mm-only debug patch...
[mmotm.git] / drivers / cpufreq / cpufreq_conservative.c
blobbc33ddc9c97cddd9e29eedc1a2737dee7e5cf5f7
1 /*
2 * drivers/cpufreq/cpufreq_conservative.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/cpufreq.h>
18 #include <linux/cpu.h>
19 #include <linux/jiffies.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/mutex.h>
22 #include <linux/hrtimer.h>
23 #include <linux/tick.h>
24 #include <linux/ktime.h>
25 #include <linux/sched.h>
28 * dbs is used in this file as a shortform for demandbased switching
29 * It helps to keep variable names smaller, simpler
32 #define DEF_FREQUENCY_UP_THRESHOLD (80)
33 #define DEF_FREQUENCY_DOWN_THRESHOLD (20)
36 * The polling frequency of this governor depends on the capability of
37 * the processor. Default polling frequency is 1000 times the transition
38 * latency of the processor. The governor will work on any processor with
39 * transition latency <= 10mS, using appropriate sampling
40 * rate.
41 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
42 * this governor will not work.
43 * All times here are in uS.
45 #define MIN_SAMPLING_RATE_RATIO (2)
47 static unsigned int min_sampling_rate;
49 #define LATENCY_MULTIPLIER (1000)
50 #define MIN_LATENCY_MULTIPLIER (100)
51 #define DEF_SAMPLING_DOWN_FACTOR (1)
52 #define MAX_SAMPLING_DOWN_FACTOR (10)
53 #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
55 static void do_dbs_timer(struct work_struct *work);
57 struct cpu_dbs_info_s {
58 cputime64_t prev_cpu_idle;
59 cputime64_t prev_cpu_wall;
60 cputime64_t prev_cpu_nice;
61 struct cpufreq_policy *cur_policy;
62 struct delayed_work work;
63 unsigned int down_skip;
64 unsigned int requested_freq;
65 int cpu;
66 unsigned int enable:1;
68 * percpu mutex that serializes governor limit change with
69 * do_dbs_timer invocation. We do not want do_dbs_timer to run
70 * when user is changing the governor or limits.
72 struct mutex timer_mutex;
74 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cs_cpu_dbs_info);
76 static unsigned int dbs_enable; /* number of CPUs using this policy */
79 * dbs_mutex protects data in dbs_tuners_ins from concurrent changes on
80 * different CPUs. It protects dbs_enable in governor start/stop.
82 static DEFINE_MUTEX(dbs_mutex);
84 static struct workqueue_struct *kconservative_wq;
86 static struct dbs_tuners {
87 unsigned int sampling_rate;
88 unsigned int sampling_down_factor;
89 unsigned int up_threshold;
90 unsigned int down_threshold;
91 unsigned int ignore_nice;
92 unsigned int freq_step;
93 } dbs_tuners_ins = {
94 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
95 .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
96 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
97 .ignore_nice = 0,
98 .freq_step = 5,
101 static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
102 cputime64_t *wall)
104 cputime64_t idle_time;
105 cputime64_t cur_wall_time;
106 cputime64_t busy_time;
108 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
109 busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
110 kstat_cpu(cpu).cpustat.system);
112 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
113 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
114 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
115 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
117 idle_time = cputime64_sub(cur_wall_time, busy_time);
118 if (wall)
119 *wall = cur_wall_time;
121 return idle_time;
124 static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
126 u64 idle_time = get_cpu_idle_time_us(cpu, wall);
128 if (idle_time == -1ULL)
129 return get_cpu_idle_time_jiffy(cpu, wall);
131 return idle_time;
134 /* keep track of frequency transitions */
135 static int
136 dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
137 void *data)
139 struct cpufreq_freqs *freq = data;
140 struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cs_cpu_dbs_info,
141 freq->cpu);
143 struct cpufreq_policy *policy;
145 if (!this_dbs_info->enable)
146 return 0;
148 policy = this_dbs_info->cur_policy;
151 * we only care if our internally tracked freq moves outside
152 * the 'valid' ranges of freqency available to us otherwise
153 * we do not change it
155 if (this_dbs_info->requested_freq > policy->max
156 || this_dbs_info->requested_freq < policy->min)
157 this_dbs_info->requested_freq = freq->new;
159 return 0;
162 static struct notifier_block dbs_cpufreq_notifier_block = {
163 .notifier_call = dbs_cpufreq_notifier
166 /************************** sysfs interface ************************/
167 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
169 printk_once(KERN_INFO "CPUFREQ: conservative sampling_rate_max "
170 "sysfs file is deprecated - used by: %s\n", current->comm);
171 return sprintf(buf, "%u\n", -1U);
174 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
176 return sprintf(buf, "%u\n", min_sampling_rate);
179 #define define_one_ro(_name) \
180 static struct freq_attr _name = \
181 __ATTR(_name, 0444, show_##_name, NULL)
183 define_one_ro(sampling_rate_max);
184 define_one_ro(sampling_rate_min);
186 /* cpufreq_conservative Governor Tunables */
187 #define show_one(file_name, object) \
188 static ssize_t show_##file_name \
189 (struct cpufreq_policy *unused, char *buf) \
191 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
193 show_one(sampling_rate, sampling_rate);
194 show_one(sampling_down_factor, sampling_down_factor);
195 show_one(up_threshold, up_threshold);
196 show_one(down_threshold, down_threshold);
197 show_one(ignore_nice_load, ignore_nice);
198 show_one(freq_step, freq_step);
200 static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
201 const char *buf, size_t count)
203 unsigned int input;
204 int ret;
205 ret = sscanf(buf, "%u", &input);
207 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
208 return -EINVAL;
210 mutex_lock(&dbs_mutex);
211 dbs_tuners_ins.sampling_down_factor = input;
212 mutex_unlock(&dbs_mutex);
214 return count;
217 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
218 const char *buf, size_t count)
220 unsigned int input;
221 int ret;
222 ret = sscanf(buf, "%u", &input);
224 if (ret != 1)
225 return -EINVAL;
227 mutex_lock(&dbs_mutex);
228 dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
229 mutex_unlock(&dbs_mutex);
231 return count;
234 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
235 const char *buf, size_t count)
237 unsigned int input;
238 int ret;
239 ret = sscanf(buf, "%u", &input);
241 mutex_lock(&dbs_mutex);
242 if (ret != 1 || input > 100 ||
243 input <= dbs_tuners_ins.down_threshold) {
244 mutex_unlock(&dbs_mutex);
245 return -EINVAL;
248 dbs_tuners_ins.up_threshold = input;
249 mutex_unlock(&dbs_mutex);
251 return count;
254 static ssize_t store_down_threshold(struct cpufreq_policy *unused,
255 const char *buf, size_t count)
257 unsigned int input;
258 int ret;
259 ret = sscanf(buf, "%u", &input);
261 mutex_lock(&dbs_mutex);
262 /* cannot be lower than 11 otherwise freq will not fall */
263 if (ret != 1 || input < 11 || input > 100 ||
264 input >= dbs_tuners_ins.up_threshold) {
265 mutex_unlock(&dbs_mutex);
266 return -EINVAL;
269 dbs_tuners_ins.down_threshold = input;
270 mutex_unlock(&dbs_mutex);
272 return count;
275 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
276 const char *buf, size_t count)
278 unsigned int input;
279 int ret;
281 unsigned int j;
283 ret = sscanf(buf, "%u", &input);
284 if (ret != 1)
285 return -EINVAL;
287 if (input > 1)
288 input = 1;
290 mutex_lock(&dbs_mutex);
291 if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
292 mutex_unlock(&dbs_mutex);
293 return count;
295 dbs_tuners_ins.ignore_nice = input;
297 /* we need to re-evaluate prev_cpu_idle */
298 for_each_online_cpu(j) {
299 struct cpu_dbs_info_s *dbs_info;
300 dbs_info = &per_cpu(cs_cpu_dbs_info, j);
301 dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
302 &dbs_info->prev_cpu_wall);
303 if (dbs_tuners_ins.ignore_nice)
304 dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
306 mutex_unlock(&dbs_mutex);
308 return count;
311 static ssize_t store_freq_step(struct cpufreq_policy *policy,
312 const char *buf, size_t count)
314 unsigned int input;
315 int ret;
316 ret = sscanf(buf, "%u", &input);
318 if (ret != 1)
319 return -EINVAL;
321 if (input > 100)
322 input = 100;
324 /* no need to test here if freq_step is zero as the user might actually
325 * want this, they would be crazy though :) */
326 mutex_lock(&dbs_mutex);
327 dbs_tuners_ins.freq_step = input;
328 mutex_unlock(&dbs_mutex);
330 return count;
333 #define define_one_rw(_name) \
334 static struct freq_attr _name = \
335 __ATTR(_name, 0644, show_##_name, store_##_name)
337 define_one_rw(sampling_rate);
338 define_one_rw(sampling_down_factor);
339 define_one_rw(up_threshold);
340 define_one_rw(down_threshold);
341 define_one_rw(ignore_nice_load);
342 define_one_rw(freq_step);
344 static struct attribute *dbs_attributes[] = {
345 &sampling_rate_max.attr,
346 &sampling_rate_min.attr,
347 &sampling_rate.attr,
348 &sampling_down_factor.attr,
349 &up_threshold.attr,
350 &down_threshold.attr,
351 &ignore_nice_load.attr,
352 &freq_step.attr,
353 NULL
356 static struct attribute_group dbs_attr_group = {
357 .attrs = dbs_attributes,
358 .name = "conservative",
361 /************************** sysfs end ************************/
363 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
365 unsigned int load = 0;
366 unsigned int freq_target;
368 struct cpufreq_policy *policy;
369 unsigned int j;
371 policy = this_dbs_info->cur_policy;
374 * Every sampling_rate, we check, if current idle time is less
375 * than 20% (default), then we try to increase frequency
376 * Every sampling_rate*sampling_down_factor, we check, if current
377 * idle time is more than 80%, then we try to decrease frequency
379 * Any frequency increase takes it to the maximum frequency.
380 * Frequency reduction happens at minimum steps of
381 * 5% (default) of maximum frequency
384 /* Get Absolute Load */
385 for_each_cpu(j, policy->cpus) {
386 struct cpu_dbs_info_s *j_dbs_info;
387 cputime64_t cur_wall_time, cur_idle_time;
388 unsigned int idle_time, wall_time;
390 j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
392 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
394 wall_time = (unsigned int) cputime64_sub(cur_wall_time,
395 j_dbs_info->prev_cpu_wall);
396 j_dbs_info->prev_cpu_wall = cur_wall_time;
398 idle_time = (unsigned int) cputime64_sub(cur_idle_time,
399 j_dbs_info->prev_cpu_idle);
400 j_dbs_info->prev_cpu_idle = cur_idle_time;
402 if (dbs_tuners_ins.ignore_nice) {
403 cputime64_t cur_nice;
404 unsigned long cur_nice_jiffies;
406 cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
407 j_dbs_info->prev_cpu_nice);
409 * Assumption: nice time between sampling periods will
410 * be less than 2^32 jiffies for 32 bit sys
412 cur_nice_jiffies = (unsigned long)
413 cputime64_to_jiffies64(cur_nice);
415 j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
416 idle_time += jiffies_to_usecs(cur_nice_jiffies);
419 if (unlikely(!wall_time || wall_time < idle_time))
420 continue;
422 load = 100 * (wall_time - idle_time) / wall_time;
426 * break out if we 'cannot' reduce the speed as the user might
427 * want freq_step to be zero
429 if (dbs_tuners_ins.freq_step == 0)
430 return;
432 /* Check for frequency increase */
433 if (load > dbs_tuners_ins.up_threshold) {
434 this_dbs_info->down_skip = 0;
436 /* if we are already at full speed then break out early */
437 if (this_dbs_info->requested_freq == policy->max)
438 return;
440 freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
442 /* max freq cannot be less than 100. But who knows.... */
443 if (unlikely(freq_target == 0))
444 freq_target = 5;
446 this_dbs_info->requested_freq += freq_target;
447 if (this_dbs_info->requested_freq > policy->max)
448 this_dbs_info->requested_freq = policy->max;
450 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
451 CPUFREQ_RELATION_H);
452 return;
456 * The optimal frequency is the frequency that is the lowest that
457 * can support the current CPU usage without triggering the up
458 * policy. To be safe, we focus 10 points under the threshold.
460 if (load < (dbs_tuners_ins.down_threshold - 10)) {
461 freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
463 this_dbs_info->requested_freq -= freq_target;
464 if (this_dbs_info->requested_freq < policy->min)
465 this_dbs_info->requested_freq = policy->min;
468 * if we cannot reduce the frequency anymore, break out early
470 if (policy->cur == policy->min)
471 return;
473 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
474 CPUFREQ_RELATION_H);
475 return;
479 static void do_dbs_timer(struct work_struct *work)
481 struct cpu_dbs_info_s *dbs_info =
482 container_of(work, struct cpu_dbs_info_s, work.work);
483 unsigned int cpu = dbs_info->cpu;
485 /* We want all CPUs to do sampling nearly on same jiffy */
486 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
488 delay -= jiffies % delay;
490 mutex_lock(&dbs_info->timer_mutex);
492 dbs_check_cpu(dbs_info);
494 queue_delayed_work_on(cpu, kconservative_wq, &dbs_info->work, delay);
495 mutex_unlock(&dbs_info->timer_mutex);
498 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
500 /* We want all CPUs to do sampling nearly on same jiffy */
501 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
502 delay -= jiffies % delay;
504 dbs_info->enable = 1;
505 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
506 queue_delayed_work_on(dbs_info->cpu, kconservative_wq, &dbs_info->work,
507 delay);
510 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
512 dbs_info->enable = 0;
513 cancel_delayed_work_sync(&dbs_info->work);
516 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
517 unsigned int event)
519 unsigned int cpu = policy->cpu;
520 struct cpu_dbs_info_s *this_dbs_info;
521 unsigned int j;
522 int rc;
524 this_dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
526 switch (event) {
527 case CPUFREQ_GOV_START:
528 if ((!cpu_online(cpu)) || (!policy->cur))
529 return -EINVAL;
531 mutex_lock(&dbs_mutex);
533 rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
534 if (rc) {
535 mutex_unlock(&dbs_mutex);
536 return rc;
539 for_each_cpu(j, policy->cpus) {
540 struct cpu_dbs_info_s *j_dbs_info;
541 j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
542 j_dbs_info->cur_policy = policy;
544 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
545 &j_dbs_info->prev_cpu_wall);
546 if (dbs_tuners_ins.ignore_nice) {
547 j_dbs_info->prev_cpu_nice =
548 kstat_cpu(j).cpustat.nice;
551 this_dbs_info->down_skip = 0;
552 this_dbs_info->requested_freq = policy->cur;
554 mutex_init(&this_dbs_info->timer_mutex);
555 dbs_enable++;
557 * Start the timerschedule work, when this governor
558 * is used for first time
560 if (dbs_enable == 1) {
561 unsigned int latency;
562 /* policy latency is in nS. Convert it to uS first */
563 latency = policy->cpuinfo.transition_latency / 1000;
564 if (latency == 0)
565 latency = 1;
568 * conservative does not implement micro like ondemand
569 * governor, thus we are bound to jiffes/HZ
571 min_sampling_rate =
572 MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
573 /* Bring kernel and HW constraints together */
574 min_sampling_rate = max(min_sampling_rate,
575 MIN_LATENCY_MULTIPLIER * latency);
576 dbs_tuners_ins.sampling_rate =
577 max(min_sampling_rate,
578 latency * LATENCY_MULTIPLIER);
580 cpufreq_register_notifier(
581 &dbs_cpufreq_notifier_block,
582 CPUFREQ_TRANSITION_NOTIFIER);
584 mutex_unlock(&dbs_mutex);
586 dbs_timer_init(this_dbs_info);
588 break;
590 case CPUFREQ_GOV_STOP:
591 dbs_timer_exit(this_dbs_info);
593 mutex_lock(&dbs_mutex);
594 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
595 dbs_enable--;
596 mutex_destroy(&this_dbs_info->timer_mutex);
599 * Stop the timerschedule work, when this governor
600 * is used for first time
602 if (dbs_enable == 0)
603 cpufreq_unregister_notifier(
604 &dbs_cpufreq_notifier_block,
605 CPUFREQ_TRANSITION_NOTIFIER);
607 mutex_unlock(&dbs_mutex);
609 break;
611 case CPUFREQ_GOV_LIMITS:
612 mutex_lock(&this_dbs_info->timer_mutex);
613 if (policy->max < this_dbs_info->cur_policy->cur)
614 __cpufreq_driver_target(
615 this_dbs_info->cur_policy,
616 policy->max, CPUFREQ_RELATION_H);
617 else if (policy->min > this_dbs_info->cur_policy->cur)
618 __cpufreq_driver_target(
619 this_dbs_info->cur_policy,
620 policy->min, CPUFREQ_RELATION_L);
621 mutex_unlock(&this_dbs_info->timer_mutex);
623 break;
625 return 0;
628 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
629 static
630 #endif
631 struct cpufreq_governor cpufreq_gov_conservative = {
632 .name = "conservative",
633 .governor = cpufreq_governor_dbs,
634 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
635 .owner = THIS_MODULE,
638 static int __init cpufreq_gov_dbs_init(void)
640 int err;
642 kconservative_wq = create_workqueue("kconservative");
643 if (!kconservative_wq) {
644 printk(KERN_ERR "Creation of kconservative failed\n");
645 return -EFAULT;
648 err = cpufreq_register_governor(&cpufreq_gov_conservative);
649 if (err)
650 destroy_workqueue(kconservative_wq);
652 return err;
655 static void __exit cpufreq_gov_dbs_exit(void)
657 cpufreq_unregister_governor(&cpufreq_gov_conservative);
658 destroy_workqueue(kconservative_wq);
662 MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
663 MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
664 "Low Latency Frequency Transition capable processors "
665 "optimised for use in a battery environment");
666 MODULE_LICENSE("GPL");
668 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
669 fs_initcall(cpufreq_gov_dbs_init);
670 #else
671 module_init(cpufreq_gov_dbs_init);
672 #endif
673 module_exit(cpufreq_gov_dbs_exit);