mm-only debug patch...
[mmotm.git] / drivers / net / igb / e1000_mac.c
blob2ad358a240bf742848c997a7bf8689ab92fe0a4a
1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/if_ether.h>
29 #include <linux/delay.h>
30 #include <linux/pci.h>
31 #include <linux/netdevice.h>
33 #include "e1000_mac.h"
35 #include "igb.h"
37 static s32 igb_set_default_fc(struct e1000_hw *hw);
38 static s32 igb_set_fc_watermarks(struct e1000_hw *hw);
40 /**
41 * igb_get_bus_info_pcie - Get PCIe bus information
42 * @hw: pointer to the HW structure
44 * Determines and stores the system bus information for a particular
45 * network interface. The following bus information is determined and stored:
46 * bus speed, bus width, type (PCIe), and PCIe function.
47 **/
48 s32 igb_get_bus_info_pcie(struct e1000_hw *hw)
50 struct e1000_bus_info *bus = &hw->bus;
51 s32 ret_val;
52 u32 reg;
53 u16 pcie_link_status;
55 bus->type = e1000_bus_type_pci_express;
56 bus->speed = e1000_bus_speed_2500;
58 ret_val = igb_read_pcie_cap_reg(hw,
59 PCIE_LINK_STATUS,
60 &pcie_link_status);
61 if (ret_val)
62 bus->width = e1000_bus_width_unknown;
63 else
64 bus->width = (enum e1000_bus_width)((pcie_link_status &
65 PCIE_LINK_WIDTH_MASK) >>
66 PCIE_LINK_WIDTH_SHIFT);
68 reg = rd32(E1000_STATUS);
69 bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
71 return 0;
74 /**
75 * igb_clear_vfta - Clear VLAN filter table
76 * @hw: pointer to the HW structure
78 * Clears the register array which contains the VLAN filter table by
79 * setting all the values to 0.
80 **/
81 void igb_clear_vfta(struct e1000_hw *hw)
83 u32 offset;
85 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
86 array_wr32(E1000_VFTA, offset, 0);
87 wrfl();
91 /**
92 * igb_write_vfta - Write value to VLAN filter table
93 * @hw: pointer to the HW structure
94 * @offset: register offset in VLAN filter table
95 * @value: register value written to VLAN filter table
97 * Writes value at the given offset in the register array which stores
98 * the VLAN filter table.
99 **/
100 static void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
102 array_wr32(E1000_VFTA, offset, value);
103 wrfl();
107 * igb_init_rx_addrs - Initialize receive address's
108 * @hw: pointer to the HW structure
109 * @rar_count: receive address registers
111 * Setups the receive address registers by setting the base receive address
112 * register to the devices MAC address and clearing all the other receive
113 * address registers to 0.
115 void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
117 u32 i;
118 u8 mac_addr[ETH_ALEN] = {0};
120 /* Setup the receive address */
121 hw_dbg("Programming MAC Address into RAR[0]\n");
123 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
125 /* Zero out the other (rar_entry_count - 1) receive addresses */
126 hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
127 for (i = 1; i < rar_count; i++)
128 hw->mac.ops.rar_set(hw, mac_addr, i);
132 * igb_vfta_set - enable or disable vlan in VLAN filter table
133 * @hw: pointer to the HW structure
134 * @vid: VLAN id to add or remove
135 * @add: if true add filter, if false remove
137 * Sets or clears a bit in the VLAN filter table array based on VLAN id
138 * and if we are adding or removing the filter
140 s32 igb_vfta_set(struct e1000_hw *hw, u32 vid, bool add)
142 u32 index = (vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK;
143 u32 mask = 1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
144 u32 vfta = array_rd32(E1000_VFTA, index);
145 s32 ret_val = 0;
147 /* bit was set/cleared before we started */
148 if ((!!(vfta & mask)) == add) {
149 ret_val = -E1000_ERR_CONFIG;
150 } else {
151 if (add)
152 vfta |= mask;
153 else
154 vfta &= ~mask;
157 igb_write_vfta(hw, index, vfta);
159 return ret_val;
163 * igb_check_alt_mac_addr - Check for alternate MAC addr
164 * @hw: pointer to the HW structure
166 * Checks the nvm for an alternate MAC address. An alternate MAC address
167 * can be setup by pre-boot software and must be treated like a permanent
168 * address and must override the actual permanent MAC address. If an
169 * alternate MAC address is fopund it is saved in the hw struct and
170 * prgrammed into RAR0 and the cuntion returns success, otherwise the
171 * fucntion returns an error.
173 s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
175 u32 i;
176 s32 ret_val = 0;
177 u16 offset, nvm_alt_mac_addr_offset, nvm_data;
178 u8 alt_mac_addr[ETH_ALEN];
180 ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
181 &nvm_alt_mac_addr_offset);
182 if (ret_val) {
183 hw_dbg("NVM Read Error\n");
184 goto out;
187 if (nvm_alt_mac_addr_offset == 0xFFFF) {
188 /* There is no Alternate MAC Address */
189 goto out;
192 if (hw->bus.func == E1000_FUNC_1)
193 nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
194 for (i = 0; i < ETH_ALEN; i += 2) {
195 offset = nvm_alt_mac_addr_offset + (i >> 1);
196 ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
197 if (ret_val) {
198 hw_dbg("NVM Read Error\n");
199 goto out;
202 alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
203 alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
206 /* if multicast bit is set, the alternate address will not be used */
207 if (alt_mac_addr[0] & 0x01) {
208 hw_dbg("Ignoring Alternate Mac Address with MC bit set\n");
209 goto out;
213 * We have a valid alternate MAC address, and we want to treat it the
214 * same as the normal permanent MAC address stored by the HW into the
215 * RAR. Do this by mapping this address into RAR0.
217 hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
219 out:
220 return ret_val;
224 * igb_rar_set - Set receive address register
225 * @hw: pointer to the HW structure
226 * @addr: pointer to the receive address
227 * @index: receive address array register
229 * Sets the receive address array register at index to the address passed
230 * in by addr.
232 void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
234 u32 rar_low, rar_high;
237 * HW expects these in little endian so we reverse the byte order
238 * from network order (big endian) to little endian
240 rar_low = ((u32) addr[0] |
241 ((u32) addr[1] << 8) |
242 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
244 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
246 /* If MAC address zero, no need to set the AV bit */
247 if (rar_low || rar_high)
248 rar_high |= E1000_RAH_AV;
251 * Some bridges will combine consecutive 32-bit writes into
252 * a single burst write, which will malfunction on some parts.
253 * The flushes avoid this.
255 wr32(E1000_RAL(index), rar_low);
256 wrfl();
257 wr32(E1000_RAH(index), rar_high);
258 wrfl();
262 * igb_mta_set - Set multicast filter table address
263 * @hw: pointer to the HW structure
264 * @hash_value: determines the MTA register and bit to set
266 * The multicast table address is a register array of 32-bit registers.
267 * The hash_value is used to determine what register the bit is in, the
268 * current value is read, the new bit is OR'd in and the new value is
269 * written back into the register.
271 void igb_mta_set(struct e1000_hw *hw, u32 hash_value)
273 u32 hash_bit, hash_reg, mta;
276 * The MTA is a register array of 32-bit registers. It is
277 * treated like an array of (32*mta_reg_count) bits. We want to
278 * set bit BitArray[hash_value]. So we figure out what register
279 * the bit is in, read it, OR in the new bit, then write
280 * back the new value. The (hw->mac.mta_reg_count - 1) serves as a
281 * mask to bits 31:5 of the hash value which gives us the
282 * register we're modifying. The hash bit within that register
283 * is determined by the lower 5 bits of the hash value.
285 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
286 hash_bit = hash_value & 0x1F;
288 mta = array_rd32(E1000_MTA, hash_reg);
290 mta |= (1 << hash_bit);
292 array_wr32(E1000_MTA, hash_reg, mta);
293 wrfl();
297 * igb_hash_mc_addr - Generate a multicast hash value
298 * @hw: pointer to the HW structure
299 * @mc_addr: pointer to a multicast address
301 * Generates a multicast address hash value which is used to determine
302 * the multicast filter table array address and new table value. See
303 * igb_mta_set()
305 static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
307 u32 hash_value, hash_mask;
308 u8 bit_shift = 0;
310 /* Register count multiplied by bits per register */
311 hash_mask = (hw->mac.mta_reg_count * 32) - 1;
314 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
315 * where 0xFF would still fall within the hash mask.
317 while (hash_mask >> bit_shift != 0xFF)
318 bit_shift++;
321 * The portion of the address that is used for the hash table
322 * is determined by the mc_filter_type setting.
323 * The algorithm is such that there is a total of 8 bits of shifting.
324 * The bit_shift for a mc_filter_type of 0 represents the number of
325 * left-shifts where the MSB of mc_addr[5] would still fall within
326 * the hash_mask. Case 0 does this exactly. Since there are a total
327 * of 8 bits of shifting, then mc_addr[4] will shift right the
328 * remaining number of bits. Thus 8 - bit_shift. The rest of the
329 * cases are a variation of this algorithm...essentially raising the
330 * number of bits to shift mc_addr[5] left, while still keeping the
331 * 8-bit shifting total.
333 * For example, given the following Destination MAC Address and an
334 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
335 * we can see that the bit_shift for case 0 is 4. These are the hash
336 * values resulting from each mc_filter_type...
337 * [0] [1] [2] [3] [4] [5]
338 * 01 AA 00 12 34 56
339 * LSB MSB
341 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
342 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
343 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
344 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
346 switch (hw->mac.mc_filter_type) {
347 default:
348 case 0:
349 break;
350 case 1:
351 bit_shift += 1;
352 break;
353 case 2:
354 bit_shift += 2;
355 break;
356 case 3:
357 bit_shift += 4;
358 break;
361 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
362 (((u16) mc_addr[5]) << bit_shift)));
364 return hash_value;
368 * igb_update_mc_addr_list - Update Multicast addresses
369 * @hw: pointer to the HW structure
370 * @mc_addr_list: array of multicast addresses to program
371 * @mc_addr_count: number of multicast addresses to program
373 * Updates entire Multicast Table Array.
374 * The caller must have a packed mc_addr_list of multicast addresses.
376 void igb_update_mc_addr_list(struct e1000_hw *hw,
377 u8 *mc_addr_list, u32 mc_addr_count)
379 u32 hash_value, hash_bit, hash_reg;
380 int i;
382 /* clear mta_shadow */
383 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
385 /* update mta_shadow from mc_addr_list */
386 for (i = 0; (u32) i < mc_addr_count; i++) {
387 hash_value = igb_hash_mc_addr(hw, mc_addr_list);
389 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
390 hash_bit = hash_value & 0x1F;
392 hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
393 mc_addr_list += (ETH_ALEN);
396 /* replace the entire MTA table */
397 for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
398 array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]);
399 wrfl();
403 * igb_clear_hw_cntrs_base - Clear base hardware counters
404 * @hw: pointer to the HW structure
406 * Clears the base hardware counters by reading the counter registers.
408 void igb_clear_hw_cntrs_base(struct e1000_hw *hw)
410 rd32(E1000_CRCERRS);
411 rd32(E1000_SYMERRS);
412 rd32(E1000_MPC);
413 rd32(E1000_SCC);
414 rd32(E1000_ECOL);
415 rd32(E1000_MCC);
416 rd32(E1000_LATECOL);
417 rd32(E1000_COLC);
418 rd32(E1000_DC);
419 rd32(E1000_SEC);
420 rd32(E1000_RLEC);
421 rd32(E1000_XONRXC);
422 rd32(E1000_XONTXC);
423 rd32(E1000_XOFFRXC);
424 rd32(E1000_XOFFTXC);
425 rd32(E1000_FCRUC);
426 rd32(E1000_GPRC);
427 rd32(E1000_BPRC);
428 rd32(E1000_MPRC);
429 rd32(E1000_GPTC);
430 rd32(E1000_GORCL);
431 rd32(E1000_GORCH);
432 rd32(E1000_GOTCL);
433 rd32(E1000_GOTCH);
434 rd32(E1000_RNBC);
435 rd32(E1000_RUC);
436 rd32(E1000_RFC);
437 rd32(E1000_ROC);
438 rd32(E1000_RJC);
439 rd32(E1000_TORL);
440 rd32(E1000_TORH);
441 rd32(E1000_TOTL);
442 rd32(E1000_TOTH);
443 rd32(E1000_TPR);
444 rd32(E1000_TPT);
445 rd32(E1000_MPTC);
446 rd32(E1000_BPTC);
450 * igb_check_for_copper_link - Check for link (Copper)
451 * @hw: pointer to the HW structure
453 * Checks to see of the link status of the hardware has changed. If a
454 * change in link status has been detected, then we read the PHY registers
455 * to get the current speed/duplex if link exists.
457 s32 igb_check_for_copper_link(struct e1000_hw *hw)
459 struct e1000_mac_info *mac = &hw->mac;
460 s32 ret_val;
461 bool link;
464 * We only want to go out to the PHY registers to see if Auto-Neg
465 * has completed and/or if our link status has changed. The
466 * get_link_status flag is set upon receiving a Link Status
467 * Change or Rx Sequence Error interrupt.
469 if (!mac->get_link_status) {
470 ret_val = 0;
471 goto out;
475 * First we want to see if the MII Status Register reports
476 * link. If so, then we want to get the current speed/duplex
477 * of the PHY.
479 ret_val = igb_phy_has_link(hw, 1, 0, &link);
480 if (ret_val)
481 goto out;
483 if (!link)
484 goto out; /* No link detected */
486 mac->get_link_status = false;
489 * Check if there was DownShift, must be checked
490 * immediately after link-up
492 igb_check_downshift(hw);
495 * If we are forcing speed/duplex, then we simply return since
496 * we have already determined whether we have link or not.
498 if (!mac->autoneg) {
499 ret_val = -E1000_ERR_CONFIG;
500 goto out;
504 * Auto-Neg is enabled. Auto Speed Detection takes care
505 * of MAC speed/duplex configuration. So we only need to
506 * configure Collision Distance in the MAC.
508 igb_config_collision_dist(hw);
511 * Configure Flow Control now that Auto-Neg has completed.
512 * First, we need to restore the desired flow control
513 * settings because we may have had to re-autoneg with a
514 * different link partner.
516 ret_val = igb_config_fc_after_link_up(hw);
517 if (ret_val)
518 hw_dbg("Error configuring flow control\n");
520 out:
521 return ret_val;
525 * igb_setup_link - Setup flow control and link settings
526 * @hw: pointer to the HW structure
528 * Determines which flow control settings to use, then configures flow
529 * control. Calls the appropriate media-specific link configuration
530 * function. Assuming the adapter has a valid link partner, a valid link
531 * should be established. Assumes the hardware has previously been reset
532 * and the transmitter and receiver are not enabled.
534 s32 igb_setup_link(struct e1000_hw *hw)
536 s32 ret_val = 0;
539 * In the case of the phy reset being blocked, we already have a link.
540 * We do not need to set it up again.
542 if (igb_check_reset_block(hw))
543 goto out;
546 * If requested flow control is set to default, set flow control
547 * based on the EEPROM flow control settings.
549 if (hw->fc.requested_mode == e1000_fc_default) {
550 ret_val = igb_set_default_fc(hw);
551 if (ret_val)
552 goto out;
556 * We want to save off the original Flow Control configuration just
557 * in case we get disconnected and then reconnected into a different
558 * hub or switch with different Flow Control capabilities.
560 hw->fc.current_mode = hw->fc.requested_mode;
562 hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
564 /* Call the necessary media_type subroutine to configure the link. */
565 ret_val = hw->mac.ops.setup_physical_interface(hw);
566 if (ret_val)
567 goto out;
570 * Initialize the flow control address, type, and PAUSE timer
571 * registers to their default values. This is done even if flow
572 * control is disabled, because it does not hurt anything to
573 * initialize these registers.
575 hw_dbg("Initializing the Flow Control address, type and timer regs\n");
576 wr32(E1000_FCT, FLOW_CONTROL_TYPE);
577 wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
578 wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
580 wr32(E1000_FCTTV, hw->fc.pause_time);
582 ret_val = igb_set_fc_watermarks(hw);
584 out:
585 return ret_val;
589 * igb_config_collision_dist - Configure collision distance
590 * @hw: pointer to the HW structure
592 * Configures the collision distance to the default value and is used
593 * during link setup. Currently no func pointer exists and all
594 * implementations are handled in the generic version of this function.
596 void igb_config_collision_dist(struct e1000_hw *hw)
598 u32 tctl;
600 tctl = rd32(E1000_TCTL);
602 tctl &= ~E1000_TCTL_COLD;
603 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
605 wr32(E1000_TCTL, tctl);
606 wrfl();
610 * igb_set_fc_watermarks - Set flow control high/low watermarks
611 * @hw: pointer to the HW structure
613 * Sets the flow control high/low threshold (watermark) registers. If
614 * flow control XON frame transmission is enabled, then set XON frame
615 * tansmission as well.
617 static s32 igb_set_fc_watermarks(struct e1000_hw *hw)
619 s32 ret_val = 0;
620 u32 fcrtl = 0, fcrth = 0;
623 * Set the flow control receive threshold registers. Normally,
624 * these registers will be set to a default threshold that may be
625 * adjusted later by the driver's runtime code. However, if the
626 * ability to transmit pause frames is not enabled, then these
627 * registers will be set to 0.
629 if (hw->fc.current_mode & e1000_fc_tx_pause) {
631 * We need to set up the Receive Threshold high and low water
632 * marks as well as (optionally) enabling the transmission of
633 * XON frames.
635 fcrtl = hw->fc.low_water;
636 if (hw->fc.send_xon)
637 fcrtl |= E1000_FCRTL_XONE;
639 fcrth = hw->fc.high_water;
641 wr32(E1000_FCRTL, fcrtl);
642 wr32(E1000_FCRTH, fcrth);
644 return ret_val;
648 * igb_set_default_fc - Set flow control default values
649 * @hw: pointer to the HW structure
651 * Read the EEPROM for the default values for flow control and store the
652 * values.
654 static s32 igb_set_default_fc(struct e1000_hw *hw)
656 s32 ret_val = 0;
657 u16 nvm_data;
660 * Read and store word 0x0F of the EEPROM. This word contains bits
661 * that determine the hardware's default PAUSE (flow control) mode,
662 * a bit that determines whether the HW defaults to enabling or
663 * disabling auto-negotiation, and the direction of the
664 * SW defined pins. If there is no SW over-ride of the flow
665 * control setting, then the variable hw->fc will
666 * be initialized based on a value in the EEPROM.
668 ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
670 if (ret_val) {
671 hw_dbg("NVM Read Error\n");
672 goto out;
675 if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
676 hw->fc.requested_mode = e1000_fc_none;
677 else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
678 NVM_WORD0F_ASM_DIR)
679 hw->fc.requested_mode = e1000_fc_tx_pause;
680 else
681 hw->fc.requested_mode = e1000_fc_full;
683 out:
684 return ret_val;
688 * igb_force_mac_fc - Force the MAC's flow control settings
689 * @hw: pointer to the HW structure
691 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
692 * device control register to reflect the adapter settings. TFCE and RFCE
693 * need to be explicitly set by software when a copper PHY is used because
694 * autonegotiation is managed by the PHY rather than the MAC. Software must
695 * also configure these bits when link is forced on a fiber connection.
697 s32 igb_force_mac_fc(struct e1000_hw *hw)
699 u32 ctrl;
700 s32 ret_val = 0;
702 ctrl = rd32(E1000_CTRL);
705 * Because we didn't get link via the internal auto-negotiation
706 * mechanism (we either forced link or we got link via PHY
707 * auto-neg), we have to manually enable/disable transmit an
708 * receive flow control.
710 * The "Case" statement below enables/disable flow control
711 * according to the "hw->fc.current_mode" parameter.
713 * The possible values of the "fc" parameter are:
714 * 0: Flow control is completely disabled
715 * 1: Rx flow control is enabled (we can receive pause
716 * frames but not send pause frames).
717 * 2: Tx flow control is enabled (we can send pause frames
718 * frames but we do not receive pause frames).
719 * 3: Both Rx and TX flow control (symmetric) is enabled.
720 * other: No other values should be possible at this point.
722 hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
724 switch (hw->fc.current_mode) {
725 case e1000_fc_none:
726 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
727 break;
728 case e1000_fc_rx_pause:
729 ctrl &= (~E1000_CTRL_TFCE);
730 ctrl |= E1000_CTRL_RFCE;
731 break;
732 case e1000_fc_tx_pause:
733 ctrl &= (~E1000_CTRL_RFCE);
734 ctrl |= E1000_CTRL_TFCE;
735 break;
736 case e1000_fc_full:
737 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
738 break;
739 default:
740 hw_dbg("Flow control param set incorrectly\n");
741 ret_val = -E1000_ERR_CONFIG;
742 goto out;
745 wr32(E1000_CTRL, ctrl);
747 out:
748 return ret_val;
752 * igb_config_fc_after_link_up - Configures flow control after link
753 * @hw: pointer to the HW structure
755 * Checks the status of auto-negotiation after link up to ensure that the
756 * speed and duplex were not forced. If the link needed to be forced, then
757 * flow control needs to be forced also. If auto-negotiation is enabled
758 * and did not fail, then we configure flow control based on our link
759 * partner.
761 s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
763 struct e1000_mac_info *mac = &hw->mac;
764 s32 ret_val = 0;
765 u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
766 u16 speed, duplex;
769 * Check for the case where we have fiber media and auto-neg failed
770 * so we had to force link. In this case, we need to force the
771 * configuration of the MAC to match the "fc" parameter.
773 if (mac->autoneg_failed) {
774 if (hw->phy.media_type == e1000_media_type_internal_serdes)
775 ret_val = igb_force_mac_fc(hw);
776 } else {
777 if (hw->phy.media_type == e1000_media_type_copper)
778 ret_val = igb_force_mac_fc(hw);
781 if (ret_val) {
782 hw_dbg("Error forcing flow control settings\n");
783 goto out;
787 * Check for the case where we have copper media and auto-neg is
788 * enabled. In this case, we need to check and see if Auto-Neg
789 * has completed, and if so, how the PHY and link partner has
790 * flow control configured.
792 if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
794 * Read the MII Status Register and check to see if AutoNeg
795 * has completed. We read this twice because this reg has
796 * some "sticky" (latched) bits.
798 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
799 &mii_status_reg);
800 if (ret_val)
801 goto out;
802 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
803 &mii_status_reg);
804 if (ret_val)
805 goto out;
807 if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
808 hw_dbg("Copper PHY and Auto Neg "
809 "has not completed.\n");
810 goto out;
814 * The AutoNeg process has completed, so we now need to
815 * read both the Auto Negotiation Advertisement
816 * Register (Address 4) and the Auto_Negotiation Base
817 * Page Ability Register (Address 5) to determine how
818 * flow control was negotiated.
820 ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
821 &mii_nway_adv_reg);
822 if (ret_val)
823 goto out;
824 ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
825 &mii_nway_lp_ability_reg);
826 if (ret_val)
827 goto out;
830 * Two bits in the Auto Negotiation Advertisement Register
831 * (Address 4) and two bits in the Auto Negotiation Base
832 * Page Ability Register (Address 5) determine flow control
833 * for both the PHY and the link partner. The following
834 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
835 * 1999, describes these PAUSE resolution bits and how flow
836 * control is determined based upon these settings.
837 * NOTE: DC = Don't Care
839 * LOCAL DEVICE | LINK PARTNER
840 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
841 *-------|---------|-------|---------|--------------------
842 * 0 | 0 | DC | DC | e1000_fc_none
843 * 0 | 1 | 0 | DC | e1000_fc_none
844 * 0 | 1 | 1 | 0 | e1000_fc_none
845 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
846 * 1 | 0 | 0 | DC | e1000_fc_none
847 * 1 | DC | 1 | DC | e1000_fc_full
848 * 1 | 1 | 0 | 0 | e1000_fc_none
849 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
851 * Are both PAUSE bits set to 1? If so, this implies
852 * Symmetric Flow Control is enabled at both ends. The
853 * ASM_DIR bits are irrelevant per the spec.
855 * For Symmetric Flow Control:
857 * LOCAL DEVICE | LINK PARTNER
858 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
859 *-------|---------|-------|---------|--------------------
860 * 1 | DC | 1 | DC | E1000_fc_full
863 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
864 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
866 * Now we need to check if the user selected RX ONLY
867 * of pause frames. In this case, we had to advertise
868 * FULL flow control because we could not advertise RX
869 * ONLY. Hence, we must now check to see if we need to
870 * turn OFF the TRANSMISSION of PAUSE frames.
872 if (hw->fc.requested_mode == e1000_fc_full) {
873 hw->fc.current_mode = e1000_fc_full;
874 hw_dbg("Flow Control = FULL.\r\n");
875 } else {
876 hw->fc.current_mode = e1000_fc_rx_pause;
877 hw_dbg("Flow Control = "
878 "RX PAUSE frames only.\r\n");
882 * For receiving PAUSE frames ONLY.
884 * LOCAL DEVICE | LINK PARTNER
885 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
886 *-------|---------|-------|---------|--------------------
887 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
889 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
890 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
891 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
892 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
893 hw->fc.current_mode = e1000_fc_tx_pause;
894 hw_dbg("Flow Control = TX PAUSE frames only.\r\n");
897 * For transmitting PAUSE frames ONLY.
899 * LOCAL DEVICE | LINK PARTNER
900 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
901 *-------|---------|-------|---------|--------------------
902 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
904 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
905 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
906 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
907 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
908 hw->fc.current_mode = e1000_fc_rx_pause;
909 hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
912 * Per the IEEE spec, at this point flow control should be
913 * disabled. However, we want to consider that we could
914 * be connected to a legacy switch that doesn't advertise
915 * desired flow control, but can be forced on the link
916 * partner. So if we advertised no flow control, that is
917 * what we will resolve to. If we advertised some kind of
918 * receive capability (Rx Pause Only or Full Flow Control)
919 * and the link partner advertised none, we will configure
920 * ourselves to enable Rx Flow Control only. We can do
921 * this safely for two reasons: If the link partner really
922 * didn't want flow control enabled, and we enable Rx, no
923 * harm done since we won't be receiving any PAUSE frames
924 * anyway. If the intent on the link partner was to have
925 * flow control enabled, then by us enabling RX only, we
926 * can at least receive pause frames and process them.
927 * This is a good idea because in most cases, since we are
928 * predominantly a server NIC, more times than not we will
929 * be asked to delay transmission of packets than asking
930 * our link partner to pause transmission of frames.
932 else if ((hw->fc.requested_mode == e1000_fc_none ||
933 hw->fc.requested_mode == e1000_fc_tx_pause) ||
934 hw->fc.strict_ieee) {
935 hw->fc.current_mode = e1000_fc_none;
936 hw_dbg("Flow Control = NONE.\r\n");
937 } else {
938 hw->fc.current_mode = e1000_fc_rx_pause;
939 hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
943 * Now we need to do one last check... If we auto-
944 * negotiated to HALF DUPLEX, flow control should not be
945 * enabled per IEEE 802.3 spec.
947 ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
948 if (ret_val) {
949 hw_dbg("Error getting link speed and duplex\n");
950 goto out;
953 if (duplex == HALF_DUPLEX)
954 hw->fc.current_mode = e1000_fc_none;
957 * Now we call a subroutine to actually force the MAC
958 * controller to use the correct flow control settings.
960 ret_val = igb_force_mac_fc(hw);
961 if (ret_val) {
962 hw_dbg("Error forcing flow control settings\n");
963 goto out;
967 out:
968 return ret_val;
972 * igb_get_speed_and_duplex_copper - Retreive current speed/duplex
973 * @hw: pointer to the HW structure
974 * @speed: stores the current speed
975 * @duplex: stores the current duplex
977 * Read the status register for the current speed/duplex and store the current
978 * speed and duplex for copper connections.
980 s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
981 u16 *duplex)
983 u32 status;
985 status = rd32(E1000_STATUS);
986 if (status & E1000_STATUS_SPEED_1000) {
987 *speed = SPEED_1000;
988 hw_dbg("1000 Mbs, ");
989 } else if (status & E1000_STATUS_SPEED_100) {
990 *speed = SPEED_100;
991 hw_dbg("100 Mbs, ");
992 } else {
993 *speed = SPEED_10;
994 hw_dbg("10 Mbs, ");
997 if (status & E1000_STATUS_FD) {
998 *duplex = FULL_DUPLEX;
999 hw_dbg("Full Duplex\n");
1000 } else {
1001 *duplex = HALF_DUPLEX;
1002 hw_dbg("Half Duplex\n");
1005 return 0;
1009 * igb_get_hw_semaphore - Acquire hardware semaphore
1010 * @hw: pointer to the HW structure
1012 * Acquire the HW semaphore to access the PHY or NVM
1014 s32 igb_get_hw_semaphore(struct e1000_hw *hw)
1016 u32 swsm;
1017 s32 ret_val = 0;
1018 s32 timeout = hw->nvm.word_size + 1;
1019 s32 i = 0;
1021 /* Get the SW semaphore */
1022 while (i < timeout) {
1023 swsm = rd32(E1000_SWSM);
1024 if (!(swsm & E1000_SWSM_SMBI))
1025 break;
1027 udelay(50);
1028 i++;
1031 if (i == timeout) {
1032 hw_dbg("Driver can't access device - SMBI bit is set.\n");
1033 ret_val = -E1000_ERR_NVM;
1034 goto out;
1037 /* Get the FW semaphore. */
1038 for (i = 0; i < timeout; i++) {
1039 swsm = rd32(E1000_SWSM);
1040 wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
1042 /* Semaphore acquired if bit latched */
1043 if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
1044 break;
1046 udelay(50);
1049 if (i == timeout) {
1050 /* Release semaphores */
1051 igb_put_hw_semaphore(hw);
1052 hw_dbg("Driver can't access the NVM\n");
1053 ret_val = -E1000_ERR_NVM;
1054 goto out;
1057 out:
1058 return ret_val;
1062 * igb_put_hw_semaphore - Release hardware semaphore
1063 * @hw: pointer to the HW structure
1065 * Release hardware semaphore used to access the PHY or NVM
1067 void igb_put_hw_semaphore(struct e1000_hw *hw)
1069 u32 swsm;
1071 swsm = rd32(E1000_SWSM);
1073 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1075 wr32(E1000_SWSM, swsm);
1079 * igb_get_auto_rd_done - Check for auto read completion
1080 * @hw: pointer to the HW structure
1082 * Check EEPROM for Auto Read done bit.
1084 s32 igb_get_auto_rd_done(struct e1000_hw *hw)
1086 s32 i = 0;
1087 s32 ret_val = 0;
1090 while (i < AUTO_READ_DONE_TIMEOUT) {
1091 if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
1092 break;
1093 msleep(1);
1094 i++;
1097 if (i == AUTO_READ_DONE_TIMEOUT) {
1098 hw_dbg("Auto read by HW from NVM has not completed.\n");
1099 ret_val = -E1000_ERR_RESET;
1100 goto out;
1103 out:
1104 return ret_val;
1108 * igb_valid_led_default - Verify a valid default LED config
1109 * @hw: pointer to the HW structure
1110 * @data: pointer to the NVM (EEPROM)
1112 * Read the EEPROM for the current default LED configuration. If the
1113 * LED configuration is not valid, set to a valid LED configuration.
1115 static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
1117 s32 ret_val;
1119 ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
1120 if (ret_val) {
1121 hw_dbg("NVM Read Error\n");
1122 goto out;
1125 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
1126 switch(hw->phy.media_type) {
1127 case e1000_media_type_internal_serdes:
1128 *data = ID_LED_DEFAULT_82575_SERDES;
1129 break;
1130 case e1000_media_type_copper:
1131 default:
1132 *data = ID_LED_DEFAULT;
1133 break;
1136 out:
1137 return ret_val;
1141 * igb_id_led_init -
1142 * @hw: pointer to the HW structure
1145 s32 igb_id_led_init(struct e1000_hw *hw)
1147 struct e1000_mac_info *mac = &hw->mac;
1148 s32 ret_val;
1149 const u32 ledctl_mask = 0x000000FF;
1150 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1151 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1152 u16 data, i, temp;
1153 const u16 led_mask = 0x0F;
1155 ret_val = igb_valid_led_default(hw, &data);
1156 if (ret_val)
1157 goto out;
1159 mac->ledctl_default = rd32(E1000_LEDCTL);
1160 mac->ledctl_mode1 = mac->ledctl_default;
1161 mac->ledctl_mode2 = mac->ledctl_default;
1163 for (i = 0; i < 4; i++) {
1164 temp = (data >> (i << 2)) & led_mask;
1165 switch (temp) {
1166 case ID_LED_ON1_DEF2:
1167 case ID_LED_ON1_ON2:
1168 case ID_LED_ON1_OFF2:
1169 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1170 mac->ledctl_mode1 |= ledctl_on << (i << 3);
1171 break;
1172 case ID_LED_OFF1_DEF2:
1173 case ID_LED_OFF1_ON2:
1174 case ID_LED_OFF1_OFF2:
1175 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1176 mac->ledctl_mode1 |= ledctl_off << (i << 3);
1177 break;
1178 default:
1179 /* Do nothing */
1180 break;
1182 switch (temp) {
1183 case ID_LED_DEF1_ON2:
1184 case ID_LED_ON1_ON2:
1185 case ID_LED_OFF1_ON2:
1186 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1187 mac->ledctl_mode2 |= ledctl_on << (i << 3);
1188 break;
1189 case ID_LED_DEF1_OFF2:
1190 case ID_LED_ON1_OFF2:
1191 case ID_LED_OFF1_OFF2:
1192 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1193 mac->ledctl_mode2 |= ledctl_off << (i << 3);
1194 break;
1195 default:
1196 /* Do nothing */
1197 break;
1201 out:
1202 return ret_val;
1206 * igb_cleanup_led - Set LED config to default operation
1207 * @hw: pointer to the HW structure
1209 * Remove the current LED configuration and set the LED configuration
1210 * to the default value, saved from the EEPROM.
1212 s32 igb_cleanup_led(struct e1000_hw *hw)
1214 wr32(E1000_LEDCTL, hw->mac.ledctl_default);
1215 return 0;
1219 * igb_blink_led - Blink LED
1220 * @hw: pointer to the HW structure
1222 * Blink the led's which are set to be on.
1224 s32 igb_blink_led(struct e1000_hw *hw)
1226 u32 ledctl_blink = 0;
1227 u32 i;
1230 * set the blink bit for each LED that's "on" (0x0E)
1231 * in ledctl_mode2
1233 ledctl_blink = hw->mac.ledctl_mode2;
1234 for (i = 0; i < 4; i++)
1235 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1236 E1000_LEDCTL_MODE_LED_ON)
1237 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
1238 (i * 8));
1240 wr32(E1000_LEDCTL, ledctl_blink);
1242 return 0;
1246 * igb_led_off - Turn LED off
1247 * @hw: pointer to the HW structure
1249 * Turn LED off.
1251 s32 igb_led_off(struct e1000_hw *hw)
1253 switch (hw->phy.media_type) {
1254 case e1000_media_type_copper:
1255 wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
1256 break;
1257 default:
1258 break;
1261 return 0;
1265 * igb_disable_pcie_master - Disables PCI-express master access
1266 * @hw: pointer to the HW structure
1268 * Returns 0 (0) if successful, else returns -10
1269 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not casued
1270 * the master requests to be disabled.
1272 * Disables PCI-Express master access and verifies there are no pending
1273 * requests.
1275 s32 igb_disable_pcie_master(struct e1000_hw *hw)
1277 u32 ctrl;
1278 s32 timeout = MASTER_DISABLE_TIMEOUT;
1279 s32 ret_val = 0;
1281 if (hw->bus.type != e1000_bus_type_pci_express)
1282 goto out;
1284 ctrl = rd32(E1000_CTRL);
1285 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1286 wr32(E1000_CTRL, ctrl);
1288 while (timeout) {
1289 if (!(rd32(E1000_STATUS) &
1290 E1000_STATUS_GIO_MASTER_ENABLE))
1291 break;
1292 udelay(100);
1293 timeout--;
1296 if (!timeout) {
1297 hw_dbg("Master requests are pending.\n");
1298 ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
1299 goto out;
1302 out:
1303 return ret_val;
1307 * igb_reset_adaptive - Reset Adaptive Interframe Spacing
1308 * @hw: pointer to the HW structure
1310 * Reset the Adaptive Interframe Spacing throttle to default values.
1312 void igb_reset_adaptive(struct e1000_hw *hw)
1314 struct e1000_mac_info *mac = &hw->mac;
1316 if (!mac->adaptive_ifs) {
1317 hw_dbg("Not in Adaptive IFS mode!\n");
1318 goto out;
1321 if (!mac->ifs_params_forced) {
1322 mac->current_ifs_val = 0;
1323 mac->ifs_min_val = IFS_MIN;
1324 mac->ifs_max_val = IFS_MAX;
1325 mac->ifs_step_size = IFS_STEP;
1326 mac->ifs_ratio = IFS_RATIO;
1329 mac->in_ifs_mode = false;
1330 wr32(E1000_AIT, 0);
1331 out:
1332 return;
1336 * igb_update_adaptive - Update Adaptive Interframe Spacing
1337 * @hw: pointer to the HW structure
1339 * Update the Adaptive Interframe Spacing Throttle value based on the
1340 * time between transmitted packets and time between collisions.
1342 void igb_update_adaptive(struct e1000_hw *hw)
1344 struct e1000_mac_info *mac = &hw->mac;
1346 if (!mac->adaptive_ifs) {
1347 hw_dbg("Not in Adaptive IFS mode!\n");
1348 goto out;
1351 if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
1352 if (mac->tx_packet_delta > MIN_NUM_XMITS) {
1353 mac->in_ifs_mode = true;
1354 if (mac->current_ifs_val < mac->ifs_max_val) {
1355 if (!mac->current_ifs_val)
1356 mac->current_ifs_val = mac->ifs_min_val;
1357 else
1358 mac->current_ifs_val +=
1359 mac->ifs_step_size;
1360 wr32(E1000_AIT,
1361 mac->current_ifs_val);
1364 } else {
1365 if (mac->in_ifs_mode &&
1366 (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
1367 mac->current_ifs_val = 0;
1368 mac->in_ifs_mode = false;
1369 wr32(E1000_AIT, 0);
1372 out:
1373 return;
1377 * igb_validate_mdi_setting - Verify MDI/MDIx settings
1378 * @hw: pointer to the HW structure
1380 * Verify that when not using auto-negotitation that MDI/MDIx is correctly
1381 * set, which is forced to MDI mode only.
1383 s32 igb_validate_mdi_setting(struct e1000_hw *hw)
1385 s32 ret_val = 0;
1387 if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
1388 hw_dbg("Invalid MDI setting detected\n");
1389 hw->phy.mdix = 1;
1390 ret_val = -E1000_ERR_CONFIG;
1391 goto out;
1394 out:
1395 return ret_val;
1399 * igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
1400 * @hw: pointer to the HW structure
1401 * @reg: 32bit register offset such as E1000_SCTL
1402 * @offset: register offset to write to
1403 * @data: data to write at register offset
1405 * Writes an address/data control type register. There are several of these
1406 * and they all have the format address << 8 | data and bit 31 is polled for
1407 * completion.
1409 s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
1410 u32 offset, u8 data)
1412 u32 i, regvalue = 0;
1413 s32 ret_val = 0;
1415 /* Set up the address and data */
1416 regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
1417 wr32(reg, regvalue);
1419 /* Poll the ready bit to see if the MDI read completed */
1420 for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
1421 udelay(5);
1422 regvalue = rd32(reg);
1423 if (regvalue & E1000_GEN_CTL_READY)
1424 break;
1426 if (!(regvalue & E1000_GEN_CTL_READY)) {
1427 hw_dbg("Reg %08x did not indicate ready\n", reg);
1428 ret_val = -E1000_ERR_PHY;
1429 goto out;
1432 out:
1433 return ret_val;
1437 * igb_enable_mng_pass_thru - Enable processing of ARP's
1438 * @hw: pointer to the HW structure
1440 * Verifies the hardware needs to allow ARPs to be processed by the host.
1442 bool igb_enable_mng_pass_thru(struct e1000_hw *hw)
1444 u32 manc;
1445 u32 fwsm, factps;
1446 bool ret_val = false;
1448 if (!hw->mac.asf_firmware_present)
1449 goto out;
1451 manc = rd32(E1000_MANC);
1453 if (!(manc & E1000_MANC_RCV_TCO_EN) ||
1454 !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
1455 goto out;
1457 if (hw->mac.arc_subsystem_valid) {
1458 fwsm = rd32(E1000_FWSM);
1459 factps = rd32(E1000_FACTPS);
1461 if (!(factps & E1000_FACTPS_MNGCG) &&
1462 ((fwsm & E1000_FWSM_MODE_MASK) ==
1463 (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
1464 ret_val = true;
1465 goto out;
1467 } else {
1468 if ((manc & E1000_MANC_SMBUS_EN) &&
1469 !(manc & E1000_MANC_ASF_EN)) {
1470 ret_val = true;
1471 goto out;
1475 out:
1476 return ret_val;