk(KERN_ERR "Failed to initialise DWARF unwinder: %d\n", err);
1053 dwarf_unwinder_cleanup();
1054 return -EINVAL;
1056 early_initcall(dwarf_unwinder_init);