mm-only debug patch...
[mmotm.git] / drivers / char / istallion.c
blob402838f4083e31091fe2480490c8a3ac0e42efa6
1 /*****************************************************************************/
3 /*
4 * istallion.c -- stallion intelligent multiport serial driver.
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
19 /*****************************************************************************/
21 #include <linux/module.h>
22 #include <linux/sched.h>
23 #include <linux/slab.h>
24 #include <linux/smp_lock.h>
25 #include <linux/interrupt.h>
26 #include <linux/tty.h>
27 #include <linux/tty_flip.h>
28 #include <linux/serial.h>
29 #include <linux/seq_file.h>
30 #include <linux/cdk.h>
31 #include <linux/comstats.h>
32 #include <linux/istallion.h>
33 #include <linux/ioport.h>
34 #include <linux/delay.h>
35 #include <linux/init.h>
36 #include <linux/device.h>
37 #include <linux/wait.h>
38 #include <linux/eisa.h>
39 #include <linux/ctype.h>
41 #include <asm/io.h>
42 #include <asm/uaccess.h>
44 #include <linux/pci.h>
46 /*****************************************************************************/
49 * Define different board types. Not all of the following board types
50 * are supported by this driver. But I will use the standard "assigned"
51 * board numbers. Currently supported boards are abbreviated as:
52 * ECP = EasyConnection 8/64, ONB = ONboard, BBY = Brumby and
53 * STAL = Stallion.
55 #define BRD_UNKNOWN 0
56 #define BRD_STALLION 1
57 #define BRD_BRUMBY4 2
58 #define BRD_ONBOARD2 3
59 #define BRD_ONBOARD 4
60 #define BRD_ONBOARDE 7
61 #define BRD_ECP 23
62 #define BRD_ECPE 24
63 #define BRD_ECPMC 25
64 #define BRD_ECPPCI 29
66 #define BRD_BRUMBY BRD_BRUMBY4
69 * Define a configuration structure to hold the board configuration.
70 * Need to set this up in the code (for now) with the boards that are
71 * to be configured into the system. This is what needs to be modified
72 * when adding/removing/modifying boards. Each line entry in the
73 * stli_brdconf[] array is a board. Each line contains io/irq/memory
74 * ranges for that board (as well as what type of board it is).
75 * Some examples:
76 * { BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },
77 * This line will configure an EasyConnection 8/64 at io address 2a0,
78 * and shared memory address of cc000. Multiple EasyConnection 8/64
79 * boards can share the same shared memory address space. No interrupt
80 * is required for this board type.
81 * Another example:
82 * { BRD_ECPE, 0x5000, 0, 0x80000000, 0, 0 },
83 * This line will configure an EasyConnection 8/64 EISA in slot 5 and
84 * shared memory address of 0x80000000 (2 GByte). Multiple
85 * EasyConnection 8/64 EISA boards can share the same shared memory
86 * address space. No interrupt is required for this board type.
87 * Another example:
88 * { BRD_ONBOARD, 0x240, 0, 0xd0000, 0, 0 },
89 * This line will configure an ONboard (ISA type) at io address 240,
90 * and shared memory address of d0000. Multiple ONboards can share
91 * the same shared memory address space. No interrupt required.
92 * Another example:
93 * { BRD_BRUMBY4, 0x360, 0, 0xc8000, 0, 0 },
94 * This line will configure a Brumby board (any number of ports!) at
95 * io address 360 and shared memory address of c8000. All Brumby boards
96 * configured into a system must have their own separate io and memory
97 * addresses. No interrupt is required.
98 * Another example:
99 * { BRD_STALLION, 0x330, 0, 0xd0000, 0, 0 },
100 * This line will configure an original Stallion board at io address 330
101 * and shared memory address d0000 (this would only be valid for a "V4.0"
102 * or Rev.O Stallion board). All Stallion boards configured into the
103 * system must have their own separate io and memory addresses. No
104 * interrupt is required.
107 struct stlconf {
108 int brdtype;
109 int ioaddr1;
110 int ioaddr2;
111 unsigned long memaddr;
112 int irq;
113 int irqtype;
116 static unsigned int stli_nrbrds;
118 /* stli_lock must NOT be taken holding brd_lock */
119 static spinlock_t stli_lock; /* TTY logic lock */
120 static spinlock_t brd_lock; /* Board logic lock */
123 * There is some experimental EISA board detection code in this driver.
124 * By default it is disabled, but for those that want to try it out,
125 * then set the define below to be 1.
127 #define STLI_EISAPROBE 0
129 /*****************************************************************************/
132 * Define some important driver characteristics. Device major numbers
133 * allocated as per Linux Device Registry.
135 #ifndef STL_SIOMEMMAJOR
136 #define STL_SIOMEMMAJOR 28
137 #endif
138 #ifndef STL_SERIALMAJOR
139 #define STL_SERIALMAJOR 24
140 #endif
141 #ifndef STL_CALLOUTMAJOR
142 #define STL_CALLOUTMAJOR 25
143 #endif
145 /*****************************************************************************/
148 * Define our local driver identity first. Set up stuff to deal with
149 * all the local structures required by a serial tty driver.
151 static char *stli_drvtitle = "Stallion Intelligent Multiport Serial Driver";
152 static char *stli_drvname = "istallion";
153 static char *stli_drvversion = "5.6.0";
154 static char *stli_serialname = "ttyE";
156 static struct tty_driver *stli_serial;
157 static const struct tty_port_operations stli_port_ops;
159 #define STLI_TXBUFSIZE 4096
162 * Use a fast local buffer for cooked characters. Typically a whole
163 * bunch of cooked characters come in for a port, 1 at a time. So we
164 * save those up into a local buffer, then write out the whole lot
165 * with a large memcpy. Just use 1 buffer for all ports, since its
166 * use it is only need for short periods of time by each port.
168 static char *stli_txcookbuf;
169 static int stli_txcooksize;
170 static int stli_txcookrealsize;
171 static struct tty_struct *stli_txcooktty;
174 * Define a local default termios struct. All ports will be created
175 * with this termios initially. Basically all it defines is a raw port
176 * at 9600 baud, 8 data bits, no parity, 1 stop bit.
178 static struct ktermios stli_deftermios = {
179 .c_cflag = (B9600 | CS8 | CREAD | HUPCL | CLOCAL),
180 .c_cc = INIT_C_CC,
181 .c_ispeed = 9600,
182 .c_ospeed = 9600,
186 * Define global stats structures. Not used often, and can be
187 * re-used for each stats call.
189 static comstats_t stli_comstats;
190 static combrd_t stli_brdstats;
191 static struct asystats stli_cdkstats;
193 /*****************************************************************************/
195 static DEFINE_MUTEX(stli_brdslock);
196 static struct stlibrd *stli_brds[STL_MAXBRDS];
198 static int stli_shared;
201 * Per board state flags. Used with the state field of the board struct.
202 * Not really much here... All we need to do is keep track of whether
203 * the board has been detected, and whether it is actually running a slave
204 * or not.
206 #define BST_FOUND 0x1
207 #define BST_STARTED 0x2
208 #define BST_PROBED 0x4
211 * Define the set of port state flags. These are marked for internal
212 * state purposes only, usually to do with the state of communications
213 * with the slave. Most of them need to be updated atomically, so always
214 * use the bit setting operations (unless protected by cli/sti).
216 #define ST_INITIALIZING 1
217 #define ST_OPENING 2
218 #define ST_CLOSING 3
219 #define ST_CMDING 4
220 #define ST_TXBUSY 5
221 #define ST_RXING 6
222 #define ST_DOFLUSHRX 7
223 #define ST_DOFLUSHTX 8
224 #define ST_DOSIGS 9
225 #define ST_RXSTOP 10
226 #define ST_GETSIGS 11
229 * Define an array of board names as printable strings. Handy for
230 * referencing boards when printing trace and stuff.
232 static char *stli_brdnames[] = {
233 "Unknown",
234 "Stallion",
235 "Brumby",
236 "ONboard-MC",
237 "ONboard",
238 "Brumby",
239 "Brumby",
240 "ONboard-EI",
241 NULL,
242 "ONboard",
243 "ONboard-MC",
244 "ONboard-MC",
245 NULL,
246 NULL,
247 NULL,
248 NULL,
249 NULL,
250 NULL,
251 NULL,
252 NULL,
253 "EasyIO",
254 "EC8/32-AT",
255 "EC8/32-MC",
256 "EC8/64-AT",
257 "EC8/64-EI",
258 "EC8/64-MC",
259 "EC8/32-PCI",
260 "EC8/64-PCI",
261 "EasyIO-PCI",
262 "EC/RA-PCI",
265 /*****************************************************************************/
268 * Define some string labels for arguments passed from the module
269 * load line. These allow for easy board definitions, and easy
270 * modification of the io, memory and irq resoucres.
273 static char *board0[8];
274 static char *board1[8];
275 static char *board2[8];
276 static char *board3[8];
278 static char **stli_brdsp[] = {
279 (char **) &board0,
280 (char **) &board1,
281 (char **) &board2,
282 (char **) &board3
286 * Define a set of common board names, and types. This is used to
287 * parse any module arguments.
290 static struct stlibrdtype {
291 char *name;
292 int type;
293 } stli_brdstr[] = {
294 { "stallion", BRD_STALLION },
295 { "1", BRD_STALLION },
296 { "brumby", BRD_BRUMBY },
297 { "brumby4", BRD_BRUMBY },
298 { "brumby/4", BRD_BRUMBY },
299 { "brumby-4", BRD_BRUMBY },
300 { "brumby8", BRD_BRUMBY },
301 { "brumby/8", BRD_BRUMBY },
302 { "brumby-8", BRD_BRUMBY },
303 { "brumby16", BRD_BRUMBY },
304 { "brumby/16", BRD_BRUMBY },
305 { "brumby-16", BRD_BRUMBY },
306 { "2", BRD_BRUMBY },
307 { "onboard2", BRD_ONBOARD2 },
308 { "onboard-2", BRD_ONBOARD2 },
309 { "onboard/2", BRD_ONBOARD2 },
310 { "onboard-mc", BRD_ONBOARD2 },
311 { "onboard/mc", BRD_ONBOARD2 },
312 { "onboard-mca", BRD_ONBOARD2 },
313 { "onboard/mca", BRD_ONBOARD2 },
314 { "3", BRD_ONBOARD2 },
315 { "onboard", BRD_ONBOARD },
316 { "onboardat", BRD_ONBOARD },
317 { "4", BRD_ONBOARD },
318 { "onboarde", BRD_ONBOARDE },
319 { "onboard-e", BRD_ONBOARDE },
320 { "onboard/e", BRD_ONBOARDE },
321 { "onboard-ei", BRD_ONBOARDE },
322 { "onboard/ei", BRD_ONBOARDE },
323 { "7", BRD_ONBOARDE },
324 { "ecp", BRD_ECP },
325 { "ecpat", BRD_ECP },
326 { "ec8/64", BRD_ECP },
327 { "ec8/64-at", BRD_ECP },
328 { "ec8/64-isa", BRD_ECP },
329 { "23", BRD_ECP },
330 { "ecpe", BRD_ECPE },
331 { "ecpei", BRD_ECPE },
332 { "ec8/64-e", BRD_ECPE },
333 { "ec8/64-ei", BRD_ECPE },
334 { "24", BRD_ECPE },
335 { "ecpmc", BRD_ECPMC },
336 { "ec8/64-mc", BRD_ECPMC },
337 { "ec8/64-mca", BRD_ECPMC },
338 { "25", BRD_ECPMC },
339 { "ecppci", BRD_ECPPCI },
340 { "ec/ra", BRD_ECPPCI },
341 { "ec/ra-pc", BRD_ECPPCI },
342 { "ec/ra-pci", BRD_ECPPCI },
343 { "29", BRD_ECPPCI },
347 * Define the module agruments.
349 MODULE_AUTHOR("Greg Ungerer");
350 MODULE_DESCRIPTION("Stallion Intelligent Multiport Serial Driver");
351 MODULE_LICENSE("GPL");
354 module_param_array(board0, charp, NULL, 0);
355 MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,memaddr]");
356 module_param_array(board1, charp, NULL, 0);
357 MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,memaddr]");
358 module_param_array(board2, charp, NULL, 0);
359 MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,memaddr]");
360 module_param_array(board3, charp, NULL, 0);
361 MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,memaddr]");
363 #if STLI_EISAPROBE != 0
365 * Set up a default memory address table for EISA board probing.
366 * The default addresses are all bellow 1Mbyte, which has to be the
367 * case anyway. They should be safe, since we only read values from
368 * them, and interrupts are disabled while we do it. If the higher
369 * memory support is compiled in then we also try probing around
370 * the 1Gb, 2Gb and 3Gb areas as well...
372 static unsigned long stli_eisamemprobeaddrs[] = {
373 0xc0000, 0xd0000, 0xe0000, 0xf0000,
374 0x80000000, 0x80010000, 0x80020000, 0x80030000,
375 0x40000000, 0x40010000, 0x40020000, 0x40030000,
376 0xc0000000, 0xc0010000, 0xc0020000, 0xc0030000,
377 0xff000000, 0xff010000, 0xff020000, 0xff030000,
380 static int stli_eisamempsize = ARRAY_SIZE(stli_eisamemprobeaddrs);
381 #endif
384 * Define the Stallion PCI vendor and device IDs.
386 #ifndef PCI_DEVICE_ID_ECRA
387 #define PCI_DEVICE_ID_ECRA 0x0004
388 #endif
390 static struct pci_device_id istallion_pci_tbl[] = {
391 { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECRA), },
392 { 0 }
394 MODULE_DEVICE_TABLE(pci, istallion_pci_tbl);
396 static struct pci_driver stli_pcidriver;
398 /*****************************************************************************/
401 * Hardware configuration info for ECP boards. These defines apply
402 * to the directly accessible io ports of the ECP. There is a set of
403 * defines for each ECP board type, ISA, EISA, MCA and PCI.
405 #define ECP_IOSIZE 4
407 #define ECP_MEMSIZE (128 * 1024)
408 #define ECP_PCIMEMSIZE (256 * 1024)
410 #define ECP_ATPAGESIZE (4 * 1024)
411 #define ECP_MCPAGESIZE (4 * 1024)
412 #define ECP_EIPAGESIZE (64 * 1024)
413 #define ECP_PCIPAGESIZE (64 * 1024)
415 #define STL_EISAID 0x8c4e
418 * Important defines for the ISA class of ECP board.
420 #define ECP_ATIREG 0
421 #define ECP_ATCONFR 1
422 #define ECP_ATMEMAR 2
423 #define ECP_ATMEMPR 3
424 #define ECP_ATSTOP 0x1
425 #define ECP_ATINTENAB 0x10
426 #define ECP_ATENABLE 0x20
427 #define ECP_ATDISABLE 0x00
428 #define ECP_ATADDRMASK 0x3f000
429 #define ECP_ATADDRSHFT 12
432 * Important defines for the EISA class of ECP board.
434 #define ECP_EIIREG 0
435 #define ECP_EIMEMARL 1
436 #define ECP_EICONFR 2
437 #define ECP_EIMEMARH 3
438 #define ECP_EIENABLE 0x1
439 #define ECP_EIDISABLE 0x0
440 #define ECP_EISTOP 0x4
441 #define ECP_EIEDGE 0x00
442 #define ECP_EILEVEL 0x80
443 #define ECP_EIADDRMASKL 0x00ff0000
444 #define ECP_EIADDRSHFTL 16
445 #define ECP_EIADDRMASKH 0xff000000
446 #define ECP_EIADDRSHFTH 24
447 #define ECP_EIBRDENAB 0xc84
449 #define ECP_EISAID 0x4
452 * Important defines for the Micro-channel class of ECP board.
453 * (It has a lot in common with the ISA boards.)
455 #define ECP_MCIREG 0
456 #define ECP_MCCONFR 1
457 #define ECP_MCSTOP 0x20
458 #define ECP_MCENABLE 0x80
459 #define ECP_MCDISABLE 0x00
462 * Important defines for the PCI class of ECP board.
463 * (It has a lot in common with the other ECP boards.)
465 #define ECP_PCIIREG 0
466 #define ECP_PCICONFR 1
467 #define ECP_PCISTOP 0x01
470 * Hardware configuration info for ONboard and Brumby boards. These
471 * defines apply to the directly accessible io ports of these boards.
473 #define ONB_IOSIZE 16
474 #define ONB_MEMSIZE (64 * 1024)
475 #define ONB_ATPAGESIZE (64 * 1024)
476 #define ONB_MCPAGESIZE (64 * 1024)
477 #define ONB_EIMEMSIZE (128 * 1024)
478 #define ONB_EIPAGESIZE (64 * 1024)
481 * Important defines for the ISA class of ONboard board.
483 #define ONB_ATIREG 0
484 #define ONB_ATMEMAR 1
485 #define ONB_ATCONFR 2
486 #define ONB_ATSTOP 0x4
487 #define ONB_ATENABLE 0x01
488 #define ONB_ATDISABLE 0x00
489 #define ONB_ATADDRMASK 0xff0000
490 #define ONB_ATADDRSHFT 16
492 #define ONB_MEMENABLO 0
493 #define ONB_MEMENABHI 0x02
496 * Important defines for the EISA class of ONboard board.
498 #define ONB_EIIREG 0
499 #define ONB_EIMEMARL 1
500 #define ONB_EICONFR 2
501 #define ONB_EIMEMARH 3
502 #define ONB_EIENABLE 0x1
503 #define ONB_EIDISABLE 0x0
504 #define ONB_EISTOP 0x4
505 #define ONB_EIEDGE 0x00
506 #define ONB_EILEVEL 0x80
507 #define ONB_EIADDRMASKL 0x00ff0000
508 #define ONB_EIADDRSHFTL 16
509 #define ONB_EIADDRMASKH 0xff000000
510 #define ONB_EIADDRSHFTH 24
511 #define ONB_EIBRDENAB 0xc84
513 #define ONB_EISAID 0x1
516 * Important defines for the Brumby boards. They are pretty simple,
517 * there is not much that is programmably configurable.
519 #define BBY_IOSIZE 16
520 #define BBY_MEMSIZE (64 * 1024)
521 #define BBY_PAGESIZE (16 * 1024)
523 #define BBY_ATIREG 0
524 #define BBY_ATCONFR 1
525 #define BBY_ATSTOP 0x4
528 * Important defines for the Stallion boards. They are pretty simple,
529 * there is not much that is programmably configurable.
531 #define STAL_IOSIZE 16
532 #define STAL_MEMSIZE (64 * 1024)
533 #define STAL_PAGESIZE (64 * 1024)
536 * Define the set of status register values for EasyConnection panels.
537 * The signature will return with the status value for each panel. From
538 * this we can determine what is attached to the board - before we have
539 * actually down loaded any code to it.
541 #define ECH_PNLSTATUS 2
542 #define ECH_PNL16PORT 0x20
543 #define ECH_PNLIDMASK 0x07
544 #define ECH_PNLXPID 0x40
545 #define ECH_PNLINTRPEND 0x80
548 * Define some macros to do things to the board. Even those these boards
549 * are somewhat related there is often significantly different ways of
550 * doing some operation on it (like enable, paging, reset, etc). So each
551 * board class has a set of functions which do the commonly required
552 * operations. The macros below basically just call these functions,
553 * generally checking for a NULL function - which means that the board
554 * needs nothing done to it to achieve this operation!
556 #define EBRDINIT(brdp) \
557 if (brdp->init != NULL) \
558 (* brdp->init)(brdp)
560 #define EBRDENABLE(brdp) \
561 if (brdp->enable != NULL) \
562 (* brdp->enable)(brdp);
564 #define EBRDDISABLE(brdp) \
565 if (brdp->disable != NULL) \
566 (* brdp->disable)(brdp);
568 #define EBRDINTR(brdp) \
569 if (brdp->intr != NULL) \
570 (* brdp->intr)(brdp);
572 #define EBRDRESET(brdp) \
573 if (brdp->reset != NULL) \
574 (* brdp->reset)(brdp);
576 #define EBRDGETMEMPTR(brdp,offset) \
577 (* brdp->getmemptr)(brdp, offset, __LINE__)
580 * Define the maximal baud rate, and the default baud base for ports.
582 #define STL_MAXBAUD 460800
583 #define STL_BAUDBASE 115200
584 #define STL_CLOSEDELAY (5 * HZ / 10)
586 /*****************************************************************************/
589 * Define macros to extract a brd or port number from a minor number.
591 #define MINOR2BRD(min) (((min) & 0xc0) >> 6)
592 #define MINOR2PORT(min) ((min) & 0x3f)
594 /*****************************************************************************/
597 * Prototype all functions in this driver!
600 static int stli_parsebrd(struct stlconf *confp, char **argp);
601 static int stli_open(struct tty_struct *tty, struct file *filp);
602 static void stli_close(struct tty_struct *tty, struct file *filp);
603 static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count);
604 static int stli_putchar(struct tty_struct *tty, unsigned char ch);
605 static void stli_flushchars(struct tty_struct *tty);
606 static int stli_writeroom(struct tty_struct *tty);
607 static int stli_charsinbuffer(struct tty_struct *tty);
608 static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg);
609 static void stli_settermios(struct tty_struct *tty, struct ktermios *old);
610 static void stli_throttle(struct tty_struct *tty);
611 static void stli_unthrottle(struct tty_struct *tty);
612 static void stli_stop(struct tty_struct *tty);
613 static void stli_start(struct tty_struct *tty);
614 static void stli_flushbuffer(struct tty_struct *tty);
615 static int stli_breakctl(struct tty_struct *tty, int state);
616 static void stli_waituntilsent(struct tty_struct *tty, int timeout);
617 static void stli_sendxchar(struct tty_struct *tty, char ch);
618 static void stli_hangup(struct tty_struct *tty);
620 static int stli_brdinit(struct stlibrd *brdp);
621 static int stli_startbrd(struct stlibrd *brdp);
622 static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp);
623 static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp);
624 static int stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg);
625 static void stli_brdpoll(struct stlibrd *brdp, cdkhdr_t __iomem *hdrp);
626 static void stli_poll(unsigned long arg);
627 static int stli_hostcmd(struct stlibrd *brdp, struct stliport *portp);
628 static int stli_initopen(struct tty_struct *tty, struct stlibrd *brdp, struct stliport *portp);
629 static int stli_rawopen(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait);
630 static int stli_rawclose(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait);
631 static int stli_setport(struct tty_struct *tty);
632 static int stli_cmdwait(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback);
633 static void stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback);
634 static void __stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback);
635 static void stli_dodelaycmd(struct stliport *portp, cdkctrl_t __iomem *cp);
636 static void stli_mkasyport(struct tty_struct *tty, struct stliport *portp, asyport_t *pp, struct ktermios *tiosp);
637 static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts);
638 static long stli_mktiocm(unsigned long sigvalue);
639 static void stli_read(struct stlibrd *brdp, struct stliport *portp);
640 static int stli_getserial(struct stliport *portp, struct serial_struct __user *sp);
641 static int stli_setserial(struct tty_struct *tty, struct serial_struct __user *sp);
642 static int stli_getbrdstats(combrd_t __user *bp);
643 static int stli_getportstats(struct tty_struct *tty, struct stliport *portp, comstats_t __user *cp);
644 static int stli_portcmdstats(struct tty_struct *tty, struct stliport *portp);
645 static int stli_clrportstats(struct stliport *portp, comstats_t __user *cp);
646 static int stli_getportstruct(struct stliport __user *arg);
647 static int stli_getbrdstruct(struct stlibrd __user *arg);
648 static struct stlibrd *stli_allocbrd(void);
650 static void stli_ecpinit(struct stlibrd *brdp);
651 static void stli_ecpenable(struct stlibrd *brdp);
652 static void stli_ecpdisable(struct stlibrd *brdp);
653 static void __iomem *stli_ecpgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
654 static void stli_ecpreset(struct stlibrd *brdp);
655 static void stli_ecpintr(struct stlibrd *brdp);
656 static void stli_ecpeiinit(struct stlibrd *brdp);
657 static void stli_ecpeienable(struct stlibrd *brdp);
658 static void stli_ecpeidisable(struct stlibrd *brdp);
659 static void __iomem *stli_ecpeigetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
660 static void stli_ecpeireset(struct stlibrd *brdp);
661 static void stli_ecpmcenable(struct stlibrd *brdp);
662 static void stli_ecpmcdisable(struct stlibrd *brdp);
663 static void __iomem *stli_ecpmcgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
664 static void stli_ecpmcreset(struct stlibrd *brdp);
665 static void stli_ecppciinit(struct stlibrd *brdp);
666 static void __iomem *stli_ecppcigetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
667 static void stli_ecppcireset(struct stlibrd *brdp);
669 static void stli_onbinit(struct stlibrd *brdp);
670 static void stli_onbenable(struct stlibrd *brdp);
671 static void stli_onbdisable(struct stlibrd *brdp);
672 static void __iomem *stli_onbgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
673 static void stli_onbreset(struct stlibrd *brdp);
674 static void stli_onbeinit(struct stlibrd *brdp);
675 static void stli_onbeenable(struct stlibrd *brdp);
676 static void stli_onbedisable(struct stlibrd *brdp);
677 static void __iomem *stli_onbegetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
678 static void stli_onbereset(struct stlibrd *brdp);
679 static void stli_bbyinit(struct stlibrd *brdp);
680 static void __iomem *stli_bbygetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
681 static void stli_bbyreset(struct stlibrd *brdp);
682 static void stli_stalinit(struct stlibrd *brdp);
683 static void __iomem *stli_stalgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
684 static void stli_stalreset(struct stlibrd *brdp);
686 static struct stliport *stli_getport(unsigned int brdnr, unsigned int panelnr, unsigned int portnr);
688 static int stli_initecp(struct stlibrd *brdp);
689 static int stli_initonb(struct stlibrd *brdp);
690 #if STLI_EISAPROBE != 0
691 static int stli_eisamemprobe(struct stlibrd *brdp);
692 #endif
693 static int stli_initports(struct stlibrd *brdp);
695 /*****************************************************************************/
698 * Define the driver info for a user level shared memory device. This
699 * device will work sort of like the /dev/kmem device - except that it
700 * will give access to the shared memory on the Stallion intelligent
701 * board. This is also a very useful debugging tool.
703 static const struct file_operations stli_fsiomem = {
704 .owner = THIS_MODULE,
705 .read = stli_memread,
706 .write = stli_memwrite,
707 .ioctl = stli_memioctl,
710 /*****************************************************************************/
713 * Define a timer_list entry for our poll routine. The slave board
714 * is polled every so often to see if anything needs doing. This is
715 * much cheaper on host cpu than using interrupts. It turns out to
716 * not increase character latency by much either...
718 static DEFINE_TIMER(stli_timerlist, stli_poll, 0, 0);
720 static int stli_timeron;
723 * Define the calculation for the timeout routine.
725 #define STLI_TIMEOUT (jiffies + 1)
727 /*****************************************************************************/
729 static struct class *istallion_class;
731 static void stli_cleanup_ports(struct stlibrd *brdp)
733 struct stliport *portp;
734 unsigned int j;
735 struct tty_struct *tty;
737 for (j = 0; j < STL_MAXPORTS; j++) {
738 portp = brdp->ports[j];
739 if (portp != NULL) {
740 tty = tty_port_tty_get(&portp->port);
741 if (tty != NULL) {
742 tty_hangup(tty);
743 tty_kref_put(tty);
745 kfree(portp);
750 /*****************************************************************************/
753 * Parse the supplied argument string, into the board conf struct.
756 static int stli_parsebrd(struct stlconf *confp, char **argp)
758 unsigned int i;
759 char *sp;
761 if (argp[0] == NULL || *argp[0] == 0)
762 return 0;
764 for (sp = argp[0], i = 0; ((*sp != 0) && (i < 25)); sp++, i++)
765 *sp = tolower(*sp);
767 for (i = 0; i < ARRAY_SIZE(stli_brdstr); i++) {
768 if (strcmp(stli_brdstr[i].name, argp[0]) == 0)
769 break;
771 if (i == ARRAY_SIZE(stli_brdstr)) {
772 printk(KERN_WARNING "istallion: unknown board name, %s?\n", argp[0]);
773 return 0;
776 confp->brdtype = stli_brdstr[i].type;
777 if (argp[1] != NULL && *argp[1] != 0)
778 confp->ioaddr1 = simple_strtoul(argp[1], NULL, 0);
779 if (argp[2] != NULL && *argp[2] != 0)
780 confp->memaddr = simple_strtoul(argp[2], NULL, 0);
781 return(1);
784 /*****************************************************************************/
786 static int stli_open(struct tty_struct *tty, struct file *filp)
788 struct stlibrd *brdp;
789 struct stliport *portp;
790 struct tty_port *port;
791 unsigned int minordev, brdnr, portnr;
792 int rc;
794 minordev = tty->index;
795 brdnr = MINOR2BRD(minordev);
796 if (brdnr >= stli_nrbrds)
797 return -ENODEV;
798 brdp = stli_brds[brdnr];
799 if (brdp == NULL)
800 return -ENODEV;
801 if ((brdp->state & BST_STARTED) == 0)
802 return -ENODEV;
803 portnr = MINOR2PORT(minordev);
804 if (portnr > brdp->nrports)
805 return -ENODEV;
807 portp = brdp->ports[portnr];
808 if (portp == NULL)
809 return -ENODEV;
810 if (portp->devnr < 1)
811 return -ENODEV;
812 port = &portp->port;
815 * On the first open of the device setup the port hardware, and
816 * initialize the per port data structure. Since initializing the port
817 * requires several commands to the board we will need to wait for any
818 * other open that is already initializing the port.
820 * Review - locking
822 tty_port_tty_set(port, tty);
823 tty->driver_data = portp;
824 port->count++;
826 wait_event_interruptible(portp->raw_wait,
827 !test_bit(ST_INITIALIZING, &portp->state));
828 if (signal_pending(current))
829 return -ERESTARTSYS;
831 if ((portp->port.flags & ASYNC_INITIALIZED) == 0) {
832 set_bit(ST_INITIALIZING, &portp->state);
833 if ((rc = stli_initopen(tty, brdp, portp)) >= 0) {
834 /* Locking */
835 port->flags |= ASYNC_INITIALIZED;
836 clear_bit(TTY_IO_ERROR, &tty->flags);
838 clear_bit(ST_INITIALIZING, &portp->state);
839 wake_up_interruptible(&portp->raw_wait);
840 if (rc < 0)
841 return rc;
843 return tty_port_block_til_ready(&portp->port, tty, filp);
846 /*****************************************************************************/
848 static void stli_close(struct tty_struct *tty, struct file *filp)
850 struct stlibrd *brdp;
851 struct stliport *portp;
852 struct tty_port *port;
853 unsigned long flags;
855 portp = tty->driver_data;
856 if (portp == NULL)
857 return;
858 port = &portp->port;
860 if (tty_port_close_start(port, tty, filp) == 0)
861 return;
864 * May want to wait for data to drain before closing. The BUSY flag
865 * keeps track of whether we are still transmitting or not. It is
866 * updated by messages from the slave - indicating when all chars
867 * really have drained.
869 spin_lock_irqsave(&stli_lock, flags);
870 if (tty == stli_txcooktty)
871 stli_flushchars(tty);
872 spin_unlock_irqrestore(&stli_lock, flags);
874 /* We end up doing this twice for the moment. This needs looking at
875 eventually. Note we still use portp->closing_wait as a result */
876 if (portp->closing_wait != ASYNC_CLOSING_WAIT_NONE)
877 tty_wait_until_sent(tty, portp->closing_wait);
879 /* FIXME: port locking here needs attending to */
880 port->flags &= ~ASYNC_INITIALIZED;
882 brdp = stli_brds[portp->brdnr];
883 stli_rawclose(brdp, portp, 0, 0);
884 if (tty->termios->c_cflag & HUPCL) {
885 stli_mkasysigs(&portp->asig, 0, 0);
886 if (test_bit(ST_CMDING, &portp->state))
887 set_bit(ST_DOSIGS, &portp->state);
888 else
889 stli_sendcmd(brdp, portp, A_SETSIGNALS, &portp->asig,
890 sizeof(asysigs_t), 0);
892 clear_bit(ST_TXBUSY, &portp->state);
893 clear_bit(ST_RXSTOP, &portp->state);
894 set_bit(TTY_IO_ERROR, &tty->flags);
895 tty_ldisc_flush(tty);
896 set_bit(ST_DOFLUSHRX, &portp->state);
897 stli_flushbuffer(tty);
899 tty_port_close_end(port, tty);
900 tty_port_tty_set(port, NULL);
903 /*****************************************************************************/
906 * Carry out first open operations on a port. This involves a number of
907 * commands to be sent to the slave. We need to open the port, set the
908 * notification events, set the initial port settings, get and set the
909 * initial signal values. We sleep and wait in between each one. But
910 * this still all happens pretty quickly.
913 static int stli_initopen(struct tty_struct *tty,
914 struct stlibrd *brdp, struct stliport *portp)
916 asynotify_t nt;
917 asyport_t aport;
918 int rc;
920 if ((rc = stli_rawopen(brdp, portp, 0, 1)) < 0)
921 return rc;
923 memset(&nt, 0, sizeof(asynotify_t));
924 nt.data = (DT_TXLOW | DT_TXEMPTY | DT_RXBUSY | DT_RXBREAK);
925 nt.signal = SG_DCD;
926 if ((rc = stli_cmdwait(brdp, portp, A_SETNOTIFY, &nt,
927 sizeof(asynotify_t), 0)) < 0)
928 return rc;
930 stli_mkasyport(tty, portp, &aport, tty->termios);
931 if ((rc = stli_cmdwait(brdp, portp, A_SETPORT, &aport,
932 sizeof(asyport_t), 0)) < 0)
933 return rc;
935 set_bit(ST_GETSIGS, &portp->state);
936 if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS, &portp->asig,
937 sizeof(asysigs_t), 1)) < 0)
938 return rc;
939 if (test_and_clear_bit(ST_GETSIGS, &portp->state))
940 portp->sigs = stli_mktiocm(portp->asig.sigvalue);
941 stli_mkasysigs(&portp->asig, 1, 1);
942 if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
943 sizeof(asysigs_t), 0)) < 0)
944 return rc;
946 return 0;
949 /*****************************************************************************/
952 * Send an open message to the slave. This will sleep waiting for the
953 * acknowledgement, so must have user context. We need to co-ordinate
954 * with close events here, since we don't want open and close events
955 * to overlap.
958 static int stli_rawopen(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait)
960 cdkhdr_t __iomem *hdrp;
961 cdkctrl_t __iomem *cp;
962 unsigned char __iomem *bits;
963 unsigned long flags;
964 int rc;
967 * Send a message to the slave to open this port.
971 * Slave is already closing this port. This can happen if a hangup
972 * occurs on this port. So we must wait until it is complete. The
973 * order of opens and closes may not be preserved across shared
974 * memory, so we must wait until it is complete.
976 wait_event_interruptible(portp->raw_wait,
977 !test_bit(ST_CLOSING, &portp->state));
978 if (signal_pending(current)) {
979 return -ERESTARTSYS;
983 * Everything is ready now, so write the open message into shared
984 * memory. Once the message is in set the service bits to say that
985 * this port wants service.
987 spin_lock_irqsave(&brd_lock, flags);
988 EBRDENABLE(brdp);
989 cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
990 writel(arg, &cp->openarg);
991 writeb(1, &cp->open);
992 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
993 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
994 portp->portidx;
995 writeb(readb(bits) | portp->portbit, bits);
996 EBRDDISABLE(brdp);
998 if (wait == 0) {
999 spin_unlock_irqrestore(&brd_lock, flags);
1000 return 0;
1004 * Slave is in action, so now we must wait for the open acknowledgment
1005 * to come back.
1007 rc = 0;
1008 set_bit(ST_OPENING, &portp->state);
1009 spin_unlock_irqrestore(&brd_lock, flags);
1011 wait_event_interruptible(portp->raw_wait,
1012 !test_bit(ST_OPENING, &portp->state));
1013 if (signal_pending(current))
1014 rc = -ERESTARTSYS;
1016 if ((rc == 0) && (portp->rc != 0))
1017 rc = -EIO;
1018 return rc;
1021 /*****************************************************************************/
1024 * Send a close message to the slave. Normally this will sleep waiting
1025 * for the acknowledgement, but if wait parameter is 0 it will not. If
1026 * wait is true then must have user context (to sleep).
1029 static int stli_rawclose(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait)
1031 cdkhdr_t __iomem *hdrp;
1032 cdkctrl_t __iomem *cp;
1033 unsigned char __iomem *bits;
1034 unsigned long flags;
1035 int rc;
1038 * Slave is already closing this port. This can happen if a hangup
1039 * occurs on this port.
1041 if (wait) {
1042 wait_event_interruptible(portp->raw_wait,
1043 !test_bit(ST_CLOSING, &portp->state));
1044 if (signal_pending(current)) {
1045 return -ERESTARTSYS;
1050 * Write the close command into shared memory.
1052 spin_lock_irqsave(&brd_lock, flags);
1053 EBRDENABLE(brdp);
1054 cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1055 writel(arg, &cp->closearg);
1056 writeb(1, &cp->close);
1057 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1058 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1059 portp->portidx;
1060 writeb(readb(bits) |portp->portbit, bits);
1061 EBRDDISABLE(brdp);
1063 set_bit(ST_CLOSING, &portp->state);
1064 spin_unlock_irqrestore(&brd_lock, flags);
1066 if (wait == 0)
1067 return 0;
1070 * Slave is in action, so now we must wait for the open acknowledgment
1071 * to come back.
1073 rc = 0;
1074 wait_event_interruptible(portp->raw_wait,
1075 !test_bit(ST_CLOSING, &portp->state));
1076 if (signal_pending(current))
1077 rc = -ERESTARTSYS;
1079 if ((rc == 0) && (portp->rc != 0))
1080 rc = -EIO;
1081 return rc;
1084 /*****************************************************************************/
1087 * Send a command to the slave and wait for the response. This must
1088 * have user context (it sleeps). This routine is generic in that it
1089 * can send any type of command. Its purpose is to wait for that command
1090 * to complete (as opposed to initiating the command then returning).
1093 static int stli_cmdwait(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback)
1095 wait_event_interruptible(portp->raw_wait,
1096 !test_bit(ST_CMDING, &portp->state));
1097 if (signal_pending(current))
1098 return -ERESTARTSYS;
1100 stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
1102 wait_event_interruptible(portp->raw_wait,
1103 !test_bit(ST_CMDING, &portp->state));
1104 if (signal_pending(current))
1105 return -ERESTARTSYS;
1107 if (portp->rc != 0)
1108 return -EIO;
1109 return 0;
1112 /*****************************************************************************/
1115 * Send the termios settings for this port to the slave. This sleeps
1116 * waiting for the command to complete - so must have user context.
1119 static int stli_setport(struct tty_struct *tty)
1121 struct stliport *portp = tty->driver_data;
1122 struct stlibrd *brdp;
1123 asyport_t aport;
1125 if (portp == NULL)
1126 return -ENODEV;
1127 if (portp->brdnr >= stli_nrbrds)
1128 return -ENODEV;
1129 brdp = stli_brds[portp->brdnr];
1130 if (brdp == NULL)
1131 return -ENODEV;
1133 stli_mkasyport(tty, portp, &aport, tty->termios);
1134 return(stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0));
1137 /*****************************************************************************/
1139 static int stli_carrier_raised(struct tty_port *port)
1141 struct stliport *portp = container_of(port, struct stliport, port);
1142 return (portp->sigs & TIOCM_CD) ? 1 : 0;
1145 static void stli_dtr_rts(struct tty_port *port, int on)
1147 struct stliport *portp = container_of(port, struct stliport, port);
1148 struct stlibrd *brdp = stli_brds[portp->brdnr];
1149 stli_mkasysigs(&portp->asig, on, on);
1150 if (stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1151 sizeof(asysigs_t), 0) < 0)
1152 printk(KERN_WARNING "istallion: dtr set failed.\n");
1156 /*****************************************************************************/
1159 * Write routine. Take the data and put it in the shared memory ring
1160 * queue. If port is not already sending chars then need to mark the
1161 * service bits for this port.
1164 static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count)
1166 cdkasy_t __iomem *ap;
1167 cdkhdr_t __iomem *hdrp;
1168 unsigned char __iomem *bits;
1169 unsigned char __iomem *shbuf;
1170 unsigned char *chbuf;
1171 struct stliport *portp;
1172 struct stlibrd *brdp;
1173 unsigned int len, stlen, head, tail, size;
1174 unsigned long flags;
1176 if (tty == stli_txcooktty)
1177 stli_flushchars(tty);
1178 portp = tty->driver_data;
1179 if (portp == NULL)
1180 return 0;
1181 if (portp->brdnr >= stli_nrbrds)
1182 return 0;
1183 brdp = stli_brds[portp->brdnr];
1184 if (brdp == NULL)
1185 return 0;
1186 chbuf = (unsigned char *) buf;
1189 * All data is now local, shove as much as possible into shared memory.
1191 spin_lock_irqsave(&brd_lock, flags);
1192 EBRDENABLE(brdp);
1193 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1194 head = (unsigned int) readw(&ap->txq.head);
1195 tail = (unsigned int) readw(&ap->txq.tail);
1196 if (tail != ((unsigned int) readw(&ap->txq.tail)))
1197 tail = (unsigned int) readw(&ap->txq.tail);
1198 size = portp->txsize;
1199 if (head >= tail) {
1200 len = size - (head - tail) - 1;
1201 stlen = size - head;
1202 } else {
1203 len = tail - head - 1;
1204 stlen = len;
1207 len = min(len, (unsigned int)count);
1208 count = 0;
1209 shbuf = (char __iomem *) EBRDGETMEMPTR(brdp, portp->txoffset);
1211 while (len > 0) {
1212 stlen = min(len, stlen);
1213 memcpy_toio(shbuf + head, chbuf, stlen);
1214 chbuf += stlen;
1215 len -= stlen;
1216 count += stlen;
1217 head += stlen;
1218 if (head >= size) {
1219 head = 0;
1220 stlen = tail;
1224 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1225 writew(head, &ap->txq.head);
1226 if (test_bit(ST_TXBUSY, &portp->state)) {
1227 if (readl(&ap->changed.data) & DT_TXEMPTY)
1228 writel(readl(&ap->changed.data) & ~DT_TXEMPTY, &ap->changed.data);
1230 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1231 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1232 portp->portidx;
1233 writeb(readb(bits) | portp->portbit, bits);
1234 set_bit(ST_TXBUSY, &portp->state);
1235 EBRDDISABLE(brdp);
1236 spin_unlock_irqrestore(&brd_lock, flags);
1238 return(count);
1241 /*****************************************************************************/
1244 * Output a single character. We put it into a temporary local buffer
1245 * (for speed) then write out that buffer when the flushchars routine
1246 * is called. There is a safety catch here so that if some other port
1247 * writes chars before the current buffer has been, then we write them
1248 * first them do the new ports.
1251 static int stli_putchar(struct tty_struct *tty, unsigned char ch)
1253 if (tty != stli_txcooktty) {
1254 if (stli_txcooktty != NULL)
1255 stli_flushchars(stli_txcooktty);
1256 stli_txcooktty = tty;
1259 stli_txcookbuf[stli_txcooksize++] = ch;
1260 return 0;
1263 /*****************************************************************************/
1266 * Transfer characters from the local TX cooking buffer to the board.
1267 * We sort of ignore the tty that gets passed in here. We rely on the
1268 * info stored with the TX cook buffer to tell us which port to flush
1269 * the data on. In any case we clean out the TX cook buffer, for re-use
1270 * by someone else.
1273 static void stli_flushchars(struct tty_struct *tty)
1275 cdkhdr_t __iomem *hdrp;
1276 unsigned char __iomem *bits;
1277 cdkasy_t __iomem *ap;
1278 struct tty_struct *cooktty;
1279 struct stliport *portp;
1280 struct stlibrd *brdp;
1281 unsigned int len, stlen, head, tail, size, count, cooksize;
1282 unsigned char *buf;
1283 unsigned char __iomem *shbuf;
1284 unsigned long flags;
1286 cooksize = stli_txcooksize;
1287 cooktty = stli_txcooktty;
1288 stli_txcooksize = 0;
1289 stli_txcookrealsize = 0;
1290 stli_txcooktty = NULL;
1292 if (cooktty == NULL)
1293 return;
1294 if (tty != cooktty)
1295 tty = cooktty;
1296 if (cooksize == 0)
1297 return;
1299 portp = tty->driver_data;
1300 if (portp == NULL)
1301 return;
1302 if (portp->brdnr >= stli_nrbrds)
1303 return;
1304 brdp = stli_brds[portp->brdnr];
1305 if (brdp == NULL)
1306 return;
1308 spin_lock_irqsave(&brd_lock, flags);
1309 EBRDENABLE(brdp);
1311 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1312 head = (unsigned int) readw(&ap->txq.head);
1313 tail = (unsigned int) readw(&ap->txq.tail);
1314 if (tail != ((unsigned int) readw(&ap->txq.tail)))
1315 tail = (unsigned int) readw(&ap->txq.tail);
1316 size = portp->txsize;
1317 if (head >= tail) {
1318 len = size - (head - tail) - 1;
1319 stlen = size - head;
1320 } else {
1321 len = tail - head - 1;
1322 stlen = len;
1325 len = min(len, cooksize);
1326 count = 0;
1327 shbuf = EBRDGETMEMPTR(brdp, portp->txoffset);
1328 buf = stli_txcookbuf;
1330 while (len > 0) {
1331 stlen = min(len, stlen);
1332 memcpy_toio(shbuf + head, buf, stlen);
1333 buf += stlen;
1334 len -= stlen;
1335 count += stlen;
1336 head += stlen;
1337 if (head >= size) {
1338 head = 0;
1339 stlen = tail;
1343 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1344 writew(head, &ap->txq.head);
1346 if (test_bit(ST_TXBUSY, &portp->state)) {
1347 if (readl(&ap->changed.data) & DT_TXEMPTY)
1348 writel(readl(&ap->changed.data) & ~DT_TXEMPTY, &ap->changed.data);
1350 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1351 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1352 portp->portidx;
1353 writeb(readb(bits) | portp->portbit, bits);
1354 set_bit(ST_TXBUSY, &portp->state);
1356 EBRDDISABLE(brdp);
1357 spin_unlock_irqrestore(&brd_lock, flags);
1360 /*****************************************************************************/
1362 static int stli_writeroom(struct tty_struct *tty)
1364 cdkasyrq_t __iomem *rp;
1365 struct stliport *portp;
1366 struct stlibrd *brdp;
1367 unsigned int head, tail, len;
1368 unsigned long flags;
1370 if (tty == stli_txcooktty) {
1371 if (stli_txcookrealsize != 0) {
1372 len = stli_txcookrealsize - stli_txcooksize;
1373 return len;
1377 portp = tty->driver_data;
1378 if (portp == NULL)
1379 return 0;
1380 if (portp->brdnr >= stli_nrbrds)
1381 return 0;
1382 brdp = stli_brds[portp->brdnr];
1383 if (brdp == NULL)
1384 return 0;
1386 spin_lock_irqsave(&brd_lock, flags);
1387 EBRDENABLE(brdp);
1388 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1389 head = (unsigned int) readw(&rp->head);
1390 tail = (unsigned int) readw(&rp->tail);
1391 if (tail != ((unsigned int) readw(&rp->tail)))
1392 tail = (unsigned int) readw(&rp->tail);
1393 len = (head >= tail) ? (portp->txsize - (head - tail)) : (tail - head);
1394 len--;
1395 EBRDDISABLE(brdp);
1396 spin_unlock_irqrestore(&brd_lock, flags);
1398 if (tty == stli_txcooktty) {
1399 stli_txcookrealsize = len;
1400 len -= stli_txcooksize;
1402 return len;
1405 /*****************************************************************************/
1408 * Return the number of characters in the transmit buffer. Normally we
1409 * will return the number of chars in the shared memory ring queue.
1410 * We need to kludge around the case where the shared memory buffer is
1411 * empty but not all characters have drained yet, for this case just
1412 * return that there is 1 character in the buffer!
1415 static int stli_charsinbuffer(struct tty_struct *tty)
1417 cdkasyrq_t __iomem *rp;
1418 struct stliport *portp;
1419 struct stlibrd *brdp;
1420 unsigned int head, tail, len;
1421 unsigned long flags;
1423 if (tty == stli_txcooktty)
1424 stli_flushchars(tty);
1425 portp = tty->driver_data;
1426 if (portp == NULL)
1427 return 0;
1428 if (portp->brdnr >= stli_nrbrds)
1429 return 0;
1430 brdp = stli_brds[portp->brdnr];
1431 if (brdp == NULL)
1432 return 0;
1434 spin_lock_irqsave(&brd_lock, flags);
1435 EBRDENABLE(brdp);
1436 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1437 head = (unsigned int) readw(&rp->head);
1438 tail = (unsigned int) readw(&rp->tail);
1439 if (tail != ((unsigned int) readw(&rp->tail)))
1440 tail = (unsigned int) readw(&rp->tail);
1441 len = (head >= tail) ? (head - tail) : (portp->txsize - (tail - head));
1442 if ((len == 0) && test_bit(ST_TXBUSY, &portp->state))
1443 len = 1;
1444 EBRDDISABLE(brdp);
1445 spin_unlock_irqrestore(&brd_lock, flags);
1447 return len;
1450 /*****************************************************************************/
1453 * Generate the serial struct info.
1456 static int stli_getserial(struct stliport *portp, struct serial_struct __user *sp)
1458 struct serial_struct sio;
1459 struct stlibrd *brdp;
1461 memset(&sio, 0, sizeof(struct serial_struct));
1462 sio.type = PORT_UNKNOWN;
1463 sio.line = portp->portnr;
1464 sio.irq = 0;
1465 sio.flags = portp->port.flags;
1466 sio.baud_base = portp->baud_base;
1467 sio.close_delay = portp->port.close_delay;
1468 sio.closing_wait = portp->closing_wait;
1469 sio.custom_divisor = portp->custom_divisor;
1470 sio.xmit_fifo_size = 0;
1471 sio.hub6 = 0;
1473 brdp = stli_brds[portp->brdnr];
1474 if (brdp != NULL)
1475 sio.port = brdp->iobase;
1477 return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ?
1478 -EFAULT : 0;
1481 /*****************************************************************************/
1484 * Set port according to the serial struct info.
1485 * At this point we do not do any auto-configure stuff, so we will
1486 * just quietly ignore any requests to change irq, etc.
1489 static int stli_setserial(struct tty_struct *tty, struct serial_struct __user *sp)
1491 struct serial_struct sio;
1492 int rc;
1493 struct stliport *portp = tty->driver_data;
1495 if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
1496 return -EFAULT;
1497 if (!capable(CAP_SYS_ADMIN)) {
1498 if ((sio.baud_base != portp->baud_base) ||
1499 (sio.close_delay != portp->port.close_delay) ||
1500 ((sio.flags & ~ASYNC_USR_MASK) !=
1501 (portp->port.flags & ~ASYNC_USR_MASK)))
1502 return -EPERM;
1505 portp->port.flags = (portp->port.flags & ~ASYNC_USR_MASK) |
1506 (sio.flags & ASYNC_USR_MASK);
1507 portp->baud_base = sio.baud_base;
1508 portp->port.close_delay = sio.close_delay;
1509 portp->closing_wait = sio.closing_wait;
1510 portp->custom_divisor = sio.custom_divisor;
1512 if ((rc = stli_setport(tty)) < 0)
1513 return rc;
1514 return 0;
1517 /*****************************************************************************/
1519 static int stli_tiocmget(struct tty_struct *tty, struct file *file)
1521 struct stliport *portp = tty->driver_data;
1522 struct stlibrd *brdp;
1523 int rc;
1525 if (portp == NULL)
1526 return -ENODEV;
1527 if (portp->brdnr >= stli_nrbrds)
1528 return 0;
1529 brdp = stli_brds[portp->brdnr];
1530 if (brdp == NULL)
1531 return 0;
1532 if (tty->flags & (1 << TTY_IO_ERROR))
1533 return -EIO;
1535 if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS,
1536 &portp->asig, sizeof(asysigs_t), 1)) < 0)
1537 return rc;
1539 return stli_mktiocm(portp->asig.sigvalue);
1542 static int stli_tiocmset(struct tty_struct *tty, struct file *file,
1543 unsigned int set, unsigned int clear)
1545 struct stliport *portp = tty->driver_data;
1546 struct stlibrd *brdp;
1547 int rts = -1, dtr = -1;
1549 if (portp == NULL)
1550 return -ENODEV;
1551 if (portp->brdnr >= stli_nrbrds)
1552 return 0;
1553 brdp = stli_brds[portp->brdnr];
1554 if (brdp == NULL)
1555 return 0;
1556 if (tty->flags & (1 << TTY_IO_ERROR))
1557 return -EIO;
1559 if (set & TIOCM_RTS)
1560 rts = 1;
1561 if (set & TIOCM_DTR)
1562 dtr = 1;
1563 if (clear & TIOCM_RTS)
1564 rts = 0;
1565 if (clear & TIOCM_DTR)
1566 dtr = 0;
1568 stli_mkasysigs(&portp->asig, dtr, rts);
1570 return stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1571 sizeof(asysigs_t), 0);
1574 static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
1576 struct stliport *portp;
1577 struct stlibrd *brdp;
1578 int rc;
1579 void __user *argp = (void __user *)arg;
1581 portp = tty->driver_data;
1582 if (portp == NULL)
1583 return -ENODEV;
1584 if (portp->brdnr >= stli_nrbrds)
1585 return 0;
1586 brdp = stli_brds[portp->brdnr];
1587 if (brdp == NULL)
1588 return 0;
1590 if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
1591 (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS)) {
1592 if (tty->flags & (1 << TTY_IO_ERROR))
1593 return -EIO;
1596 rc = 0;
1598 switch (cmd) {
1599 case TIOCGSERIAL:
1600 rc = stli_getserial(portp, argp);
1601 break;
1602 case TIOCSSERIAL:
1603 rc = stli_setserial(tty, argp);
1604 break;
1605 case STL_GETPFLAG:
1606 rc = put_user(portp->pflag, (unsigned __user *)argp);
1607 break;
1608 case STL_SETPFLAG:
1609 if ((rc = get_user(portp->pflag, (unsigned __user *)argp)) == 0)
1610 stli_setport(tty);
1611 break;
1612 case COM_GETPORTSTATS:
1613 rc = stli_getportstats(tty, portp, argp);
1614 break;
1615 case COM_CLRPORTSTATS:
1616 rc = stli_clrportstats(portp, argp);
1617 break;
1618 case TIOCSERCONFIG:
1619 case TIOCSERGWILD:
1620 case TIOCSERSWILD:
1621 case TIOCSERGETLSR:
1622 case TIOCSERGSTRUCT:
1623 case TIOCSERGETMULTI:
1624 case TIOCSERSETMULTI:
1625 default:
1626 rc = -ENOIOCTLCMD;
1627 break;
1630 return rc;
1633 /*****************************************************************************/
1636 * This routine assumes that we have user context and can sleep.
1637 * Looks like it is true for the current ttys implementation..!!
1640 static void stli_settermios(struct tty_struct *tty, struct ktermios *old)
1642 struct stliport *portp;
1643 struct stlibrd *brdp;
1644 struct ktermios *tiosp;
1645 asyport_t aport;
1647 portp = tty->driver_data;
1648 if (portp == NULL)
1649 return;
1650 if (portp->brdnr >= stli_nrbrds)
1651 return;
1652 brdp = stli_brds[portp->brdnr];
1653 if (brdp == NULL)
1654 return;
1656 tiosp = tty->termios;
1658 stli_mkasyport(tty, portp, &aport, tiosp);
1659 stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0);
1660 stli_mkasysigs(&portp->asig, ((tiosp->c_cflag & CBAUD) ? 1 : 0), -1);
1661 stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1662 sizeof(asysigs_t), 0);
1663 if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0))
1664 tty->hw_stopped = 0;
1665 if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
1666 wake_up_interruptible(&portp->port.open_wait);
1669 /*****************************************************************************/
1672 * Attempt to flow control who ever is sending us data. We won't really
1673 * do any flow control action here. We can't directly, and even if we
1674 * wanted to we would have to send a command to the slave. The slave
1675 * knows how to flow control, and will do so when its buffers reach its
1676 * internal high water marks. So what we will do is set a local state
1677 * bit that will stop us sending any RX data up from the poll routine
1678 * (which is the place where RX data from the slave is handled).
1681 static void stli_throttle(struct tty_struct *tty)
1683 struct stliport *portp = tty->driver_data;
1684 if (portp == NULL)
1685 return;
1686 set_bit(ST_RXSTOP, &portp->state);
1689 /*****************************************************************************/
1692 * Unflow control the device sending us data... That means that all
1693 * we have to do is clear the RXSTOP state bit. The next poll call
1694 * will then be able to pass the RX data back up.
1697 static void stli_unthrottle(struct tty_struct *tty)
1699 struct stliport *portp = tty->driver_data;
1700 if (portp == NULL)
1701 return;
1702 clear_bit(ST_RXSTOP, &portp->state);
1705 /*****************************************************************************/
1708 * Stop the transmitter.
1711 static void stli_stop(struct tty_struct *tty)
1715 /*****************************************************************************/
1718 * Start the transmitter again.
1721 static void stli_start(struct tty_struct *tty)
1725 /*****************************************************************************/
1728 * Hangup this port. This is pretty much like closing the port, only
1729 * a little more brutal. No waiting for data to drain. Shutdown the
1730 * port and maybe drop signals. This is rather tricky really. We want
1731 * to close the port as well.
1734 static void stli_hangup(struct tty_struct *tty)
1736 struct stliport *portp;
1737 struct stlibrd *brdp;
1738 struct tty_port *port;
1739 unsigned long flags;
1741 portp = tty->driver_data;
1742 if (portp == NULL)
1743 return;
1744 if (portp->brdnr >= stli_nrbrds)
1745 return;
1746 brdp = stli_brds[portp->brdnr];
1747 if (brdp == NULL)
1748 return;
1749 port = &portp->port;
1751 spin_lock_irqsave(&port->lock, flags);
1752 port->flags &= ~ASYNC_INITIALIZED;
1753 spin_unlock_irqrestore(&port->lock, flags);
1755 if (!test_bit(ST_CLOSING, &portp->state))
1756 stli_rawclose(brdp, portp, 0, 0);
1758 spin_lock_irqsave(&stli_lock, flags);
1759 if (tty->termios->c_cflag & HUPCL) {
1760 stli_mkasysigs(&portp->asig, 0, 0);
1761 if (test_bit(ST_CMDING, &portp->state)) {
1762 set_bit(ST_DOSIGS, &portp->state);
1763 set_bit(ST_DOFLUSHTX, &portp->state);
1764 set_bit(ST_DOFLUSHRX, &portp->state);
1765 } else {
1766 stli_sendcmd(brdp, portp, A_SETSIGNALSF,
1767 &portp->asig, sizeof(asysigs_t), 0);
1771 clear_bit(ST_TXBUSY, &portp->state);
1772 clear_bit(ST_RXSTOP, &portp->state);
1773 set_bit(TTY_IO_ERROR, &tty->flags);
1774 spin_unlock_irqrestore(&stli_lock, flags);
1776 tty_port_hangup(port);
1779 /*****************************************************************************/
1782 * Flush characters from the lower buffer. We may not have user context
1783 * so we cannot sleep waiting for it to complete. Also we need to check
1784 * if there is chars for this port in the TX cook buffer, and flush them
1785 * as well.
1788 static void stli_flushbuffer(struct tty_struct *tty)
1790 struct stliport *portp;
1791 struct stlibrd *brdp;
1792 unsigned long ftype, flags;
1794 portp = tty->driver_data;
1795 if (portp == NULL)
1796 return;
1797 if (portp->brdnr >= stli_nrbrds)
1798 return;
1799 brdp = stli_brds[portp->brdnr];
1800 if (brdp == NULL)
1801 return;
1803 spin_lock_irqsave(&brd_lock, flags);
1804 if (tty == stli_txcooktty) {
1805 stli_txcooktty = NULL;
1806 stli_txcooksize = 0;
1807 stli_txcookrealsize = 0;
1809 if (test_bit(ST_CMDING, &portp->state)) {
1810 set_bit(ST_DOFLUSHTX, &portp->state);
1811 } else {
1812 ftype = FLUSHTX;
1813 if (test_bit(ST_DOFLUSHRX, &portp->state)) {
1814 ftype |= FLUSHRX;
1815 clear_bit(ST_DOFLUSHRX, &portp->state);
1817 __stli_sendcmd(brdp, portp, A_FLUSH, &ftype, sizeof(u32), 0);
1819 spin_unlock_irqrestore(&brd_lock, flags);
1820 tty_wakeup(tty);
1823 /*****************************************************************************/
1825 static int stli_breakctl(struct tty_struct *tty, int state)
1827 struct stlibrd *brdp;
1828 struct stliport *portp;
1829 long arg;
1831 portp = tty->driver_data;
1832 if (portp == NULL)
1833 return -EINVAL;
1834 if (portp->brdnr >= stli_nrbrds)
1835 return -EINVAL;
1836 brdp = stli_brds[portp->brdnr];
1837 if (brdp == NULL)
1838 return -EINVAL;
1840 arg = (state == -1) ? BREAKON : BREAKOFF;
1841 stli_cmdwait(brdp, portp, A_BREAK, &arg, sizeof(long), 0);
1842 return 0;
1845 /*****************************************************************************/
1847 static void stli_waituntilsent(struct tty_struct *tty, int timeout)
1849 struct stliport *portp;
1850 unsigned long tend;
1852 portp = tty->driver_data;
1853 if (portp == NULL)
1854 return;
1856 if (timeout == 0)
1857 timeout = HZ;
1858 tend = jiffies + timeout;
1860 while (test_bit(ST_TXBUSY, &portp->state)) {
1861 if (signal_pending(current))
1862 break;
1863 msleep_interruptible(20);
1864 if (time_after_eq(jiffies, tend))
1865 break;
1869 /*****************************************************************************/
1871 static void stli_sendxchar(struct tty_struct *tty, char ch)
1873 struct stlibrd *brdp;
1874 struct stliport *portp;
1875 asyctrl_t actrl;
1877 portp = tty->driver_data;
1878 if (portp == NULL)
1879 return;
1880 if (portp->brdnr >= stli_nrbrds)
1881 return;
1882 brdp = stli_brds[portp->brdnr];
1883 if (brdp == NULL)
1884 return;
1886 memset(&actrl, 0, sizeof(asyctrl_t));
1887 if (ch == STOP_CHAR(tty)) {
1888 actrl.rxctrl = CT_STOPFLOW;
1889 } else if (ch == START_CHAR(tty)) {
1890 actrl.rxctrl = CT_STARTFLOW;
1891 } else {
1892 actrl.txctrl = CT_SENDCHR;
1893 actrl.tximdch = ch;
1895 stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
1898 static void stli_portinfo(struct seq_file *m, struct stlibrd *brdp, struct stliport *portp, int portnr)
1900 char *uart;
1901 int rc;
1903 rc = stli_portcmdstats(NULL, portp);
1905 uart = "UNKNOWN";
1906 if (brdp->state & BST_STARTED) {
1907 switch (stli_comstats.hwid) {
1908 case 0: uart = "2681"; break;
1909 case 1: uart = "SC26198"; break;
1910 default:uart = "CD1400"; break;
1913 seq_printf(m, "%d: uart:%s ", portnr, uart);
1915 if ((brdp->state & BST_STARTED) && (rc >= 0)) {
1916 char sep;
1918 seq_printf(m, "tx:%d rx:%d", (int) stli_comstats.txtotal,
1919 (int) stli_comstats.rxtotal);
1921 if (stli_comstats.rxframing)
1922 seq_printf(m, " fe:%d",
1923 (int) stli_comstats.rxframing);
1924 if (stli_comstats.rxparity)
1925 seq_printf(m, " pe:%d",
1926 (int) stli_comstats.rxparity);
1927 if (stli_comstats.rxbreaks)
1928 seq_printf(m, " brk:%d",
1929 (int) stli_comstats.rxbreaks);
1930 if (stli_comstats.rxoverrun)
1931 seq_printf(m, " oe:%d",
1932 (int) stli_comstats.rxoverrun);
1934 sep = ' ';
1935 if (stli_comstats.signals & TIOCM_RTS) {
1936 seq_printf(m, "%c%s", sep, "RTS");
1937 sep = '|';
1939 if (stli_comstats.signals & TIOCM_CTS) {
1940 seq_printf(m, "%c%s", sep, "CTS");
1941 sep = '|';
1943 if (stli_comstats.signals & TIOCM_DTR) {
1944 seq_printf(m, "%c%s", sep, "DTR");
1945 sep = '|';
1947 if (stli_comstats.signals & TIOCM_CD) {
1948 seq_printf(m, "%c%s", sep, "DCD");
1949 sep = '|';
1951 if (stli_comstats.signals & TIOCM_DSR) {
1952 seq_printf(m, "%c%s", sep, "DSR");
1953 sep = '|';
1956 seq_putc(m, '\n');
1959 /*****************************************************************************/
1962 * Port info, read from the /proc file system.
1965 static int stli_proc_show(struct seq_file *m, void *v)
1967 struct stlibrd *brdp;
1968 struct stliport *portp;
1969 unsigned int brdnr, portnr, totalport;
1971 totalport = 0;
1973 seq_printf(m, "%s: version %s\n", stli_drvtitle, stli_drvversion);
1976 * We scan through for each board, panel and port. The offset is
1977 * calculated on the fly, and irrelevant ports are skipped.
1979 for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
1980 brdp = stli_brds[brdnr];
1981 if (brdp == NULL)
1982 continue;
1983 if (brdp->state == 0)
1984 continue;
1986 totalport = brdnr * STL_MAXPORTS;
1987 for (portnr = 0; (portnr < brdp->nrports); portnr++,
1988 totalport++) {
1989 portp = brdp->ports[portnr];
1990 if (portp == NULL)
1991 continue;
1992 stli_portinfo(m, brdp, portp, totalport);
1995 return 0;
1998 static int stli_proc_open(struct inode *inode, struct file *file)
2000 return single_open(file, stli_proc_show, NULL);
2003 static const struct file_operations stli_proc_fops = {
2004 .owner = THIS_MODULE,
2005 .open = stli_proc_open,
2006 .read = seq_read,
2007 .llseek = seq_lseek,
2008 .release = single_release,
2011 /*****************************************************************************/
2014 * Generic send command routine. This will send a message to the slave,
2015 * of the specified type with the specified argument. Must be very
2016 * careful of data that will be copied out from shared memory -
2017 * containing command results. The command completion is all done from
2018 * a poll routine that does not have user context. Therefore you cannot
2019 * copy back directly into user space, or to the kernel stack of a
2020 * process. This routine does not sleep, so can be called from anywhere.
2022 * The caller must hold the brd_lock (see also stli_sendcmd the usual
2023 * entry point)
2026 static void __stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback)
2028 cdkhdr_t __iomem *hdrp;
2029 cdkctrl_t __iomem *cp;
2030 unsigned char __iomem *bits;
2032 if (test_bit(ST_CMDING, &portp->state)) {
2033 printk(KERN_ERR "istallion: command already busy, cmd=%x!\n",
2034 (int) cmd);
2035 return;
2038 EBRDENABLE(brdp);
2039 cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
2040 if (size > 0) {
2041 memcpy_toio((void __iomem *) &(cp->args[0]), arg, size);
2042 if (copyback) {
2043 portp->argp = arg;
2044 portp->argsize = size;
2047 writel(0, &cp->status);
2048 writel(cmd, &cp->cmd);
2049 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2050 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
2051 portp->portidx;
2052 writeb(readb(bits) | portp->portbit, bits);
2053 set_bit(ST_CMDING, &portp->state);
2054 EBRDDISABLE(brdp);
2057 static void stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback)
2059 unsigned long flags;
2061 spin_lock_irqsave(&brd_lock, flags);
2062 __stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
2063 spin_unlock_irqrestore(&brd_lock, flags);
2066 /*****************************************************************************/
2069 * Read data from shared memory. This assumes that the shared memory
2070 * is enabled and that interrupts are off. Basically we just empty out
2071 * the shared memory buffer into the tty buffer. Must be careful to
2072 * handle the case where we fill up the tty buffer, but still have
2073 * more chars to unload.
2076 static void stli_read(struct stlibrd *brdp, struct stliport *portp)
2078 cdkasyrq_t __iomem *rp;
2079 char __iomem *shbuf;
2080 struct tty_struct *tty;
2081 unsigned int head, tail, size;
2082 unsigned int len, stlen;
2084 if (test_bit(ST_RXSTOP, &portp->state))
2085 return;
2086 tty = tty_port_tty_get(&portp->port);
2087 if (tty == NULL)
2088 return;
2090 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2091 head = (unsigned int) readw(&rp->head);
2092 if (head != ((unsigned int) readw(&rp->head)))
2093 head = (unsigned int) readw(&rp->head);
2094 tail = (unsigned int) readw(&rp->tail);
2095 size = portp->rxsize;
2096 if (head >= tail) {
2097 len = head - tail;
2098 stlen = len;
2099 } else {
2100 len = size - (tail - head);
2101 stlen = size - tail;
2104 len = tty_buffer_request_room(tty, len);
2106 shbuf = (char __iomem *) EBRDGETMEMPTR(brdp, portp->rxoffset);
2108 while (len > 0) {
2109 unsigned char *cptr;
2111 stlen = min(len, stlen);
2112 tty_prepare_flip_string(tty, &cptr, stlen);
2113 memcpy_fromio(cptr, shbuf + tail, stlen);
2114 len -= stlen;
2115 tail += stlen;
2116 if (tail >= size) {
2117 tail = 0;
2118 stlen = head;
2121 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2122 writew(tail, &rp->tail);
2124 if (head != tail)
2125 set_bit(ST_RXING, &portp->state);
2127 tty_schedule_flip(tty);
2128 tty_kref_put(tty);
2131 /*****************************************************************************/
2134 * Set up and carry out any delayed commands. There is only a small set
2135 * of slave commands that can be done "off-level". So it is not too
2136 * difficult to deal with them here.
2139 static void stli_dodelaycmd(struct stliport *portp, cdkctrl_t __iomem *cp)
2141 int cmd;
2143 if (test_bit(ST_DOSIGS, &portp->state)) {
2144 if (test_bit(ST_DOFLUSHTX, &portp->state) &&
2145 test_bit(ST_DOFLUSHRX, &portp->state))
2146 cmd = A_SETSIGNALSF;
2147 else if (test_bit(ST_DOFLUSHTX, &portp->state))
2148 cmd = A_SETSIGNALSFTX;
2149 else if (test_bit(ST_DOFLUSHRX, &portp->state))
2150 cmd = A_SETSIGNALSFRX;
2151 else
2152 cmd = A_SETSIGNALS;
2153 clear_bit(ST_DOFLUSHTX, &portp->state);
2154 clear_bit(ST_DOFLUSHRX, &portp->state);
2155 clear_bit(ST_DOSIGS, &portp->state);
2156 memcpy_toio((void __iomem *) &(cp->args[0]), (void *) &portp->asig,
2157 sizeof(asysigs_t));
2158 writel(0, &cp->status);
2159 writel(cmd, &cp->cmd);
2160 set_bit(ST_CMDING, &portp->state);
2161 } else if (test_bit(ST_DOFLUSHTX, &portp->state) ||
2162 test_bit(ST_DOFLUSHRX, &portp->state)) {
2163 cmd = ((test_bit(ST_DOFLUSHTX, &portp->state)) ? FLUSHTX : 0);
2164 cmd |= ((test_bit(ST_DOFLUSHRX, &portp->state)) ? FLUSHRX : 0);
2165 clear_bit(ST_DOFLUSHTX, &portp->state);
2166 clear_bit(ST_DOFLUSHRX, &portp->state);
2167 memcpy_toio((void __iomem *) &(cp->args[0]), (void *) &cmd, sizeof(int));
2168 writel(0, &cp->status);
2169 writel(A_FLUSH, &cp->cmd);
2170 set_bit(ST_CMDING, &portp->state);
2174 /*****************************************************************************/
2177 * Host command service checking. This handles commands or messages
2178 * coming from the slave to the host. Must have board shared memory
2179 * enabled and interrupts off when called. Notice that by servicing the
2180 * read data last we don't need to change the shared memory pointer
2181 * during processing (which is a slow IO operation).
2182 * Return value indicates if this port is still awaiting actions from
2183 * the slave (like open, command, or even TX data being sent). If 0
2184 * then port is still busy, otherwise no longer busy.
2187 static int stli_hostcmd(struct stlibrd *brdp, struct stliport *portp)
2189 cdkasy_t __iomem *ap;
2190 cdkctrl_t __iomem *cp;
2191 struct tty_struct *tty;
2192 asynotify_t nt;
2193 unsigned long oldsigs;
2194 int rc, donerx;
2196 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
2197 cp = &ap->ctrl;
2200 * Check if we are waiting for an open completion message.
2202 if (test_bit(ST_OPENING, &portp->state)) {
2203 rc = readl(&cp->openarg);
2204 if (readb(&cp->open) == 0 && rc != 0) {
2205 if (rc > 0)
2206 rc--;
2207 writel(0, &cp->openarg);
2208 portp->rc = rc;
2209 clear_bit(ST_OPENING, &portp->state);
2210 wake_up_interruptible(&portp->raw_wait);
2215 * Check if we are waiting for a close completion message.
2217 if (test_bit(ST_CLOSING, &portp->state)) {
2218 rc = (int) readl(&cp->closearg);
2219 if (readb(&cp->close) == 0 && rc != 0) {
2220 if (rc > 0)
2221 rc--;
2222 writel(0, &cp->closearg);
2223 portp->rc = rc;
2224 clear_bit(ST_CLOSING, &portp->state);
2225 wake_up_interruptible(&portp->raw_wait);
2230 * Check if we are waiting for a command completion message. We may
2231 * need to copy out the command results associated with this command.
2233 if (test_bit(ST_CMDING, &portp->state)) {
2234 rc = readl(&cp->status);
2235 if (readl(&cp->cmd) == 0 && rc != 0) {
2236 if (rc > 0)
2237 rc--;
2238 if (portp->argp != NULL) {
2239 memcpy_fromio(portp->argp, (void __iomem *) &(cp->args[0]),
2240 portp->argsize);
2241 portp->argp = NULL;
2243 writel(0, &cp->status);
2244 portp->rc = rc;
2245 clear_bit(ST_CMDING, &portp->state);
2246 stli_dodelaycmd(portp, cp);
2247 wake_up_interruptible(&portp->raw_wait);
2252 * Check for any notification messages ready. This includes lots of
2253 * different types of events - RX chars ready, RX break received,
2254 * TX data low or empty in the slave, modem signals changed state.
2256 donerx = 0;
2258 if (ap->notify) {
2259 nt = ap->changed;
2260 ap->notify = 0;
2261 tty = tty_port_tty_get(&portp->port);
2263 if (nt.signal & SG_DCD) {
2264 oldsigs = portp->sigs;
2265 portp->sigs = stli_mktiocm(nt.sigvalue);
2266 clear_bit(ST_GETSIGS, &portp->state);
2267 if ((portp->sigs & TIOCM_CD) &&
2268 ((oldsigs & TIOCM_CD) == 0))
2269 wake_up_interruptible(&portp->port.open_wait);
2270 if ((oldsigs & TIOCM_CD) &&
2271 ((portp->sigs & TIOCM_CD) == 0)) {
2272 if (portp->port.flags & ASYNC_CHECK_CD) {
2273 if (tty)
2274 tty_hangup(tty);
2279 if (nt.data & DT_TXEMPTY)
2280 clear_bit(ST_TXBUSY, &portp->state);
2281 if (nt.data & (DT_TXEMPTY | DT_TXLOW)) {
2282 if (tty != NULL) {
2283 tty_wakeup(tty);
2284 EBRDENABLE(brdp);
2288 if ((nt.data & DT_RXBREAK) && (portp->rxmarkmsk & BRKINT)) {
2289 if (tty != NULL) {
2290 tty_insert_flip_char(tty, 0, TTY_BREAK);
2291 if (portp->port.flags & ASYNC_SAK) {
2292 do_SAK(tty);
2293 EBRDENABLE(brdp);
2295 tty_schedule_flip(tty);
2298 tty_kref_put(tty);
2300 if (nt.data & DT_RXBUSY) {
2301 donerx++;
2302 stli_read(brdp, portp);
2307 * It might seem odd that we are checking for more RX chars here.
2308 * But, we need to handle the case where the tty buffer was previously
2309 * filled, but we had more characters to pass up. The slave will not
2310 * send any more RX notify messages until the RX buffer has been emptied.
2311 * But it will leave the service bits on (since the buffer is not empty).
2312 * So from here we can try to process more RX chars.
2314 if ((!donerx) && test_bit(ST_RXING, &portp->state)) {
2315 clear_bit(ST_RXING, &portp->state);
2316 stli_read(brdp, portp);
2319 return((test_bit(ST_OPENING, &portp->state) ||
2320 test_bit(ST_CLOSING, &portp->state) ||
2321 test_bit(ST_CMDING, &portp->state) ||
2322 test_bit(ST_TXBUSY, &portp->state) ||
2323 test_bit(ST_RXING, &portp->state)) ? 0 : 1);
2326 /*****************************************************************************/
2329 * Service all ports on a particular board. Assumes that the boards
2330 * shared memory is enabled, and that the page pointer is pointed
2331 * at the cdk header structure.
2334 static void stli_brdpoll(struct stlibrd *brdp, cdkhdr_t __iomem *hdrp)
2336 struct stliport *portp;
2337 unsigned char hostbits[(STL_MAXCHANS / 8) + 1];
2338 unsigned char slavebits[(STL_MAXCHANS / 8) + 1];
2339 unsigned char __iomem *slavep;
2340 int bitpos, bitat, bitsize;
2341 int channr, nrdevs, slavebitchange;
2343 bitsize = brdp->bitsize;
2344 nrdevs = brdp->nrdevs;
2347 * Check if slave wants any service. Basically we try to do as
2348 * little work as possible here. There are 2 levels of service
2349 * bits. So if there is nothing to do we bail early. We check
2350 * 8 service bits at a time in the inner loop, so we can bypass
2351 * the lot if none of them want service.
2353 memcpy_fromio(&hostbits[0], (((unsigned char __iomem *) hdrp) + brdp->hostoffset),
2354 bitsize);
2356 memset(&slavebits[0], 0, bitsize);
2357 slavebitchange = 0;
2359 for (bitpos = 0; (bitpos < bitsize); bitpos++) {
2360 if (hostbits[bitpos] == 0)
2361 continue;
2362 channr = bitpos * 8;
2363 for (bitat = 0x1; (channr < nrdevs); channr++, bitat <<= 1) {
2364 if (hostbits[bitpos] & bitat) {
2365 portp = brdp->ports[(channr - 1)];
2366 if (stli_hostcmd(brdp, portp)) {
2367 slavebitchange++;
2368 slavebits[bitpos] |= bitat;
2375 * If any of the ports are no longer busy then update them in the
2376 * slave request bits. We need to do this after, since a host port
2377 * service may initiate more slave requests.
2379 if (slavebitchange) {
2380 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2381 slavep = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset;
2382 for (bitpos = 0; (bitpos < bitsize); bitpos++) {
2383 if (readb(slavebits + bitpos))
2384 writeb(readb(slavep + bitpos) & ~slavebits[bitpos], slavebits + bitpos);
2389 /*****************************************************************************/
2392 * Driver poll routine. This routine polls the boards in use and passes
2393 * messages back up to host when necessary. This is actually very
2394 * CPU efficient, since we will always have the kernel poll clock, it
2395 * adds only a few cycles when idle (since board service can be
2396 * determined very easily), but when loaded generates no interrupts
2397 * (with their expensive associated context change).
2400 static void stli_poll(unsigned long arg)
2402 cdkhdr_t __iomem *hdrp;
2403 struct stlibrd *brdp;
2404 unsigned int brdnr;
2406 mod_timer(&stli_timerlist, STLI_TIMEOUT);
2409 * Check each board and do any servicing required.
2411 for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
2412 brdp = stli_brds[brdnr];
2413 if (brdp == NULL)
2414 continue;
2415 if ((brdp->state & BST_STARTED) == 0)
2416 continue;
2418 spin_lock(&brd_lock);
2419 EBRDENABLE(brdp);
2420 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2421 if (readb(&hdrp->hostreq))
2422 stli_brdpoll(brdp, hdrp);
2423 EBRDDISABLE(brdp);
2424 spin_unlock(&brd_lock);
2428 /*****************************************************************************/
2431 * Translate the termios settings into the port setting structure of
2432 * the slave.
2435 static void stli_mkasyport(struct tty_struct *tty, struct stliport *portp,
2436 asyport_t *pp, struct ktermios *tiosp)
2438 memset(pp, 0, sizeof(asyport_t));
2441 * Start of by setting the baud, char size, parity and stop bit info.
2443 pp->baudout = tty_get_baud_rate(tty);
2444 if ((tiosp->c_cflag & CBAUD) == B38400) {
2445 if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
2446 pp->baudout = 57600;
2447 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
2448 pp->baudout = 115200;
2449 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
2450 pp->baudout = 230400;
2451 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
2452 pp->baudout = 460800;
2453 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
2454 pp->baudout = (portp->baud_base / portp->custom_divisor);
2456 if (pp->baudout > STL_MAXBAUD)
2457 pp->baudout = STL_MAXBAUD;
2458 pp->baudin = pp->baudout;
2460 switch (tiosp->c_cflag & CSIZE) {
2461 case CS5:
2462 pp->csize = 5;
2463 break;
2464 case CS6:
2465 pp->csize = 6;
2466 break;
2467 case CS7:
2468 pp->csize = 7;
2469 break;
2470 default:
2471 pp->csize = 8;
2472 break;
2475 if (tiosp->c_cflag & CSTOPB)
2476 pp->stopbs = PT_STOP2;
2477 else
2478 pp->stopbs = PT_STOP1;
2480 if (tiosp->c_cflag & PARENB) {
2481 if (tiosp->c_cflag & PARODD)
2482 pp->parity = PT_ODDPARITY;
2483 else
2484 pp->parity = PT_EVENPARITY;
2485 } else {
2486 pp->parity = PT_NOPARITY;
2490 * Set up any flow control options enabled.
2492 if (tiosp->c_iflag & IXON) {
2493 pp->flow |= F_IXON;
2494 if (tiosp->c_iflag & IXANY)
2495 pp->flow |= F_IXANY;
2497 if (tiosp->c_cflag & CRTSCTS)
2498 pp->flow |= (F_RTSFLOW | F_CTSFLOW);
2500 pp->startin = tiosp->c_cc[VSTART];
2501 pp->stopin = tiosp->c_cc[VSTOP];
2502 pp->startout = tiosp->c_cc[VSTART];
2503 pp->stopout = tiosp->c_cc[VSTOP];
2506 * Set up the RX char marking mask with those RX error types we must
2507 * catch. We can get the slave to help us out a little here, it will
2508 * ignore parity errors and breaks for us, and mark parity errors in
2509 * the data stream.
2511 if (tiosp->c_iflag & IGNPAR)
2512 pp->iflag |= FI_IGNRXERRS;
2513 if (tiosp->c_iflag & IGNBRK)
2514 pp->iflag |= FI_IGNBREAK;
2516 portp->rxmarkmsk = 0;
2517 if (tiosp->c_iflag & (INPCK | PARMRK))
2518 pp->iflag |= FI_1MARKRXERRS;
2519 if (tiosp->c_iflag & BRKINT)
2520 portp->rxmarkmsk |= BRKINT;
2523 * Set up clocal processing as required.
2525 if (tiosp->c_cflag & CLOCAL)
2526 portp->port.flags &= ~ASYNC_CHECK_CD;
2527 else
2528 portp->port.flags |= ASYNC_CHECK_CD;
2531 * Transfer any persistent flags into the asyport structure.
2533 pp->pflag = (portp->pflag & 0xffff);
2534 pp->vmin = (portp->pflag & P_RXIMIN) ? 1 : 0;
2535 pp->vtime = (portp->pflag & P_RXITIME) ? 1 : 0;
2536 pp->cc[1] = (portp->pflag & P_RXTHOLD) ? 1 : 0;
2539 /*****************************************************************************/
2542 * Construct a slave signals structure for setting the DTR and RTS
2543 * signals as specified.
2546 static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts)
2548 memset(sp, 0, sizeof(asysigs_t));
2549 if (dtr >= 0) {
2550 sp->signal |= SG_DTR;
2551 sp->sigvalue |= ((dtr > 0) ? SG_DTR : 0);
2553 if (rts >= 0) {
2554 sp->signal |= SG_RTS;
2555 sp->sigvalue |= ((rts > 0) ? SG_RTS : 0);
2559 /*****************************************************************************/
2562 * Convert the signals returned from the slave into a local TIOCM type
2563 * signals value. We keep them locally in TIOCM format.
2566 static long stli_mktiocm(unsigned long sigvalue)
2568 long tiocm = 0;
2569 tiocm |= ((sigvalue & SG_DCD) ? TIOCM_CD : 0);
2570 tiocm |= ((sigvalue & SG_CTS) ? TIOCM_CTS : 0);
2571 tiocm |= ((sigvalue & SG_RI) ? TIOCM_RI : 0);
2572 tiocm |= ((sigvalue & SG_DSR) ? TIOCM_DSR : 0);
2573 tiocm |= ((sigvalue & SG_DTR) ? TIOCM_DTR : 0);
2574 tiocm |= ((sigvalue & SG_RTS) ? TIOCM_RTS : 0);
2575 return(tiocm);
2578 /*****************************************************************************/
2581 * All panels and ports actually attached have been worked out. All
2582 * we need to do here is set up the appropriate per port data structures.
2585 static int stli_initports(struct stlibrd *brdp)
2587 struct stliport *portp;
2588 unsigned int i, panelnr, panelport;
2590 for (i = 0, panelnr = 0, panelport = 0; (i < brdp->nrports); i++) {
2591 portp = kzalloc(sizeof(struct stliport), GFP_KERNEL);
2592 if (!portp) {
2593 printk(KERN_WARNING "istallion: failed to allocate port structure\n");
2594 continue;
2596 tty_port_init(&portp->port);
2597 portp->port.ops = &stli_port_ops;
2598 portp->magic = STLI_PORTMAGIC;
2599 portp->portnr = i;
2600 portp->brdnr = brdp->brdnr;
2601 portp->panelnr = panelnr;
2602 portp->baud_base = STL_BAUDBASE;
2603 portp->port.close_delay = STL_CLOSEDELAY;
2604 portp->closing_wait = 30 * HZ;
2605 init_waitqueue_head(&portp->port.open_wait);
2606 init_waitqueue_head(&portp->port.close_wait);
2607 init_waitqueue_head(&portp->raw_wait);
2608 panelport++;
2609 if (panelport >= brdp->panels[panelnr]) {
2610 panelport = 0;
2611 panelnr++;
2613 brdp->ports[i] = portp;
2616 return 0;
2619 /*****************************************************************************/
2622 * All the following routines are board specific hardware operations.
2625 static void stli_ecpinit(struct stlibrd *brdp)
2627 unsigned long memconf;
2629 outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
2630 udelay(10);
2631 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2632 udelay(100);
2634 memconf = (brdp->memaddr & ECP_ATADDRMASK) >> ECP_ATADDRSHFT;
2635 outb(memconf, (brdp->iobase + ECP_ATMEMAR));
2638 /*****************************************************************************/
2640 static void stli_ecpenable(struct stlibrd *brdp)
2642 outb(ECP_ATENABLE, (brdp->iobase + ECP_ATCONFR));
2645 /*****************************************************************************/
2647 static void stli_ecpdisable(struct stlibrd *brdp)
2649 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2652 /*****************************************************************************/
2654 static void __iomem *stli_ecpgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2656 void __iomem *ptr;
2657 unsigned char val;
2659 if (offset > brdp->memsize) {
2660 printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2661 "range at line=%d(%d), brd=%d\n",
2662 (int) offset, line, __LINE__, brdp->brdnr);
2663 ptr = NULL;
2664 val = 0;
2665 } else {
2666 ptr = brdp->membase + (offset % ECP_ATPAGESIZE);
2667 val = (unsigned char) (offset / ECP_ATPAGESIZE);
2669 outb(val, (brdp->iobase + ECP_ATMEMPR));
2670 return(ptr);
2673 /*****************************************************************************/
2675 static void stli_ecpreset(struct stlibrd *brdp)
2677 outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
2678 udelay(10);
2679 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2680 udelay(500);
2683 /*****************************************************************************/
2685 static void stli_ecpintr(struct stlibrd *brdp)
2687 outb(0x1, brdp->iobase);
2690 /*****************************************************************************/
2693 * The following set of functions act on ECP EISA boards.
2696 static void stli_ecpeiinit(struct stlibrd *brdp)
2698 unsigned long memconf;
2700 outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
2701 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
2702 udelay(10);
2703 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
2704 udelay(500);
2706 memconf = (brdp->memaddr & ECP_EIADDRMASKL) >> ECP_EIADDRSHFTL;
2707 outb(memconf, (brdp->iobase + ECP_EIMEMARL));
2708 memconf = (brdp->memaddr & ECP_EIADDRMASKH) >> ECP_EIADDRSHFTH;
2709 outb(memconf, (brdp->iobase + ECP_EIMEMARH));
2712 /*****************************************************************************/
2714 static void stli_ecpeienable(struct stlibrd *brdp)
2716 outb(ECP_EIENABLE, (brdp->iobase + ECP_EICONFR));
2719 /*****************************************************************************/
2721 static void stli_ecpeidisable(struct stlibrd *brdp)
2723 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
2726 /*****************************************************************************/
2728 static void __iomem *stli_ecpeigetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2730 void __iomem *ptr;
2731 unsigned char val;
2733 if (offset > brdp->memsize) {
2734 printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2735 "range at line=%d(%d), brd=%d\n",
2736 (int) offset, line, __LINE__, brdp->brdnr);
2737 ptr = NULL;
2738 val = 0;
2739 } else {
2740 ptr = brdp->membase + (offset % ECP_EIPAGESIZE);
2741 if (offset < ECP_EIPAGESIZE)
2742 val = ECP_EIENABLE;
2743 else
2744 val = ECP_EIENABLE | 0x40;
2746 outb(val, (brdp->iobase + ECP_EICONFR));
2747 return(ptr);
2750 /*****************************************************************************/
2752 static void stli_ecpeireset(struct stlibrd *brdp)
2754 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
2755 udelay(10);
2756 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
2757 udelay(500);
2760 /*****************************************************************************/
2763 * The following set of functions act on ECP MCA boards.
2766 static void stli_ecpmcenable(struct stlibrd *brdp)
2768 outb(ECP_MCENABLE, (brdp->iobase + ECP_MCCONFR));
2771 /*****************************************************************************/
2773 static void stli_ecpmcdisable(struct stlibrd *brdp)
2775 outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
2778 /*****************************************************************************/
2780 static void __iomem *stli_ecpmcgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2782 void __iomem *ptr;
2783 unsigned char val;
2785 if (offset > brdp->memsize) {
2786 printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2787 "range at line=%d(%d), brd=%d\n",
2788 (int) offset, line, __LINE__, brdp->brdnr);
2789 ptr = NULL;
2790 val = 0;
2791 } else {
2792 ptr = brdp->membase + (offset % ECP_MCPAGESIZE);
2793 val = ((unsigned char) (offset / ECP_MCPAGESIZE)) | ECP_MCENABLE;
2795 outb(val, (brdp->iobase + ECP_MCCONFR));
2796 return(ptr);
2799 /*****************************************************************************/
2801 static void stli_ecpmcreset(struct stlibrd *brdp)
2803 outb(ECP_MCSTOP, (brdp->iobase + ECP_MCCONFR));
2804 udelay(10);
2805 outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
2806 udelay(500);
2809 /*****************************************************************************/
2812 * The following set of functions act on ECP PCI boards.
2815 static void stli_ecppciinit(struct stlibrd *brdp)
2817 outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
2818 udelay(10);
2819 outb(0, (brdp->iobase + ECP_PCICONFR));
2820 udelay(500);
2823 /*****************************************************************************/
2825 static void __iomem *stli_ecppcigetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2827 void __iomem *ptr;
2828 unsigned char val;
2830 if (offset > brdp->memsize) {
2831 printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2832 "range at line=%d(%d), board=%d\n",
2833 (int) offset, line, __LINE__, brdp->brdnr);
2834 ptr = NULL;
2835 val = 0;
2836 } else {
2837 ptr = brdp->membase + (offset % ECP_PCIPAGESIZE);
2838 val = (offset / ECP_PCIPAGESIZE) << 1;
2840 outb(val, (brdp->iobase + ECP_PCICONFR));
2841 return(ptr);
2844 /*****************************************************************************/
2846 static void stli_ecppcireset(struct stlibrd *brdp)
2848 outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
2849 udelay(10);
2850 outb(0, (brdp->iobase + ECP_PCICONFR));
2851 udelay(500);
2854 /*****************************************************************************/
2857 * The following routines act on ONboards.
2860 static void stli_onbinit(struct stlibrd *brdp)
2862 unsigned long memconf;
2864 outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
2865 udelay(10);
2866 outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
2867 mdelay(1000);
2869 memconf = (brdp->memaddr & ONB_ATADDRMASK) >> ONB_ATADDRSHFT;
2870 outb(memconf, (brdp->iobase + ONB_ATMEMAR));
2871 outb(0x1, brdp->iobase);
2872 mdelay(1);
2875 /*****************************************************************************/
2877 static void stli_onbenable(struct stlibrd *brdp)
2879 outb((brdp->enabval | ONB_ATENABLE), (brdp->iobase + ONB_ATCONFR));
2882 /*****************************************************************************/
2884 static void stli_onbdisable(struct stlibrd *brdp)
2886 outb((brdp->enabval | ONB_ATDISABLE), (brdp->iobase + ONB_ATCONFR));
2889 /*****************************************************************************/
2891 static void __iomem *stli_onbgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2893 void __iomem *ptr;
2895 if (offset > brdp->memsize) {
2896 printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2897 "range at line=%d(%d), brd=%d\n",
2898 (int) offset, line, __LINE__, brdp->brdnr);
2899 ptr = NULL;
2900 } else {
2901 ptr = brdp->membase + (offset % ONB_ATPAGESIZE);
2903 return(ptr);
2906 /*****************************************************************************/
2908 static void stli_onbreset(struct stlibrd *brdp)
2910 outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
2911 udelay(10);
2912 outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
2913 mdelay(1000);
2916 /*****************************************************************************/
2919 * The following routines act on ONboard EISA.
2922 static void stli_onbeinit(struct stlibrd *brdp)
2924 unsigned long memconf;
2926 outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
2927 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
2928 udelay(10);
2929 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
2930 mdelay(1000);
2932 memconf = (brdp->memaddr & ONB_EIADDRMASKL) >> ONB_EIADDRSHFTL;
2933 outb(memconf, (brdp->iobase + ONB_EIMEMARL));
2934 memconf = (brdp->memaddr & ONB_EIADDRMASKH) >> ONB_EIADDRSHFTH;
2935 outb(memconf, (brdp->iobase + ONB_EIMEMARH));
2936 outb(0x1, brdp->iobase);
2937 mdelay(1);
2940 /*****************************************************************************/
2942 static void stli_onbeenable(struct stlibrd *brdp)
2944 outb(ONB_EIENABLE, (brdp->iobase + ONB_EICONFR));
2947 /*****************************************************************************/
2949 static void stli_onbedisable(struct stlibrd *brdp)
2951 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
2954 /*****************************************************************************/
2956 static void __iomem *stli_onbegetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2958 void __iomem *ptr;
2959 unsigned char val;
2961 if (offset > brdp->memsize) {
2962 printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2963 "range at line=%d(%d), brd=%d\n",
2964 (int) offset, line, __LINE__, brdp->brdnr);
2965 ptr = NULL;
2966 val = 0;
2967 } else {
2968 ptr = brdp->membase + (offset % ONB_EIPAGESIZE);
2969 if (offset < ONB_EIPAGESIZE)
2970 val = ONB_EIENABLE;
2971 else
2972 val = ONB_EIENABLE | 0x40;
2974 outb(val, (brdp->iobase + ONB_EICONFR));
2975 return(ptr);
2978 /*****************************************************************************/
2980 static void stli_onbereset(struct stlibrd *brdp)
2982 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
2983 udelay(10);
2984 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
2985 mdelay(1000);
2988 /*****************************************************************************/
2991 * The following routines act on Brumby boards.
2994 static void stli_bbyinit(struct stlibrd *brdp)
2996 outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
2997 udelay(10);
2998 outb(0, (brdp->iobase + BBY_ATCONFR));
2999 mdelay(1000);
3000 outb(0x1, brdp->iobase);
3001 mdelay(1);
3004 /*****************************************************************************/
3006 static void __iomem *stli_bbygetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
3008 void __iomem *ptr;
3009 unsigned char val;
3011 BUG_ON(offset > brdp->memsize);
3013 ptr = brdp->membase + (offset % BBY_PAGESIZE);
3014 val = (unsigned char) (offset / BBY_PAGESIZE);
3015 outb(val, (brdp->iobase + BBY_ATCONFR));
3016 return(ptr);
3019 /*****************************************************************************/
3021 static void stli_bbyreset(struct stlibrd *brdp)
3023 outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
3024 udelay(10);
3025 outb(0, (brdp->iobase + BBY_ATCONFR));
3026 mdelay(1000);
3029 /*****************************************************************************/
3032 * The following routines act on original old Stallion boards.
3035 static void stli_stalinit(struct stlibrd *brdp)
3037 outb(0x1, brdp->iobase);
3038 mdelay(1000);
3041 /*****************************************************************************/
3043 static void __iomem *stli_stalgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
3045 BUG_ON(offset > brdp->memsize);
3046 return brdp->membase + (offset % STAL_PAGESIZE);
3049 /*****************************************************************************/
3051 static void stli_stalreset(struct stlibrd *brdp)
3053 u32 __iomem *vecp;
3055 vecp = (u32 __iomem *) (brdp->membase + 0x30);
3056 writel(0xffff0000, vecp);
3057 outb(0, brdp->iobase);
3058 mdelay(1000);
3061 /*****************************************************************************/
3064 * Try to find an ECP board and initialize it. This handles only ECP
3065 * board types.
3068 static int stli_initecp(struct stlibrd *brdp)
3070 cdkecpsig_t sig;
3071 cdkecpsig_t __iomem *sigsp;
3072 unsigned int status, nxtid;
3073 char *name;
3074 int retval, panelnr, nrports;
3076 if ((brdp->iobase == 0) || (brdp->memaddr == 0)) {
3077 retval = -ENODEV;
3078 goto err;
3081 brdp->iosize = ECP_IOSIZE;
3083 if (!request_region(brdp->iobase, brdp->iosize, "istallion")) {
3084 retval = -EIO;
3085 goto err;
3089 * Based on the specific board type setup the common vars to access
3090 * and enable shared memory. Set all board specific information now
3091 * as well.
3093 switch (brdp->brdtype) {
3094 case BRD_ECP:
3095 brdp->memsize = ECP_MEMSIZE;
3096 brdp->pagesize = ECP_ATPAGESIZE;
3097 brdp->init = stli_ecpinit;
3098 brdp->enable = stli_ecpenable;
3099 brdp->reenable = stli_ecpenable;
3100 brdp->disable = stli_ecpdisable;
3101 brdp->getmemptr = stli_ecpgetmemptr;
3102 brdp->intr = stli_ecpintr;
3103 brdp->reset = stli_ecpreset;
3104 name = "serial(EC8/64)";
3105 break;
3107 case BRD_ECPE:
3108 brdp->memsize = ECP_MEMSIZE;
3109 brdp->pagesize = ECP_EIPAGESIZE;
3110 brdp->init = stli_ecpeiinit;
3111 brdp->enable = stli_ecpeienable;
3112 brdp->reenable = stli_ecpeienable;
3113 brdp->disable = stli_ecpeidisable;
3114 brdp->getmemptr = stli_ecpeigetmemptr;
3115 brdp->intr = stli_ecpintr;
3116 brdp->reset = stli_ecpeireset;
3117 name = "serial(EC8/64-EI)";
3118 break;
3120 case BRD_ECPMC:
3121 brdp->memsize = ECP_MEMSIZE;
3122 brdp->pagesize = ECP_MCPAGESIZE;
3123 brdp->init = NULL;
3124 brdp->enable = stli_ecpmcenable;
3125 brdp->reenable = stli_ecpmcenable;
3126 brdp->disable = stli_ecpmcdisable;
3127 brdp->getmemptr = stli_ecpmcgetmemptr;
3128 brdp->intr = stli_ecpintr;
3129 brdp->reset = stli_ecpmcreset;
3130 name = "serial(EC8/64-MCA)";
3131 break;
3133 case BRD_ECPPCI:
3134 brdp->memsize = ECP_PCIMEMSIZE;
3135 brdp->pagesize = ECP_PCIPAGESIZE;
3136 brdp->init = stli_ecppciinit;
3137 brdp->enable = NULL;
3138 brdp->reenable = NULL;
3139 brdp->disable = NULL;
3140 brdp->getmemptr = stli_ecppcigetmemptr;
3141 brdp->intr = stli_ecpintr;
3142 brdp->reset = stli_ecppcireset;
3143 name = "serial(EC/RA-PCI)";
3144 break;
3146 default:
3147 retval = -EINVAL;
3148 goto err_reg;
3152 * The per-board operations structure is all set up, so now let's go
3153 * and get the board operational. Firstly initialize board configuration
3154 * registers. Set the memory mapping info so we can get at the boards
3155 * shared memory.
3157 EBRDINIT(brdp);
3159 brdp->membase = ioremap_nocache(brdp->memaddr, brdp->memsize);
3160 if (brdp->membase == NULL) {
3161 retval = -ENOMEM;
3162 goto err_reg;
3166 * Now that all specific code is set up, enable the shared memory and
3167 * look for the a signature area that will tell us exactly what board
3168 * this is, and what it is connected to it.
3170 EBRDENABLE(brdp);
3171 sigsp = (cdkecpsig_t __iomem *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
3172 memcpy_fromio(&sig, sigsp, sizeof(cdkecpsig_t));
3173 EBRDDISABLE(brdp);
3175 if (sig.magic != cpu_to_le32(ECP_MAGIC)) {
3176 retval = -ENODEV;
3177 goto err_unmap;
3181 * Scan through the signature looking at the panels connected to the
3182 * board. Calculate the total number of ports as we go.
3184 for (panelnr = 0, nxtid = 0; (panelnr < STL_MAXPANELS); panelnr++) {
3185 status = sig.panelid[nxtid];
3186 if ((status & ECH_PNLIDMASK) != nxtid)
3187 break;
3189 brdp->panelids[panelnr] = status;
3190 nrports = (status & ECH_PNL16PORT) ? 16 : 8;
3191 if ((nrports == 16) && ((status & ECH_PNLXPID) == 0))
3192 nxtid++;
3193 brdp->panels[panelnr] = nrports;
3194 brdp->nrports += nrports;
3195 nxtid++;
3196 brdp->nrpanels++;
3200 brdp->state |= BST_FOUND;
3201 return 0;
3202 err_unmap:
3203 iounmap(brdp->membase);
3204 brdp->membase = NULL;
3205 err_reg:
3206 release_region(brdp->iobase, brdp->iosize);
3207 err:
3208 return retval;
3211 /*****************************************************************************/
3214 * Try to find an ONboard, Brumby or Stallion board and initialize it.
3215 * This handles only these board types.
3218 static int stli_initonb(struct stlibrd *brdp)
3220 cdkonbsig_t sig;
3221 cdkonbsig_t __iomem *sigsp;
3222 char *name;
3223 int i, retval;
3226 * Do a basic sanity check on the IO and memory addresses.
3228 if (brdp->iobase == 0 || brdp->memaddr == 0) {
3229 retval = -ENODEV;
3230 goto err;
3233 brdp->iosize = ONB_IOSIZE;
3235 if (!request_region(brdp->iobase, brdp->iosize, "istallion")) {
3236 retval = -EIO;
3237 goto err;
3241 * Based on the specific board type setup the common vars to access
3242 * and enable shared memory. Set all board specific information now
3243 * as well.
3245 switch (brdp->brdtype) {
3246 case BRD_ONBOARD:
3247 case BRD_ONBOARD2:
3248 brdp->memsize = ONB_MEMSIZE;
3249 brdp->pagesize = ONB_ATPAGESIZE;
3250 brdp->init = stli_onbinit;
3251 brdp->enable = stli_onbenable;
3252 brdp->reenable = stli_onbenable;
3253 brdp->disable = stli_onbdisable;
3254 brdp->getmemptr = stli_onbgetmemptr;
3255 brdp->intr = stli_ecpintr;
3256 brdp->reset = stli_onbreset;
3257 if (brdp->memaddr > 0x100000)
3258 brdp->enabval = ONB_MEMENABHI;
3259 else
3260 brdp->enabval = ONB_MEMENABLO;
3261 name = "serial(ONBoard)";
3262 break;
3264 case BRD_ONBOARDE:
3265 brdp->memsize = ONB_EIMEMSIZE;
3266 brdp->pagesize = ONB_EIPAGESIZE;
3267 brdp->init = stli_onbeinit;
3268 brdp->enable = stli_onbeenable;
3269 brdp->reenable = stli_onbeenable;
3270 brdp->disable = stli_onbedisable;
3271 brdp->getmemptr = stli_onbegetmemptr;
3272 brdp->intr = stli_ecpintr;
3273 brdp->reset = stli_onbereset;
3274 name = "serial(ONBoard/E)";
3275 break;
3277 case BRD_BRUMBY4:
3278 brdp->memsize = BBY_MEMSIZE;
3279 brdp->pagesize = BBY_PAGESIZE;
3280 brdp->init = stli_bbyinit;
3281 brdp->enable = NULL;
3282 brdp->reenable = NULL;
3283 brdp->disable = NULL;
3284 brdp->getmemptr = stli_bbygetmemptr;
3285 brdp->intr = stli_ecpintr;
3286 brdp->reset = stli_bbyreset;
3287 name = "serial(Brumby)";
3288 break;
3290 case BRD_STALLION:
3291 brdp->memsize = STAL_MEMSIZE;
3292 brdp->pagesize = STAL_PAGESIZE;
3293 brdp->init = stli_stalinit;
3294 brdp->enable = NULL;
3295 brdp->reenable = NULL;
3296 brdp->disable = NULL;
3297 brdp->getmemptr = stli_stalgetmemptr;
3298 brdp->intr = stli_ecpintr;
3299 brdp->reset = stli_stalreset;
3300 name = "serial(Stallion)";
3301 break;
3303 default:
3304 retval = -EINVAL;
3305 goto err_reg;
3309 * The per-board operations structure is all set up, so now let's go
3310 * and get the board operational. Firstly initialize board configuration
3311 * registers. Set the memory mapping info so we can get at the boards
3312 * shared memory.
3314 EBRDINIT(brdp);
3316 brdp->membase = ioremap_nocache(brdp->memaddr, brdp->memsize);
3317 if (brdp->membase == NULL) {
3318 retval = -ENOMEM;
3319 goto err_reg;
3323 * Now that all specific code is set up, enable the shared memory and
3324 * look for the a signature area that will tell us exactly what board
3325 * this is, and how many ports.
3327 EBRDENABLE(brdp);
3328 sigsp = (cdkonbsig_t __iomem *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
3329 memcpy_fromio(&sig, sigsp, sizeof(cdkonbsig_t));
3330 EBRDDISABLE(brdp);
3332 if (sig.magic0 != cpu_to_le16(ONB_MAGIC0) ||
3333 sig.magic1 != cpu_to_le16(ONB_MAGIC1) ||
3334 sig.magic2 != cpu_to_le16(ONB_MAGIC2) ||
3335 sig.magic3 != cpu_to_le16(ONB_MAGIC3)) {
3336 retval = -ENODEV;
3337 goto err_unmap;
3341 * Scan through the signature alive mask and calculate how many ports
3342 * there are on this board.
3344 brdp->nrpanels = 1;
3345 if (sig.amask1) {
3346 brdp->nrports = 32;
3347 } else {
3348 for (i = 0; (i < 16); i++) {
3349 if (((sig.amask0 << i) & 0x8000) == 0)
3350 break;
3352 brdp->nrports = i;
3354 brdp->panels[0] = brdp->nrports;
3357 brdp->state |= BST_FOUND;
3358 return 0;
3359 err_unmap:
3360 iounmap(brdp->membase);
3361 brdp->membase = NULL;
3362 err_reg:
3363 release_region(brdp->iobase, brdp->iosize);
3364 err:
3365 return retval;
3368 /*****************************************************************************/
3371 * Start up a running board. This routine is only called after the
3372 * code has been down loaded to the board and is operational. It will
3373 * read in the memory map, and get the show on the road...
3376 static int stli_startbrd(struct stlibrd *brdp)
3378 cdkhdr_t __iomem *hdrp;
3379 cdkmem_t __iomem *memp;
3380 cdkasy_t __iomem *ap;
3381 unsigned long flags;
3382 unsigned int portnr, nrdevs, i;
3383 struct stliport *portp;
3384 int rc = 0;
3385 u32 memoff;
3387 spin_lock_irqsave(&brd_lock, flags);
3388 EBRDENABLE(brdp);
3389 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
3390 nrdevs = hdrp->nrdevs;
3392 #if 0
3393 printk("%s(%d): CDK version %d.%d.%d --> "
3394 "nrdevs=%d memp=%x hostp=%x slavep=%x\n",
3395 __FILE__, __LINE__, readb(&hdrp->ver_release), readb(&hdrp->ver_modification),
3396 readb(&hdrp->ver_fix), nrdevs, (int) readl(&hdrp->memp), readl(&hdrp->hostp),
3397 readl(&hdrp->slavep));
3398 #endif
3400 if (nrdevs < (brdp->nrports + 1)) {
3401 printk(KERN_ERR "istallion: slave failed to allocate memory for "
3402 "all devices, devices=%d\n", nrdevs);
3403 brdp->nrports = nrdevs - 1;
3405 brdp->nrdevs = nrdevs;
3406 brdp->hostoffset = hdrp->hostp - CDK_CDKADDR;
3407 brdp->slaveoffset = hdrp->slavep - CDK_CDKADDR;
3408 brdp->bitsize = (nrdevs + 7) / 8;
3409 memoff = readl(&hdrp->memp);
3410 if (memoff > brdp->memsize) {
3411 printk(KERN_ERR "istallion: corrupted shared memory region?\n");
3412 rc = -EIO;
3413 goto stli_donestartup;
3415 memp = (cdkmem_t __iomem *) EBRDGETMEMPTR(brdp, memoff);
3416 if (readw(&memp->dtype) != TYP_ASYNCTRL) {
3417 printk(KERN_ERR "istallion: no slave control device found\n");
3418 goto stli_donestartup;
3420 memp++;
3423 * Cycle through memory allocation of each port. We are guaranteed to
3424 * have all ports inside the first page of slave window, so no need to
3425 * change pages while reading memory map.
3427 for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++, memp++) {
3428 if (readw(&memp->dtype) != TYP_ASYNC)
3429 break;
3430 portp = brdp->ports[portnr];
3431 if (portp == NULL)
3432 break;
3433 portp->devnr = i;
3434 portp->addr = readl(&memp->offset);
3435 portp->reqbit = (unsigned char) (0x1 << (i * 8 / nrdevs));
3436 portp->portidx = (unsigned char) (i / 8);
3437 portp->portbit = (unsigned char) (0x1 << (i % 8));
3440 writeb(0xff, &hdrp->slavereq);
3443 * For each port setup a local copy of the RX and TX buffer offsets
3444 * and sizes. We do this separate from the above, because we need to
3445 * move the shared memory page...
3447 for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++) {
3448 portp = brdp->ports[portnr];
3449 if (portp == NULL)
3450 break;
3451 if (portp->addr == 0)
3452 break;
3453 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
3454 if (ap != NULL) {
3455 portp->rxsize = readw(&ap->rxq.size);
3456 portp->txsize = readw(&ap->txq.size);
3457 portp->rxoffset = readl(&ap->rxq.offset);
3458 portp->txoffset = readl(&ap->txq.offset);
3462 stli_donestartup:
3463 EBRDDISABLE(brdp);
3464 spin_unlock_irqrestore(&brd_lock, flags);
3466 if (rc == 0)
3467 brdp->state |= BST_STARTED;
3469 if (! stli_timeron) {
3470 stli_timeron++;
3471 mod_timer(&stli_timerlist, STLI_TIMEOUT);
3474 return rc;
3477 /*****************************************************************************/
3480 * Probe and initialize the specified board.
3483 static int __devinit stli_brdinit(struct stlibrd *brdp)
3485 int retval;
3487 switch (brdp->brdtype) {
3488 case BRD_ECP:
3489 case BRD_ECPE:
3490 case BRD_ECPMC:
3491 case BRD_ECPPCI:
3492 retval = stli_initecp(brdp);
3493 break;
3494 case BRD_ONBOARD:
3495 case BRD_ONBOARDE:
3496 case BRD_ONBOARD2:
3497 case BRD_BRUMBY4:
3498 case BRD_STALLION:
3499 retval = stli_initonb(brdp);
3500 break;
3501 default:
3502 printk(KERN_ERR "istallion: board=%d is unknown board "
3503 "type=%d\n", brdp->brdnr, brdp->brdtype);
3504 retval = -ENODEV;
3507 if (retval)
3508 return retval;
3510 stli_initports(brdp);
3511 printk(KERN_INFO "istallion: %s found, board=%d io=%x mem=%x "
3512 "nrpanels=%d nrports=%d\n", stli_brdnames[brdp->brdtype],
3513 brdp->brdnr, brdp->iobase, (int) brdp->memaddr,
3514 brdp->nrpanels, brdp->nrports);
3515 return 0;
3518 #if STLI_EISAPROBE != 0
3519 /*****************************************************************************/
3522 * Probe around trying to find where the EISA boards shared memory
3523 * might be. This is a bit if hack, but it is the best we can do.
3526 static int stli_eisamemprobe(struct stlibrd *brdp)
3528 cdkecpsig_t ecpsig, __iomem *ecpsigp;
3529 cdkonbsig_t onbsig, __iomem *onbsigp;
3530 int i, foundit;
3533 * First up we reset the board, to get it into a known state. There
3534 * is only 2 board types here we need to worry about. Don;t use the
3535 * standard board init routine here, it programs up the shared
3536 * memory address, and we don't know it yet...
3538 if (brdp->brdtype == BRD_ECPE) {
3539 outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
3540 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
3541 udelay(10);
3542 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3543 udelay(500);
3544 stli_ecpeienable(brdp);
3545 } else if (brdp->brdtype == BRD_ONBOARDE) {
3546 outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
3547 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3548 udelay(10);
3549 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3550 mdelay(100);
3551 outb(0x1, brdp->iobase);
3552 mdelay(1);
3553 stli_onbeenable(brdp);
3554 } else {
3555 return -ENODEV;
3558 foundit = 0;
3559 brdp->memsize = ECP_MEMSIZE;
3562 * Board shared memory is enabled, so now we have a poke around and
3563 * see if we can find it.
3565 for (i = 0; (i < stli_eisamempsize); i++) {
3566 brdp->memaddr = stli_eisamemprobeaddrs[i];
3567 brdp->membase = ioremap_nocache(brdp->memaddr, brdp->memsize);
3568 if (brdp->membase == NULL)
3569 continue;
3571 if (brdp->brdtype == BRD_ECPE) {
3572 ecpsigp = stli_ecpeigetmemptr(brdp,
3573 CDK_SIGADDR, __LINE__);
3574 memcpy_fromio(&ecpsig, ecpsigp, sizeof(cdkecpsig_t));
3575 if (ecpsig.magic == cpu_to_le32(ECP_MAGIC))
3576 foundit = 1;
3577 } else {
3578 onbsigp = (cdkonbsig_t __iomem *) stli_onbegetmemptr(brdp,
3579 CDK_SIGADDR, __LINE__);
3580 memcpy_fromio(&onbsig, onbsigp, sizeof(cdkonbsig_t));
3581 if ((onbsig.magic0 == cpu_to_le16(ONB_MAGIC0)) &&
3582 (onbsig.magic1 == cpu_to_le16(ONB_MAGIC1)) &&
3583 (onbsig.magic2 == cpu_to_le16(ONB_MAGIC2)) &&
3584 (onbsig.magic3 == cpu_to_le16(ONB_MAGIC3)))
3585 foundit = 1;
3588 iounmap(brdp->membase);
3589 if (foundit)
3590 break;
3594 * Regardless of whether we found the shared memory or not we must
3595 * disable the region. After that return success or failure.
3597 if (brdp->brdtype == BRD_ECPE)
3598 stli_ecpeidisable(brdp);
3599 else
3600 stli_onbedisable(brdp);
3602 if (! foundit) {
3603 brdp->memaddr = 0;
3604 brdp->membase = NULL;
3605 printk(KERN_ERR "istallion: failed to probe shared memory "
3606 "region for %s in EISA slot=%d\n",
3607 stli_brdnames[brdp->brdtype], (brdp->iobase >> 12));
3608 return -ENODEV;
3610 return 0;
3612 #endif
3614 static int stli_getbrdnr(void)
3616 unsigned int i;
3618 for (i = 0; i < STL_MAXBRDS; i++) {
3619 if (!stli_brds[i]) {
3620 if (i >= stli_nrbrds)
3621 stli_nrbrds = i + 1;
3622 return i;
3625 return -1;
3628 #if STLI_EISAPROBE != 0
3629 /*****************************************************************************/
3632 * Probe around and try to find any EISA boards in system. The biggest
3633 * problem here is finding out what memory address is associated with
3634 * an EISA board after it is found. The registers of the ECPE and
3635 * ONboardE are not readable - so we can't read them from there. We
3636 * don't have access to the EISA CMOS (or EISA BIOS) so we don't
3637 * actually have any way to find out the real value. The best we can
3638 * do is go probing around in the usual places hoping we can find it.
3641 static int __init stli_findeisabrds(void)
3643 struct stlibrd *brdp;
3644 unsigned int iobase, eid, i;
3645 int brdnr, found = 0;
3648 * Firstly check if this is an EISA system. If this is not an EISA system then
3649 * don't bother going any further!
3651 if (EISA_bus)
3652 return 0;
3655 * Looks like an EISA system, so go searching for EISA boards.
3657 for (iobase = 0x1000; (iobase <= 0xc000); iobase += 0x1000) {
3658 outb(0xff, (iobase + 0xc80));
3659 eid = inb(iobase + 0xc80);
3660 eid |= inb(iobase + 0xc81) << 8;
3661 if (eid != STL_EISAID)
3662 continue;
3665 * We have found a board. Need to check if this board was
3666 * statically configured already (just in case!).
3668 for (i = 0; (i < STL_MAXBRDS); i++) {
3669 brdp = stli_brds[i];
3670 if (brdp == NULL)
3671 continue;
3672 if (brdp->iobase == iobase)
3673 break;
3675 if (i < STL_MAXBRDS)
3676 continue;
3679 * We have found a Stallion board and it is not configured already.
3680 * Allocate a board structure and initialize it.
3682 if ((brdp = stli_allocbrd()) == NULL)
3683 return found ? : -ENOMEM;
3684 brdnr = stli_getbrdnr();
3685 if (brdnr < 0)
3686 return found ? : -ENOMEM;
3687 brdp->brdnr = (unsigned int)brdnr;
3688 eid = inb(iobase + 0xc82);
3689 if (eid == ECP_EISAID)
3690 brdp->brdtype = BRD_ECPE;
3691 else if (eid == ONB_EISAID)
3692 brdp->brdtype = BRD_ONBOARDE;
3693 else
3694 brdp->brdtype = BRD_UNKNOWN;
3695 brdp->iobase = iobase;
3696 outb(0x1, (iobase + 0xc84));
3697 if (stli_eisamemprobe(brdp))
3698 outb(0, (iobase + 0xc84));
3699 if (stli_brdinit(brdp) < 0) {
3700 kfree(brdp);
3701 continue;
3704 stli_brds[brdp->brdnr] = brdp;
3705 found++;
3707 for (i = 0; i < brdp->nrports; i++)
3708 tty_register_device(stli_serial,
3709 brdp->brdnr * STL_MAXPORTS + i, NULL);
3712 return found;
3714 #else
3715 static inline int stli_findeisabrds(void) { return 0; }
3716 #endif
3718 /*****************************************************************************/
3721 * Find the next available board number that is free.
3724 /*****************************************************************************/
3727 * We have a Stallion board. Allocate a board structure and
3728 * initialize it. Read its IO and MEMORY resources from PCI
3729 * configuration space.
3732 static int __devinit stli_pciprobe(struct pci_dev *pdev,
3733 const struct pci_device_id *ent)
3735 struct stlibrd *brdp;
3736 unsigned int i;
3737 int brdnr, retval = -EIO;
3739 retval = pci_enable_device(pdev);
3740 if (retval)
3741 goto err;
3742 brdp = stli_allocbrd();
3743 if (brdp == NULL) {
3744 retval = -ENOMEM;
3745 goto err;
3747 mutex_lock(&stli_brdslock);
3748 brdnr = stli_getbrdnr();
3749 if (brdnr < 0) {
3750 printk(KERN_INFO "istallion: too many boards found, "
3751 "maximum supported %d\n", STL_MAXBRDS);
3752 mutex_unlock(&stli_brdslock);
3753 retval = -EIO;
3754 goto err_fr;
3756 brdp->brdnr = (unsigned int)brdnr;
3757 stli_brds[brdp->brdnr] = brdp;
3758 mutex_unlock(&stli_brdslock);
3759 brdp->brdtype = BRD_ECPPCI;
3761 * We have all resources from the board, so lets setup the actual
3762 * board structure now.
3764 brdp->iobase = pci_resource_start(pdev, 3);
3765 brdp->memaddr = pci_resource_start(pdev, 2);
3766 retval = stli_brdinit(brdp);
3767 if (retval)
3768 goto err_null;
3770 brdp->state |= BST_PROBED;
3771 pci_set_drvdata(pdev, brdp);
3773 EBRDENABLE(brdp);
3774 brdp->enable = NULL;
3775 brdp->disable = NULL;
3777 for (i = 0; i < brdp->nrports; i++)
3778 tty_register_device(stli_serial, brdp->brdnr * STL_MAXPORTS + i,
3779 &pdev->dev);
3781 return 0;
3782 err_null:
3783 stli_brds[brdp->brdnr] = NULL;
3784 err_fr:
3785 kfree(brdp);
3786 err:
3787 return retval;
3790 static void __devexit stli_pciremove(struct pci_dev *pdev)
3792 struct stlibrd *brdp = pci_get_drvdata(pdev);
3794 stli_cleanup_ports(brdp);
3796 iounmap(brdp->membase);
3797 if (brdp->iosize > 0)
3798 release_region(brdp->iobase, brdp->iosize);
3800 stli_brds[brdp->brdnr] = NULL;
3801 kfree(brdp);
3804 static struct pci_driver stli_pcidriver = {
3805 .name = "istallion",
3806 .id_table = istallion_pci_tbl,
3807 .probe = stli_pciprobe,
3808 .remove = __devexit_p(stli_pciremove)
3810 /*****************************************************************************/
3813 * Allocate a new board structure. Fill out the basic info in it.
3816 static struct stlibrd *stli_allocbrd(void)
3818 struct stlibrd *brdp;
3820 brdp = kzalloc(sizeof(struct stlibrd), GFP_KERNEL);
3821 if (!brdp) {
3822 printk(KERN_ERR "istallion: failed to allocate memory "
3823 "(size=%Zd)\n", sizeof(struct stlibrd));
3824 return NULL;
3826 brdp->magic = STLI_BOARDMAGIC;
3827 return brdp;
3830 /*****************************************************************************/
3833 * Scan through all the boards in the configuration and see what we
3834 * can find.
3837 static int __init stli_initbrds(void)
3839 struct stlibrd *brdp, *nxtbrdp;
3840 struct stlconf conf;
3841 unsigned int i, j, found = 0;
3842 int retval;
3844 for (stli_nrbrds = 0; stli_nrbrds < ARRAY_SIZE(stli_brdsp);
3845 stli_nrbrds++) {
3846 memset(&conf, 0, sizeof(conf));
3847 if (stli_parsebrd(&conf, stli_brdsp[stli_nrbrds]) == 0)
3848 continue;
3849 if ((brdp = stli_allocbrd()) == NULL)
3850 continue;
3851 brdp->brdnr = stli_nrbrds;
3852 brdp->brdtype = conf.brdtype;
3853 brdp->iobase = conf.ioaddr1;
3854 brdp->memaddr = conf.memaddr;
3855 if (stli_brdinit(brdp) < 0) {
3856 kfree(brdp);
3857 continue;
3859 stli_brds[brdp->brdnr] = brdp;
3860 found++;
3862 for (i = 0; i < brdp->nrports; i++)
3863 tty_register_device(stli_serial,
3864 brdp->brdnr * STL_MAXPORTS + i, NULL);
3867 retval = stli_findeisabrds();
3868 if (retval > 0)
3869 found += retval;
3872 * All found boards are initialized. Now for a little optimization, if
3873 * no boards are sharing the "shared memory" regions then we can just
3874 * leave them all enabled. This is in fact the usual case.
3876 stli_shared = 0;
3877 if (stli_nrbrds > 1) {
3878 for (i = 0; (i < stli_nrbrds); i++) {
3879 brdp = stli_brds[i];
3880 if (brdp == NULL)
3881 continue;
3882 for (j = i + 1; (j < stli_nrbrds); j++) {
3883 nxtbrdp = stli_brds[j];
3884 if (nxtbrdp == NULL)
3885 continue;
3886 if ((brdp->membase >= nxtbrdp->membase) &&
3887 (brdp->membase <= (nxtbrdp->membase +
3888 nxtbrdp->memsize - 1))) {
3889 stli_shared++;
3890 break;
3896 if (stli_shared == 0) {
3897 for (i = 0; (i < stli_nrbrds); i++) {
3898 brdp = stli_brds[i];
3899 if (brdp == NULL)
3900 continue;
3901 if (brdp->state & BST_FOUND) {
3902 EBRDENABLE(brdp);
3903 brdp->enable = NULL;
3904 brdp->disable = NULL;
3909 retval = pci_register_driver(&stli_pcidriver);
3910 if (retval && found == 0) {
3911 printk(KERN_ERR "Neither isa nor eisa cards found nor pci "
3912 "driver can be registered!\n");
3913 goto err;
3916 return 0;
3917 err:
3918 return retval;
3921 /*****************************************************************************/
3924 * Code to handle an "staliomem" read operation. This device is the
3925 * contents of the board shared memory. It is used for down loading
3926 * the slave image (and debugging :-)
3929 static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp)
3931 unsigned long flags;
3932 void __iomem *memptr;
3933 struct stlibrd *brdp;
3934 unsigned int brdnr;
3935 int size, n;
3936 void *p;
3937 loff_t off = *offp;
3939 brdnr = iminor(fp->f_path.dentry->d_inode);
3940 if (brdnr >= stli_nrbrds)
3941 return -ENODEV;
3942 brdp = stli_brds[brdnr];
3943 if (brdp == NULL)
3944 return -ENODEV;
3945 if (brdp->state == 0)
3946 return -ENODEV;
3947 if (off >= brdp->memsize || off + count < off)
3948 return 0;
3950 size = min(count, (size_t)(brdp->memsize - off));
3953 * Copy the data a page at a time
3956 p = (void *)__get_free_page(GFP_KERNEL);
3957 if(p == NULL)
3958 return -ENOMEM;
3960 while (size > 0) {
3961 spin_lock_irqsave(&brd_lock, flags);
3962 EBRDENABLE(brdp);
3963 memptr = EBRDGETMEMPTR(brdp, off);
3964 n = min(size, (int)(brdp->pagesize - (((unsigned long) off) % brdp->pagesize)));
3965 n = min(n, (int)PAGE_SIZE);
3966 memcpy_fromio(p, memptr, n);
3967 EBRDDISABLE(brdp);
3968 spin_unlock_irqrestore(&brd_lock, flags);
3969 if (copy_to_user(buf, p, n)) {
3970 count = -EFAULT;
3971 goto out;
3973 off += n;
3974 buf += n;
3975 size -= n;
3977 out:
3978 *offp = off;
3979 free_page((unsigned long)p);
3980 return count;
3983 /*****************************************************************************/
3986 * Code to handle an "staliomem" write operation. This device is the
3987 * contents of the board shared memory. It is used for down loading
3988 * the slave image (and debugging :-)
3990 * FIXME: copy under lock
3993 static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp)
3995 unsigned long flags;
3996 void __iomem *memptr;
3997 struct stlibrd *brdp;
3998 char __user *chbuf;
3999 unsigned int brdnr;
4000 int size, n;
4001 void *p;
4002 loff_t off = *offp;
4004 brdnr = iminor(fp->f_path.dentry->d_inode);
4006 if (brdnr >= stli_nrbrds)
4007 return -ENODEV;
4008 brdp = stli_brds[brdnr];
4009 if (brdp == NULL)
4010 return -ENODEV;
4011 if (brdp->state == 0)
4012 return -ENODEV;
4013 if (off >= brdp->memsize || off + count < off)
4014 return 0;
4016 chbuf = (char __user *) buf;
4017 size = min(count, (size_t)(brdp->memsize - off));
4020 * Copy the data a page at a time
4023 p = (void *)__get_free_page(GFP_KERNEL);
4024 if(p == NULL)
4025 return -ENOMEM;
4027 while (size > 0) {
4028 n = min(size, (int)(brdp->pagesize - (((unsigned long) off) % brdp->pagesize)));
4029 n = min(n, (int)PAGE_SIZE);
4030 if (copy_from_user(p, chbuf, n)) {
4031 if (count == 0)
4032 count = -EFAULT;
4033 goto out;
4035 spin_lock_irqsave(&brd_lock, flags);
4036 EBRDENABLE(brdp);
4037 memptr = EBRDGETMEMPTR(brdp, off);
4038 memcpy_toio(memptr, p, n);
4039 EBRDDISABLE(brdp);
4040 spin_unlock_irqrestore(&brd_lock, flags);
4041 off += n;
4042 chbuf += n;
4043 size -= n;
4045 out:
4046 free_page((unsigned long) p);
4047 *offp = off;
4048 return count;
4051 /*****************************************************************************/
4054 * Return the board stats structure to user app.
4057 static int stli_getbrdstats(combrd_t __user *bp)
4059 struct stlibrd *brdp;
4060 unsigned int i;
4062 if (copy_from_user(&stli_brdstats, bp, sizeof(combrd_t)))
4063 return -EFAULT;
4064 if (stli_brdstats.brd >= STL_MAXBRDS)
4065 return -ENODEV;
4066 brdp = stli_brds[stli_brdstats.brd];
4067 if (brdp == NULL)
4068 return -ENODEV;
4070 memset(&stli_brdstats, 0, sizeof(combrd_t));
4071 stli_brdstats.brd = brdp->brdnr;
4072 stli_brdstats.type = brdp->brdtype;
4073 stli_brdstats.hwid = 0;
4074 stli_brdstats.state = brdp->state;
4075 stli_brdstats.ioaddr = brdp->iobase;
4076 stli_brdstats.memaddr = brdp->memaddr;
4077 stli_brdstats.nrpanels = brdp->nrpanels;
4078 stli_brdstats.nrports = brdp->nrports;
4079 for (i = 0; (i < brdp->nrpanels); i++) {
4080 stli_brdstats.panels[i].panel = i;
4081 stli_brdstats.panels[i].hwid = brdp->panelids[i];
4082 stli_brdstats.panels[i].nrports = brdp->panels[i];
4085 if (copy_to_user(bp, &stli_brdstats, sizeof(combrd_t)))
4086 return -EFAULT;
4087 return 0;
4090 /*****************************************************************************/
4093 * Resolve the referenced port number into a port struct pointer.
4096 static struct stliport *stli_getport(unsigned int brdnr, unsigned int panelnr,
4097 unsigned int portnr)
4099 struct stlibrd *brdp;
4100 unsigned int i;
4102 if (brdnr >= STL_MAXBRDS)
4103 return NULL;
4104 brdp = stli_brds[brdnr];
4105 if (brdp == NULL)
4106 return NULL;
4107 for (i = 0; (i < panelnr); i++)
4108 portnr += brdp->panels[i];
4109 if (portnr >= brdp->nrports)
4110 return NULL;
4111 return brdp->ports[portnr];
4114 /*****************************************************************************/
4117 * Return the port stats structure to user app. A NULL port struct
4118 * pointer passed in means that we need to find out from the app
4119 * what port to get stats for (used through board control device).
4122 static int stli_portcmdstats(struct tty_struct *tty, struct stliport *portp)
4124 unsigned long flags;
4125 struct stlibrd *brdp;
4126 int rc;
4128 memset(&stli_comstats, 0, sizeof(comstats_t));
4130 if (portp == NULL)
4131 return -ENODEV;
4132 brdp = stli_brds[portp->brdnr];
4133 if (brdp == NULL)
4134 return -ENODEV;
4136 if (brdp->state & BST_STARTED) {
4137 if ((rc = stli_cmdwait(brdp, portp, A_GETSTATS,
4138 &stli_cdkstats, sizeof(asystats_t), 1)) < 0)
4139 return rc;
4140 } else {
4141 memset(&stli_cdkstats, 0, sizeof(asystats_t));
4144 stli_comstats.brd = portp->brdnr;
4145 stli_comstats.panel = portp->panelnr;
4146 stli_comstats.port = portp->portnr;
4147 stli_comstats.state = portp->state;
4148 stli_comstats.flags = portp->port.flags;
4150 spin_lock_irqsave(&brd_lock, flags);
4151 if (tty != NULL) {
4152 if (portp->port.tty == tty) {
4153 stli_comstats.ttystate = tty->flags;
4154 stli_comstats.rxbuffered = -1;
4155 if (tty->termios != NULL) {
4156 stli_comstats.cflags = tty->termios->c_cflag;
4157 stli_comstats.iflags = tty->termios->c_iflag;
4158 stli_comstats.oflags = tty->termios->c_oflag;
4159 stli_comstats.lflags = tty->termios->c_lflag;
4163 spin_unlock_irqrestore(&brd_lock, flags);
4165 stli_comstats.txtotal = stli_cdkstats.txchars;
4166 stli_comstats.rxtotal = stli_cdkstats.rxchars + stli_cdkstats.ringover;
4167 stli_comstats.txbuffered = stli_cdkstats.txringq;
4168 stli_comstats.rxbuffered += stli_cdkstats.rxringq;
4169 stli_comstats.rxoverrun = stli_cdkstats.overruns;
4170 stli_comstats.rxparity = stli_cdkstats.parity;
4171 stli_comstats.rxframing = stli_cdkstats.framing;
4172 stli_comstats.rxlost = stli_cdkstats.ringover;
4173 stli_comstats.rxbreaks = stli_cdkstats.rxbreaks;
4174 stli_comstats.txbreaks = stli_cdkstats.txbreaks;
4175 stli_comstats.txxon = stli_cdkstats.txstart;
4176 stli_comstats.txxoff = stli_cdkstats.txstop;
4177 stli_comstats.rxxon = stli_cdkstats.rxstart;
4178 stli_comstats.rxxoff = stli_cdkstats.rxstop;
4179 stli_comstats.rxrtsoff = stli_cdkstats.rtscnt / 2;
4180 stli_comstats.rxrtson = stli_cdkstats.rtscnt - stli_comstats.rxrtsoff;
4181 stli_comstats.modem = stli_cdkstats.dcdcnt;
4182 stli_comstats.hwid = stli_cdkstats.hwid;
4183 stli_comstats.signals = stli_mktiocm(stli_cdkstats.signals);
4185 return 0;
4188 /*****************************************************************************/
4191 * Return the port stats structure to user app. A NULL port struct
4192 * pointer passed in means that we need to find out from the app
4193 * what port to get stats for (used through board control device).
4196 static int stli_getportstats(struct tty_struct *tty, struct stliport *portp,
4197 comstats_t __user *cp)
4199 struct stlibrd *brdp;
4200 int rc;
4202 if (!portp) {
4203 if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
4204 return -EFAULT;
4205 portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
4206 stli_comstats.port);
4207 if (!portp)
4208 return -ENODEV;
4211 brdp = stli_brds[portp->brdnr];
4212 if (!brdp)
4213 return -ENODEV;
4215 if ((rc = stli_portcmdstats(tty, portp)) < 0)
4216 return rc;
4218 return copy_to_user(cp, &stli_comstats, sizeof(comstats_t)) ?
4219 -EFAULT : 0;
4222 /*****************************************************************************/
4225 * Clear the port stats structure. We also return it zeroed out...
4228 static int stli_clrportstats(struct stliport *portp, comstats_t __user *cp)
4230 struct stlibrd *brdp;
4231 int rc;
4233 if (!portp) {
4234 if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
4235 return -EFAULT;
4236 portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
4237 stli_comstats.port);
4238 if (!portp)
4239 return -ENODEV;
4242 brdp = stli_brds[portp->brdnr];
4243 if (!brdp)
4244 return -ENODEV;
4246 if (brdp->state & BST_STARTED) {
4247 if ((rc = stli_cmdwait(brdp, portp, A_CLEARSTATS, NULL, 0, 0)) < 0)
4248 return rc;
4251 memset(&stli_comstats, 0, sizeof(comstats_t));
4252 stli_comstats.brd = portp->brdnr;
4253 stli_comstats.panel = portp->panelnr;
4254 stli_comstats.port = portp->portnr;
4256 if (copy_to_user(cp, &stli_comstats, sizeof(comstats_t)))
4257 return -EFAULT;
4258 return 0;
4261 /*****************************************************************************/
4264 * Return the entire driver ports structure to a user app.
4267 static int stli_getportstruct(struct stliport __user *arg)
4269 struct stliport stli_dummyport;
4270 struct stliport *portp;
4272 if (copy_from_user(&stli_dummyport, arg, sizeof(struct stliport)))
4273 return -EFAULT;
4274 portp = stli_getport(stli_dummyport.brdnr, stli_dummyport.panelnr,
4275 stli_dummyport.portnr);
4276 if (!portp)
4277 return -ENODEV;
4278 if (copy_to_user(arg, portp, sizeof(struct stliport)))
4279 return -EFAULT;
4280 return 0;
4283 /*****************************************************************************/
4286 * Return the entire driver board structure to a user app.
4289 static int stli_getbrdstruct(struct stlibrd __user *arg)
4291 struct stlibrd stli_dummybrd;
4292 struct stlibrd *brdp;
4294 if (copy_from_user(&stli_dummybrd, arg, sizeof(struct stlibrd)))
4295 return -EFAULT;
4296 if (stli_dummybrd.brdnr >= STL_MAXBRDS)
4297 return -ENODEV;
4298 brdp = stli_brds[stli_dummybrd.brdnr];
4299 if (!brdp)
4300 return -ENODEV;
4301 if (copy_to_user(arg, brdp, sizeof(struct stlibrd)))
4302 return -EFAULT;
4303 return 0;
4306 /*****************************************************************************/
4309 * The "staliomem" device is also required to do some special operations on
4310 * the board. We need to be able to send an interrupt to the board,
4311 * reset it, and start/stop it.
4314 static int stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg)
4316 struct stlibrd *brdp;
4317 int brdnr, rc, done;
4318 void __user *argp = (void __user *)arg;
4321 * First up handle the board independent ioctls.
4323 done = 0;
4324 rc = 0;
4326 lock_kernel();
4328 switch (cmd) {
4329 case COM_GETPORTSTATS:
4330 rc = stli_getportstats(NULL, NULL, argp);
4331 done++;
4332 break;
4333 case COM_CLRPORTSTATS:
4334 rc = stli_clrportstats(NULL, argp);
4335 done++;
4336 break;
4337 case COM_GETBRDSTATS:
4338 rc = stli_getbrdstats(argp);
4339 done++;
4340 break;
4341 case COM_READPORT:
4342 rc = stli_getportstruct(argp);
4343 done++;
4344 break;
4345 case COM_READBOARD:
4346 rc = stli_getbrdstruct(argp);
4347 done++;
4348 break;
4350 unlock_kernel();
4352 if (done)
4353 return rc;
4356 * Now handle the board specific ioctls. These all depend on the
4357 * minor number of the device they were called from.
4359 brdnr = iminor(ip);
4360 if (brdnr >= STL_MAXBRDS)
4361 return -ENODEV;
4362 brdp = stli_brds[brdnr];
4363 if (!brdp)
4364 return -ENODEV;
4365 if (brdp->state == 0)
4366 return -ENODEV;
4368 lock_kernel();
4370 switch (cmd) {
4371 case STL_BINTR:
4372 EBRDINTR(brdp);
4373 break;
4374 case STL_BSTART:
4375 rc = stli_startbrd(brdp);
4376 break;
4377 case STL_BSTOP:
4378 brdp->state &= ~BST_STARTED;
4379 break;
4380 case STL_BRESET:
4381 brdp->state &= ~BST_STARTED;
4382 EBRDRESET(brdp);
4383 if (stli_shared == 0) {
4384 if (brdp->reenable != NULL)
4385 (* brdp->reenable)(brdp);
4387 break;
4388 default:
4389 rc = -ENOIOCTLCMD;
4390 break;
4392 unlock_kernel();
4393 return rc;
4396 static const struct tty_operations stli_ops = {
4397 .open = stli_open,
4398 .close = stli_close,
4399 .write = stli_write,
4400 .put_char = stli_putchar,
4401 .flush_chars = stli_flushchars,
4402 .write_room = stli_writeroom,
4403 .chars_in_buffer = stli_charsinbuffer,
4404 .ioctl = stli_ioctl,
4405 .set_termios = stli_settermios,
4406 .throttle = stli_throttle,
4407 .unthrottle = stli_unthrottle,
4408 .stop = stli_stop,
4409 .start = stli_start,
4410 .hangup = stli_hangup,
4411 .flush_buffer = stli_flushbuffer,
4412 .break_ctl = stli_breakctl,
4413 .wait_until_sent = stli_waituntilsent,
4414 .send_xchar = stli_sendxchar,
4415 .tiocmget = stli_tiocmget,
4416 .tiocmset = stli_tiocmset,
4417 .proc_fops = &stli_proc_fops,
4420 static const struct tty_port_operations stli_port_ops = {
4421 .carrier_raised = stli_carrier_raised,
4422 .dtr_rts = stli_dtr_rts,
4425 /*****************************************************************************/
4427 * Loadable module initialization stuff.
4430 static void istallion_cleanup_isa(void)
4432 struct stlibrd *brdp;
4433 unsigned int j;
4435 for (j = 0; (j < stli_nrbrds); j++) {
4436 if ((brdp = stli_brds[j]) == NULL || (brdp->state & BST_PROBED))
4437 continue;
4439 stli_cleanup_ports(brdp);
4441 iounmap(brdp->membase);
4442 if (brdp->iosize > 0)
4443 release_region(brdp->iobase, brdp->iosize);
4444 kfree(brdp);
4445 stli_brds[j] = NULL;
4449 static int __init istallion_module_init(void)
4451 unsigned int i;
4452 int retval;
4454 printk(KERN_INFO "%s: version %s\n", stli_drvtitle, stli_drvversion);
4456 spin_lock_init(&stli_lock);
4457 spin_lock_init(&brd_lock);
4459 stli_txcookbuf = kmalloc(STLI_TXBUFSIZE, GFP_KERNEL);
4460 if (!stli_txcookbuf) {
4461 printk(KERN_ERR "istallion: failed to allocate memory "
4462 "(size=%d)\n", STLI_TXBUFSIZE);
4463 retval = -ENOMEM;
4464 goto err;
4467 stli_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS);
4468 if (!stli_serial) {
4469 retval = -ENOMEM;
4470 goto err_free;
4473 stli_serial->owner = THIS_MODULE;
4474 stli_serial->driver_name = stli_drvname;
4475 stli_serial->name = stli_serialname;
4476 stli_serial->major = STL_SERIALMAJOR;
4477 stli_serial->minor_start = 0;
4478 stli_serial->type = TTY_DRIVER_TYPE_SERIAL;
4479 stli_serial->subtype = SERIAL_TYPE_NORMAL;
4480 stli_serial->init_termios = stli_deftermios;
4481 stli_serial->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
4482 tty_set_operations(stli_serial, &stli_ops);
4484 retval = tty_register_driver(stli_serial);
4485 if (retval) {
4486 printk(KERN_ERR "istallion: failed to register serial driver\n");
4487 goto err_ttyput;
4490 retval = stli_initbrds();
4491 if (retval)
4492 goto err_ttyunr;
4495 * Set up a character driver for the shared memory region. We need this
4496 * to down load the slave code image. Also it is a useful debugging tool.
4498 retval = register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stli_fsiomem);
4499 if (retval) {
4500 printk(KERN_ERR "istallion: failed to register serial memory "
4501 "device\n");
4502 goto err_deinit;
4505 istallion_class = class_create(THIS_MODULE, "staliomem");
4506 for (i = 0; i < 4; i++)
4507 device_create(istallion_class, NULL, MKDEV(STL_SIOMEMMAJOR, i),
4508 NULL, "staliomem%d", i);
4510 return 0;
4511 err_deinit:
4512 pci_unregister_driver(&stli_pcidriver);
4513 istallion_cleanup_isa();
4514 err_ttyunr:
4515 tty_unregister_driver(stli_serial);
4516 err_ttyput:
4517 put_tty_driver(stli_serial);
4518 err_free:
4519 kfree(stli_txcookbuf);
4520 err:
4521 return retval;
4524 /*****************************************************************************/
4526 static void __exit istallion_module_exit(void)
4528 unsigned int j;
4530 printk(KERN_INFO "Unloading %s: version %s\n", stli_drvtitle,
4531 stli_drvversion);
4533 if (stli_timeron) {
4534 stli_timeron = 0;
4535 del_timer_sync(&stli_timerlist);
4538 unregister_chrdev(STL_SIOMEMMAJOR, "staliomem");
4540 for (j = 0; j < 4; j++)
4541 device_destroy(istallion_class, MKDEV(STL_SIOMEMMAJOR, j));
4542 class_destroy(istallion_class);
4544 pci_unregister_driver(&stli_pcidriver);
4545 istallion_cleanup_isa();
4547 tty_unregister_driver(stli_serial);
4548 put_tty_driver(stli_serial);
4550 kfree(stli_txcookbuf);
4553 module_init(istallion_module_init);
4554 module_exit(istallion_module_exit);