mm-only debug patch...
[mmotm.git] / arch / sparc / kernel / process_64.c
blob18d67854a1b8e9c9768a6eb11104ea3df0bfe797
1 /* arch/sparc64/kernel/process.c
3 * Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
4 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
5 * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
8 /*
9 * This file handles the architecture-dependent parts of process handling..
12 #include <stdarg.h>
14 #include <linux/errno.h>
15 #include <linux/module.h>
16 #include <linux/sched.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/ptrace.h>
23 #include <linux/slab.h>
24 #include <linux/user.h>
25 #include <linux/delay.h>
26 #include <linux/compat.h>
27 #include <linux/tick.h>
28 #include <linux/init.h>
29 #include <linux/cpu.h>
30 #include <linux/elfcore.h>
31 #include <linux/sysrq.h>
32 #include <linux/nmi.h>
34 #include <asm/uaccess.h>
35 #include <asm/system.h>
36 #include <asm/page.h>
37 #include <asm/pgalloc.h>
38 #include <asm/pgtable.h>
39 #include <asm/processor.h>
40 #include <asm/pstate.h>
41 #include <asm/elf.h>
42 #include <asm/fpumacro.h>
43 #include <asm/head.h>
44 #include <asm/cpudata.h>
45 #include <asm/mmu_context.h>
46 #include <asm/unistd.h>
47 #include <asm/hypervisor.h>
48 #include <asm/syscalls.h>
49 #include <asm/irq_regs.h>
50 #include <asm/smp.h>
52 #include "kstack.h"
54 static void sparc64_yield(int cpu)
56 if (tlb_type != hypervisor) {
57 touch_nmi_watchdog();
58 return;
61 clear_thread_flag(TIF_POLLING_NRFLAG);
62 smp_mb__after_clear_bit();
64 while (!need_resched() && !cpu_is_offline(cpu)) {
65 unsigned long pstate;
67 /* Disable interrupts. */
68 __asm__ __volatile__(
69 "rdpr %%pstate, %0\n\t"
70 "andn %0, %1, %0\n\t"
71 "wrpr %0, %%g0, %%pstate"
72 : "=&r" (pstate)
73 : "i" (PSTATE_IE));
75 if (!need_resched() && !cpu_is_offline(cpu))
76 sun4v_cpu_yield();
78 /* Re-enable interrupts. */
79 __asm__ __volatile__(
80 "rdpr %%pstate, %0\n\t"
81 "or %0, %1, %0\n\t"
82 "wrpr %0, %%g0, %%pstate"
83 : "=&r" (pstate)
84 : "i" (PSTATE_IE));
87 set_thread_flag(TIF_POLLING_NRFLAG);
90 /* The idle loop on sparc64. */
91 void cpu_idle(void)
93 int cpu = smp_processor_id();
95 set_thread_flag(TIF_POLLING_NRFLAG);
97 while(1) {
98 tick_nohz_stop_sched_tick(1);
100 while (!need_resched() && !cpu_is_offline(cpu))
101 sparc64_yield(cpu);
103 tick_nohz_restart_sched_tick();
105 preempt_enable_no_resched();
107 #ifdef CONFIG_HOTPLUG_CPU
108 if (cpu_is_offline(cpu))
109 cpu_play_dead();
110 #endif
112 schedule();
113 preempt_disable();
117 #ifdef CONFIG_COMPAT
118 static void show_regwindow32(struct pt_regs *regs)
120 struct reg_window32 __user *rw;
121 struct reg_window32 r_w;
122 mm_segment_t old_fs;
124 __asm__ __volatile__ ("flushw");
125 rw = compat_ptr((unsigned)regs->u_regs[14]);
126 old_fs = get_fs();
127 set_fs (USER_DS);
128 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
129 set_fs (old_fs);
130 return;
133 set_fs (old_fs);
134 printk("l0: %08x l1: %08x l2: %08x l3: %08x "
135 "l4: %08x l5: %08x l6: %08x l7: %08x\n",
136 r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
137 r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
138 printk("i0: %08x i1: %08x i2: %08x i3: %08x "
139 "i4: %08x i5: %08x i6: %08x i7: %08x\n",
140 r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
141 r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
143 #else
144 #define show_regwindow32(regs) do { } while (0)
145 #endif
147 static void show_regwindow(struct pt_regs *regs)
149 struct reg_window __user *rw;
150 struct reg_window *rwk;
151 struct reg_window r_w;
152 mm_segment_t old_fs;
154 if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
155 __asm__ __volatile__ ("flushw");
156 rw = (struct reg_window __user *)
157 (regs->u_regs[14] + STACK_BIAS);
158 rwk = (struct reg_window *)
159 (regs->u_regs[14] + STACK_BIAS);
160 if (!(regs->tstate & TSTATE_PRIV)) {
161 old_fs = get_fs();
162 set_fs (USER_DS);
163 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
164 set_fs (old_fs);
165 return;
167 rwk = &r_w;
168 set_fs (old_fs);
170 } else {
171 show_regwindow32(regs);
172 return;
174 printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
175 rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
176 printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
177 rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
178 printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
179 rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
180 printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
181 rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
182 if (regs->tstate & TSTATE_PRIV)
183 printk("I7: <%pS>\n", (void *) rwk->ins[7]);
186 void show_regs(struct pt_regs *regs)
188 printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate,
189 regs->tpc, regs->tnpc, regs->y, print_tainted());
190 printk("TPC: <%pS>\n", (void *) regs->tpc);
191 printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
192 regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
193 regs->u_regs[3]);
194 printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
195 regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
196 regs->u_regs[7]);
197 printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
198 regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
199 regs->u_regs[11]);
200 printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
201 regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
202 regs->u_regs[15]);
203 printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
204 show_regwindow(regs);
207 struct global_reg_snapshot global_reg_snapshot[NR_CPUS];
208 static DEFINE_SPINLOCK(global_reg_snapshot_lock);
210 static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
211 int this_cpu)
213 flushw_all();
215 global_reg_snapshot[this_cpu].tstate = regs->tstate;
216 global_reg_snapshot[this_cpu].tpc = regs->tpc;
217 global_reg_snapshot[this_cpu].tnpc = regs->tnpc;
218 global_reg_snapshot[this_cpu].o7 = regs->u_regs[UREG_I7];
220 if (regs->tstate & TSTATE_PRIV) {
221 struct reg_window *rw;
223 rw = (struct reg_window *)
224 (regs->u_regs[UREG_FP] + STACK_BIAS);
225 if (kstack_valid(tp, (unsigned long) rw)) {
226 global_reg_snapshot[this_cpu].i7 = rw->ins[7];
227 rw = (struct reg_window *)
228 (rw->ins[6] + STACK_BIAS);
229 if (kstack_valid(tp, (unsigned long) rw))
230 global_reg_snapshot[this_cpu].rpc = rw->ins[7];
232 } else {
233 global_reg_snapshot[this_cpu].i7 = 0;
234 global_reg_snapshot[this_cpu].rpc = 0;
236 global_reg_snapshot[this_cpu].thread = tp;
239 /* In order to avoid hangs we do not try to synchronize with the
240 * global register dump client cpus. The last store they make is to
241 * the thread pointer, so do a short poll waiting for that to become
242 * non-NULL.
244 static void __global_reg_poll(struct global_reg_snapshot *gp)
246 int limit = 0;
248 while (!gp->thread && ++limit < 100) {
249 barrier();
250 udelay(1);
254 void arch_trigger_all_cpu_backtrace(void)
256 struct thread_info *tp = current_thread_info();
257 struct pt_regs *regs = get_irq_regs();
258 unsigned long flags;
259 int this_cpu, cpu;
261 if (!regs)
262 regs = tp->kregs;
264 spin_lock_irqsave(&global_reg_snapshot_lock, flags);
266 memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
268 this_cpu = raw_smp_processor_id();
270 __global_reg_self(tp, regs, this_cpu);
272 smp_fetch_global_regs();
274 for_each_online_cpu(cpu) {
275 struct global_reg_snapshot *gp = &global_reg_snapshot[cpu];
277 __global_reg_poll(gp);
279 tp = gp->thread;
280 printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
281 (cpu == this_cpu ? '*' : ' '), cpu,
282 gp->tstate, gp->tpc, gp->tnpc,
283 ((tp && tp->task) ? tp->task->comm : "NULL"),
284 ((tp && tp->task) ? tp->task->pid : -1));
286 if (gp->tstate & TSTATE_PRIV) {
287 printk(" TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
288 (void *) gp->tpc,
289 (void *) gp->o7,
290 (void *) gp->i7,
291 (void *) gp->rpc);
292 } else {
293 printk(" TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
294 gp->tpc, gp->o7, gp->i7, gp->rpc);
298 memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
300 spin_unlock_irqrestore(&global_reg_snapshot_lock, flags);
303 #ifdef CONFIG_MAGIC_SYSRQ
305 static void sysrq_handle_globreg(int key, struct tty_struct *tty)
307 arch_trigger_all_cpu_backtrace();
310 static struct sysrq_key_op sparc_globalreg_op = {
311 .handler = sysrq_handle_globreg,
312 .help_msg = "Globalregs",
313 .action_msg = "Show Global CPU Regs",
316 static int __init sparc_globreg_init(void)
318 return register_sysrq_key('y', &sparc_globalreg_op);
321 core_initcall(sparc_globreg_init);
323 #endif
325 unsigned long thread_saved_pc(struct task_struct *tsk)
327 struct thread_info *ti = task_thread_info(tsk);
328 unsigned long ret = 0xdeadbeefUL;
330 if (ti && ti->ksp) {
331 unsigned long *sp;
332 sp = (unsigned long *)(ti->ksp + STACK_BIAS);
333 if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL &&
334 sp[14]) {
335 unsigned long *fp;
336 fp = (unsigned long *)(sp[14] + STACK_BIAS);
337 if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL)
338 ret = fp[15];
341 return ret;
344 /* Free current thread data structures etc.. */
345 void exit_thread(void)
347 struct thread_info *t = current_thread_info();
349 if (t->utraps) {
350 if (t->utraps[0] < 2)
351 kfree (t->utraps);
352 else
353 t->utraps[0]--;
356 if (test_and_clear_thread_flag(TIF_PERFCTR)) {
357 t->user_cntd0 = t->user_cntd1 = NULL;
358 t->pcr_reg = 0;
359 write_pcr(0);
363 void flush_thread(void)
365 struct thread_info *t = current_thread_info();
366 struct mm_struct *mm;
368 if (test_ti_thread_flag(t, TIF_ABI_PENDING)) {
369 clear_ti_thread_flag(t, TIF_ABI_PENDING);
370 if (test_ti_thread_flag(t, TIF_32BIT))
371 clear_ti_thread_flag(t, TIF_32BIT);
372 else
373 set_ti_thread_flag(t, TIF_32BIT);
376 mm = t->task->mm;
377 if (mm)
378 tsb_context_switch(mm);
380 set_thread_wsaved(0);
382 /* Turn off performance counters if on. */
383 if (test_and_clear_thread_flag(TIF_PERFCTR)) {
384 t->user_cntd0 = t->user_cntd1 = NULL;
385 t->pcr_reg = 0;
386 write_pcr(0);
389 /* Clear FPU register state. */
390 t->fpsaved[0] = 0;
392 if (get_thread_current_ds() != ASI_AIUS)
393 set_fs(USER_DS);
396 /* It's a bit more tricky when 64-bit tasks are involved... */
397 static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
399 unsigned long fp, distance, rval;
401 if (!(test_thread_flag(TIF_32BIT))) {
402 csp += STACK_BIAS;
403 psp += STACK_BIAS;
404 __get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
405 fp += STACK_BIAS;
406 } else
407 __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
409 /* Now 8-byte align the stack as this is mandatory in the
410 * Sparc ABI due to how register windows work. This hides
411 * the restriction from thread libraries etc. -DaveM
413 csp &= ~7UL;
415 distance = fp - psp;
416 rval = (csp - distance);
417 if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
418 rval = 0;
419 else if (test_thread_flag(TIF_32BIT)) {
420 if (put_user(((u32)csp),
421 &(((struct reg_window32 __user *)rval)->ins[6])))
422 rval = 0;
423 } else {
424 if (put_user(((u64)csp - STACK_BIAS),
425 &(((struct reg_window __user *)rval)->ins[6])))
426 rval = 0;
427 else
428 rval = rval - STACK_BIAS;
431 return rval;
434 /* Standard stuff. */
435 static inline void shift_window_buffer(int first_win, int last_win,
436 struct thread_info *t)
438 int i;
440 for (i = first_win; i < last_win; i++) {
441 t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
442 memcpy(&t->reg_window[i], &t->reg_window[i+1],
443 sizeof(struct reg_window));
447 void synchronize_user_stack(void)
449 struct thread_info *t = current_thread_info();
450 unsigned long window;
452 flush_user_windows();
453 if ((window = get_thread_wsaved()) != 0) {
454 int winsize = sizeof(struct reg_window);
455 int bias = 0;
457 if (test_thread_flag(TIF_32BIT))
458 winsize = sizeof(struct reg_window32);
459 else
460 bias = STACK_BIAS;
462 window -= 1;
463 do {
464 unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
465 struct reg_window *rwin = &t->reg_window[window];
467 if (!copy_to_user((char __user *)sp, rwin, winsize)) {
468 shift_window_buffer(window, get_thread_wsaved() - 1, t);
469 set_thread_wsaved(get_thread_wsaved() - 1);
471 } while (window--);
475 static void stack_unaligned(unsigned long sp)
477 siginfo_t info;
479 info.si_signo = SIGBUS;
480 info.si_errno = 0;
481 info.si_code = BUS_ADRALN;
482 info.si_addr = (void __user *) sp;
483 info.si_trapno = 0;
484 force_sig_info(SIGBUS, &info, current);
487 void fault_in_user_windows(void)
489 struct thread_info *t = current_thread_info();
490 unsigned long window;
491 int winsize = sizeof(struct reg_window);
492 int bias = 0;
494 if (test_thread_flag(TIF_32BIT))
495 winsize = sizeof(struct reg_window32);
496 else
497 bias = STACK_BIAS;
499 flush_user_windows();
500 window = get_thread_wsaved();
502 if (likely(window != 0)) {
503 window -= 1;
504 do {
505 unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
506 struct reg_window *rwin = &t->reg_window[window];
508 if (unlikely(sp & 0x7UL))
509 stack_unaligned(sp);
511 if (unlikely(copy_to_user((char __user *)sp,
512 rwin, winsize)))
513 goto barf;
514 } while (window--);
516 set_thread_wsaved(0);
517 return;
519 barf:
520 set_thread_wsaved(window + 1);
521 do_exit(SIGILL);
524 asmlinkage long sparc_do_fork(unsigned long clone_flags,
525 unsigned long stack_start,
526 struct pt_regs *regs,
527 unsigned long stack_size)
529 int __user *parent_tid_ptr, *child_tid_ptr;
530 unsigned long orig_i1 = regs->u_regs[UREG_I1];
531 long ret;
533 #ifdef CONFIG_COMPAT
534 if (test_thread_flag(TIF_32BIT)) {
535 parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
536 child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
537 } else
538 #endif
540 parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
541 child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
544 ret = do_fork(clone_flags, stack_start,
545 regs, stack_size,
546 parent_tid_ptr, child_tid_ptr);
548 /* If we get an error and potentially restart the system
549 * call, we're screwed because copy_thread() clobbered
550 * the parent's %o1. So detect that case and restore it
551 * here.
553 if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
554 regs->u_regs[UREG_I1] = orig_i1;
556 return ret;
559 /* Copy a Sparc thread. The fork() return value conventions
560 * under SunOS are nothing short of bletcherous:
561 * Parent --> %o0 == childs pid, %o1 == 0
562 * Child --> %o0 == parents pid, %o1 == 1
564 int copy_thread(unsigned long clone_flags, unsigned long sp,
565 unsigned long unused,
566 struct task_struct *p, struct pt_regs *regs)
568 struct thread_info *t = task_thread_info(p);
569 struct sparc_stackf *parent_sf;
570 unsigned long child_stack_sz;
571 char *child_trap_frame;
572 int kernel_thread;
574 kernel_thread = (regs->tstate & TSTATE_PRIV) ? 1 : 0;
575 parent_sf = ((struct sparc_stackf *) regs) - 1;
577 /* Calculate offset to stack_frame & pt_regs */
578 child_stack_sz = ((STACKFRAME_SZ + TRACEREG_SZ) +
579 (kernel_thread ? STACKFRAME_SZ : 0));
580 child_trap_frame = (task_stack_page(p) +
581 (THREAD_SIZE - child_stack_sz));
582 memcpy(child_trap_frame, parent_sf, child_stack_sz);
584 t->flags = (t->flags & ~((0xffUL << TI_FLAG_CWP_SHIFT) |
585 (0xffUL << TI_FLAG_CURRENT_DS_SHIFT))) |
586 (((regs->tstate + 1) & TSTATE_CWP) << TI_FLAG_CWP_SHIFT);
587 t->new_child = 1;
588 t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
589 t->kregs = (struct pt_regs *) (child_trap_frame +
590 sizeof(struct sparc_stackf));
591 t->fpsaved[0] = 0;
593 if (kernel_thread) {
594 struct sparc_stackf *child_sf = (struct sparc_stackf *)
595 (child_trap_frame + (STACKFRAME_SZ + TRACEREG_SZ));
597 /* Zero terminate the stack backtrace. */
598 child_sf->fp = NULL;
599 t->kregs->u_regs[UREG_FP] =
600 ((unsigned long) child_sf) - STACK_BIAS;
602 /* Special case, if we are spawning a kernel thread from
603 * a userspace task (usermode helper, NFS or similar), we
604 * must disable performance counters in the child because
605 * the address space and protection realm are changing.
607 if (t->flags & _TIF_PERFCTR) {
608 t->user_cntd0 = t->user_cntd1 = NULL;
609 t->pcr_reg = 0;
610 t->flags &= ~_TIF_PERFCTR;
612 t->flags |= ((long)ASI_P << TI_FLAG_CURRENT_DS_SHIFT);
613 t->kregs->u_regs[UREG_G6] = (unsigned long) t;
614 t->kregs->u_regs[UREG_G4] = (unsigned long) t->task;
615 } else {
616 if (t->flags & _TIF_32BIT) {
617 sp &= 0x00000000ffffffffUL;
618 regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
620 t->kregs->u_regs[UREG_FP] = sp;
621 t->flags |= ((long)ASI_AIUS << TI_FLAG_CURRENT_DS_SHIFT);
622 if (sp != regs->u_regs[UREG_FP]) {
623 unsigned long csp;
625 csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
626 if (!csp)
627 return -EFAULT;
628 t->kregs->u_regs[UREG_FP] = csp;
630 if (t->utraps)
631 t->utraps[0]++;
634 /* Set the return value for the child. */
635 t->kregs->u_regs[UREG_I0] = current->pid;
636 t->kregs->u_regs[UREG_I1] = 1;
638 /* Set the second return value for the parent. */
639 regs->u_regs[UREG_I1] = 0;
641 if (clone_flags & CLONE_SETTLS)
642 t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
644 return 0;
648 * This is the mechanism for creating a new kernel thread.
650 * NOTE! Only a kernel-only process(ie the swapper or direct descendants
651 * who haven't done an "execve()") should use this: it will work within
652 * a system call from a "real" process, but the process memory space will
653 * not be freed until both the parent and the child have exited.
655 pid_t kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
657 long retval;
659 /* If the parent runs before fn(arg) is called by the child,
660 * the input registers of this function can be clobbered.
661 * So we stash 'fn' and 'arg' into global registers which
662 * will not be modified by the parent.
664 __asm__ __volatile__("mov %4, %%g2\n\t" /* Save FN into global */
665 "mov %5, %%g3\n\t" /* Save ARG into global */
666 "mov %1, %%g1\n\t" /* Clone syscall nr. */
667 "mov %2, %%o0\n\t" /* Clone flags. */
668 "mov 0, %%o1\n\t" /* usp arg == 0 */
669 "t 0x6d\n\t" /* Linux/Sparc clone(). */
670 "brz,a,pn %%o1, 1f\n\t" /* Parent, just return. */
671 " mov %%o0, %0\n\t"
672 "jmpl %%g2, %%o7\n\t" /* Call the function. */
673 " mov %%g3, %%o0\n\t" /* Set arg in delay. */
674 "mov %3, %%g1\n\t"
675 "t 0x6d\n\t" /* Linux/Sparc exit(). */
676 /* Notreached by child. */
677 "1:" :
678 "=r" (retval) :
679 "i" (__NR_clone), "r" (flags | CLONE_VM | CLONE_UNTRACED),
680 "i" (__NR_exit), "r" (fn), "r" (arg) :
681 "g1", "g2", "g3", "o0", "o1", "memory", "cc");
682 return retval;
684 EXPORT_SYMBOL(kernel_thread);
686 typedef struct {
687 union {
688 unsigned int pr_regs[32];
689 unsigned long pr_dregs[16];
690 } pr_fr;
691 unsigned int __unused;
692 unsigned int pr_fsr;
693 unsigned char pr_qcnt;
694 unsigned char pr_q_entrysize;
695 unsigned char pr_en;
696 unsigned int pr_q[64];
697 } elf_fpregset_t32;
700 * fill in the fpu structure for a core dump.
702 int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
704 unsigned long *kfpregs = current_thread_info()->fpregs;
705 unsigned long fprs = current_thread_info()->fpsaved[0];
707 if (test_thread_flag(TIF_32BIT)) {
708 elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
710 if (fprs & FPRS_DL)
711 memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
712 sizeof(unsigned int) * 32);
713 else
714 memset(&fpregs32->pr_fr.pr_regs[0], 0,
715 sizeof(unsigned int) * 32);
716 fpregs32->pr_qcnt = 0;
717 fpregs32->pr_q_entrysize = 8;
718 memset(&fpregs32->pr_q[0], 0,
719 (sizeof(unsigned int) * 64));
720 if (fprs & FPRS_FEF) {
721 fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
722 fpregs32->pr_en = 1;
723 } else {
724 fpregs32->pr_fsr = 0;
725 fpregs32->pr_en = 0;
727 } else {
728 if(fprs & FPRS_DL)
729 memcpy(&fpregs->pr_regs[0], kfpregs,
730 sizeof(unsigned int) * 32);
731 else
732 memset(&fpregs->pr_regs[0], 0,
733 sizeof(unsigned int) * 32);
734 if(fprs & FPRS_DU)
735 memcpy(&fpregs->pr_regs[16], kfpregs+16,
736 sizeof(unsigned int) * 32);
737 else
738 memset(&fpregs->pr_regs[16], 0,
739 sizeof(unsigned int) * 32);
740 if(fprs & FPRS_FEF) {
741 fpregs->pr_fsr = current_thread_info()->xfsr[0];
742 fpregs->pr_gsr = current_thread_info()->gsr[0];
743 } else {
744 fpregs->pr_fsr = fpregs->pr_gsr = 0;
746 fpregs->pr_fprs = fprs;
748 return 1;
750 EXPORT_SYMBOL(dump_fpu);
753 * sparc_execve() executes a new program after the asm stub has set
754 * things up for us. This should basically do what I want it to.
756 asmlinkage int sparc_execve(struct pt_regs *regs)
758 int error, base = 0;
759 char *filename;
761 /* User register window flush is done by entry.S */
763 /* Check for indirect call. */
764 if (regs->u_regs[UREG_G1] == 0)
765 base = 1;
767 filename = getname((char __user *)regs->u_regs[base + UREG_I0]);
768 error = PTR_ERR(filename);
769 if (IS_ERR(filename))
770 goto out;
771 error = do_execve(filename,
772 (char __user * __user *)
773 regs->u_regs[base + UREG_I1],
774 (char __user * __user *)
775 regs->u_regs[base + UREG_I2], regs);
776 putname(filename);
777 if (!error) {
778 fprs_write(0);
779 current_thread_info()->xfsr[0] = 0;
780 current_thread_info()->fpsaved[0] = 0;
781 regs->tstate &= ~TSTATE_PEF;
783 out:
784 return error;
787 unsigned long get_wchan(struct task_struct *task)
789 unsigned long pc, fp, bias = 0;
790 struct thread_info *tp;
791 struct reg_window *rw;
792 unsigned long ret = 0;
793 int count = 0;
795 if (!task || task == current ||
796 task->state == TASK_RUNNING)
797 goto out;
799 tp = task_thread_info(task);
800 bias = STACK_BIAS;
801 fp = task_thread_info(task)->ksp + bias;
803 do {
804 if (!kstack_valid(tp, fp))
805 break;
806 rw = (struct reg_window *) fp;
807 pc = rw->ins[7];
808 if (!in_sched_functions(pc)) {
809 ret = pc;
810 goto out;
812 fp = rw->ins[6] + bias;
813 } while (++count < 16);
815 out:
816 return ret;