1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if_vlan.h>
41 #include <linux/pci.h>
42 #include <linux/pci-aspm.h>
43 #include <linux/delay.h>
44 #include <linux/interrupt.h>
45 #include <linux/if_ether.h>
46 #include <linux/aer.h>
48 #include <linux/dca.h>
52 #define DRV_VERSION "1.3.16-k2"
53 char igb_driver_name
[] = "igb";
54 char igb_driver_version
[] = DRV_VERSION
;
55 static const char igb_driver_string
[] =
56 "Intel(R) Gigabit Ethernet Network Driver";
57 static const char igb_copyright
[] = "Copyright (c) 2007-2009 Intel Corporation.";
59 static const struct e1000_info
*igb_info_tbl
[] = {
60 [board_82575
] = &e1000_82575_info
,
63 static struct pci_device_id igb_pci_tbl
[] = {
64 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576
), board_82575
},
65 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_NS
), board_82575
},
66 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_NS_SERDES
), board_82575
},
67 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_FIBER
), board_82575
},
68 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_SERDES
), board_82575
},
69 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_SERDES_QUAD
), board_82575
},
70 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_QUAD_COPPER
), board_82575
},
71 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82575EB_COPPER
), board_82575
},
72 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82575EB_FIBER_SERDES
), board_82575
},
73 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82575GB_QUAD_COPPER
), board_82575
},
74 /* required last entry */
78 MODULE_DEVICE_TABLE(pci
, igb_pci_tbl
);
80 void igb_reset(struct igb_adapter
*);
81 static int igb_setup_all_tx_resources(struct igb_adapter
*);
82 static int igb_setup_all_rx_resources(struct igb_adapter
*);
83 static void igb_free_all_tx_resources(struct igb_adapter
*);
84 static void igb_free_all_rx_resources(struct igb_adapter
*);
85 void igb_update_stats(struct igb_adapter
*);
86 static int igb_probe(struct pci_dev
*, const struct pci_device_id
*);
87 static void __devexit
igb_remove(struct pci_dev
*pdev
);
88 static int igb_sw_init(struct igb_adapter
*);
89 static int igb_open(struct net_device
*);
90 static int igb_close(struct net_device
*);
91 static void igb_configure_tx(struct igb_adapter
*);
92 static void igb_configure_rx(struct igb_adapter
*);
93 static void igb_setup_rctl(struct igb_adapter
*);
94 static void igb_clean_all_tx_rings(struct igb_adapter
*);
95 static void igb_clean_all_rx_rings(struct igb_adapter
*);
96 static void igb_clean_tx_ring(struct igb_ring
*);
97 static void igb_clean_rx_ring(struct igb_ring
*);
98 static void igb_set_rx_mode(struct net_device
*);
99 static void igb_update_phy_info(unsigned long);
100 static void igb_watchdog(unsigned long);
101 static void igb_watchdog_task(struct work_struct
*);
102 static netdev_tx_t
igb_xmit_frame_ring_adv(struct sk_buff
*,
105 static netdev_tx_t
igb_xmit_frame_adv(struct sk_buff
*skb
,
106 struct net_device
*);
107 static struct net_device_stats
*igb_get_stats(struct net_device
*);
108 static int igb_change_mtu(struct net_device
*, int);
109 static int igb_set_mac(struct net_device
*, void *);
110 static void igb_set_uta(struct igb_adapter
*adapter
);
111 static irqreturn_t
igb_intr(int irq
, void *);
112 static irqreturn_t
igb_intr_msi(int irq
, void *);
113 static irqreturn_t
igb_msix_other(int irq
, void *);
114 static irqreturn_t
igb_msix_rx(int irq
, void *);
115 static irqreturn_t
igb_msix_tx(int irq
, void *);
116 #ifdef CONFIG_IGB_DCA
117 static void igb_update_rx_dca(struct igb_ring
*);
118 static void igb_update_tx_dca(struct igb_ring
*);
119 static void igb_setup_dca(struct igb_adapter
*);
120 #endif /* CONFIG_IGB_DCA */
121 static bool igb_clean_tx_irq(struct igb_ring
*);
122 static int igb_poll(struct napi_struct
*, int);
123 static bool igb_clean_rx_irq_adv(struct igb_ring
*, int *, int);
124 static void igb_alloc_rx_buffers_adv(struct igb_ring
*, int);
125 static int igb_ioctl(struct net_device
*, struct ifreq
*, int cmd
);
126 static void igb_tx_timeout(struct net_device
*);
127 static void igb_reset_task(struct work_struct
*);
128 static void igb_vlan_rx_register(struct net_device
*, struct vlan_group
*);
129 static void igb_vlan_rx_add_vid(struct net_device
*, u16
);
130 static void igb_vlan_rx_kill_vid(struct net_device
*, u16
);
131 static void igb_restore_vlan(struct igb_adapter
*);
132 static void igb_rar_set_qsel(struct igb_adapter
*, u8
*, u32
, u8
);
133 static void igb_ping_all_vfs(struct igb_adapter
*);
134 static void igb_msg_task(struct igb_adapter
*);
135 static int igb_rcv_msg_from_vf(struct igb_adapter
*, u32
);
136 static void igb_vmm_control(struct igb_adapter
*);
137 static int igb_set_vf_mac(struct igb_adapter
*adapter
, int, unsigned char *);
138 static void igb_restore_vf_multicasts(struct igb_adapter
*adapter
);
140 static inline void igb_set_vmolr(struct e1000_hw
*hw
, int vfn
)
144 reg_data
= rd32(E1000_VMOLR(vfn
));
145 reg_data
|= E1000_VMOLR_BAM
| /* Accept broadcast */
146 E1000_VMOLR_ROMPE
| /* Accept packets matched in MTA */
147 E1000_VMOLR_AUPE
| /* Accept untagged packets */
148 E1000_VMOLR_STRVLAN
; /* Strip vlan tags */
149 wr32(E1000_VMOLR(vfn
), reg_data
);
152 static inline int igb_set_vf_rlpml(struct igb_adapter
*adapter
, int size
,
155 struct e1000_hw
*hw
= &adapter
->hw
;
158 /* if it isn't the PF check to see if VFs are enabled and
159 * increase the size to support vlan tags */
160 if (vfn
< adapter
->vfs_allocated_count
&&
161 adapter
->vf_data
[vfn
].vlans_enabled
)
162 size
+= VLAN_TAG_SIZE
;
164 vmolr
= rd32(E1000_VMOLR(vfn
));
165 vmolr
&= ~E1000_VMOLR_RLPML_MASK
;
166 vmolr
|= size
| E1000_VMOLR_LPE
;
167 wr32(E1000_VMOLR(vfn
), vmolr
);
173 static int igb_suspend(struct pci_dev
*, pm_message_t
);
174 static int igb_resume(struct pci_dev
*);
176 static void igb_shutdown(struct pci_dev
*);
177 #ifdef CONFIG_IGB_DCA
178 static int igb_notify_dca(struct notifier_block
*, unsigned long, void *);
179 static struct notifier_block dca_notifier
= {
180 .notifier_call
= igb_notify_dca
,
185 #ifdef CONFIG_NET_POLL_CONTROLLER
186 /* for netdump / net console */
187 static void igb_netpoll(struct net_device
*);
189 #ifdef CONFIG_PCI_IOV
190 static unsigned int max_vfs
= 0;
191 module_param(max_vfs
, uint
, 0);
192 MODULE_PARM_DESC(max_vfs
, "Maximum number of virtual functions to allocate "
193 "per physical function");
194 #endif /* CONFIG_PCI_IOV */
196 static pci_ers_result_t
igb_io_error_detected(struct pci_dev
*,
197 pci_channel_state_t
);
198 static pci_ers_result_t
igb_io_slot_reset(struct pci_dev
*);
199 static void igb_io_resume(struct pci_dev
*);
201 static struct pci_error_handlers igb_err_handler
= {
202 .error_detected
= igb_io_error_detected
,
203 .slot_reset
= igb_io_slot_reset
,
204 .resume
= igb_io_resume
,
208 static struct pci_driver igb_driver
= {
209 .name
= igb_driver_name
,
210 .id_table
= igb_pci_tbl
,
212 .remove
= __devexit_p(igb_remove
),
214 /* Power Managment Hooks */
215 .suspend
= igb_suspend
,
216 .resume
= igb_resume
,
218 .shutdown
= igb_shutdown
,
219 .err_handler
= &igb_err_handler
222 static int global_quad_port_a
; /* global quad port a indication */
224 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
225 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
226 MODULE_LICENSE("GPL");
227 MODULE_VERSION(DRV_VERSION
);
230 * Scale the NIC clock cycle by a large factor so that
231 * relatively small clock corrections can be added or
232 * substracted at each clock tick. The drawbacks of a
233 * large factor are a) that the clock register overflows
234 * more quickly (not such a big deal) and b) that the
235 * increment per tick has to fit into 24 bits.
238 * TIMINCA = IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS *
240 * TIMINCA += TIMINCA * adjustment [ppm] / 1e9
242 * The base scale factor is intentionally a power of two
243 * so that the division in %struct timecounter can be done with
246 #define IGB_TSYNC_SHIFT (19)
247 #define IGB_TSYNC_SCALE (1<<IGB_TSYNC_SHIFT)
250 * The duration of one clock cycle of the NIC.
252 * @todo This hard-coded value is part of the specification and might change
253 * in future hardware revisions. Add revision check.
255 #define IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS 16
257 #if (IGB_TSYNC_SCALE * IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS) >= (1<<24)
258 # error IGB_TSYNC_SCALE and/or IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS are too large to fit into TIMINCA
262 * igb_read_clock - read raw cycle counter (to be used by time counter)
264 static cycle_t
igb_read_clock(const struct cyclecounter
*tc
)
266 struct igb_adapter
*adapter
=
267 container_of(tc
, struct igb_adapter
, cycles
);
268 struct e1000_hw
*hw
= &adapter
->hw
;
271 stamp
= rd32(E1000_SYSTIML
);
272 stamp
|= (u64
)rd32(E1000_SYSTIMH
) << 32ULL;
279 * igb_get_hw_dev_name - return device name string
280 * used by hardware layer to print debugging information
282 char *igb_get_hw_dev_name(struct e1000_hw
*hw
)
284 struct igb_adapter
*adapter
= hw
->back
;
285 return adapter
->netdev
->name
;
289 * igb_get_time_str - format current NIC and system time as string
291 static char *igb_get_time_str(struct igb_adapter
*adapter
,
294 cycle_t hw
= adapter
->cycles
.read(&adapter
->cycles
);
295 struct timespec nic
= ns_to_timespec(timecounter_read(&adapter
->clock
));
297 struct timespec delta
;
298 getnstimeofday(&sys
);
300 delta
= timespec_sub(nic
, sys
);
303 "HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
305 (long)nic
.tv_sec
, nic
.tv_nsec
,
306 (long)sys
.tv_sec
, sys
.tv_nsec
,
307 (long)delta
.tv_sec
, delta
.tv_nsec
);
314 * igb_desc_unused - calculate if we have unused descriptors
316 static int igb_desc_unused(struct igb_ring
*ring
)
318 if (ring
->next_to_clean
> ring
->next_to_use
)
319 return ring
->next_to_clean
- ring
->next_to_use
- 1;
321 return ring
->count
+ ring
->next_to_clean
- ring
->next_to_use
- 1;
325 * igb_init_module - Driver Registration Routine
327 * igb_init_module is the first routine called when the driver is
328 * loaded. All it does is register with the PCI subsystem.
330 static int __init
igb_init_module(void)
333 printk(KERN_INFO
"%s - version %s\n",
334 igb_driver_string
, igb_driver_version
);
336 printk(KERN_INFO
"%s\n", igb_copyright
);
338 global_quad_port_a
= 0;
340 #ifdef CONFIG_IGB_DCA
341 dca_register_notify(&dca_notifier
);
344 ret
= pci_register_driver(&igb_driver
);
348 module_init(igb_init_module
);
351 * igb_exit_module - Driver Exit Cleanup Routine
353 * igb_exit_module is called just before the driver is removed
356 static void __exit
igb_exit_module(void)
358 #ifdef CONFIG_IGB_DCA
359 dca_unregister_notify(&dca_notifier
);
361 pci_unregister_driver(&igb_driver
);
364 module_exit(igb_exit_module
);
366 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
368 * igb_cache_ring_register - Descriptor ring to register mapping
369 * @adapter: board private structure to initialize
371 * Once we know the feature-set enabled for the device, we'll cache
372 * the register offset the descriptor ring is assigned to.
374 static void igb_cache_ring_register(struct igb_adapter
*adapter
)
377 unsigned int rbase_offset
= adapter
->vfs_allocated_count
;
379 switch (adapter
->hw
.mac
.type
) {
381 /* The queues are allocated for virtualization such that VF 0
382 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
383 * In order to avoid collision we start at the first free queue
384 * and continue consuming queues in the same sequence
386 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
387 adapter
->rx_ring
[i
].reg_idx
= rbase_offset
+
389 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
390 adapter
->tx_ring
[i
].reg_idx
= rbase_offset
+
395 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
396 adapter
->rx_ring
[i
].reg_idx
= i
;
397 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
398 adapter
->tx_ring
[i
].reg_idx
= i
;
404 * igb_alloc_queues - Allocate memory for all rings
405 * @adapter: board private structure to initialize
407 * We allocate one ring per queue at run-time since we don't know the
408 * number of queues at compile-time.
410 static int igb_alloc_queues(struct igb_adapter
*adapter
)
414 adapter
->tx_ring
= kcalloc(adapter
->num_tx_queues
,
415 sizeof(struct igb_ring
), GFP_KERNEL
);
416 if (!adapter
->tx_ring
)
419 adapter
->rx_ring
= kcalloc(adapter
->num_rx_queues
,
420 sizeof(struct igb_ring
), GFP_KERNEL
);
421 if (!adapter
->rx_ring
) {
422 kfree(adapter
->tx_ring
);
426 adapter
->rx_ring
->buddy
= adapter
->tx_ring
;
428 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
429 struct igb_ring
*ring
= &(adapter
->tx_ring
[i
]);
430 ring
->count
= adapter
->tx_ring_count
;
431 ring
->adapter
= adapter
;
432 ring
->queue_index
= i
;
434 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
435 struct igb_ring
*ring
= &(adapter
->rx_ring
[i
]);
436 ring
->count
= adapter
->rx_ring_count
;
437 ring
->adapter
= adapter
;
438 ring
->queue_index
= i
;
439 ring
->itr_register
= E1000_ITR
;
441 /* set a default napi handler for each rx_ring */
442 netif_napi_add(adapter
->netdev
, &ring
->napi
, igb_poll
, 64);
445 igb_cache_ring_register(adapter
);
449 static void igb_free_queues(struct igb_adapter
*adapter
)
453 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
454 netif_napi_del(&adapter
->rx_ring
[i
].napi
);
456 adapter
->num_rx_queues
= 0;
457 adapter
->num_tx_queues
= 0;
459 kfree(adapter
->tx_ring
);
460 kfree(adapter
->rx_ring
);
463 #define IGB_N0_QUEUE -1
464 static void igb_assign_vector(struct igb_adapter
*adapter
, int rx_queue
,
465 int tx_queue
, int msix_vector
)
468 struct e1000_hw
*hw
= &adapter
->hw
;
471 switch (hw
->mac
.type
) {
473 /* The 82575 assigns vectors using a bitmask, which matches the
474 bitmask for the EICR/EIMS/EIMC registers. To assign one
475 or more queues to a vector, we write the appropriate bits
476 into the MSIXBM register for that vector. */
477 if (rx_queue
> IGB_N0_QUEUE
) {
478 msixbm
= E1000_EICR_RX_QUEUE0
<< rx_queue
;
479 adapter
->rx_ring
[rx_queue
].eims_value
= msixbm
;
481 if (tx_queue
> IGB_N0_QUEUE
) {
482 msixbm
|= E1000_EICR_TX_QUEUE0
<< tx_queue
;
483 adapter
->tx_ring
[tx_queue
].eims_value
=
484 E1000_EICR_TX_QUEUE0
<< tx_queue
;
486 array_wr32(E1000_MSIXBM(0), msix_vector
, msixbm
);
489 /* 82576 uses a table-based method for assigning vectors.
490 Each queue has a single entry in the table to which we write
491 a vector number along with a "valid" bit. Sadly, the layout
492 of the table is somewhat counterintuitive. */
493 if (rx_queue
> IGB_N0_QUEUE
) {
494 index
= (rx_queue
>> 1) + adapter
->vfs_allocated_count
;
495 ivar
= array_rd32(E1000_IVAR0
, index
);
496 if (rx_queue
& 0x1) {
497 /* vector goes into third byte of register */
498 ivar
= ivar
& 0xFF00FFFF;
499 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 16;
501 /* vector goes into low byte of register */
502 ivar
= ivar
& 0xFFFFFF00;
503 ivar
|= msix_vector
| E1000_IVAR_VALID
;
505 adapter
->rx_ring
[rx_queue
].eims_value
= 1 << msix_vector
;
506 array_wr32(E1000_IVAR0
, index
, ivar
);
508 if (tx_queue
> IGB_N0_QUEUE
) {
509 index
= (tx_queue
>> 1) + adapter
->vfs_allocated_count
;
510 ivar
= array_rd32(E1000_IVAR0
, index
);
511 if (tx_queue
& 0x1) {
512 /* vector goes into high byte of register */
513 ivar
= ivar
& 0x00FFFFFF;
514 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 24;
516 /* vector goes into second byte of register */
517 ivar
= ivar
& 0xFFFF00FF;
518 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 8;
520 adapter
->tx_ring
[tx_queue
].eims_value
= 1 << msix_vector
;
521 array_wr32(E1000_IVAR0
, index
, ivar
);
531 * igb_configure_msix - Configure MSI-X hardware
533 * igb_configure_msix sets up the hardware to properly
534 * generate MSI-X interrupts.
536 static void igb_configure_msix(struct igb_adapter
*adapter
)
540 struct e1000_hw
*hw
= &adapter
->hw
;
542 adapter
->eims_enable_mask
= 0;
543 if (hw
->mac
.type
== e1000_82576
)
544 /* Turn on MSI-X capability first, or our settings
545 * won't stick. And it will take days to debug. */
546 wr32(E1000_GPIE
, E1000_GPIE_MSIX_MODE
|
547 E1000_GPIE_PBA
| E1000_GPIE_EIAME
|
550 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
551 struct igb_ring
*tx_ring
= &adapter
->tx_ring
[i
];
552 igb_assign_vector(adapter
, IGB_N0_QUEUE
, i
, vector
++);
553 adapter
->eims_enable_mask
|= tx_ring
->eims_value
;
554 if (tx_ring
->itr_val
)
555 writel(tx_ring
->itr_val
,
556 hw
->hw_addr
+ tx_ring
->itr_register
);
558 writel(1, hw
->hw_addr
+ tx_ring
->itr_register
);
561 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
562 struct igb_ring
*rx_ring
= &adapter
->rx_ring
[i
];
563 rx_ring
->buddy
= NULL
;
564 igb_assign_vector(adapter
, i
, IGB_N0_QUEUE
, vector
++);
565 adapter
->eims_enable_mask
|= rx_ring
->eims_value
;
566 if (rx_ring
->itr_val
)
567 writel(rx_ring
->itr_val
,
568 hw
->hw_addr
+ rx_ring
->itr_register
);
570 writel(1, hw
->hw_addr
+ rx_ring
->itr_register
);
574 /* set vector for other causes, i.e. link changes */
575 switch (hw
->mac
.type
) {
577 array_wr32(E1000_MSIXBM(0), vector
++,
580 tmp
= rd32(E1000_CTRL_EXT
);
581 /* enable MSI-X PBA support*/
582 tmp
|= E1000_CTRL_EXT_PBA_CLR
;
584 /* Auto-Mask interrupts upon ICR read. */
585 tmp
|= E1000_CTRL_EXT_EIAME
;
586 tmp
|= E1000_CTRL_EXT_IRCA
;
588 wr32(E1000_CTRL_EXT
, tmp
);
589 adapter
->eims_enable_mask
|= E1000_EIMS_OTHER
;
590 adapter
->eims_other
= E1000_EIMS_OTHER
;
595 tmp
= (vector
++ | E1000_IVAR_VALID
) << 8;
596 wr32(E1000_IVAR_MISC
, tmp
);
598 adapter
->eims_enable_mask
= (1 << (vector
)) - 1;
599 adapter
->eims_other
= 1 << (vector
- 1);
602 /* do nothing, since nothing else supports MSI-X */
604 } /* switch (hw->mac.type) */
609 * igb_request_msix - Initialize MSI-X interrupts
611 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
614 static int igb_request_msix(struct igb_adapter
*adapter
)
616 struct net_device
*netdev
= adapter
->netdev
;
617 int i
, err
= 0, vector
= 0;
621 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
622 struct igb_ring
*ring
= &(adapter
->tx_ring
[i
]);
623 sprintf(ring
->name
, "%s-tx-%d", netdev
->name
, i
);
624 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
625 &igb_msix_tx
, 0, ring
->name
,
626 &(adapter
->tx_ring
[i
]));
629 ring
->itr_register
= E1000_EITR(0) + (vector
<< 2);
630 ring
->itr_val
= 976; /* ~4000 ints/sec */
633 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
634 struct igb_ring
*ring
= &(adapter
->rx_ring
[i
]);
635 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
636 sprintf(ring
->name
, "%s-rx-%d", netdev
->name
, i
);
638 memcpy(ring
->name
, netdev
->name
, IFNAMSIZ
);
639 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
640 &igb_msix_rx
, 0, ring
->name
,
641 &(adapter
->rx_ring
[i
]));
644 ring
->itr_register
= E1000_EITR(0) + (vector
<< 2);
645 ring
->itr_val
= adapter
->itr
;
649 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
650 &igb_msix_other
, 0, netdev
->name
, netdev
);
654 igb_configure_msix(adapter
);
660 static void igb_reset_interrupt_capability(struct igb_adapter
*adapter
)
662 if (adapter
->msix_entries
) {
663 pci_disable_msix(adapter
->pdev
);
664 kfree(adapter
->msix_entries
);
665 adapter
->msix_entries
= NULL
;
666 } else if (adapter
->flags
& IGB_FLAG_HAS_MSI
)
667 pci_disable_msi(adapter
->pdev
);
673 * igb_set_interrupt_capability - set MSI or MSI-X if supported
675 * Attempt to configure interrupts using the best available
676 * capabilities of the hardware and kernel.
678 static void igb_set_interrupt_capability(struct igb_adapter
*adapter
)
683 /* Number of supported queues. */
684 /* Having more queues than CPUs doesn't make sense. */
685 adapter
->num_rx_queues
= min_t(u32
, IGB_MAX_RX_QUEUES
, num_online_cpus());
686 adapter
->num_tx_queues
= min_t(u32
, IGB_MAX_TX_QUEUES
, num_online_cpus());
688 numvecs
= adapter
->num_tx_queues
+ adapter
->num_rx_queues
+ 1;
689 adapter
->msix_entries
= kcalloc(numvecs
, sizeof(struct msix_entry
),
691 if (!adapter
->msix_entries
)
694 for (i
= 0; i
< numvecs
; i
++)
695 adapter
->msix_entries
[i
].entry
= i
;
697 err
= pci_enable_msix(adapter
->pdev
,
698 adapter
->msix_entries
,
703 igb_reset_interrupt_capability(adapter
);
705 /* If we can't do MSI-X, try MSI */
707 #ifdef CONFIG_PCI_IOV
708 /* disable SR-IOV for non MSI-X configurations */
709 if (adapter
->vf_data
) {
710 struct e1000_hw
*hw
= &adapter
->hw
;
711 /* disable iov and allow time for transactions to clear */
712 pci_disable_sriov(adapter
->pdev
);
715 kfree(adapter
->vf_data
);
716 adapter
->vf_data
= NULL
;
717 wr32(E1000_IOVCTL
, E1000_IOVCTL_REUSE_VFQ
);
719 dev_info(&adapter
->pdev
->dev
, "IOV Disabled\n");
722 adapter
->num_rx_queues
= 1;
723 adapter
->num_tx_queues
= 1;
724 if (!pci_enable_msi(adapter
->pdev
))
725 adapter
->flags
|= IGB_FLAG_HAS_MSI
;
727 /* Notify the stack of the (possibly) reduced Tx Queue count. */
728 adapter
->netdev
->real_num_tx_queues
= adapter
->num_tx_queues
;
733 * igb_request_irq - initialize interrupts
735 * Attempts to configure interrupts using the best available
736 * capabilities of the hardware and kernel.
738 static int igb_request_irq(struct igb_adapter
*adapter
)
740 struct net_device
*netdev
= adapter
->netdev
;
741 struct e1000_hw
*hw
= &adapter
->hw
;
744 if (adapter
->msix_entries
) {
745 err
= igb_request_msix(adapter
);
748 /* fall back to MSI */
749 igb_reset_interrupt_capability(adapter
);
750 if (!pci_enable_msi(adapter
->pdev
))
751 adapter
->flags
|= IGB_FLAG_HAS_MSI
;
752 igb_free_all_tx_resources(adapter
);
753 igb_free_all_rx_resources(adapter
);
754 adapter
->num_rx_queues
= 1;
755 igb_alloc_queues(adapter
);
757 switch (hw
->mac
.type
) {
759 wr32(E1000_MSIXBM(0),
760 (E1000_EICR_RX_QUEUE0
| E1000_EIMS_OTHER
));
763 wr32(E1000_IVAR0
, E1000_IVAR_VALID
);
770 if (adapter
->flags
& IGB_FLAG_HAS_MSI
) {
771 err
= request_irq(adapter
->pdev
->irq
, &igb_intr_msi
, 0,
772 netdev
->name
, netdev
);
775 /* fall back to legacy interrupts */
776 igb_reset_interrupt_capability(adapter
);
777 adapter
->flags
&= ~IGB_FLAG_HAS_MSI
;
780 err
= request_irq(adapter
->pdev
->irq
, &igb_intr
, IRQF_SHARED
,
781 netdev
->name
, netdev
);
784 dev_err(&adapter
->pdev
->dev
, "Error %d getting interrupt\n",
791 static void igb_free_irq(struct igb_adapter
*adapter
)
793 struct net_device
*netdev
= adapter
->netdev
;
795 if (adapter
->msix_entries
) {
798 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
799 free_irq(adapter
->msix_entries
[vector
++].vector
,
800 &(adapter
->tx_ring
[i
]));
801 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
802 free_irq(adapter
->msix_entries
[vector
++].vector
,
803 &(adapter
->rx_ring
[i
]));
805 free_irq(adapter
->msix_entries
[vector
++].vector
, netdev
);
809 free_irq(adapter
->pdev
->irq
, netdev
);
813 * igb_irq_disable - Mask off interrupt generation on the NIC
814 * @adapter: board private structure
816 static void igb_irq_disable(struct igb_adapter
*adapter
)
818 struct e1000_hw
*hw
= &adapter
->hw
;
820 if (adapter
->msix_entries
) {
821 u32 regval
= rd32(E1000_EIAM
);
822 wr32(E1000_EIAM
, regval
& ~adapter
->eims_enable_mask
);
823 wr32(E1000_EIMC
, adapter
->eims_enable_mask
);
824 regval
= rd32(E1000_EIAC
);
825 wr32(E1000_EIAC
, regval
& ~adapter
->eims_enable_mask
);
831 synchronize_irq(adapter
->pdev
->irq
);
835 * igb_irq_enable - Enable default interrupt generation settings
836 * @adapter: board private structure
838 static void igb_irq_enable(struct igb_adapter
*adapter
)
840 struct e1000_hw
*hw
= &adapter
->hw
;
842 if (adapter
->msix_entries
) {
843 u32 regval
= rd32(E1000_EIAC
);
844 wr32(E1000_EIAC
, regval
| adapter
->eims_enable_mask
);
845 regval
= rd32(E1000_EIAM
);
846 wr32(E1000_EIAM
, regval
| adapter
->eims_enable_mask
);
847 wr32(E1000_EIMS
, adapter
->eims_enable_mask
);
848 if (adapter
->vfs_allocated_count
)
849 wr32(E1000_MBVFIMR
, 0xFF);
850 wr32(E1000_IMS
, (E1000_IMS_LSC
| E1000_IMS_VMMB
|
851 E1000_IMS_DOUTSYNC
));
853 wr32(E1000_IMS
, IMS_ENABLE_MASK
);
854 wr32(E1000_IAM
, IMS_ENABLE_MASK
);
858 static void igb_update_mng_vlan(struct igb_adapter
*adapter
)
860 struct net_device
*netdev
= adapter
->netdev
;
861 u16 vid
= adapter
->hw
.mng_cookie
.vlan_id
;
862 u16 old_vid
= adapter
->mng_vlan_id
;
863 if (adapter
->vlgrp
) {
864 if (!vlan_group_get_device(adapter
->vlgrp
, vid
)) {
865 if (adapter
->hw
.mng_cookie
.status
&
866 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) {
867 igb_vlan_rx_add_vid(netdev
, vid
);
868 adapter
->mng_vlan_id
= vid
;
870 adapter
->mng_vlan_id
= IGB_MNG_VLAN_NONE
;
872 if ((old_vid
!= (u16
)IGB_MNG_VLAN_NONE
) &&
874 !vlan_group_get_device(adapter
->vlgrp
, old_vid
))
875 igb_vlan_rx_kill_vid(netdev
, old_vid
);
877 adapter
->mng_vlan_id
= vid
;
882 * igb_release_hw_control - release control of the h/w to f/w
883 * @adapter: address of board private structure
885 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
886 * For ASF and Pass Through versions of f/w this means that the
887 * driver is no longer loaded.
890 static void igb_release_hw_control(struct igb_adapter
*adapter
)
892 struct e1000_hw
*hw
= &adapter
->hw
;
895 /* Let firmware take over control of h/w */
896 ctrl_ext
= rd32(E1000_CTRL_EXT
);
898 ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
903 * igb_get_hw_control - get control of the h/w from f/w
904 * @adapter: address of board private structure
906 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
907 * For ASF and Pass Through versions of f/w this means that
908 * the driver is loaded.
911 static void igb_get_hw_control(struct igb_adapter
*adapter
)
913 struct e1000_hw
*hw
= &adapter
->hw
;
916 /* Let firmware know the driver has taken over */
917 ctrl_ext
= rd32(E1000_CTRL_EXT
);
919 ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
923 * igb_configure - configure the hardware for RX and TX
924 * @adapter: private board structure
926 static void igb_configure(struct igb_adapter
*adapter
)
928 struct net_device
*netdev
= adapter
->netdev
;
931 igb_get_hw_control(adapter
);
932 igb_set_rx_mode(netdev
);
934 igb_restore_vlan(adapter
);
936 igb_configure_tx(adapter
);
937 igb_setup_rctl(adapter
);
938 igb_configure_rx(adapter
);
940 igb_rx_fifo_flush_82575(&adapter
->hw
);
942 /* call igb_desc_unused which always leaves
943 * at least 1 descriptor unused to make sure
944 * next_to_use != next_to_clean */
945 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
946 struct igb_ring
*ring
= &adapter
->rx_ring
[i
];
947 igb_alloc_rx_buffers_adv(ring
, igb_desc_unused(ring
));
951 adapter
->tx_queue_len
= netdev
->tx_queue_len
;
956 * igb_up - Open the interface and prepare it to handle traffic
957 * @adapter: board private structure
960 int igb_up(struct igb_adapter
*adapter
)
962 struct e1000_hw
*hw
= &adapter
->hw
;
965 /* hardware has been reset, we need to reload some things */
966 igb_configure(adapter
);
968 clear_bit(__IGB_DOWN
, &adapter
->state
);
970 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
971 napi_enable(&adapter
->rx_ring
[i
].napi
);
972 if (adapter
->msix_entries
)
973 igb_configure_msix(adapter
);
975 igb_vmm_control(adapter
);
976 igb_set_vmolr(hw
, adapter
->vfs_allocated_count
);
978 /* Clear any pending interrupts. */
980 igb_irq_enable(adapter
);
982 netif_tx_start_all_queues(adapter
->netdev
);
984 /* Fire a link change interrupt to start the watchdog. */
985 wr32(E1000_ICS
, E1000_ICS_LSC
);
989 void igb_down(struct igb_adapter
*adapter
)
991 struct e1000_hw
*hw
= &adapter
->hw
;
992 struct net_device
*netdev
= adapter
->netdev
;
996 /* signal that we're down so the interrupt handler does not
997 * reschedule our watchdog timer */
998 set_bit(__IGB_DOWN
, &adapter
->state
);
1000 /* disable receives in the hardware */
1001 rctl
= rd32(E1000_RCTL
);
1002 wr32(E1000_RCTL
, rctl
& ~E1000_RCTL_EN
);
1003 /* flush and sleep below */
1005 netif_tx_stop_all_queues(netdev
);
1007 /* disable transmits in the hardware */
1008 tctl
= rd32(E1000_TCTL
);
1009 tctl
&= ~E1000_TCTL_EN
;
1010 wr32(E1000_TCTL
, tctl
);
1011 /* flush both disables and wait for them to finish */
1015 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1016 napi_disable(&adapter
->rx_ring
[i
].napi
);
1018 igb_irq_disable(adapter
);
1020 del_timer_sync(&adapter
->watchdog_timer
);
1021 del_timer_sync(&adapter
->phy_info_timer
);
1023 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
1024 netif_carrier_off(netdev
);
1026 /* record the stats before reset*/
1027 igb_update_stats(adapter
);
1029 adapter
->link_speed
= 0;
1030 adapter
->link_duplex
= 0;
1032 if (!pci_channel_offline(adapter
->pdev
))
1034 igb_clean_all_tx_rings(adapter
);
1035 igb_clean_all_rx_rings(adapter
);
1036 #ifdef CONFIG_IGB_DCA
1038 /* since we reset the hardware DCA settings were cleared */
1039 igb_setup_dca(adapter
);
1043 void igb_reinit_locked(struct igb_adapter
*adapter
)
1045 WARN_ON(in_interrupt());
1046 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
1050 clear_bit(__IGB_RESETTING
, &adapter
->state
);
1053 void igb_reset(struct igb_adapter
*adapter
)
1055 struct e1000_hw
*hw
= &adapter
->hw
;
1056 struct e1000_mac_info
*mac
= &hw
->mac
;
1057 struct e1000_fc_info
*fc
= &hw
->fc
;
1058 u32 pba
= 0, tx_space
, min_tx_space
, min_rx_space
;
1061 /* Repartition Pba for greater than 9k mtu
1062 * To take effect CTRL.RST is required.
1064 switch (mac
->type
) {
1066 pba
= E1000_PBA_64K
;
1070 pba
= E1000_PBA_34K
;
1074 if ((adapter
->max_frame_size
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) &&
1075 (mac
->type
< e1000_82576
)) {
1076 /* adjust PBA for jumbo frames */
1077 wr32(E1000_PBA
, pba
);
1079 /* To maintain wire speed transmits, the Tx FIFO should be
1080 * large enough to accommodate two full transmit packets,
1081 * rounded up to the next 1KB and expressed in KB. Likewise,
1082 * the Rx FIFO should be large enough to accommodate at least
1083 * one full receive packet and is similarly rounded up and
1084 * expressed in KB. */
1085 pba
= rd32(E1000_PBA
);
1086 /* upper 16 bits has Tx packet buffer allocation size in KB */
1087 tx_space
= pba
>> 16;
1088 /* lower 16 bits has Rx packet buffer allocation size in KB */
1090 /* the tx fifo also stores 16 bytes of information about the tx
1091 * but don't include ethernet FCS because hardware appends it */
1092 min_tx_space
= (adapter
->max_frame_size
+
1093 sizeof(union e1000_adv_tx_desc
) -
1095 min_tx_space
= ALIGN(min_tx_space
, 1024);
1096 min_tx_space
>>= 10;
1097 /* software strips receive CRC, so leave room for it */
1098 min_rx_space
= adapter
->max_frame_size
;
1099 min_rx_space
= ALIGN(min_rx_space
, 1024);
1100 min_rx_space
>>= 10;
1102 /* If current Tx allocation is less than the min Tx FIFO size,
1103 * and the min Tx FIFO size is less than the current Rx FIFO
1104 * allocation, take space away from current Rx allocation */
1105 if (tx_space
< min_tx_space
&&
1106 ((min_tx_space
- tx_space
) < pba
)) {
1107 pba
= pba
- (min_tx_space
- tx_space
);
1109 /* if short on rx space, rx wins and must trump tx
1111 if (pba
< min_rx_space
)
1114 wr32(E1000_PBA
, pba
);
1117 /* flow control settings */
1118 /* The high water mark must be low enough to fit one full frame
1119 * (or the size used for early receive) above it in the Rx FIFO.
1120 * Set it to the lower of:
1121 * - 90% of the Rx FIFO size, or
1122 * - the full Rx FIFO size minus one full frame */
1123 hwm
= min(((pba
<< 10) * 9 / 10),
1124 ((pba
<< 10) - 2 * adapter
->max_frame_size
));
1126 if (mac
->type
< e1000_82576
) {
1127 fc
->high_water
= hwm
& 0xFFF8; /* 8-byte granularity */
1128 fc
->low_water
= fc
->high_water
- 8;
1130 fc
->high_water
= hwm
& 0xFFF0; /* 16-byte granularity */
1131 fc
->low_water
= fc
->high_water
- 16;
1133 fc
->pause_time
= 0xFFFF;
1135 fc
->current_mode
= fc
->requested_mode
;
1137 /* disable receive for all VFs and wait one second */
1138 if (adapter
->vfs_allocated_count
) {
1140 for (i
= 0 ; i
< adapter
->vfs_allocated_count
; i
++)
1141 adapter
->vf_data
[i
].clear_to_send
= false;
1143 /* ping all the active vfs to let them know we are going down */
1144 igb_ping_all_vfs(adapter
);
1146 /* disable transmits and receives */
1147 wr32(E1000_VFRE
, 0);
1148 wr32(E1000_VFTE
, 0);
1151 /* Allow time for pending master requests to run */
1152 adapter
->hw
.mac
.ops
.reset_hw(&adapter
->hw
);
1155 if (adapter
->hw
.mac
.ops
.init_hw(&adapter
->hw
))
1156 dev_err(&adapter
->pdev
->dev
, "Hardware Error\n");
1158 igb_update_mng_vlan(adapter
);
1160 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1161 wr32(E1000_VET
, ETHERNET_IEEE_VLAN_TYPE
);
1163 igb_reset_adaptive(&adapter
->hw
);
1164 igb_get_phy_info(&adapter
->hw
);
1167 static const struct net_device_ops igb_netdev_ops
= {
1168 .ndo_open
= igb_open
,
1169 .ndo_stop
= igb_close
,
1170 .ndo_start_xmit
= igb_xmit_frame_adv
,
1171 .ndo_get_stats
= igb_get_stats
,
1172 .ndo_set_rx_mode
= igb_set_rx_mode
,
1173 .ndo_set_multicast_list
= igb_set_rx_mode
,
1174 .ndo_set_mac_address
= igb_set_mac
,
1175 .ndo_change_mtu
= igb_change_mtu
,
1176 .ndo_do_ioctl
= igb_ioctl
,
1177 .ndo_tx_timeout
= igb_tx_timeout
,
1178 .ndo_validate_addr
= eth_validate_addr
,
1179 .ndo_vlan_rx_register
= igb_vlan_rx_register
,
1180 .ndo_vlan_rx_add_vid
= igb_vlan_rx_add_vid
,
1181 .ndo_vlan_rx_kill_vid
= igb_vlan_rx_kill_vid
,
1182 #ifdef CONFIG_NET_POLL_CONTROLLER
1183 .ndo_poll_controller
= igb_netpoll
,
1188 * igb_probe - Device Initialization Routine
1189 * @pdev: PCI device information struct
1190 * @ent: entry in igb_pci_tbl
1192 * Returns 0 on success, negative on failure
1194 * igb_probe initializes an adapter identified by a pci_dev structure.
1195 * The OS initialization, configuring of the adapter private structure,
1196 * and a hardware reset occur.
1198 static int __devinit
igb_probe(struct pci_dev
*pdev
,
1199 const struct pci_device_id
*ent
)
1201 struct net_device
*netdev
;
1202 struct igb_adapter
*adapter
;
1203 struct e1000_hw
*hw
;
1204 const struct e1000_info
*ei
= igb_info_tbl
[ent
->driver_data
];
1205 unsigned long mmio_start
, mmio_len
;
1206 int err
, pci_using_dac
;
1207 u16 eeprom_data
= 0;
1208 u16 eeprom_apme_mask
= IGB_EEPROM_APME
;
1211 err
= pci_enable_device_mem(pdev
);
1216 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(64));
1218 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64));
1222 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
1224 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
1226 dev_err(&pdev
->dev
, "No usable DMA "
1227 "configuration, aborting\n");
1233 err
= pci_request_selected_regions(pdev
, pci_select_bars(pdev
,
1239 pci_enable_pcie_error_reporting(pdev
);
1241 pci_set_master(pdev
);
1242 pci_save_state(pdev
);
1245 netdev
= alloc_etherdev_mq(sizeof(struct igb_adapter
),
1246 IGB_ABS_MAX_TX_QUEUES
);
1248 goto err_alloc_etherdev
;
1250 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
1252 pci_set_drvdata(pdev
, netdev
);
1253 adapter
= netdev_priv(netdev
);
1254 adapter
->netdev
= netdev
;
1255 adapter
->pdev
= pdev
;
1258 adapter
->msg_enable
= NETIF_MSG_DRV
| NETIF_MSG_PROBE
;
1260 mmio_start
= pci_resource_start(pdev
, 0);
1261 mmio_len
= pci_resource_len(pdev
, 0);
1264 hw
->hw_addr
= ioremap(mmio_start
, mmio_len
);
1268 netdev
->netdev_ops
= &igb_netdev_ops
;
1269 igb_set_ethtool_ops(netdev
);
1270 netdev
->watchdog_timeo
= 5 * HZ
;
1272 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
1274 netdev
->mem_start
= mmio_start
;
1275 netdev
->mem_end
= mmio_start
+ mmio_len
;
1277 /* PCI config space info */
1278 hw
->vendor_id
= pdev
->vendor
;
1279 hw
->device_id
= pdev
->device
;
1280 hw
->revision_id
= pdev
->revision
;
1281 hw
->subsystem_vendor_id
= pdev
->subsystem_vendor
;
1282 hw
->subsystem_device_id
= pdev
->subsystem_device
;
1284 /* setup the private structure */
1286 /* Copy the default MAC, PHY and NVM function pointers */
1287 memcpy(&hw
->mac
.ops
, ei
->mac_ops
, sizeof(hw
->mac
.ops
));
1288 memcpy(&hw
->phy
.ops
, ei
->phy_ops
, sizeof(hw
->phy
.ops
));
1289 memcpy(&hw
->nvm
.ops
, ei
->nvm_ops
, sizeof(hw
->nvm
.ops
));
1290 /* Initialize skew-specific constants */
1291 err
= ei
->get_invariants(hw
);
1295 #ifdef CONFIG_PCI_IOV
1296 /* since iov functionality isn't critical to base device function we
1297 * can accept failure. If it fails we don't allow iov to be enabled */
1298 if (hw
->mac
.type
== e1000_82576
) {
1299 /* 82576 supports a maximum of 7 VFs in addition to the PF */
1300 unsigned int num_vfs
= (max_vfs
> 7) ? 7 : max_vfs
;
1302 unsigned char mac_addr
[ETH_ALEN
];
1305 adapter
->vf_data
= kcalloc(num_vfs
,
1306 sizeof(struct vf_data_storage
),
1308 if (!adapter
->vf_data
) {
1310 "Could not allocate VF private data - "
1311 "IOV enable failed\n");
1313 err
= pci_enable_sriov(pdev
, num_vfs
);
1315 adapter
->vfs_allocated_count
= num_vfs
;
1316 dev_info(&pdev
->dev
,
1317 "%d vfs allocated\n",
1320 i
< adapter
->vfs_allocated_count
;
1322 random_ether_addr(mac_addr
);
1323 igb_set_vf_mac(adapter
, i
,
1327 kfree(adapter
->vf_data
);
1328 adapter
->vf_data
= NULL
;
1335 /* setup the private structure */
1336 err
= igb_sw_init(adapter
);
1340 igb_get_bus_info_pcie(hw
);
1343 switch (hw
->mac
.type
) {
1345 adapter
->flags
|= IGB_FLAG_NEED_CTX_IDX
;
1352 hw
->phy
.autoneg_wait_to_complete
= false;
1353 hw
->mac
.adaptive_ifs
= true;
1355 /* Copper options */
1356 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
1357 hw
->phy
.mdix
= AUTO_ALL_MODES
;
1358 hw
->phy
.disable_polarity_correction
= false;
1359 hw
->phy
.ms_type
= e1000_ms_hw_default
;
1362 if (igb_check_reset_block(hw
))
1363 dev_info(&pdev
->dev
,
1364 "PHY reset is blocked due to SOL/IDER session.\n");
1366 netdev
->features
= NETIF_F_SG
|
1368 NETIF_F_HW_VLAN_TX
|
1369 NETIF_F_HW_VLAN_RX
|
1370 NETIF_F_HW_VLAN_FILTER
;
1372 netdev
->features
|= NETIF_F_IPV6_CSUM
;
1373 netdev
->features
|= NETIF_F_TSO
;
1374 netdev
->features
|= NETIF_F_TSO6
;
1376 netdev
->features
|= NETIF_F_GRO
;
1378 netdev
->vlan_features
|= NETIF_F_TSO
;
1379 netdev
->vlan_features
|= NETIF_F_TSO6
;
1380 netdev
->vlan_features
|= NETIF_F_IP_CSUM
;
1381 netdev
->vlan_features
|= NETIF_F_IPV6_CSUM
;
1382 netdev
->vlan_features
|= NETIF_F_SG
;
1385 netdev
->features
|= NETIF_F_HIGHDMA
;
1387 if (adapter
->hw
.mac
.type
== e1000_82576
)
1388 netdev
->features
|= NETIF_F_SCTP_CSUM
;
1390 adapter
->en_mng_pt
= igb_enable_mng_pass_thru(&adapter
->hw
);
1392 /* before reading the NVM, reset the controller to put the device in a
1393 * known good starting state */
1394 hw
->mac
.ops
.reset_hw(hw
);
1396 /* make sure the NVM is good */
1397 if (igb_validate_nvm_checksum(hw
) < 0) {
1398 dev_err(&pdev
->dev
, "The NVM Checksum Is Not Valid\n");
1403 /* copy the MAC address out of the NVM */
1404 if (hw
->mac
.ops
.read_mac_addr(hw
))
1405 dev_err(&pdev
->dev
, "NVM Read Error\n");
1407 memcpy(netdev
->dev_addr
, hw
->mac
.addr
, netdev
->addr_len
);
1408 memcpy(netdev
->perm_addr
, hw
->mac
.addr
, netdev
->addr_len
);
1410 if (!is_valid_ether_addr(netdev
->perm_addr
)) {
1411 dev_err(&pdev
->dev
, "Invalid MAC Address\n");
1416 setup_timer(&adapter
->watchdog_timer
, &igb_watchdog
,
1417 (unsigned long) adapter
);
1418 setup_timer(&adapter
->phy_info_timer
, &igb_update_phy_info
,
1419 (unsigned long) adapter
);
1421 INIT_WORK(&adapter
->reset_task
, igb_reset_task
);
1422 INIT_WORK(&adapter
->watchdog_task
, igb_watchdog_task
);
1424 /* Initialize link properties that are user-changeable */
1425 adapter
->fc_autoneg
= true;
1426 hw
->mac
.autoneg
= true;
1427 hw
->phy
.autoneg_advertised
= 0x2f;
1429 hw
->fc
.requested_mode
= e1000_fc_default
;
1430 hw
->fc
.current_mode
= e1000_fc_default
;
1432 adapter
->itr_setting
= IGB_DEFAULT_ITR
;
1433 adapter
->itr
= IGB_START_ITR
;
1435 igb_validate_mdi_setting(hw
);
1437 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1438 * enable the ACPI Magic Packet filter
1441 if (hw
->bus
.func
== 0)
1442 hw
->nvm
.ops
.read(hw
, NVM_INIT_CONTROL3_PORT_A
, 1, &eeprom_data
);
1443 else if (hw
->bus
.func
== 1)
1444 hw
->nvm
.ops
.read(hw
, NVM_INIT_CONTROL3_PORT_B
, 1, &eeprom_data
);
1446 if (eeprom_data
& eeprom_apme_mask
)
1447 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
1449 /* now that we have the eeprom settings, apply the special cases where
1450 * the eeprom may be wrong or the board simply won't support wake on
1451 * lan on a particular port */
1452 switch (pdev
->device
) {
1453 case E1000_DEV_ID_82575GB_QUAD_COPPER
:
1454 adapter
->eeprom_wol
= 0;
1456 case E1000_DEV_ID_82575EB_FIBER_SERDES
:
1457 case E1000_DEV_ID_82576_FIBER
:
1458 case E1000_DEV_ID_82576_SERDES
:
1459 /* Wake events only supported on port A for dual fiber
1460 * regardless of eeprom setting */
1461 if (rd32(E1000_STATUS
) & E1000_STATUS_FUNC_1
)
1462 adapter
->eeprom_wol
= 0;
1464 case E1000_DEV_ID_82576_QUAD_COPPER
:
1465 /* if quad port adapter, disable WoL on all but port A */
1466 if (global_quad_port_a
!= 0)
1467 adapter
->eeprom_wol
= 0;
1469 adapter
->flags
|= IGB_FLAG_QUAD_PORT_A
;
1470 /* Reset for multiple quad port adapters */
1471 if (++global_quad_port_a
== 4)
1472 global_quad_port_a
= 0;
1476 /* initialize the wol settings based on the eeprom settings */
1477 adapter
->wol
= adapter
->eeprom_wol
;
1478 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
1480 /* reset the hardware with the new settings */
1483 /* let the f/w know that the h/w is now under the control of the
1485 igb_get_hw_control(adapter
);
1487 strcpy(netdev
->name
, "eth%d");
1488 err
= register_netdev(netdev
);
1492 /* carrier off reporting is important to ethtool even BEFORE open */
1493 netif_carrier_off(netdev
);
1495 #ifdef CONFIG_IGB_DCA
1496 if (dca_add_requester(&pdev
->dev
) == 0) {
1497 adapter
->flags
|= IGB_FLAG_DCA_ENABLED
;
1498 dev_info(&pdev
->dev
, "DCA enabled\n");
1499 igb_setup_dca(adapter
);
1504 * Initialize hardware timer: we keep it running just in case
1505 * that some program needs it later on.
1507 memset(&adapter
->cycles
, 0, sizeof(adapter
->cycles
));
1508 adapter
->cycles
.read
= igb_read_clock
;
1509 adapter
->cycles
.mask
= CLOCKSOURCE_MASK(64);
1510 adapter
->cycles
.mult
= 1;
1511 adapter
->cycles
.shift
= IGB_TSYNC_SHIFT
;
1514 IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS
* IGB_TSYNC_SCALE
);
1517 * Avoid rollover while we initialize by resetting the time counter.
1519 wr32(E1000_SYSTIML
, 0x00000000);
1520 wr32(E1000_SYSTIMH
, 0x00000000);
1523 * Set registers so that rollover occurs soon to test this.
1525 wr32(E1000_SYSTIML
, 0x00000000);
1526 wr32(E1000_SYSTIMH
, 0xFF800000);
1529 timecounter_init(&adapter
->clock
,
1531 ktime_to_ns(ktime_get_real()));
1534 * Synchronize our NIC clock against system wall clock. NIC
1535 * time stamp reading requires ~3us per sample, each sample
1536 * was pretty stable even under load => only require 10
1537 * samples for each offset comparison.
1539 memset(&adapter
->compare
, 0, sizeof(adapter
->compare
));
1540 adapter
->compare
.source
= &adapter
->clock
;
1541 adapter
->compare
.target
= ktime_get_real
;
1542 adapter
->compare
.num_samples
= 10;
1543 timecompare_update(&adapter
->compare
, 0);
1549 "igb: %s: hw %p initialized timer\n",
1550 igb_get_time_str(adapter
, buffer
),
1555 dev_info(&pdev
->dev
, "Intel(R) Gigabit Ethernet Network Connection\n");
1556 /* print bus type/speed/width info */
1557 dev_info(&pdev
->dev
, "%s: (PCIe:%s:%s) %pM\n",
1559 ((hw
->bus
.speed
== e1000_bus_speed_2500
)
1560 ? "2.5Gb/s" : "unknown"),
1561 ((hw
->bus
.width
== e1000_bus_width_pcie_x4
) ? "Width x4" :
1562 (hw
->bus
.width
== e1000_bus_width_pcie_x2
) ? "Width x2" :
1563 (hw
->bus
.width
== e1000_bus_width_pcie_x1
) ? "Width x1" :
1567 igb_read_part_num(hw
, &part_num
);
1568 dev_info(&pdev
->dev
, "%s: PBA No: %06x-%03x\n", netdev
->name
,
1569 (part_num
>> 8), (part_num
& 0xff));
1571 dev_info(&pdev
->dev
,
1572 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1573 adapter
->msix_entries
? "MSI-X" :
1574 (adapter
->flags
& IGB_FLAG_HAS_MSI
) ? "MSI" : "legacy",
1575 adapter
->num_rx_queues
, adapter
->num_tx_queues
);
1580 igb_release_hw_control(adapter
);
1582 if (!igb_check_reset_block(hw
))
1585 if (hw
->flash_address
)
1586 iounmap(hw
->flash_address
);
1588 igb_free_queues(adapter
);
1590 iounmap(hw
->hw_addr
);
1592 free_netdev(netdev
);
1594 pci_release_selected_regions(pdev
, pci_select_bars(pdev
,
1598 pci_disable_device(pdev
);
1603 * igb_remove - Device Removal Routine
1604 * @pdev: PCI device information struct
1606 * igb_remove is called by the PCI subsystem to alert the driver
1607 * that it should release a PCI device. The could be caused by a
1608 * Hot-Plug event, or because the driver is going to be removed from
1611 static void __devexit
igb_remove(struct pci_dev
*pdev
)
1613 struct net_device
*netdev
= pci_get_drvdata(pdev
);
1614 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1615 struct e1000_hw
*hw
= &adapter
->hw
;
1617 /* flush_scheduled work may reschedule our watchdog task, so
1618 * explicitly disable watchdog tasks from being rescheduled */
1619 set_bit(__IGB_DOWN
, &adapter
->state
);
1620 del_timer_sync(&adapter
->watchdog_timer
);
1621 del_timer_sync(&adapter
->phy_info_timer
);
1623 flush_scheduled_work();
1625 #ifdef CONFIG_IGB_DCA
1626 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
) {
1627 dev_info(&pdev
->dev
, "DCA disabled\n");
1628 dca_remove_requester(&pdev
->dev
);
1629 adapter
->flags
&= ~IGB_FLAG_DCA_ENABLED
;
1630 wr32(E1000_DCA_CTRL
, E1000_DCA_CTRL_DCA_MODE_DISABLE
);
1634 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1635 * would have already happened in close and is redundant. */
1636 igb_release_hw_control(adapter
);
1638 unregister_netdev(netdev
);
1640 if (!igb_check_reset_block(&adapter
->hw
))
1641 igb_reset_phy(&adapter
->hw
);
1643 igb_reset_interrupt_capability(adapter
);
1645 igb_free_queues(adapter
);
1647 #ifdef CONFIG_PCI_IOV
1648 /* reclaim resources allocated to VFs */
1649 if (adapter
->vf_data
) {
1650 /* disable iov and allow time for transactions to clear */
1651 pci_disable_sriov(pdev
);
1654 kfree(adapter
->vf_data
);
1655 adapter
->vf_data
= NULL
;
1656 wr32(E1000_IOVCTL
, E1000_IOVCTL_REUSE_VFQ
);
1658 dev_info(&pdev
->dev
, "IOV Disabled\n");
1661 iounmap(hw
->hw_addr
);
1662 if (hw
->flash_address
)
1663 iounmap(hw
->flash_address
);
1664 pci_release_selected_regions(pdev
, pci_select_bars(pdev
,
1667 free_netdev(netdev
);
1669 pci_disable_pcie_error_reporting(pdev
);
1671 pci_disable_device(pdev
);
1675 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1676 * @adapter: board private structure to initialize
1678 * igb_sw_init initializes the Adapter private data structure.
1679 * Fields are initialized based on PCI device information and
1680 * OS network device settings (MTU size).
1682 static int __devinit
igb_sw_init(struct igb_adapter
*adapter
)
1684 struct e1000_hw
*hw
= &adapter
->hw
;
1685 struct net_device
*netdev
= adapter
->netdev
;
1686 struct pci_dev
*pdev
= adapter
->pdev
;
1688 pci_read_config_word(pdev
, PCI_COMMAND
, &hw
->bus
.pci_cmd_word
);
1690 adapter
->tx_ring_count
= IGB_DEFAULT_TXD
;
1691 adapter
->rx_ring_count
= IGB_DEFAULT_RXD
;
1692 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
1693 adapter
->rx_ps_hdr_size
= 0; /* disable packet split */
1694 adapter
->max_frame_size
= netdev
->mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
1695 adapter
->min_frame_size
= ETH_ZLEN
+ ETH_FCS_LEN
;
1697 /* This call may decrease the number of queues depending on
1698 * interrupt mode. */
1699 igb_set_interrupt_capability(adapter
);
1701 if (igb_alloc_queues(adapter
)) {
1702 dev_err(&pdev
->dev
, "Unable to allocate memory for queues\n");
1706 /* Explicitly disable IRQ since the NIC can be in any state. */
1707 igb_irq_disable(adapter
);
1709 set_bit(__IGB_DOWN
, &adapter
->state
);
1714 * igb_open - Called when a network interface is made active
1715 * @netdev: network interface device structure
1717 * Returns 0 on success, negative value on failure
1719 * The open entry point is called when a network interface is made
1720 * active by the system (IFF_UP). At this point all resources needed
1721 * for transmit and receive operations are allocated, the interrupt
1722 * handler is registered with the OS, the watchdog timer is started,
1723 * and the stack is notified that the interface is ready.
1725 static int igb_open(struct net_device
*netdev
)
1727 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1728 struct e1000_hw
*hw
= &adapter
->hw
;
1732 /* disallow open during test */
1733 if (test_bit(__IGB_TESTING
, &adapter
->state
))
1736 netif_carrier_off(netdev
);
1738 /* allocate transmit descriptors */
1739 err
= igb_setup_all_tx_resources(adapter
);
1743 /* allocate receive descriptors */
1744 err
= igb_setup_all_rx_resources(adapter
);
1748 /* e1000_power_up_phy(adapter); */
1750 adapter
->mng_vlan_id
= IGB_MNG_VLAN_NONE
;
1751 if ((adapter
->hw
.mng_cookie
.status
&
1752 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
))
1753 igb_update_mng_vlan(adapter
);
1755 /* before we allocate an interrupt, we must be ready to handle it.
1756 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1757 * as soon as we call pci_request_irq, so we have to setup our
1758 * clean_rx handler before we do so. */
1759 igb_configure(adapter
);
1761 igb_vmm_control(adapter
);
1762 igb_set_vmolr(hw
, adapter
->vfs_allocated_count
);
1764 err
= igb_request_irq(adapter
);
1768 /* From here on the code is the same as igb_up() */
1769 clear_bit(__IGB_DOWN
, &adapter
->state
);
1771 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1772 napi_enable(&adapter
->rx_ring
[i
].napi
);
1774 /* Clear any pending interrupts. */
1777 igb_irq_enable(adapter
);
1779 netif_tx_start_all_queues(netdev
);
1781 /* Fire a link status change interrupt to start the watchdog. */
1782 wr32(E1000_ICS
, E1000_ICS_LSC
);
1787 igb_release_hw_control(adapter
);
1788 /* e1000_power_down_phy(adapter); */
1789 igb_free_all_rx_resources(adapter
);
1791 igb_free_all_tx_resources(adapter
);
1799 * igb_close - Disables a network interface
1800 * @netdev: network interface device structure
1802 * Returns 0, this is not allowed to fail
1804 * The close entry point is called when an interface is de-activated
1805 * by the OS. The hardware is still under the driver's control, but
1806 * needs to be disabled. A global MAC reset is issued to stop the
1807 * hardware, and all transmit and receive resources are freed.
1809 static int igb_close(struct net_device
*netdev
)
1811 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1813 WARN_ON(test_bit(__IGB_RESETTING
, &adapter
->state
));
1816 igb_free_irq(adapter
);
1818 igb_free_all_tx_resources(adapter
);
1819 igb_free_all_rx_resources(adapter
);
1821 /* kill manageability vlan ID if supported, but not if a vlan with
1822 * the same ID is registered on the host OS (let 8021q kill it) */
1823 if ((adapter
->hw
.mng_cookie
.status
&
1824 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
1826 vlan_group_get_device(adapter
->vlgrp
, adapter
->mng_vlan_id
)))
1827 igb_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
1833 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1834 * @adapter: board private structure
1835 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1837 * Return 0 on success, negative on failure
1839 int igb_setup_tx_resources(struct igb_adapter
*adapter
,
1840 struct igb_ring
*tx_ring
)
1842 struct pci_dev
*pdev
= adapter
->pdev
;
1845 size
= sizeof(struct igb_buffer
) * tx_ring
->count
;
1846 tx_ring
->buffer_info
= vmalloc(size
);
1847 if (!tx_ring
->buffer_info
)
1849 memset(tx_ring
->buffer_info
, 0, size
);
1851 /* round up to nearest 4K */
1852 tx_ring
->size
= tx_ring
->count
* sizeof(union e1000_adv_tx_desc
);
1853 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
1855 tx_ring
->desc
= pci_alloc_consistent(pdev
, tx_ring
->size
,
1861 tx_ring
->adapter
= adapter
;
1862 tx_ring
->next_to_use
= 0;
1863 tx_ring
->next_to_clean
= 0;
1867 vfree(tx_ring
->buffer_info
);
1868 dev_err(&adapter
->pdev
->dev
,
1869 "Unable to allocate memory for the transmit descriptor ring\n");
1874 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1875 * (Descriptors) for all queues
1876 * @adapter: board private structure
1878 * Return 0 on success, negative on failure
1880 static int igb_setup_all_tx_resources(struct igb_adapter
*adapter
)
1885 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1886 err
= igb_setup_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1888 dev_err(&adapter
->pdev
->dev
,
1889 "Allocation for Tx Queue %u failed\n", i
);
1890 for (i
--; i
>= 0; i
--)
1891 igb_free_tx_resources(&adapter
->tx_ring
[i
]);
1896 for (i
= 0; i
< IGB_MAX_TX_QUEUES
; i
++) {
1897 r_idx
= i
% adapter
->num_tx_queues
;
1898 adapter
->multi_tx_table
[i
] = &adapter
->tx_ring
[r_idx
];
1904 * igb_configure_tx - Configure transmit Unit after Reset
1905 * @adapter: board private structure
1907 * Configure the Tx unit of the MAC after a reset.
1909 static void igb_configure_tx(struct igb_adapter
*adapter
)
1912 struct e1000_hw
*hw
= &adapter
->hw
;
1917 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1918 struct igb_ring
*ring
= &adapter
->tx_ring
[i
];
1920 wr32(E1000_TDLEN(j
),
1921 ring
->count
* sizeof(union e1000_adv_tx_desc
));
1923 wr32(E1000_TDBAL(j
),
1924 tdba
& 0x00000000ffffffffULL
);
1925 wr32(E1000_TDBAH(j
), tdba
>> 32);
1927 ring
->head
= E1000_TDH(j
);
1928 ring
->tail
= E1000_TDT(j
);
1929 writel(0, hw
->hw_addr
+ ring
->tail
);
1930 writel(0, hw
->hw_addr
+ ring
->head
);
1931 txdctl
= rd32(E1000_TXDCTL(j
));
1932 txdctl
|= E1000_TXDCTL_QUEUE_ENABLE
;
1933 wr32(E1000_TXDCTL(j
), txdctl
);
1935 /* Turn off Relaxed Ordering on head write-backs. The
1936 * writebacks MUST be delivered in order or it will
1937 * completely screw up our bookeeping.
1939 txctrl
= rd32(E1000_DCA_TXCTRL(j
));
1940 txctrl
&= ~E1000_DCA_TXCTRL_TX_WB_RO_EN
;
1941 wr32(E1000_DCA_TXCTRL(j
), txctrl
);
1944 /* disable queue 0 to prevent tail bump w/o re-configuration */
1945 if (adapter
->vfs_allocated_count
)
1946 wr32(E1000_TXDCTL(0), 0);
1948 /* Program the Transmit Control Register */
1949 tctl
= rd32(E1000_TCTL
);
1950 tctl
&= ~E1000_TCTL_CT
;
1951 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
1952 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
1954 igb_config_collision_dist(hw
);
1956 /* Setup Transmit Descriptor Settings for eop descriptor */
1957 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_RS
;
1959 /* Enable transmits */
1960 tctl
|= E1000_TCTL_EN
;
1962 wr32(E1000_TCTL
, tctl
);
1966 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1967 * @adapter: board private structure
1968 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1970 * Returns 0 on success, negative on failure
1972 int igb_setup_rx_resources(struct igb_adapter
*adapter
,
1973 struct igb_ring
*rx_ring
)
1975 struct pci_dev
*pdev
= adapter
->pdev
;
1978 size
= sizeof(struct igb_buffer
) * rx_ring
->count
;
1979 rx_ring
->buffer_info
= vmalloc(size
);
1980 if (!rx_ring
->buffer_info
)
1982 memset(rx_ring
->buffer_info
, 0, size
);
1984 desc_len
= sizeof(union e1000_adv_rx_desc
);
1986 /* Round up to nearest 4K */
1987 rx_ring
->size
= rx_ring
->count
* desc_len
;
1988 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
1990 rx_ring
->desc
= pci_alloc_consistent(pdev
, rx_ring
->size
,
1996 rx_ring
->next_to_clean
= 0;
1997 rx_ring
->next_to_use
= 0;
1999 rx_ring
->adapter
= adapter
;
2004 vfree(rx_ring
->buffer_info
);
2005 dev_err(&adapter
->pdev
->dev
, "Unable to allocate memory for "
2006 "the receive descriptor ring\n");
2011 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2012 * (Descriptors) for all queues
2013 * @adapter: board private structure
2015 * Return 0 on success, negative on failure
2017 static int igb_setup_all_rx_resources(struct igb_adapter
*adapter
)
2021 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
2022 err
= igb_setup_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
2024 dev_err(&adapter
->pdev
->dev
,
2025 "Allocation for Rx Queue %u failed\n", i
);
2026 for (i
--; i
>= 0; i
--)
2027 igb_free_rx_resources(&adapter
->rx_ring
[i
]);
2036 * igb_setup_rctl - configure the receive control registers
2037 * @adapter: Board private structure
2039 static void igb_setup_rctl(struct igb_adapter
*adapter
)
2041 struct e1000_hw
*hw
= &adapter
->hw
;
2046 rctl
= rd32(E1000_RCTL
);
2048 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
2049 rctl
&= ~(E1000_RCTL_LBM_TCVR
| E1000_RCTL_LBM_MAC
);
2051 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
| E1000_RCTL_RDMTS_HALF
|
2052 (hw
->mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
2055 * enable stripping of CRC. It's unlikely this will break BMC
2056 * redirection as it did with e1000. Newer features require
2057 * that the HW strips the CRC.
2059 rctl
|= E1000_RCTL_SECRC
;
2062 * disable store bad packets and clear size bits.
2064 rctl
&= ~(E1000_RCTL_SBP
| E1000_RCTL_SZ_256
);
2066 /* enable LPE when to prevent packets larger than max_frame_size */
2067 rctl
|= E1000_RCTL_LPE
;
2069 /* Setup buffer sizes */
2070 switch (adapter
->rx_buffer_len
) {
2071 case IGB_RXBUFFER_256
:
2072 rctl
|= E1000_RCTL_SZ_256
;
2074 case IGB_RXBUFFER_512
:
2075 rctl
|= E1000_RCTL_SZ_512
;
2078 srrctl
= ALIGN(adapter
->rx_buffer_len
, 1024)
2079 >> E1000_SRRCTL_BSIZEPKT_SHIFT
;
2083 /* 82575 and greater support packet-split where the protocol
2084 * header is placed in skb->data and the packet data is
2085 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2086 * In the case of a non-split, skb->data is linearly filled,
2087 * followed by the page buffers. Therefore, skb->data is
2088 * sized to hold the largest protocol header.
2090 /* allocations using alloc_page take too long for regular MTU
2091 * so only enable packet split for jumbo frames */
2092 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
2093 adapter
->rx_ps_hdr_size
= IGB_RXBUFFER_128
;
2094 srrctl
|= adapter
->rx_ps_hdr_size
<<
2095 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT
;
2096 srrctl
|= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS
;
2098 adapter
->rx_ps_hdr_size
= 0;
2099 srrctl
|= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF
;
2102 /* Attention!!! For SR-IOV PF driver operations you must enable
2103 * queue drop for all VF and PF queues to prevent head of line blocking
2104 * if an un-trusted VF does not provide descriptors to hardware.
2106 if (adapter
->vfs_allocated_count
) {
2109 /* set all queue drop enable bits */
2110 wr32(E1000_QDE
, ALL_QUEUES
);
2111 srrctl
|= E1000_SRRCTL_DROP_EN
;
2113 /* disable queue 0 to prevent tail write w/o re-config */
2114 wr32(E1000_RXDCTL(0), 0);
2116 vmolr
= rd32(E1000_VMOLR(adapter
->vfs_allocated_count
));
2117 if (rctl
& E1000_RCTL_LPE
)
2118 vmolr
|= E1000_VMOLR_LPE
;
2119 if (adapter
->num_rx_queues
> 1)
2120 vmolr
|= E1000_VMOLR_RSSE
;
2121 wr32(E1000_VMOLR(adapter
->vfs_allocated_count
), vmolr
);
2124 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
2125 int j
= adapter
->rx_ring
[i
].reg_idx
;
2126 wr32(E1000_SRRCTL(j
), srrctl
);
2129 wr32(E1000_RCTL
, rctl
);
2133 * igb_rlpml_set - set maximum receive packet size
2134 * @adapter: board private structure
2136 * Configure maximum receivable packet size.
2138 static void igb_rlpml_set(struct igb_adapter
*adapter
)
2140 u32 max_frame_size
= adapter
->max_frame_size
;
2141 struct e1000_hw
*hw
= &adapter
->hw
;
2142 u16 pf_id
= adapter
->vfs_allocated_count
;
2145 max_frame_size
+= VLAN_TAG_SIZE
;
2147 /* if vfs are enabled we set RLPML to the largest possible request
2148 * size and set the VMOLR RLPML to the size we need */
2150 igb_set_vf_rlpml(adapter
, max_frame_size
, pf_id
);
2151 max_frame_size
= MAX_STD_JUMBO_FRAME_SIZE
+ VLAN_TAG_SIZE
;
2154 wr32(E1000_RLPML
, max_frame_size
);
2158 * igb_configure_vt_default_pool - Configure VT default pool
2159 * @adapter: board private structure
2161 * Configure the default pool
2163 static void igb_configure_vt_default_pool(struct igb_adapter
*adapter
)
2165 struct e1000_hw
*hw
= &adapter
->hw
;
2166 u16 pf_id
= adapter
->vfs_allocated_count
;
2169 /* not in sr-iov mode - do nothing */
2173 vtctl
= rd32(E1000_VT_CTL
);
2174 vtctl
&= ~(E1000_VT_CTL_DEFAULT_POOL_MASK
|
2175 E1000_VT_CTL_DISABLE_DEF_POOL
);
2176 vtctl
|= pf_id
<< E1000_VT_CTL_DEFAULT_POOL_SHIFT
;
2177 wr32(E1000_VT_CTL
, vtctl
);
2181 * igb_configure_rx - Configure receive Unit after Reset
2182 * @adapter: board private structure
2184 * Configure the Rx unit of the MAC after a reset.
2186 static void igb_configure_rx(struct igb_adapter
*adapter
)
2189 struct e1000_hw
*hw
= &adapter
->hw
;
2194 /* disable receives while setting up the descriptors */
2195 rctl
= rd32(E1000_RCTL
);
2196 wr32(E1000_RCTL
, rctl
& ~E1000_RCTL_EN
);
2200 if (adapter
->itr_setting
> 3)
2201 wr32(E1000_ITR
, adapter
->itr
);
2203 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2204 * the Base and Length of the Rx Descriptor Ring */
2205 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
2206 struct igb_ring
*ring
= &adapter
->rx_ring
[i
];
2207 int j
= ring
->reg_idx
;
2209 wr32(E1000_RDBAL(j
),
2210 rdba
& 0x00000000ffffffffULL
);
2211 wr32(E1000_RDBAH(j
), rdba
>> 32);
2212 wr32(E1000_RDLEN(j
),
2213 ring
->count
* sizeof(union e1000_adv_rx_desc
));
2215 ring
->head
= E1000_RDH(j
);
2216 ring
->tail
= E1000_RDT(j
);
2217 writel(0, hw
->hw_addr
+ ring
->tail
);
2218 writel(0, hw
->hw_addr
+ ring
->head
);
2220 rxdctl
= rd32(E1000_RXDCTL(j
));
2221 rxdctl
|= E1000_RXDCTL_QUEUE_ENABLE
;
2222 rxdctl
&= 0xFFF00000;
2223 rxdctl
|= IGB_RX_PTHRESH
;
2224 rxdctl
|= IGB_RX_HTHRESH
<< 8;
2225 rxdctl
|= IGB_RX_WTHRESH
<< 16;
2226 wr32(E1000_RXDCTL(j
), rxdctl
);
2229 if (adapter
->num_rx_queues
> 1) {
2238 get_random_bytes(&random
[0], 40);
2240 if (hw
->mac
.type
>= e1000_82576
)
2244 for (j
= 0; j
< (32 * 4); j
++) {
2246 adapter
->rx_ring
[(j
% adapter
->num_rx_queues
)].reg_idx
<< shift
;
2249 hw
->hw_addr
+ E1000_RETA(0) + (j
& ~3));
2251 if (adapter
->vfs_allocated_count
)
2252 mrqc
= E1000_MRQC_ENABLE_VMDQ_RSS_2Q
;
2254 mrqc
= E1000_MRQC_ENABLE_RSS_4Q
;
2256 /* Fill out hash function seeds */
2257 for (j
= 0; j
< 10; j
++)
2258 array_wr32(E1000_RSSRK(0), j
, random
[j
]);
2260 mrqc
|= (E1000_MRQC_RSS_FIELD_IPV4
|
2261 E1000_MRQC_RSS_FIELD_IPV4_TCP
);
2262 mrqc
|= (E1000_MRQC_RSS_FIELD_IPV6
|
2263 E1000_MRQC_RSS_FIELD_IPV6_TCP
);
2264 mrqc
|= (E1000_MRQC_RSS_FIELD_IPV4_UDP
|
2265 E1000_MRQC_RSS_FIELD_IPV6_UDP
);
2266 mrqc
|= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX
|
2267 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX
);
2269 wr32(E1000_MRQC
, mrqc
);
2270 } else if (adapter
->vfs_allocated_count
) {
2271 /* Enable multi-queue for sr-iov */
2272 wr32(E1000_MRQC
, E1000_MRQC_ENABLE_VMDQ
);
2275 /* Enable Receive Checksum Offload for TCP and UDP */
2276 rxcsum
= rd32(E1000_RXCSUM
);
2277 /* Disable raw packet checksumming */
2278 rxcsum
|= E1000_RXCSUM_PCSD
;
2280 if (adapter
->hw
.mac
.type
== e1000_82576
)
2281 /* Enable Receive Checksum Offload for SCTP */
2282 rxcsum
|= E1000_RXCSUM_CRCOFL
;
2284 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2285 wr32(E1000_RXCSUM
, rxcsum
);
2287 /* Set the default pool for the PF's first queue */
2288 igb_configure_vt_default_pool(adapter
);
2290 /* set UTA to appropriate mode */
2291 igb_set_uta(adapter
);
2293 /* set the correct pool for the PF default MAC address in entry 0 */
2294 igb_rar_set_qsel(adapter
, adapter
->hw
.mac
.addr
, 0,
2295 adapter
->vfs_allocated_count
);
2297 igb_rlpml_set(adapter
);
2299 /* Enable Receives */
2300 wr32(E1000_RCTL
, rctl
);
2304 * igb_free_tx_resources - Free Tx Resources per Queue
2305 * @tx_ring: Tx descriptor ring for a specific queue
2307 * Free all transmit software resources
2309 void igb_free_tx_resources(struct igb_ring
*tx_ring
)
2311 struct pci_dev
*pdev
= tx_ring
->adapter
->pdev
;
2313 igb_clean_tx_ring(tx_ring
);
2315 vfree(tx_ring
->buffer_info
);
2316 tx_ring
->buffer_info
= NULL
;
2318 pci_free_consistent(pdev
, tx_ring
->size
, tx_ring
->desc
, tx_ring
->dma
);
2320 tx_ring
->desc
= NULL
;
2324 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2325 * @adapter: board private structure
2327 * Free all transmit software resources
2329 static void igb_free_all_tx_resources(struct igb_adapter
*adapter
)
2333 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
2334 igb_free_tx_resources(&adapter
->tx_ring
[i
]);
2337 static void igb_unmap_and_free_tx_resource(struct igb_adapter
*adapter
,
2338 struct igb_buffer
*buffer_info
)
2340 buffer_info
->dma
= 0;
2341 if (buffer_info
->skb
) {
2342 skb_dma_unmap(&adapter
->pdev
->dev
, buffer_info
->skb
,
2344 dev_kfree_skb_any(buffer_info
->skb
);
2345 buffer_info
->skb
= NULL
;
2347 buffer_info
->time_stamp
= 0;
2348 /* buffer_info must be completely set up in the transmit path */
2352 * igb_clean_tx_ring - Free Tx Buffers
2353 * @tx_ring: ring to be cleaned
2355 static void igb_clean_tx_ring(struct igb_ring
*tx_ring
)
2357 struct igb_adapter
*adapter
= tx_ring
->adapter
;
2358 struct igb_buffer
*buffer_info
;
2362 if (!tx_ring
->buffer_info
)
2364 /* Free all the Tx ring sk_buffs */
2366 for (i
= 0; i
< tx_ring
->count
; i
++) {
2367 buffer_info
= &tx_ring
->buffer_info
[i
];
2368 igb_unmap_and_free_tx_resource(adapter
, buffer_info
);
2371 size
= sizeof(struct igb_buffer
) * tx_ring
->count
;
2372 memset(tx_ring
->buffer_info
, 0, size
);
2374 /* Zero out the descriptor ring */
2376 memset(tx_ring
->desc
, 0, tx_ring
->size
);
2378 tx_ring
->next_to_use
= 0;
2379 tx_ring
->next_to_clean
= 0;
2381 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->head
);
2382 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
2386 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2387 * @adapter: board private structure
2389 static void igb_clean_all_tx_rings(struct igb_adapter
*adapter
)
2393 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
2394 igb_clean_tx_ring(&adapter
->tx_ring
[i
]);
2398 * igb_free_rx_resources - Free Rx Resources
2399 * @rx_ring: ring to clean the resources from
2401 * Free all receive software resources
2403 void igb_free_rx_resources(struct igb_ring
*rx_ring
)
2405 struct pci_dev
*pdev
= rx_ring
->adapter
->pdev
;
2407 igb_clean_rx_ring(rx_ring
);
2409 vfree(rx_ring
->buffer_info
);
2410 rx_ring
->buffer_info
= NULL
;
2412 pci_free_consistent(pdev
, rx_ring
->size
, rx_ring
->desc
, rx_ring
->dma
);
2414 rx_ring
->desc
= NULL
;
2418 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2419 * @adapter: board private structure
2421 * Free all receive software resources
2423 static void igb_free_all_rx_resources(struct igb_adapter
*adapter
)
2427 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2428 igb_free_rx_resources(&adapter
->rx_ring
[i
]);
2432 * igb_clean_rx_ring - Free Rx Buffers per Queue
2433 * @rx_ring: ring to free buffers from
2435 static void igb_clean_rx_ring(struct igb_ring
*rx_ring
)
2437 struct igb_adapter
*adapter
= rx_ring
->adapter
;
2438 struct igb_buffer
*buffer_info
;
2439 struct pci_dev
*pdev
= adapter
->pdev
;
2443 if (!rx_ring
->buffer_info
)
2445 /* Free all the Rx ring sk_buffs */
2446 for (i
= 0; i
< rx_ring
->count
; i
++) {
2447 buffer_info
= &rx_ring
->buffer_info
[i
];
2448 if (buffer_info
->dma
) {
2449 if (adapter
->rx_ps_hdr_size
)
2450 pci_unmap_single(pdev
, buffer_info
->dma
,
2451 adapter
->rx_ps_hdr_size
,
2452 PCI_DMA_FROMDEVICE
);
2454 pci_unmap_single(pdev
, buffer_info
->dma
,
2455 adapter
->rx_buffer_len
,
2456 PCI_DMA_FROMDEVICE
);
2457 buffer_info
->dma
= 0;
2460 if (buffer_info
->skb
) {
2461 dev_kfree_skb(buffer_info
->skb
);
2462 buffer_info
->skb
= NULL
;
2464 if (buffer_info
->page
) {
2465 if (buffer_info
->page_dma
)
2466 pci_unmap_page(pdev
, buffer_info
->page_dma
,
2468 PCI_DMA_FROMDEVICE
);
2469 put_page(buffer_info
->page
);
2470 buffer_info
->page
= NULL
;
2471 buffer_info
->page_dma
= 0;
2472 buffer_info
->page_offset
= 0;
2476 size
= sizeof(struct igb_buffer
) * rx_ring
->count
;
2477 memset(rx_ring
->buffer_info
, 0, size
);
2479 /* Zero out the descriptor ring */
2480 memset(rx_ring
->desc
, 0, rx_ring
->size
);
2482 rx_ring
->next_to_clean
= 0;
2483 rx_ring
->next_to_use
= 0;
2485 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->head
);
2486 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
2490 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2491 * @adapter: board private structure
2493 static void igb_clean_all_rx_rings(struct igb_adapter
*adapter
)
2497 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2498 igb_clean_rx_ring(&adapter
->rx_ring
[i
]);
2502 * igb_set_mac - Change the Ethernet Address of the NIC
2503 * @netdev: network interface device structure
2504 * @p: pointer to an address structure
2506 * Returns 0 on success, negative on failure
2508 static int igb_set_mac(struct net_device
*netdev
, void *p
)
2510 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2511 struct e1000_hw
*hw
= &adapter
->hw
;
2512 struct sockaddr
*addr
= p
;
2514 if (!is_valid_ether_addr(addr
->sa_data
))
2515 return -EADDRNOTAVAIL
;
2517 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
2518 memcpy(hw
->mac
.addr
, addr
->sa_data
, netdev
->addr_len
);
2520 /* set the correct pool for the new PF MAC address in entry 0 */
2521 igb_rar_set_qsel(adapter
, hw
->mac
.addr
, 0,
2522 adapter
->vfs_allocated_count
);
2528 * igb_write_mc_addr_list - write multicast addresses to MTA
2529 * @netdev: network interface device structure
2531 * Writes multicast address list to the MTA hash table.
2532 * Returns: -ENOMEM on failure
2533 * 0 on no addresses written
2534 * X on writing X addresses to MTA
2536 static int igb_write_mc_addr_list(struct net_device
*netdev
)
2538 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2539 struct e1000_hw
*hw
= &adapter
->hw
;
2540 struct dev_mc_list
*mc_ptr
= netdev
->mc_list
;
2545 if (!netdev
->mc_count
) {
2546 /* nothing to program, so clear mc list */
2547 igb_update_mc_addr_list(hw
, NULL
, 0);
2548 igb_restore_vf_multicasts(adapter
);
2552 mta_list
= kzalloc(netdev
->mc_count
* 6, GFP_ATOMIC
);
2556 /* set vmolr receive overflow multicast bit */
2557 vmolr
|= E1000_VMOLR_ROMPE
;
2559 /* The shared function expects a packed array of only addresses. */
2560 mc_ptr
= netdev
->mc_list
;
2562 for (i
= 0; i
< netdev
->mc_count
; i
++) {
2565 memcpy(mta_list
+ (i
*ETH_ALEN
), mc_ptr
->dmi_addr
, ETH_ALEN
);
2566 mc_ptr
= mc_ptr
->next
;
2568 igb_update_mc_addr_list(hw
, mta_list
, i
);
2571 return netdev
->mc_count
;
2575 * igb_write_uc_addr_list - write unicast addresses to RAR table
2576 * @netdev: network interface device structure
2578 * Writes unicast address list to the RAR table.
2579 * Returns: -ENOMEM on failure/insufficient address space
2580 * 0 on no addresses written
2581 * X on writing X addresses to the RAR table
2583 static int igb_write_uc_addr_list(struct net_device
*netdev
)
2585 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2586 struct e1000_hw
*hw
= &adapter
->hw
;
2587 unsigned int vfn
= adapter
->vfs_allocated_count
;
2588 unsigned int rar_entries
= hw
->mac
.rar_entry_count
- (vfn
+ 1);
2591 /* return ENOMEM indicating insufficient memory for addresses */
2592 if (netdev
->uc
.count
> rar_entries
)
2595 if (netdev
->uc
.count
&& rar_entries
) {
2596 struct netdev_hw_addr
*ha
;
2597 list_for_each_entry(ha
, &netdev
->uc
.list
, list
) {
2600 igb_rar_set_qsel(adapter
, ha
->addr
,
2606 /* write the addresses in reverse order to avoid write combining */
2607 for (; rar_entries
> 0 ; rar_entries
--) {
2608 wr32(E1000_RAH(rar_entries
), 0);
2609 wr32(E1000_RAL(rar_entries
), 0);
2617 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2618 * @netdev: network interface device structure
2620 * The set_rx_mode entry point is called whenever the unicast or multicast
2621 * address lists or the network interface flags are updated. This routine is
2622 * responsible for configuring the hardware for proper unicast, multicast,
2623 * promiscuous mode, and all-multi behavior.
2625 static void igb_set_rx_mode(struct net_device
*netdev
)
2627 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2628 struct e1000_hw
*hw
= &adapter
->hw
;
2629 unsigned int vfn
= adapter
->vfs_allocated_count
;
2630 u32 rctl
, vmolr
= 0;
2633 /* Check for Promiscuous and All Multicast modes */
2634 rctl
= rd32(E1000_RCTL
);
2636 /* clear the effected bits */
2637 rctl
&= ~(E1000_RCTL_UPE
| E1000_RCTL_MPE
| E1000_RCTL_VFE
);
2639 if (netdev
->flags
& IFF_PROMISC
) {
2640 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2641 vmolr
|= (E1000_VMOLR_ROPE
| E1000_VMOLR_MPME
);
2643 if (netdev
->flags
& IFF_ALLMULTI
) {
2644 rctl
|= E1000_RCTL_MPE
;
2645 vmolr
|= E1000_VMOLR_MPME
;
2648 * Write addresses to the MTA, if the attempt fails
2649 * then we should just turn on promiscous mode so
2650 * that we can at least receive multicast traffic
2652 count
= igb_write_mc_addr_list(netdev
);
2654 rctl
|= E1000_RCTL_MPE
;
2655 vmolr
|= E1000_VMOLR_MPME
;
2657 vmolr
|= E1000_VMOLR_ROMPE
;
2661 * Write addresses to available RAR registers, if there is not
2662 * sufficient space to store all the addresses then enable
2663 * unicast promiscous mode
2665 count
= igb_write_uc_addr_list(netdev
);
2667 rctl
|= E1000_RCTL_UPE
;
2668 vmolr
|= E1000_VMOLR_ROPE
;
2670 rctl
|= E1000_RCTL_VFE
;
2672 wr32(E1000_RCTL
, rctl
);
2675 * In order to support SR-IOV and eventually VMDq it is necessary to set
2676 * the VMOLR to enable the appropriate modes. Without this workaround
2677 * we will have issues with VLAN tag stripping not being done for frames
2678 * that are only arriving because we are the default pool
2680 if (hw
->mac
.type
< e1000_82576
)
2683 vmolr
|= rd32(E1000_VMOLR(vfn
)) &
2684 ~(E1000_VMOLR_ROPE
| E1000_VMOLR_MPME
| E1000_VMOLR_ROMPE
);
2685 wr32(E1000_VMOLR(vfn
), vmolr
);
2686 igb_restore_vf_multicasts(adapter
);
2689 /* Need to wait a few seconds after link up to get diagnostic information from
2691 static void igb_update_phy_info(unsigned long data
)
2693 struct igb_adapter
*adapter
= (struct igb_adapter
*) data
;
2694 igb_get_phy_info(&adapter
->hw
);
2698 * igb_has_link - check shared code for link and determine up/down
2699 * @adapter: pointer to driver private info
2701 static bool igb_has_link(struct igb_adapter
*adapter
)
2703 struct e1000_hw
*hw
= &adapter
->hw
;
2704 bool link_active
= false;
2707 /* get_link_status is set on LSC (link status) interrupt or
2708 * rx sequence error interrupt. get_link_status will stay
2709 * false until the e1000_check_for_link establishes link
2710 * for copper adapters ONLY
2712 switch (hw
->phy
.media_type
) {
2713 case e1000_media_type_copper
:
2714 if (hw
->mac
.get_link_status
) {
2715 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
2716 link_active
= !hw
->mac
.get_link_status
;
2721 case e1000_media_type_internal_serdes
:
2722 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
2723 link_active
= hw
->mac
.serdes_has_link
;
2726 case e1000_media_type_unknown
:
2734 * igb_watchdog - Timer Call-back
2735 * @data: pointer to adapter cast into an unsigned long
2737 static void igb_watchdog(unsigned long data
)
2739 struct igb_adapter
*adapter
= (struct igb_adapter
*)data
;
2740 /* Do the rest outside of interrupt context */
2741 schedule_work(&adapter
->watchdog_task
);
2744 static void igb_watchdog_task(struct work_struct
*work
)
2746 struct igb_adapter
*adapter
= container_of(work
,
2747 struct igb_adapter
, watchdog_task
);
2748 struct e1000_hw
*hw
= &adapter
->hw
;
2749 struct net_device
*netdev
= adapter
->netdev
;
2750 struct igb_ring
*tx_ring
= adapter
->tx_ring
;
2755 link
= igb_has_link(adapter
);
2756 if ((netif_carrier_ok(netdev
)) && link
)
2760 if (!netif_carrier_ok(netdev
)) {
2762 hw
->mac
.ops
.get_speed_and_duplex(&adapter
->hw
,
2763 &adapter
->link_speed
,
2764 &adapter
->link_duplex
);
2766 ctrl
= rd32(E1000_CTRL
);
2767 /* Links status message must follow this format */
2768 printk(KERN_INFO
"igb: %s NIC Link is Up %d Mbps %s, "
2769 "Flow Control: %s\n",
2771 adapter
->link_speed
,
2772 adapter
->link_duplex
== FULL_DUPLEX
?
2773 "Full Duplex" : "Half Duplex",
2774 ((ctrl
& E1000_CTRL_TFCE
) && (ctrl
&
2775 E1000_CTRL_RFCE
)) ? "RX/TX" : ((ctrl
&
2776 E1000_CTRL_RFCE
) ? "RX" : ((ctrl
&
2777 E1000_CTRL_TFCE
) ? "TX" : "None")));
2779 /* tweak tx_queue_len according to speed/duplex and
2780 * adjust the timeout factor */
2781 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
2782 adapter
->tx_timeout_factor
= 1;
2783 switch (adapter
->link_speed
) {
2785 netdev
->tx_queue_len
= 10;
2786 adapter
->tx_timeout_factor
= 14;
2789 netdev
->tx_queue_len
= 100;
2790 /* maybe add some timeout factor ? */
2794 netif_carrier_on(netdev
);
2796 igb_ping_all_vfs(adapter
);
2798 /* link state has changed, schedule phy info update */
2799 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
2800 mod_timer(&adapter
->phy_info_timer
,
2801 round_jiffies(jiffies
+ 2 * HZ
));
2804 if (netif_carrier_ok(netdev
)) {
2805 adapter
->link_speed
= 0;
2806 adapter
->link_duplex
= 0;
2807 /* Links status message must follow this format */
2808 printk(KERN_INFO
"igb: %s NIC Link is Down\n",
2810 netif_carrier_off(netdev
);
2812 igb_ping_all_vfs(adapter
);
2814 /* link state has changed, schedule phy info update */
2815 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
2816 mod_timer(&adapter
->phy_info_timer
,
2817 round_jiffies(jiffies
+ 2 * HZ
));
2822 igb_update_stats(adapter
);
2824 hw
->mac
.tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
2825 adapter
->tpt_old
= adapter
->stats
.tpt
;
2826 hw
->mac
.collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
2827 adapter
->colc_old
= adapter
->stats
.colc
;
2829 adapter
->gorc
= adapter
->stats
.gorc
- adapter
->gorc_old
;
2830 adapter
->gorc_old
= adapter
->stats
.gorc
;
2831 adapter
->gotc
= adapter
->stats
.gotc
- adapter
->gotc_old
;
2832 adapter
->gotc_old
= adapter
->stats
.gotc
;
2834 igb_update_adaptive(&adapter
->hw
);
2836 if (!netif_carrier_ok(netdev
)) {
2837 if (igb_desc_unused(tx_ring
) + 1 < tx_ring
->count
) {
2838 /* We've lost link, so the controller stops DMA,
2839 * but we've got queued Tx work that's never going
2840 * to get done, so reset controller to flush Tx.
2841 * (Do the reset outside of interrupt context). */
2842 adapter
->tx_timeout_count
++;
2843 schedule_work(&adapter
->reset_task
);
2844 /* return immediately since reset is imminent */
2849 /* Cause software interrupt to ensure rx ring is cleaned */
2850 if (adapter
->msix_entries
) {
2851 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2852 eics
|= adapter
->rx_ring
[i
].eims_value
;
2853 wr32(E1000_EICS
, eics
);
2855 wr32(E1000_ICS
, E1000_ICS_RXDMT0
);
2858 /* Force detection of hung controller every watchdog period */
2859 tx_ring
->detect_tx_hung
= true;
2861 /* Reset the timer */
2862 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
2863 mod_timer(&adapter
->watchdog_timer
,
2864 round_jiffies(jiffies
+ 2 * HZ
));
2867 enum latency_range
{
2871 latency_invalid
= 255
2876 * igb_update_ring_itr - update the dynamic ITR value based on packet size
2878 * Stores a new ITR value based on strictly on packet size. This
2879 * algorithm is less sophisticated than that used in igb_update_itr,
2880 * due to the difficulty of synchronizing statistics across multiple
2881 * receive rings. The divisors and thresholds used by this fuction
2882 * were determined based on theoretical maximum wire speed and testing
2883 * data, in order to minimize response time while increasing bulk
2885 * This functionality is controlled by the InterruptThrottleRate module
2886 * parameter (see igb_param.c)
2887 * NOTE: This function is called only when operating in a multiqueue
2888 * receive environment.
2889 * @rx_ring: pointer to ring
2891 static void igb_update_ring_itr(struct igb_ring
*rx_ring
)
2893 int new_val
= rx_ring
->itr_val
;
2894 int avg_wire_size
= 0;
2895 struct igb_adapter
*adapter
= rx_ring
->adapter
;
2897 if (!rx_ring
->total_packets
)
2898 goto clear_counts
; /* no packets, so don't do anything */
2900 /* For non-gigabit speeds, just fix the interrupt rate at 4000
2901 * ints/sec - ITR timer value of 120 ticks.
2903 if (adapter
->link_speed
!= SPEED_1000
) {
2907 avg_wire_size
= rx_ring
->total_bytes
/ rx_ring
->total_packets
;
2909 /* Add 24 bytes to size to account for CRC, preamble, and gap */
2910 avg_wire_size
+= 24;
2912 /* Don't starve jumbo frames */
2913 avg_wire_size
= min(avg_wire_size
, 3000);
2915 /* Give a little boost to mid-size frames */
2916 if ((avg_wire_size
> 300) && (avg_wire_size
< 1200))
2917 new_val
= avg_wire_size
/ 3;
2919 new_val
= avg_wire_size
/ 2;
2922 if (new_val
!= rx_ring
->itr_val
) {
2923 rx_ring
->itr_val
= new_val
;
2924 rx_ring
->set_itr
= 1;
2927 rx_ring
->total_bytes
= 0;
2928 rx_ring
->total_packets
= 0;
2932 * igb_update_itr - update the dynamic ITR value based on statistics
2933 * Stores a new ITR value based on packets and byte
2934 * counts during the last interrupt. The advantage of per interrupt
2935 * computation is faster updates and more accurate ITR for the current
2936 * traffic pattern. Constants in this function were computed
2937 * based on theoretical maximum wire speed and thresholds were set based
2938 * on testing data as well as attempting to minimize response time
2939 * while increasing bulk throughput.
2940 * this functionality is controlled by the InterruptThrottleRate module
2941 * parameter (see igb_param.c)
2942 * NOTE: These calculations are only valid when operating in a single-
2943 * queue environment.
2944 * @adapter: pointer to adapter
2945 * @itr_setting: current adapter->itr
2946 * @packets: the number of packets during this measurement interval
2947 * @bytes: the number of bytes during this measurement interval
2949 static unsigned int igb_update_itr(struct igb_adapter
*adapter
, u16 itr_setting
,
2950 int packets
, int bytes
)
2952 unsigned int retval
= itr_setting
;
2955 goto update_itr_done
;
2957 switch (itr_setting
) {
2958 case lowest_latency
:
2959 /* handle TSO and jumbo frames */
2960 if (bytes
/packets
> 8000)
2961 retval
= bulk_latency
;
2962 else if ((packets
< 5) && (bytes
> 512))
2963 retval
= low_latency
;
2965 case low_latency
: /* 50 usec aka 20000 ints/s */
2966 if (bytes
> 10000) {
2967 /* this if handles the TSO accounting */
2968 if (bytes
/packets
> 8000) {
2969 retval
= bulk_latency
;
2970 } else if ((packets
< 10) || ((bytes
/packets
) > 1200)) {
2971 retval
= bulk_latency
;
2972 } else if ((packets
> 35)) {
2973 retval
= lowest_latency
;
2975 } else if (bytes
/packets
> 2000) {
2976 retval
= bulk_latency
;
2977 } else if (packets
<= 2 && bytes
< 512) {
2978 retval
= lowest_latency
;
2981 case bulk_latency
: /* 250 usec aka 4000 ints/s */
2982 if (bytes
> 25000) {
2984 retval
= low_latency
;
2985 } else if (bytes
< 1500) {
2986 retval
= low_latency
;
2995 static void igb_set_itr(struct igb_adapter
*adapter
)
2998 u32 new_itr
= adapter
->itr
;
3000 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3001 if (adapter
->link_speed
!= SPEED_1000
) {
3007 adapter
->rx_itr
= igb_update_itr(adapter
,
3009 adapter
->rx_ring
->total_packets
,
3010 adapter
->rx_ring
->total_bytes
);
3012 if (adapter
->rx_ring
->buddy
) {
3013 adapter
->tx_itr
= igb_update_itr(adapter
,
3015 adapter
->tx_ring
->total_packets
,
3016 adapter
->tx_ring
->total_bytes
);
3017 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
3019 current_itr
= adapter
->rx_itr
;
3022 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3023 if (adapter
->itr_setting
== 3 && current_itr
== lowest_latency
)
3024 current_itr
= low_latency
;
3026 switch (current_itr
) {
3027 /* counts and packets in update_itr are dependent on these numbers */
3028 case lowest_latency
:
3029 new_itr
= 56; /* aka 70,000 ints/sec */
3032 new_itr
= 196; /* aka 20,000 ints/sec */
3035 new_itr
= 980; /* aka 4,000 ints/sec */
3042 adapter
->rx_ring
->total_bytes
= 0;
3043 adapter
->rx_ring
->total_packets
= 0;
3044 if (adapter
->rx_ring
->buddy
) {
3045 adapter
->rx_ring
->buddy
->total_bytes
= 0;
3046 adapter
->rx_ring
->buddy
->total_packets
= 0;
3049 if (new_itr
!= adapter
->itr
) {
3050 /* this attempts to bias the interrupt rate towards Bulk
3051 * by adding intermediate steps when interrupt rate is
3053 new_itr
= new_itr
> adapter
->itr
?
3054 max((new_itr
* adapter
->itr
) /
3055 (new_itr
+ (adapter
->itr
>> 2)), new_itr
) :
3057 /* Don't write the value here; it resets the adapter's
3058 * internal timer, and causes us to delay far longer than
3059 * we should between interrupts. Instead, we write the ITR
3060 * value at the beginning of the next interrupt so the timing
3061 * ends up being correct.
3063 adapter
->itr
= new_itr
;
3064 adapter
->rx_ring
->itr_val
= new_itr
;
3065 adapter
->rx_ring
->set_itr
= 1;
3072 #define IGB_TX_FLAGS_CSUM 0x00000001
3073 #define IGB_TX_FLAGS_VLAN 0x00000002
3074 #define IGB_TX_FLAGS_TSO 0x00000004
3075 #define IGB_TX_FLAGS_IPV4 0x00000008
3076 #define IGB_TX_FLAGS_TSTAMP 0x00000010
3077 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
3078 #define IGB_TX_FLAGS_VLAN_SHIFT 16
3080 static inline int igb_tso_adv(struct igb_adapter
*adapter
,
3081 struct igb_ring
*tx_ring
,
3082 struct sk_buff
*skb
, u32 tx_flags
, u8
*hdr_len
)
3084 struct e1000_adv_tx_context_desc
*context_desc
;
3087 struct igb_buffer
*buffer_info
;
3088 u32 info
= 0, tu_cmd
= 0;
3089 u32 mss_l4len_idx
, l4len
;
3092 if (skb_header_cloned(skb
)) {
3093 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
3098 l4len
= tcp_hdrlen(skb
);
3101 if (skb
->protocol
== htons(ETH_P_IP
)) {
3102 struct iphdr
*iph
= ip_hdr(skb
);
3105 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
3109 } else if (skb_shinfo(skb
)->gso_type
== SKB_GSO_TCPV6
) {
3110 ipv6_hdr(skb
)->payload_len
= 0;
3111 tcp_hdr(skb
)->check
= ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
3112 &ipv6_hdr(skb
)->daddr
,
3116 i
= tx_ring
->next_to_use
;
3118 buffer_info
= &tx_ring
->buffer_info
[i
];
3119 context_desc
= E1000_TX_CTXTDESC_ADV(*tx_ring
, i
);
3120 /* VLAN MACLEN IPLEN */
3121 if (tx_flags
& IGB_TX_FLAGS_VLAN
)
3122 info
|= (tx_flags
& IGB_TX_FLAGS_VLAN_MASK
);
3123 info
|= (skb_network_offset(skb
) << E1000_ADVTXD_MACLEN_SHIFT
);
3124 *hdr_len
+= skb_network_offset(skb
);
3125 info
|= skb_network_header_len(skb
);
3126 *hdr_len
+= skb_network_header_len(skb
);
3127 context_desc
->vlan_macip_lens
= cpu_to_le32(info
);
3129 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3130 tu_cmd
|= (E1000_TXD_CMD_DEXT
| E1000_ADVTXD_DTYP_CTXT
);
3132 if (skb
->protocol
== htons(ETH_P_IP
))
3133 tu_cmd
|= E1000_ADVTXD_TUCMD_IPV4
;
3134 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
3136 context_desc
->type_tucmd_mlhl
= cpu_to_le32(tu_cmd
);
3139 mss_l4len_idx
= (skb_shinfo(skb
)->gso_size
<< E1000_ADVTXD_MSS_SHIFT
);
3140 mss_l4len_idx
|= (l4len
<< E1000_ADVTXD_L4LEN_SHIFT
);
3142 /* For 82575, context index must be unique per ring. */
3143 if (adapter
->flags
& IGB_FLAG_NEED_CTX_IDX
)
3144 mss_l4len_idx
|= tx_ring
->queue_index
<< 4;
3146 context_desc
->mss_l4len_idx
= cpu_to_le32(mss_l4len_idx
);
3147 context_desc
->seqnum_seed
= 0;
3149 buffer_info
->time_stamp
= jiffies
;
3150 buffer_info
->next_to_watch
= i
;
3151 buffer_info
->dma
= 0;
3153 if (i
== tx_ring
->count
)
3156 tx_ring
->next_to_use
= i
;
3161 static inline bool igb_tx_csum_adv(struct igb_adapter
*adapter
,
3162 struct igb_ring
*tx_ring
,
3163 struct sk_buff
*skb
, u32 tx_flags
)
3165 struct e1000_adv_tx_context_desc
*context_desc
;
3167 struct igb_buffer
*buffer_info
;
3168 u32 info
= 0, tu_cmd
= 0;
3170 if ((skb
->ip_summed
== CHECKSUM_PARTIAL
) ||
3171 (tx_flags
& IGB_TX_FLAGS_VLAN
)) {
3172 i
= tx_ring
->next_to_use
;
3173 buffer_info
= &tx_ring
->buffer_info
[i
];
3174 context_desc
= E1000_TX_CTXTDESC_ADV(*tx_ring
, i
);
3176 if (tx_flags
& IGB_TX_FLAGS_VLAN
)
3177 info
|= (tx_flags
& IGB_TX_FLAGS_VLAN_MASK
);
3178 info
|= (skb_network_offset(skb
) << E1000_ADVTXD_MACLEN_SHIFT
);
3179 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
3180 info
|= skb_network_header_len(skb
);
3182 context_desc
->vlan_macip_lens
= cpu_to_le32(info
);
3184 tu_cmd
|= (E1000_TXD_CMD_DEXT
| E1000_ADVTXD_DTYP_CTXT
);
3186 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
3189 if (skb
->protocol
== cpu_to_be16(ETH_P_8021Q
)) {
3190 const struct vlan_ethhdr
*vhdr
=
3191 (const struct vlan_ethhdr
*)skb
->data
;
3193 protocol
= vhdr
->h_vlan_encapsulated_proto
;
3195 protocol
= skb
->protocol
;
3199 case cpu_to_be16(ETH_P_IP
):
3200 tu_cmd
|= E1000_ADVTXD_TUCMD_IPV4
;
3201 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
3202 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
3203 else if (ip_hdr(skb
)->protocol
== IPPROTO_SCTP
)
3204 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_SCTP
;
3206 case cpu_to_be16(ETH_P_IPV6
):
3207 /* XXX what about other V6 headers?? */
3208 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
3209 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
3210 else if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_SCTP
)
3211 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_SCTP
;
3214 if (unlikely(net_ratelimit()))
3215 dev_warn(&adapter
->pdev
->dev
,
3216 "partial checksum but proto=%x!\n",
3222 context_desc
->type_tucmd_mlhl
= cpu_to_le32(tu_cmd
);
3223 context_desc
->seqnum_seed
= 0;
3224 if (adapter
->flags
& IGB_FLAG_NEED_CTX_IDX
)
3225 context_desc
->mss_l4len_idx
=
3226 cpu_to_le32(tx_ring
->queue_index
<< 4);
3228 context_desc
->mss_l4len_idx
= 0;
3230 buffer_info
->time_stamp
= jiffies
;
3231 buffer_info
->next_to_watch
= i
;
3232 buffer_info
->dma
= 0;
3235 if (i
== tx_ring
->count
)
3237 tx_ring
->next_to_use
= i
;
3244 #define IGB_MAX_TXD_PWR 16
3245 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
3247 static inline int igb_tx_map_adv(struct igb_adapter
*adapter
,
3248 struct igb_ring
*tx_ring
, struct sk_buff
*skb
,
3251 struct igb_buffer
*buffer_info
;
3252 unsigned int len
= skb_headlen(skb
);
3253 unsigned int count
= 0, i
;
3257 i
= tx_ring
->next_to_use
;
3259 if (skb_dma_map(&adapter
->pdev
->dev
, skb
, DMA_TO_DEVICE
)) {
3260 dev_err(&adapter
->pdev
->dev
, "TX DMA map failed\n");
3264 map
= skb_shinfo(skb
)->dma_maps
;
3266 buffer_info
= &tx_ring
->buffer_info
[i
];
3267 BUG_ON(len
>= IGB_MAX_DATA_PER_TXD
);
3268 buffer_info
->length
= len
;
3269 /* set time_stamp *before* dma to help avoid a possible race */
3270 buffer_info
->time_stamp
= jiffies
;
3271 buffer_info
->next_to_watch
= i
;
3272 buffer_info
->dma
= skb_shinfo(skb
)->dma_head
;
3274 for (f
= 0; f
< skb_shinfo(skb
)->nr_frags
; f
++) {
3275 struct skb_frag_struct
*frag
;
3278 if (i
== tx_ring
->count
)
3281 frag
= &skb_shinfo(skb
)->frags
[f
];
3284 buffer_info
= &tx_ring
->buffer_info
[i
];
3285 BUG_ON(len
>= IGB_MAX_DATA_PER_TXD
);
3286 buffer_info
->length
= len
;
3287 buffer_info
->time_stamp
= jiffies
;
3288 buffer_info
->next_to_watch
= i
;
3289 buffer_info
->dma
= map
[count
];
3293 tx_ring
->buffer_info
[i
].skb
= skb
;
3294 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
3299 static inline void igb_tx_queue_adv(struct igb_adapter
*adapter
,
3300 struct igb_ring
*tx_ring
,
3301 int tx_flags
, int count
, u32 paylen
,
3304 union e1000_adv_tx_desc
*tx_desc
= NULL
;
3305 struct igb_buffer
*buffer_info
;
3306 u32 olinfo_status
= 0, cmd_type_len
;
3309 cmd_type_len
= (E1000_ADVTXD_DTYP_DATA
| E1000_ADVTXD_DCMD_IFCS
|
3310 E1000_ADVTXD_DCMD_DEXT
);
3312 if (tx_flags
& IGB_TX_FLAGS_VLAN
)
3313 cmd_type_len
|= E1000_ADVTXD_DCMD_VLE
;
3315 if (tx_flags
& IGB_TX_FLAGS_TSTAMP
)
3316 cmd_type_len
|= E1000_ADVTXD_MAC_TSTAMP
;
3318 if (tx_flags
& IGB_TX_FLAGS_TSO
) {
3319 cmd_type_len
|= E1000_ADVTXD_DCMD_TSE
;
3321 /* insert tcp checksum */
3322 olinfo_status
|= E1000_TXD_POPTS_TXSM
<< 8;
3324 /* insert ip checksum */
3325 if (tx_flags
& IGB_TX_FLAGS_IPV4
)
3326 olinfo_status
|= E1000_TXD_POPTS_IXSM
<< 8;
3328 } else if (tx_flags
& IGB_TX_FLAGS_CSUM
) {
3329 olinfo_status
|= E1000_TXD_POPTS_TXSM
<< 8;
3332 if ((adapter
->flags
& IGB_FLAG_NEED_CTX_IDX
) &&
3333 (tx_flags
& (IGB_TX_FLAGS_CSUM
| IGB_TX_FLAGS_TSO
|
3334 IGB_TX_FLAGS_VLAN
)))
3335 olinfo_status
|= tx_ring
->queue_index
<< 4;
3337 olinfo_status
|= ((paylen
- hdr_len
) << E1000_ADVTXD_PAYLEN_SHIFT
);
3339 i
= tx_ring
->next_to_use
;
3341 buffer_info
= &tx_ring
->buffer_info
[i
];
3342 tx_desc
= E1000_TX_DESC_ADV(*tx_ring
, i
);
3343 tx_desc
->read
.buffer_addr
= cpu_to_le64(buffer_info
->dma
);
3344 tx_desc
->read
.cmd_type_len
=
3345 cpu_to_le32(cmd_type_len
| buffer_info
->length
);
3346 tx_desc
->read
.olinfo_status
= cpu_to_le32(olinfo_status
);
3348 if (i
== tx_ring
->count
)
3352 tx_desc
->read
.cmd_type_len
|= cpu_to_le32(adapter
->txd_cmd
);
3353 /* Force memory writes to complete before letting h/w
3354 * know there are new descriptors to fetch. (Only
3355 * applicable for weak-ordered memory model archs,
3356 * such as IA-64). */
3359 tx_ring
->next_to_use
= i
;
3360 writel(i
, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
3361 /* we need this if more than one processor can write to our tail
3362 * at a time, it syncronizes IO on IA64/Altix systems */
3366 static int __igb_maybe_stop_tx(struct net_device
*netdev
,
3367 struct igb_ring
*tx_ring
, int size
)
3369 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3371 netif_stop_subqueue(netdev
, tx_ring
->queue_index
);
3373 /* Herbert's original patch had:
3374 * smp_mb__after_netif_stop_queue();
3375 * but since that doesn't exist yet, just open code it. */
3378 /* We need to check again in a case another CPU has just
3379 * made room available. */
3380 if (igb_desc_unused(tx_ring
) < size
)
3384 netif_wake_subqueue(netdev
, tx_ring
->queue_index
);
3385 ++adapter
->restart_queue
;
3389 static int igb_maybe_stop_tx(struct net_device
*netdev
,
3390 struct igb_ring
*tx_ring
, int size
)
3392 if (igb_desc_unused(tx_ring
) >= size
)
3394 return __igb_maybe_stop_tx(netdev
, tx_ring
, size
);
3397 static netdev_tx_t
igb_xmit_frame_ring_adv(struct sk_buff
*skb
,
3398 struct net_device
*netdev
,
3399 struct igb_ring
*tx_ring
)
3401 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3403 unsigned int tx_flags
= 0;
3407 union skb_shared_tx
*shtx
;
3409 if (test_bit(__IGB_DOWN
, &adapter
->state
)) {
3410 dev_kfree_skb_any(skb
);
3411 return NETDEV_TX_OK
;
3414 if (skb
->len
<= 0) {
3415 dev_kfree_skb_any(skb
);
3416 return NETDEV_TX_OK
;
3419 /* need: 1 descriptor per page,
3420 * + 2 desc gap to keep tail from touching head,
3421 * + 1 desc for skb->data,
3422 * + 1 desc for context descriptor,
3423 * otherwise try next time */
3424 if (igb_maybe_stop_tx(netdev
, tx_ring
, skb_shinfo(skb
)->nr_frags
+ 4)) {
3425 /* this is a hard error */
3426 return NETDEV_TX_BUSY
;
3430 * TODO: check that there currently is no other packet with
3431 * time stamping in the queue
3433 * When doing time stamping, keep the connection to the socket
3434 * a while longer: it is still needed by skb_hwtstamp_tx(),
3435 * called either in igb_tx_hwtstamp() or by our caller when
3436 * doing software time stamping.
3439 if (unlikely(shtx
->hardware
)) {
3440 shtx
->in_progress
= 1;
3441 tx_flags
|= IGB_TX_FLAGS_TSTAMP
;
3444 if (adapter
->vlgrp
&& vlan_tx_tag_present(skb
)) {
3445 tx_flags
|= IGB_TX_FLAGS_VLAN
;
3446 tx_flags
|= (vlan_tx_tag_get(skb
) << IGB_TX_FLAGS_VLAN_SHIFT
);
3449 if (skb
->protocol
== htons(ETH_P_IP
))
3450 tx_flags
|= IGB_TX_FLAGS_IPV4
;
3452 first
= tx_ring
->next_to_use
;
3453 tso
= skb_is_gso(skb
) ? igb_tso_adv(adapter
, tx_ring
, skb
, tx_flags
,
3457 dev_kfree_skb_any(skb
);
3458 return NETDEV_TX_OK
;
3462 tx_flags
|= IGB_TX_FLAGS_TSO
;
3463 else if (igb_tx_csum_adv(adapter
, tx_ring
, skb
, tx_flags
) &&
3464 (skb
->ip_summed
== CHECKSUM_PARTIAL
))
3465 tx_flags
|= IGB_TX_FLAGS_CSUM
;
3468 * count reflects descriptors mapped, if 0 then mapping error
3469 * has occured and we need to rewind the descriptor queue
3471 count
= igb_tx_map_adv(adapter
, tx_ring
, skb
, first
);
3474 igb_tx_queue_adv(adapter
, tx_ring
, tx_flags
, count
,
3476 /* Make sure there is space in the ring for the next send. */
3477 igb_maybe_stop_tx(netdev
, tx_ring
, MAX_SKB_FRAGS
+ 4);
3479 dev_kfree_skb_any(skb
);
3480 tx_ring
->buffer_info
[first
].time_stamp
= 0;
3481 tx_ring
->next_to_use
= first
;
3484 return NETDEV_TX_OK
;
3487 static netdev_tx_t
igb_xmit_frame_adv(struct sk_buff
*skb
,
3488 struct net_device
*netdev
)
3490 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3491 struct igb_ring
*tx_ring
;
3494 r_idx
= skb
->queue_mapping
& (IGB_ABS_MAX_TX_QUEUES
- 1);
3495 tx_ring
= adapter
->multi_tx_table
[r_idx
];
3497 /* This goes back to the question of how to logically map a tx queue
3498 * to a flow. Right now, performance is impacted slightly negatively
3499 * if using multiple tx queues. If the stack breaks away from a
3500 * single qdisc implementation, we can look at this again. */
3501 return igb_xmit_frame_ring_adv(skb
, netdev
, tx_ring
);
3505 * igb_tx_timeout - Respond to a Tx Hang
3506 * @netdev: network interface device structure
3508 static void igb_tx_timeout(struct net_device
*netdev
)
3510 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3511 struct e1000_hw
*hw
= &adapter
->hw
;
3513 /* Do the reset outside of interrupt context */
3514 adapter
->tx_timeout_count
++;
3515 schedule_work(&adapter
->reset_task
);
3517 (adapter
->eims_enable_mask
& ~adapter
->eims_other
));
3520 static void igb_reset_task(struct work_struct
*work
)
3522 struct igb_adapter
*adapter
;
3523 adapter
= container_of(work
, struct igb_adapter
, reset_task
);
3525 igb_reinit_locked(adapter
);
3529 * igb_get_stats - Get System Network Statistics
3530 * @netdev: network interface device structure
3532 * Returns the address of the device statistics structure.
3533 * The statistics are actually updated from the timer callback.
3535 static struct net_device_stats
*igb_get_stats(struct net_device
*netdev
)
3537 /* only return the current stats */
3538 return &netdev
->stats
;
3542 * igb_change_mtu - Change the Maximum Transfer Unit
3543 * @netdev: network interface device structure
3544 * @new_mtu: new value for maximum frame size
3546 * Returns 0 on success, negative on failure
3548 static int igb_change_mtu(struct net_device
*netdev
, int new_mtu
)
3550 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3551 int max_frame
= new_mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
3553 if ((max_frame
< ETH_ZLEN
+ ETH_FCS_LEN
) ||
3554 (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
3555 dev_err(&adapter
->pdev
->dev
, "Invalid MTU setting\n");
3559 if (max_frame
> MAX_STD_JUMBO_FRAME_SIZE
) {
3560 dev_err(&adapter
->pdev
->dev
, "MTU > 9216 not supported.\n");
3564 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
3567 /* igb_down has a dependency on max_frame_size */
3568 adapter
->max_frame_size
= max_frame
;
3569 if (netif_running(netdev
))
3572 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3573 * means we reserve 2 more, this pushes us to allocate from the next
3575 * i.e. RXBUFFER_2048 --> size-4096 slab
3578 if (max_frame
<= IGB_RXBUFFER_256
)
3579 adapter
->rx_buffer_len
= IGB_RXBUFFER_256
;
3580 else if (max_frame
<= IGB_RXBUFFER_512
)
3581 adapter
->rx_buffer_len
= IGB_RXBUFFER_512
;
3582 else if (max_frame
<= IGB_RXBUFFER_1024
)
3583 adapter
->rx_buffer_len
= IGB_RXBUFFER_1024
;
3584 else if (max_frame
<= IGB_RXBUFFER_2048
)
3585 adapter
->rx_buffer_len
= IGB_RXBUFFER_2048
;
3587 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3588 adapter
->rx_buffer_len
= IGB_RXBUFFER_16384
;
3590 adapter
->rx_buffer_len
= PAGE_SIZE
/ 2;
3593 /* if sr-iov is enabled we need to force buffer size to 1K or larger */
3594 if (adapter
->vfs_allocated_count
&&
3595 (adapter
->rx_buffer_len
< IGB_RXBUFFER_1024
))
3596 adapter
->rx_buffer_len
= IGB_RXBUFFER_1024
;
3598 /* adjust allocation if LPE protects us, and we aren't using SBP */
3599 if ((max_frame
== ETH_FRAME_LEN
+ ETH_FCS_LEN
) ||
3600 (max_frame
== MAXIMUM_ETHERNET_VLAN_SIZE
))
3601 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
3603 dev_info(&adapter
->pdev
->dev
, "changing MTU from %d to %d\n",
3604 netdev
->mtu
, new_mtu
);
3605 netdev
->mtu
= new_mtu
;
3607 if (netif_running(netdev
))
3612 clear_bit(__IGB_RESETTING
, &adapter
->state
);
3618 * igb_update_stats - Update the board statistics counters
3619 * @adapter: board private structure
3622 void igb_update_stats(struct igb_adapter
*adapter
)
3624 struct net_device
*netdev
= adapter
->netdev
;
3625 struct e1000_hw
*hw
= &adapter
->hw
;
3626 struct pci_dev
*pdev
= adapter
->pdev
;
3629 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3632 * Prevent stats update while adapter is being reset, or if the pci
3633 * connection is down.
3635 if (adapter
->link_speed
== 0)
3637 if (pci_channel_offline(pdev
))
3640 adapter
->stats
.crcerrs
+= rd32(E1000_CRCERRS
);
3641 adapter
->stats
.gprc
+= rd32(E1000_GPRC
);
3642 adapter
->stats
.gorc
+= rd32(E1000_GORCL
);
3643 rd32(E1000_GORCH
); /* clear GORCL */
3644 adapter
->stats
.bprc
+= rd32(E1000_BPRC
);
3645 adapter
->stats
.mprc
+= rd32(E1000_MPRC
);
3646 adapter
->stats
.roc
+= rd32(E1000_ROC
);
3648 adapter
->stats
.prc64
+= rd32(E1000_PRC64
);
3649 adapter
->stats
.prc127
+= rd32(E1000_PRC127
);
3650 adapter
->stats
.prc255
+= rd32(E1000_PRC255
);
3651 adapter
->stats
.prc511
+= rd32(E1000_PRC511
);
3652 adapter
->stats
.prc1023
+= rd32(E1000_PRC1023
);
3653 adapter
->stats
.prc1522
+= rd32(E1000_PRC1522
);
3654 adapter
->stats
.symerrs
+= rd32(E1000_SYMERRS
);
3655 adapter
->stats
.sec
+= rd32(E1000_SEC
);
3657 adapter
->stats
.mpc
+= rd32(E1000_MPC
);
3658 adapter
->stats
.scc
+= rd32(E1000_SCC
);
3659 adapter
->stats
.ecol
+= rd32(E1000_ECOL
);
3660 adapter
->stats
.mcc
+= rd32(E1000_MCC
);
3661 adapter
->stats
.latecol
+= rd32(E1000_LATECOL
);
3662 adapter
->stats
.dc
+= rd32(E1000_DC
);
3663 adapter
->stats
.rlec
+= rd32(E1000_RLEC
);
3664 adapter
->stats
.xonrxc
+= rd32(E1000_XONRXC
);
3665 adapter
->stats
.xontxc
+= rd32(E1000_XONTXC
);
3666 adapter
->stats
.xoffrxc
+= rd32(E1000_XOFFRXC
);
3667 adapter
->stats
.xofftxc
+= rd32(E1000_XOFFTXC
);
3668 adapter
->stats
.fcruc
+= rd32(E1000_FCRUC
);
3669 adapter
->stats
.gptc
+= rd32(E1000_GPTC
);
3670 adapter
->stats
.gotc
+= rd32(E1000_GOTCL
);
3671 rd32(E1000_GOTCH
); /* clear GOTCL */
3672 adapter
->stats
.rnbc
+= rd32(E1000_RNBC
);
3673 adapter
->stats
.ruc
+= rd32(E1000_RUC
);
3674 adapter
->stats
.rfc
+= rd32(E1000_RFC
);
3675 adapter
->stats
.rjc
+= rd32(E1000_RJC
);
3676 adapter
->stats
.tor
+= rd32(E1000_TORH
);
3677 adapter
->stats
.tot
+= rd32(E1000_TOTH
);
3678 adapter
->stats
.tpr
+= rd32(E1000_TPR
);
3680 adapter
->stats
.ptc64
+= rd32(E1000_PTC64
);
3681 adapter
->stats
.ptc127
+= rd32(E1000_PTC127
);
3682 adapter
->stats
.ptc255
+= rd32(E1000_PTC255
);
3683 adapter
->stats
.ptc511
+= rd32(E1000_PTC511
);
3684 adapter
->stats
.ptc1023
+= rd32(E1000_PTC1023
);
3685 adapter
->stats
.ptc1522
+= rd32(E1000_PTC1522
);
3687 adapter
->stats
.mptc
+= rd32(E1000_MPTC
);
3688 adapter
->stats
.bptc
+= rd32(E1000_BPTC
);
3690 /* used for adaptive IFS */
3692 hw
->mac
.tx_packet_delta
= rd32(E1000_TPT
);
3693 adapter
->stats
.tpt
+= hw
->mac
.tx_packet_delta
;
3694 hw
->mac
.collision_delta
= rd32(E1000_COLC
);
3695 adapter
->stats
.colc
+= hw
->mac
.collision_delta
;
3697 adapter
->stats
.algnerrc
+= rd32(E1000_ALGNERRC
);
3698 adapter
->stats
.rxerrc
+= rd32(E1000_RXERRC
);
3699 adapter
->stats
.tncrs
+= rd32(E1000_TNCRS
);
3700 adapter
->stats
.tsctc
+= rd32(E1000_TSCTC
);
3701 adapter
->stats
.tsctfc
+= rd32(E1000_TSCTFC
);
3703 adapter
->stats
.iac
+= rd32(E1000_IAC
);
3704 adapter
->stats
.icrxoc
+= rd32(E1000_ICRXOC
);
3705 adapter
->stats
.icrxptc
+= rd32(E1000_ICRXPTC
);
3706 adapter
->stats
.icrxatc
+= rd32(E1000_ICRXATC
);
3707 adapter
->stats
.ictxptc
+= rd32(E1000_ICTXPTC
);
3708 adapter
->stats
.ictxatc
+= rd32(E1000_ICTXATC
);
3709 adapter
->stats
.ictxqec
+= rd32(E1000_ICTXQEC
);
3710 adapter
->stats
.ictxqmtc
+= rd32(E1000_ICTXQMTC
);
3711 adapter
->stats
.icrxdmtc
+= rd32(E1000_ICRXDMTC
);
3713 /* Fill out the OS statistics structure */
3714 netdev
->stats
.multicast
= adapter
->stats
.mprc
;
3715 netdev
->stats
.collisions
= adapter
->stats
.colc
;
3719 if (hw
->mac
.type
!= e1000_82575
) {
3721 u64 rqdpc_total
= 0;
3723 /* Read out drops stats per RX queue. Notice RQDPC (Receive
3724 * Queue Drop Packet Count) stats only gets incremented, if
3725 * the DROP_EN but it set (in the SRRCTL register for that
3726 * queue). If DROP_EN bit is NOT set, then the some what
3727 * equivalent count is stored in RNBC (not per queue basis).
3728 * Also note the drop count is due to lack of available
3731 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
3732 rqdpc_tmp
= rd32(E1000_RQDPC(i
)) & 0xFFF;
3733 adapter
->rx_ring
[i
].rx_stats
.drops
+= rqdpc_tmp
;
3734 rqdpc_total
+= adapter
->rx_ring
[i
].rx_stats
.drops
;
3736 netdev
->stats
.rx_fifo_errors
= rqdpc_total
;
3739 /* Note RNBC (Receive No Buffers Count) is an not an exact
3740 * drop count as the hardware FIFO might save the day. Thats
3741 * one of the reason for saving it in rx_fifo_errors, as its
3742 * potentially not a true drop.
3744 netdev
->stats
.rx_fifo_errors
+= adapter
->stats
.rnbc
;
3746 /* RLEC on some newer hardware can be incorrect so build
3747 * our own version based on RUC and ROC */
3748 netdev
->stats
.rx_errors
= adapter
->stats
.rxerrc
+
3749 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
3750 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
3751 adapter
->stats
.cexterr
;
3752 netdev
->stats
.rx_length_errors
= adapter
->stats
.ruc
+
3754 netdev
->stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
3755 netdev
->stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
3756 netdev
->stats
.rx_missed_errors
= adapter
->stats
.mpc
;
3759 netdev
->stats
.tx_errors
= adapter
->stats
.ecol
+
3760 adapter
->stats
.latecol
;
3761 netdev
->stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
3762 netdev
->stats
.tx_window_errors
= adapter
->stats
.latecol
;
3763 netdev
->stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
3765 /* Tx Dropped needs to be maintained elsewhere */
3768 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
3769 if ((adapter
->link_speed
== SPEED_1000
) &&
3770 (!igb_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_tmp
))) {
3771 phy_tmp
&= PHY_IDLE_ERROR_COUNT_MASK
;
3772 adapter
->phy_stats
.idle_errors
+= phy_tmp
;
3776 /* Management Stats */
3777 adapter
->stats
.mgptc
+= rd32(E1000_MGTPTC
);
3778 adapter
->stats
.mgprc
+= rd32(E1000_MGTPRC
);
3779 adapter
->stats
.mgpdc
+= rd32(E1000_MGTPDC
);
3782 static irqreturn_t
igb_msix_other(int irq
, void *data
)
3784 struct net_device
*netdev
= data
;
3785 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3786 struct e1000_hw
*hw
= &adapter
->hw
;
3787 u32 icr
= rd32(E1000_ICR
);
3789 /* reading ICR causes bit 31 of EICR to be cleared */
3791 if(icr
& E1000_ICR_DOUTSYNC
) {
3792 /* HW is reporting DMA is out of sync */
3793 adapter
->stats
.doosync
++;
3796 /* Check for a mailbox event */
3797 if (icr
& E1000_ICR_VMMB
)
3798 igb_msg_task(adapter
);
3800 if (icr
& E1000_ICR_LSC
) {
3801 hw
->mac
.get_link_status
= 1;
3802 /* guard against interrupt when we're going down */
3803 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3804 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3807 wr32(E1000_IMS
, E1000_IMS_LSC
| E1000_IMS_DOUTSYNC
| E1000_IMS_VMMB
);
3808 wr32(E1000_EIMS
, adapter
->eims_other
);
3813 static irqreturn_t
igb_msix_tx(int irq
, void *data
)
3815 struct igb_ring
*tx_ring
= data
;
3816 struct igb_adapter
*adapter
= tx_ring
->adapter
;
3817 struct e1000_hw
*hw
= &adapter
->hw
;
3819 #ifdef CONFIG_IGB_DCA
3820 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
)
3821 igb_update_tx_dca(tx_ring
);
3824 tx_ring
->total_bytes
= 0;
3825 tx_ring
->total_packets
= 0;
3827 /* auto mask will automatically reenable the interrupt when we write
3829 if (!igb_clean_tx_irq(tx_ring
))
3830 /* Ring was not completely cleaned, so fire another interrupt */
3831 wr32(E1000_EICS
, tx_ring
->eims_value
);
3833 wr32(E1000_EIMS
, tx_ring
->eims_value
);
3838 static void igb_write_itr(struct igb_ring
*ring
)
3840 struct e1000_hw
*hw
= &ring
->adapter
->hw
;
3841 if ((ring
->adapter
->itr_setting
& 3) && ring
->set_itr
) {
3842 switch (hw
->mac
.type
) {
3844 wr32(ring
->itr_register
, ring
->itr_val
|
3848 wr32(ring
->itr_register
, ring
->itr_val
|
3849 (ring
->itr_val
<< 16));
3856 static irqreturn_t
igb_msix_rx(int irq
, void *data
)
3858 struct igb_ring
*rx_ring
= data
;
3860 /* Write the ITR value calculated at the end of the
3861 * previous interrupt.
3864 igb_write_itr(rx_ring
);
3866 if (napi_schedule_prep(&rx_ring
->napi
))
3867 __napi_schedule(&rx_ring
->napi
);
3869 #ifdef CONFIG_IGB_DCA
3870 if (rx_ring
->adapter
->flags
& IGB_FLAG_DCA_ENABLED
)
3871 igb_update_rx_dca(rx_ring
);
3876 #ifdef CONFIG_IGB_DCA
3877 static void igb_update_rx_dca(struct igb_ring
*rx_ring
)
3880 struct igb_adapter
*adapter
= rx_ring
->adapter
;
3881 struct e1000_hw
*hw
= &adapter
->hw
;
3882 int cpu
= get_cpu();
3883 int q
= rx_ring
->reg_idx
;
3885 if (rx_ring
->cpu
!= cpu
) {
3886 dca_rxctrl
= rd32(E1000_DCA_RXCTRL(q
));
3887 if (hw
->mac
.type
== e1000_82576
) {
3888 dca_rxctrl
&= ~E1000_DCA_RXCTRL_CPUID_MASK_82576
;
3889 dca_rxctrl
|= dca3_get_tag(&adapter
->pdev
->dev
, cpu
) <<
3890 E1000_DCA_RXCTRL_CPUID_SHIFT
;
3892 dca_rxctrl
&= ~E1000_DCA_RXCTRL_CPUID_MASK
;
3893 dca_rxctrl
|= dca3_get_tag(&adapter
->pdev
->dev
, cpu
);
3895 dca_rxctrl
|= E1000_DCA_RXCTRL_DESC_DCA_EN
;
3896 dca_rxctrl
|= E1000_DCA_RXCTRL_HEAD_DCA_EN
;
3897 dca_rxctrl
|= E1000_DCA_RXCTRL_DATA_DCA_EN
;
3898 wr32(E1000_DCA_RXCTRL(q
), dca_rxctrl
);
3904 static void igb_update_tx_dca(struct igb_ring
*tx_ring
)
3907 struct igb_adapter
*adapter
= tx_ring
->adapter
;
3908 struct e1000_hw
*hw
= &adapter
->hw
;
3909 int cpu
= get_cpu();
3910 int q
= tx_ring
->reg_idx
;
3912 if (tx_ring
->cpu
!= cpu
) {
3913 dca_txctrl
= rd32(E1000_DCA_TXCTRL(q
));
3914 if (hw
->mac
.type
== e1000_82576
) {
3915 dca_txctrl
&= ~E1000_DCA_TXCTRL_CPUID_MASK_82576
;
3916 dca_txctrl
|= dca3_get_tag(&adapter
->pdev
->dev
, cpu
) <<
3917 E1000_DCA_TXCTRL_CPUID_SHIFT
;
3919 dca_txctrl
&= ~E1000_DCA_TXCTRL_CPUID_MASK
;
3920 dca_txctrl
|= dca3_get_tag(&adapter
->pdev
->dev
, cpu
);
3922 dca_txctrl
|= E1000_DCA_TXCTRL_DESC_DCA_EN
;
3923 wr32(E1000_DCA_TXCTRL(q
), dca_txctrl
);
3929 static void igb_setup_dca(struct igb_adapter
*adapter
)
3931 struct e1000_hw
*hw
= &adapter
->hw
;
3934 if (!(adapter
->flags
& IGB_FLAG_DCA_ENABLED
))
3937 /* Always use CB2 mode, difference is masked in the CB driver. */
3938 wr32(E1000_DCA_CTRL
, E1000_DCA_CTRL_DCA_MODE_CB2
);
3940 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
3941 adapter
->tx_ring
[i
].cpu
= -1;
3942 igb_update_tx_dca(&adapter
->tx_ring
[i
]);
3944 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
3945 adapter
->rx_ring
[i
].cpu
= -1;
3946 igb_update_rx_dca(&adapter
->rx_ring
[i
]);
3950 static int __igb_notify_dca(struct device
*dev
, void *data
)
3952 struct net_device
*netdev
= dev_get_drvdata(dev
);
3953 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3954 struct e1000_hw
*hw
= &adapter
->hw
;
3955 unsigned long event
= *(unsigned long *)data
;
3958 case DCA_PROVIDER_ADD
:
3959 /* if already enabled, don't do it again */
3960 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
)
3962 /* Always use CB2 mode, difference is masked
3963 * in the CB driver. */
3964 wr32(E1000_DCA_CTRL
, E1000_DCA_CTRL_DCA_MODE_CB2
);
3965 if (dca_add_requester(dev
) == 0) {
3966 adapter
->flags
|= IGB_FLAG_DCA_ENABLED
;
3967 dev_info(&adapter
->pdev
->dev
, "DCA enabled\n");
3968 igb_setup_dca(adapter
);
3971 /* Fall Through since DCA is disabled. */
3972 case DCA_PROVIDER_REMOVE
:
3973 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
) {
3974 /* without this a class_device is left
3975 * hanging around in the sysfs model */
3976 dca_remove_requester(dev
);
3977 dev_info(&adapter
->pdev
->dev
, "DCA disabled\n");
3978 adapter
->flags
&= ~IGB_FLAG_DCA_ENABLED
;
3979 wr32(E1000_DCA_CTRL
, E1000_DCA_CTRL_DCA_MODE_DISABLE
);
3987 static int igb_notify_dca(struct notifier_block
*nb
, unsigned long event
,
3992 ret_val
= driver_for_each_device(&igb_driver
.driver
, NULL
, &event
,
3995 return ret_val
? NOTIFY_BAD
: NOTIFY_DONE
;
3997 #endif /* CONFIG_IGB_DCA */
3999 static void igb_ping_all_vfs(struct igb_adapter
*adapter
)
4001 struct e1000_hw
*hw
= &adapter
->hw
;
4005 for (i
= 0 ; i
< adapter
->vfs_allocated_count
; i
++) {
4006 ping
= E1000_PF_CONTROL_MSG
;
4007 if (adapter
->vf_data
[i
].clear_to_send
)
4008 ping
|= E1000_VT_MSGTYPE_CTS
;
4009 igb_write_mbx(hw
, &ping
, 1, i
);
4013 static int igb_set_vf_multicasts(struct igb_adapter
*adapter
,
4014 u32
*msgbuf
, u32 vf
)
4016 int n
= (msgbuf
[0] & E1000_VT_MSGINFO_MASK
) >> E1000_VT_MSGINFO_SHIFT
;
4017 u16
*hash_list
= (u16
*)&msgbuf
[1];
4018 struct vf_data_storage
*vf_data
= &adapter
->vf_data
[vf
];
4021 /* only up to 30 hash values supported */
4025 /* salt away the number of multi cast addresses assigned
4026 * to this VF for later use to restore when the PF multi cast
4029 vf_data
->num_vf_mc_hashes
= n
;
4031 /* VFs are limited to using the MTA hash table for their multicast
4033 for (i
= 0; i
< n
; i
++)
4034 vf_data
->vf_mc_hashes
[i
] = hash_list
[i
];
4036 /* Flush and reset the mta with the new values */
4037 igb_set_rx_mode(adapter
->netdev
);
4042 static void igb_restore_vf_multicasts(struct igb_adapter
*adapter
)
4044 struct e1000_hw
*hw
= &adapter
->hw
;
4045 struct vf_data_storage
*vf_data
;
4048 for (i
= 0; i
< adapter
->vfs_allocated_count
; i
++) {
4049 vf_data
= &adapter
->vf_data
[i
];
4050 for (j
= 0; j
< vf_data
->num_vf_mc_hashes
; j
++)
4051 igb_mta_set(hw
, vf_data
->vf_mc_hashes
[j
]);
4055 static void igb_clear_vf_vfta(struct igb_adapter
*adapter
, u32 vf
)
4057 struct e1000_hw
*hw
= &adapter
->hw
;
4058 u32 pool_mask
, reg
, vid
;
4061 pool_mask
= 1 << (E1000_VLVF_POOLSEL_SHIFT
+ vf
);
4063 /* Find the vlan filter for this id */
4064 for (i
= 0; i
< E1000_VLVF_ARRAY_SIZE
; i
++) {
4065 reg
= rd32(E1000_VLVF(i
));
4067 /* remove the vf from the pool */
4070 /* if pool is empty then remove entry from vfta */
4071 if (!(reg
& E1000_VLVF_POOLSEL_MASK
) &&
4072 (reg
& E1000_VLVF_VLANID_ENABLE
)) {
4074 vid
= reg
& E1000_VLVF_VLANID_MASK
;
4075 igb_vfta_set(hw
, vid
, false);
4078 wr32(E1000_VLVF(i
), reg
);
4081 adapter
->vf_data
[vf
].vlans_enabled
= 0;
4084 static s32
igb_vlvf_set(struct igb_adapter
*adapter
, u32 vid
, bool add
, u32 vf
)
4086 struct e1000_hw
*hw
= &adapter
->hw
;
4089 /* It is an error to call this function when VFs are not enabled */
4090 if (!adapter
->vfs_allocated_count
)
4093 /* Find the vlan filter for this id */
4094 for (i
= 0; i
< E1000_VLVF_ARRAY_SIZE
; i
++) {
4095 reg
= rd32(E1000_VLVF(i
));
4096 if ((reg
& E1000_VLVF_VLANID_ENABLE
) &&
4097 vid
== (reg
& E1000_VLVF_VLANID_MASK
))
4102 if (i
== E1000_VLVF_ARRAY_SIZE
) {
4103 /* Did not find a matching VLAN ID entry that was
4104 * enabled. Search for a free filter entry, i.e.
4105 * one without the enable bit set
4107 for (i
= 0; i
< E1000_VLVF_ARRAY_SIZE
; i
++) {
4108 reg
= rd32(E1000_VLVF(i
));
4109 if (!(reg
& E1000_VLVF_VLANID_ENABLE
))
4113 if (i
< E1000_VLVF_ARRAY_SIZE
) {
4114 /* Found an enabled/available entry */
4115 reg
|= 1 << (E1000_VLVF_POOLSEL_SHIFT
+ vf
);
4117 /* if !enabled we need to set this up in vfta */
4118 if (!(reg
& E1000_VLVF_VLANID_ENABLE
)) {
4119 /* add VID to filter table, if bit already set
4120 * PF must have added it outside of table */
4121 if (igb_vfta_set(hw
, vid
, true))
4122 reg
|= 1 << (E1000_VLVF_POOLSEL_SHIFT
+
4123 adapter
->vfs_allocated_count
);
4124 reg
|= E1000_VLVF_VLANID_ENABLE
;
4126 reg
&= ~E1000_VLVF_VLANID_MASK
;
4129 wr32(E1000_VLVF(i
), reg
);
4131 /* do not modify RLPML for PF devices */
4132 if (vf
>= adapter
->vfs_allocated_count
)
4135 if (!adapter
->vf_data
[vf
].vlans_enabled
) {
4137 reg
= rd32(E1000_VMOLR(vf
));
4138 size
= reg
& E1000_VMOLR_RLPML_MASK
;
4140 reg
&= ~E1000_VMOLR_RLPML_MASK
;
4142 wr32(E1000_VMOLR(vf
), reg
);
4144 adapter
->vf_data
[vf
].vlans_enabled
++;
4149 if (i
< E1000_VLVF_ARRAY_SIZE
) {
4150 /* remove vf from the pool */
4151 reg
&= ~(1 << (E1000_VLVF_POOLSEL_SHIFT
+ vf
));
4152 /* if pool is empty then remove entry from vfta */
4153 if (!(reg
& E1000_VLVF_POOLSEL_MASK
)) {
4155 igb_vfta_set(hw
, vid
, false);
4157 wr32(E1000_VLVF(i
), reg
);
4159 /* do not modify RLPML for PF devices */
4160 if (vf
>= adapter
->vfs_allocated_count
)
4163 adapter
->vf_data
[vf
].vlans_enabled
--;
4164 if (!adapter
->vf_data
[vf
].vlans_enabled
) {
4166 reg
= rd32(E1000_VMOLR(vf
));
4167 size
= reg
& E1000_VMOLR_RLPML_MASK
;
4169 reg
&= ~E1000_VMOLR_RLPML_MASK
;
4171 wr32(E1000_VMOLR(vf
), reg
);
4179 static int igb_set_vf_vlan(struct igb_adapter
*adapter
, u32
*msgbuf
, u32 vf
)
4181 int add
= (msgbuf
[0] & E1000_VT_MSGINFO_MASK
) >> E1000_VT_MSGINFO_SHIFT
;
4182 int vid
= (msgbuf
[1] & E1000_VLVF_VLANID_MASK
);
4184 return igb_vlvf_set(adapter
, vid
, add
, vf
);
4187 static inline void igb_vf_reset_event(struct igb_adapter
*adapter
, u32 vf
)
4189 struct e1000_hw
*hw
= &adapter
->hw
;
4191 /* disable mailbox functionality for vf */
4192 adapter
->vf_data
[vf
].clear_to_send
= false;
4194 /* reset offloads to defaults */
4195 igb_set_vmolr(hw
, vf
);
4197 /* reset vlans for device */
4198 igb_clear_vf_vfta(adapter
, vf
);
4200 /* reset multicast table array for vf */
4201 adapter
->vf_data
[vf
].num_vf_mc_hashes
= 0;
4203 /* Flush and reset the mta with the new values */
4204 igb_set_rx_mode(adapter
->netdev
);
4207 static inline void igb_vf_reset_msg(struct igb_adapter
*adapter
, u32 vf
)
4209 struct e1000_hw
*hw
= &adapter
->hw
;
4210 unsigned char *vf_mac
= adapter
->vf_data
[vf
].vf_mac_addresses
;
4211 int rar_entry
= hw
->mac
.rar_entry_count
- (vf
+ 1);
4213 u8
*addr
= (u8
*)(&msgbuf
[1]);
4215 /* process all the same items cleared in a function level reset */
4216 igb_vf_reset_event(adapter
, vf
);
4218 /* set vf mac address */
4219 igb_rar_set_qsel(adapter
, vf_mac
, rar_entry
, vf
);
4221 /* enable transmit and receive for vf */
4222 reg
= rd32(E1000_VFTE
);
4223 wr32(E1000_VFTE
, reg
| (1 << vf
));
4224 reg
= rd32(E1000_VFRE
);
4225 wr32(E1000_VFRE
, reg
| (1 << vf
));
4227 /* enable mailbox functionality for vf */
4228 adapter
->vf_data
[vf
].clear_to_send
= true;
4230 /* reply to reset with ack and vf mac address */
4231 msgbuf
[0] = E1000_VF_RESET
| E1000_VT_MSGTYPE_ACK
;
4232 memcpy(addr
, vf_mac
, 6);
4233 igb_write_mbx(hw
, msgbuf
, 3, vf
);
4236 static int igb_set_vf_mac_addr(struct igb_adapter
*adapter
, u32
*msg
, int vf
)
4238 unsigned char *addr
= (char *)&msg
[1];
4241 if (is_valid_ether_addr(addr
))
4242 err
= igb_set_vf_mac(adapter
, vf
, addr
);
4248 static void igb_rcv_ack_from_vf(struct igb_adapter
*adapter
, u32 vf
)
4250 struct e1000_hw
*hw
= &adapter
->hw
;
4251 u32 msg
= E1000_VT_MSGTYPE_NACK
;
4253 /* if device isn't clear to send it shouldn't be reading either */
4254 if (!adapter
->vf_data
[vf
].clear_to_send
)
4255 igb_write_mbx(hw
, &msg
, 1, vf
);
4259 static void igb_msg_task(struct igb_adapter
*adapter
)
4261 struct e1000_hw
*hw
= &adapter
->hw
;
4264 for (vf
= 0; vf
< adapter
->vfs_allocated_count
; vf
++) {
4265 /* process any reset requests */
4266 if (!igb_check_for_rst(hw
, vf
)) {
4267 adapter
->vf_data
[vf
].clear_to_send
= false;
4268 igb_vf_reset_event(adapter
, vf
);
4271 /* process any messages pending */
4272 if (!igb_check_for_msg(hw
, vf
))
4273 igb_rcv_msg_from_vf(adapter
, vf
);
4275 /* process any acks */
4276 if (!igb_check_for_ack(hw
, vf
))
4277 igb_rcv_ack_from_vf(adapter
, vf
);
4282 static int igb_rcv_msg_from_vf(struct igb_adapter
*adapter
, u32 vf
)
4284 u32 mbx_size
= E1000_VFMAILBOX_SIZE
;
4285 u32 msgbuf
[mbx_size
];
4286 struct e1000_hw
*hw
= &adapter
->hw
;
4289 retval
= igb_read_mbx(hw
, msgbuf
, mbx_size
, vf
);
4292 dev_err(&adapter
->pdev
->dev
,
4293 "Error receiving message from VF\n");
4295 /* this is a message we already processed, do nothing */
4296 if (msgbuf
[0] & (E1000_VT_MSGTYPE_ACK
| E1000_VT_MSGTYPE_NACK
))
4300 * until the vf completes a reset it should not be
4301 * allowed to start any configuration.
4304 if (msgbuf
[0] == E1000_VF_RESET
) {
4305 igb_vf_reset_msg(adapter
, vf
);
4310 if (!adapter
->vf_data
[vf
].clear_to_send
) {
4311 msgbuf
[0] |= E1000_VT_MSGTYPE_NACK
;
4312 igb_write_mbx(hw
, msgbuf
, 1, vf
);
4316 switch ((msgbuf
[0] & 0xFFFF)) {
4317 case E1000_VF_SET_MAC_ADDR
:
4318 retval
= igb_set_vf_mac_addr(adapter
, msgbuf
, vf
);
4320 case E1000_VF_SET_MULTICAST
:
4321 retval
= igb_set_vf_multicasts(adapter
, msgbuf
, vf
);
4323 case E1000_VF_SET_LPE
:
4324 retval
= igb_set_vf_rlpml(adapter
, msgbuf
[1], vf
);
4326 case E1000_VF_SET_VLAN
:
4327 retval
= igb_set_vf_vlan(adapter
, msgbuf
, vf
);
4330 dev_err(&adapter
->pdev
->dev
, "Unhandled Msg %08x\n", msgbuf
[0]);
4335 /* notify the VF of the results of what it sent us */
4337 msgbuf
[0] |= E1000_VT_MSGTYPE_NACK
;
4339 msgbuf
[0] |= E1000_VT_MSGTYPE_ACK
;
4341 msgbuf
[0] |= E1000_VT_MSGTYPE_CTS
;
4343 igb_write_mbx(hw
, msgbuf
, 1, vf
);
4349 * igb_set_uta - Set unicast filter table address
4350 * @adapter: board private structure
4352 * The unicast table address is a register array of 32-bit registers.
4353 * The table is meant to be used in a way similar to how the MTA is used
4354 * however due to certain limitations in the hardware it is necessary to
4355 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscous
4356 * enable bit to allow vlan tag stripping when promiscous mode is enabled
4358 static void igb_set_uta(struct igb_adapter
*adapter
)
4360 struct e1000_hw
*hw
= &adapter
->hw
;
4363 /* The UTA table only exists on 82576 hardware and newer */
4364 if (hw
->mac
.type
< e1000_82576
)
4367 /* we only need to do this if VMDq is enabled */
4368 if (!adapter
->vfs_allocated_count
)
4371 for (i
= 0; i
< hw
->mac
.uta_reg_count
; i
++)
4372 array_wr32(E1000_UTA
, i
, ~0);
4376 * igb_intr_msi - Interrupt Handler
4377 * @irq: interrupt number
4378 * @data: pointer to a network interface device structure
4380 static irqreturn_t
igb_intr_msi(int irq
, void *data
)
4382 struct net_device
*netdev
= data
;
4383 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4384 struct e1000_hw
*hw
= &adapter
->hw
;
4385 /* read ICR disables interrupts using IAM */
4386 u32 icr
= rd32(E1000_ICR
);
4388 igb_write_itr(adapter
->rx_ring
);
4390 if(icr
& E1000_ICR_DOUTSYNC
) {
4391 /* HW is reporting DMA is out of sync */
4392 adapter
->stats
.doosync
++;
4395 if (icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
)) {
4396 hw
->mac
.get_link_status
= 1;
4397 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
4398 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
4401 napi_schedule(&adapter
->rx_ring
[0].napi
);
4407 * igb_intr - Legacy Interrupt Handler
4408 * @irq: interrupt number
4409 * @data: pointer to a network interface device structure
4411 static irqreturn_t
igb_intr(int irq
, void *data
)
4413 struct net_device
*netdev
= data
;
4414 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4415 struct e1000_hw
*hw
= &adapter
->hw
;
4416 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
4417 * need for the IMC write */
4418 u32 icr
= rd32(E1000_ICR
);
4420 return IRQ_NONE
; /* Not our interrupt */
4422 igb_write_itr(adapter
->rx_ring
);
4424 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4425 * not set, then the adapter didn't send an interrupt */
4426 if (!(icr
& E1000_ICR_INT_ASSERTED
))
4429 if(icr
& E1000_ICR_DOUTSYNC
) {
4430 /* HW is reporting DMA is out of sync */
4431 adapter
->stats
.doosync
++;
4434 if (icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
)) {
4435 hw
->mac
.get_link_status
= 1;
4436 /* guard against interrupt when we're going down */
4437 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
4438 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
4441 napi_schedule(&adapter
->rx_ring
[0].napi
);
4446 static inline void igb_rx_irq_enable(struct igb_ring
*rx_ring
)
4448 struct igb_adapter
*adapter
= rx_ring
->adapter
;
4449 struct e1000_hw
*hw
= &adapter
->hw
;
4451 if (adapter
->itr_setting
& 3) {
4452 if (adapter
->num_rx_queues
== 1)
4453 igb_set_itr(adapter
);
4455 igb_update_ring_itr(rx_ring
);
4458 if (!test_bit(__IGB_DOWN
, &adapter
->state
)) {
4459 if (adapter
->msix_entries
)
4460 wr32(E1000_EIMS
, rx_ring
->eims_value
);
4462 igb_irq_enable(adapter
);
4467 * igb_poll - NAPI Rx polling callback
4468 * @napi: napi polling structure
4469 * @budget: count of how many packets we should handle
4471 static int igb_poll(struct napi_struct
*napi
, int budget
)
4473 struct igb_ring
*rx_ring
= container_of(napi
, struct igb_ring
, napi
);
4476 #ifdef CONFIG_IGB_DCA
4477 if (rx_ring
->adapter
->flags
& IGB_FLAG_DCA_ENABLED
)
4478 igb_update_rx_dca(rx_ring
);
4480 igb_clean_rx_irq_adv(rx_ring
, &work_done
, budget
);
4482 if (rx_ring
->buddy
) {
4483 #ifdef CONFIG_IGB_DCA
4484 if (rx_ring
->adapter
->flags
& IGB_FLAG_DCA_ENABLED
)
4485 igb_update_tx_dca(rx_ring
->buddy
);
4487 if (!igb_clean_tx_irq(rx_ring
->buddy
))
4491 /* If not enough Rx work done, exit the polling mode */
4492 if (work_done
< budget
) {
4493 napi_complete(napi
);
4494 igb_rx_irq_enable(rx_ring
);
4501 * igb_hwtstamp - utility function which checks for TX time stamp
4502 * @adapter: board private structure
4503 * @skb: packet that was just sent
4505 * If we were asked to do hardware stamping and such a time stamp is
4506 * available, then it must have been for this skb here because we only
4507 * allow only one such packet into the queue.
4509 static void igb_tx_hwtstamp(struct igb_adapter
*adapter
, struct sk_buff
*skb
)
4511 union skb_shared_tx
*shtx
= skb_tx(skb
);
4512 struct e1000_hw
*hw
= &adapter
->hw
;
4514 if (unlikely(shtx
->hardware
)) {
4515 u32 valid
= rd32(E1000_TSYNCTXCTL
) & E1000_TSYNCTXCTL_VALID
;
4517 u64 regval
= rd32(E1000_TXSTMPL
);
4519 struct skb_shared_hwtstamps shhwtstamps
;
4521 memset(&shhwtstamps
, 0, sizeof(shhwtstamps
));
4522 regval
|= (u64
)rd32(E1000_TXSTMPH
) << 32;
4523 ns
= timecounter_cyc2time(&adapter
->clock
,
4525 timecompare_update(&adapter
->compare
, ns
);
4526 shhwtstamps
.hwtstamp
= ns_to_ktime(ns
);
4527 shhwtstamps
.syststamp
=
4528 timecompare_transform(&adapter
->compare
, ns
);
4529 skb_tstamp_tx(skb
, &shhwtstamps
);
4535 * igb_clean_tx_irq - Reclaim resources after transmit completes
4536 * @adapter: board private structure
4537 * returns true if ring is completely cleaned
4539 static bool igb_clean_tx_irq(struct igb_ring
*tx_ring
)
4541 struct igb_adapter
*adapter
= tx_ring
->adapter
;
4542 struct net_device
*netdev
= adapter
->netdev
;
4543 struct e1000_hw
*hw
= &adapter
->hw
;
4544 struct igb_buffer
*buffer_info
;
4545 struct sk_buff
*skb
;
4546 union e1000_adv_tx_desc
*tx_desc
, *eop_desc
;
4547 unsigned int total_bytes
= 0, total_packets
= 0;
4548 unsigned int i
, eop
, count
= 0;
4549 bool cleaned
= false;
4551 i
= tx_ring
->next_to_clean
;
4552 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
4553 eop_desc
= E1000_TX_DESC_ADV(*tx_ring
, eop
);
4555 while ((eop_desc
->wb
.status
& cpu_to_le32(E1000_TXD_STAT_DD
)) &&
4556 (count
< tx_ring
->count
)) {
4557 for (cleaned
= false; !cleaned
; count
++) {
4558 tx_desc
= E1000_TX_DESC_ADV(*tx_ring
, i
);
4559 buffer_info
= &tx_ring
->buffer_info
[i
];
4560 cleaned
= (i
== eop
);
4561 skb
= buffer_info
->skb
;
4564 unsigned int segs
, bytecount
;
4565 /* gso_segs is currently only valid for tcp */
4566 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
4567 /* multiply data chunks by size of headers */
4568 bytecount
= ((segs
- 1) * skb_headlen(skb
)) +
4570 total_packets
+= segs
;
4571 total_bytes
+= bytecount
;
4573 igb_tx_hwtstamp(adapter
, skb
);
4576 igb_unmap_and_free_tx_resource(adapter
, buffer_info
);
4577 tx_desc
->wb
.status
= 0;
4580 if (i
== tx_ring
->count
)
4583 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
4584 eop_desc
= E1000_TX_DESC_ADV(*tx_ring
, eop
);
4587 tx_ring
->next_to_clean
= i
;
4589 if (unlikely(count
&&
4590 netif_carrier_ok(netdev
) &&
4591 igb_desc_unused(tx_ring
) >= IGB_TX_QUEUE_WAKE
)) {
4592 /* Make sure that anybody stopping the queue after this
4593 * sees the new next_to_clean.
4596 if (__netif_subqueue_stopped(netdev
, tx_ring
->queue_index
) &&
4597 !(test_bit(__IGB_DOWN
, &adapter
->state
))) {
4598 netif_wake_subqueue(netdev
, tx_ring
->queue_index
);
4599 ++adapter
->restart_queue
;
4603 if (tx_ring
->detect_tx_hung
) {
4604 /* Detect a transmit hang in hardware, this serializes the
4605 * check with the clearing of time_stamp and movement of i */
4606 tx_ring
->detect_tx_hung
= false;
4607 if (tx_ring
->buffer_info
[i
].time_stamp
&&
4608 time_after(jiffies
, tx_ring
->buffer_info
[i
].time_stamp
+
4609 (adapter
->tx_timeout_factor
* HZ
))
4610 && !(rd32(E1000_STATUS
) &
4611 E1000_STATUS_TXOFF
)) {
4613 /* detected Tx unit hang */
4614 dev_err(&adapter
->pdev
->dev
,
4615 "Detected Tx Unit Hang\n"
4619 " next_to_use <%x>\n"
4620 " next_to_clean <%x>\n"
4621 "buffer_info[next_to_clean]\n"
4622 " time_stamp <%lx>\n"
4623 " next_to_watch <%x>\n"
4625 " desc.status <%x>\n",
4626 tx_ring
->queue_index
,
4627 readl(adapter
->hw
.hw_addr
+ tx_ring
->head
),
4628 readl(adapter
->hw
.hw_addr
+ tx_ring
->tail
),
4629 tx_ring
->next_to_use
,
4630 tx_ring
->next_to_clean
,
4631 tx_ring
->buffer_info
[i
].time_stamp
,
4634 eop_desc
->wb
.status
);
4635 netif_stop_subqueue(netdev
, tx_ring
->queue_index
);
4638 tx_ring
->total_bytes
+= total_bytes
;
4639 tx_ring
->total_packets
+= total_packets
;
4640 tx_ring
->tx_stats
.bytes
+= total_bytes
;
4641 tx_ring
->tx_stats
.packets
+= total_packets
;
4642 netdev
->stats
.tx_bytes
+= total_bytes
;
4643 netdev
->stats
.tx_packets
+= total_packets
;
4644 return (count
< tx_ring
->count
);
4648 * igb_receive_skb - helper function to handle rx indications
4649 * @ring: pointer to receive ring receving this packet
4650 * @status: descriptor status field as written by hardware
4651 * @rx_desc: receive descriptor containing vlan and type information.
4652 * @skb: pointer to sk_buff to be indicated to stack
4654 static void igb_receive_skb(struct igb_ring
*ring
, u8 status
,
4655 union e1000_adv_rx_desc
* rx_desc
,
4656 struct sk_buff
*skb
)
4658 struct igb_adapter
* adapter
= ring
->adapter
;
4659 bool vlan_extracted
= (adapter
->vlgrp
&& (status
& E1000_RXD_STAT_VP
));
4661 skb_record_rx_queue(skb
, ring
->queue_index
);
4663 vlan_gro_receive(&ring
->napi
, adapter
->vlgrp
,
4664 le16_to_cpu(rx_desc
->wb
.upper
.vlan
),
4667 napi_gro_receive(&ring
->napi
, skb
);
4670 static inline void igb_rx_checksum_adv(struct igb_adapter
*adapter
,
4671 u32 status_err
, struct sk_buff
*skb
)
4673 skb
->ip_summed
= CHECKSUM_NONE
;
4675 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
4676 if ((status_err
& E1000_RXD_STAT_IXSM
) ||
4677 (adapter
->flags
& IGB_FLAG_RX_CSUM_DISABLED
))
4679 /* TCP/UDP checksum error bit is set */
4681 (E1000_RXDEXT_STATERR_TCPE
| E1000_RXDEXT_STATERR_IPE
)) {
4683 * work around errata with sctp packets where the TCPE aka
4684 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
4685 * packets, (aka let the stack check the crc32c)
4687 if (!((adapter
->hw
.mac
.type
== e1000_82576
) &&
4689 adapter
->hw_csum_err
++;
4690 /* let the stack verify checksum errors */
4693 /* It must be a TCP or UDP packet with a valid checksum */
4694 if (status_err
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
))
4695 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
4697 dev_dbg(&adapter
->pdev
->dev
, "cksum success: bits %08X\n", status_err
);
4698 adapter
->hw_csum_good
++;
4701 static inline u16
igb_get_hlen(struct igb_adapter
*adapter
,
4702 union e1000_adv_rx_desc
*rx_desc
)
4704 /* HW will not DMA in data larger than the given buffer, even if it
4705 * parses the (NFS, of course) header to be larger. In that case, it
4706 * fills the header buffer and spills the rest into the page.
4708 u16 hlen
= (le16_to_cpu(rx_desc
->wb
.lower
.lo_dword
.hdr_info
) &
4709 E1000_RXDADV_HDRBUFLEN_MASK
) >> E1000_RXDADV_HDRBUFLEN_SHIFT
;
4710 if (hlen
> adapter
->rx_ps_hdr_size
)
4711 hlen
= adapter
->rx_ps_hdr_size
;
4715 static bool igb_clean_rx_irq_adv(struct igb_ring
*rx_ring
,
4716 int *work_done
, int budget
)
4718 struct igb_adapter
*adapter
= rx_ring
->adapter
;
4719 struct net_device
*netdev
= adapter
->netdev
;
4720 struct e1000_hw
*hw
= &adapter
->hw
;
4721 struct pci_dev
*pdev
= adapter
->pdev
;
4722 union e1000_adv_rx_desc
*rx_desc
, *next_rxd
;
4723 struct igb_buffer
*buffer_info
, *next_buffer
;
4724 struct sk_buff
*skb
;
4725 bool cleaned
= false;
4726 int cleaned_count
= 0;
4727 unsigned int total_bytes
= 0, total_packets
= 0;
4732 i
= rx_ring
->next_to_clean
;
4733 buffer_info
= &rx_ring
->buffer_info
[i
];
4734 rx_desc
= E1000_RX_DESC_ADV(*rx_ring
, i
);
4735 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
4737 while (staterr
& E1000_RXD_STAT_DD
) {
4738 if (*work_done
>= budget
)
4742 skb
= buffer_info
->skb
;
4743 prefetch(skb
->data
- NET_IP_ALIGN
);
4744 buffer_info
->skb
= NULL
;
4747 if (i
== rx_ring
->count
)
4749 next_rxd
= E1000_RX_DESC_ADV(*rx_ring
, i
);
4751 next_buffer
= &rx_ring
->buffer_info
[i
];
4753 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
4757 /* this is the fast path for the non-packet split case */
4758 if (!adapter
->rx_ps_hdr_size
) {
4759 pci_unmap_single(pdev
, buffer_info
->dma
,
4760 adapter
->rx_buffer_len
,
4761 PCI_DMA_FROMDEVICE
);
4762 buffer_info
->dma
= 0;
4763 skb_put(skb
, length
);
4767 if (buffer_info
->dma
) {
4768 u16 hlen
= igb_get_hlen(adapter
, rx_desc
);
4769 pci_unmap_single(pdev
, buffer_info
->dma
,
4770 adapter
->rx_ps_hdr_size
,
4771 PCI_DMA_FROMDEVICE
);
4772 buffer_info
->dma
= 0;
4777 pci_unmap_page(pdev
, buffer_info
->page_dma
,
4778 PAGE_SIZE
/ 2, PCI_DMA_FROMDEVICE
);
4779 buffer_info
->page_dma
= 0;
4781 skb_fill_page_desc(skb
, skb_shinfo(skb
)->nr_frags
++,
4783 buffer_info
->page_offset
,
4786 if ((adapter
->rx_buffer_len
> (PAGE_SIZE
/ 2)) ||
4787 (page_count(buffer_info
->page
) != 1))
4788 buffer_info
->page
= NULL
;
4790 get_page(buffer_info
->page
);
4793 skb
->data_len
+= length
;
4795 skb
->truesize
+= length
;
4798 if (!(staterr
& E1000_RXD_STAT_EOP
)) {
4799 buffer_info
->skb
= next_buffer
->skb
;
4800 buffer_info
->dma
= next_buffer
->dma
;
4801 next_buffer
->skb
= skb
;
4802 next_buffer
->dma
= 0;
4807 * If this bit is set, then the RX registers contain
4808 * the time stamp. No other packet will be time
4809 * stamped until we read these registers, so read the
4810 * registers to make them available again. Because
4811 * only one packet can be time stamped at a time, we
4812 * know that the register values must belong to this
4813 * one here and therefore we don't need to compare
4814 * any of the additional attributes stored for it.
4816 * If nothing went wrong, then it should have a
4817 * skb_shared_tx that we can turn into a
4818 * skb_shared_hwtstamps.
4820 * TODO: can time stamping be triggered (thus locking
4821 * the registers) without the packet reaching this point
4822 * here? In that case RX time stamping would get stuck.
4824 * TODO: in "time stamp all packets" mode this bit is
4825 * not set. Need a global flag for this mode and then
4826 * always read the registers. Cannot be done without
4829 if (unlikely(staterr
& E1000_RXD_STAT_TS
)) {
4832 struct skb_shared_hwtstamps
*shhwtstamps
=
4835 WARN(!(rd32(E1000_TSYNCRXCTL
) & E1000_TSYNCRXCTL_VALID
),
4836 "igb: no RX time stamp available for time stamped packet");
4837 regval
= rd32(E1000_RXSTMPL
);
4838 regval
|= (u64
)rd32(E1000_RXSTMPH
) << 32;
4839 ns
= timecounter_cyc2time(&adapter
->clock
, regval
);
4840 timecompare_update(&adapter
->compare
, ns
);
4841 memset(shhwtstamps
, 0, sizeof(*shhwtstamps
));
4842 shhwtstamps
->hwtstamp
= ns_to_ktime(ns
);
4843 shhwtstamps
->syststamp
=
4844 timecompare_transform(&adapter
->compare
, ns
);
4847 if (staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) {
4848 dev_kfree_skb_irq(skb
);
4852 total_bytes
+= skb
->len
;
4855 igb_rx_checksum_adv(adapter
, staterr
, skb
);
4857 skb
->protocol
= eth_type_trans(skb
, netdev
);
4859 igb_receive_skb(rx_ring
, staterr
, rx_desc
, skb
);
4862 rx_desc
->wb
.upper
.status_error
= 0;
4864 /* return some buffers to hardware, one at a time is too slow */
4865 if (cleaned_count
>= IGB_RX_BUFFER_WRITE
) {
4866 igb_alloc_rx_buffers_adv(rx_ring
, cleaned_count
);
4870 /* use prefetched values */
4872 buffer_info
= next_buffer
;
4873 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
4876 rx_ring
->next_to_clean
= i
;
4877 cleaned_count
= igb_desc_unused(rx_ring
);
4880 igb_alloc_rx_buffers_adv(rx_ring
, cleaned_count
);
4882 rx_ring
->total_packets
+= total_packets
;
4883 rx_ring
->total_bytes
+= total_bytes
;
4884 rx_ring
->rx_stats
.packets
+= total_packets
;
4885 rx_ring
->rx_stats
.bytes
+= total_bytes
;
4886 netdev
->stats
.rx_bytes
+= total_bytes
;
4887 netdev
->stats
.rx_packets
+= total_packets
;
4892 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
4893 * @adapter: address of board private structure
4895 static void igb_alloc_rx_buffers_adv(struct igb_ring
*rx_ring
,
4898 struct igb_adapter
*adapter
= rx_ring
->adapter
;
4899 struct net_device
*netdev
= adapter
->netdev
;
4900 struct pci_dev
*pdev
= adapter
->pdev
;
4901 union e1000_adv_rx_desc
*rx_desc
;
4902 struct igb_buffer
*buffer_info
;
4903 struct sk_buff
*skb
;
4907 i
= rx_ring
->next_to_use
;
4908 buffer_info
= &rx_ring
->buffer_info
[i
];
4910 if (adapter
->rx_ps_hdr_size
)
4911 bufsz
= adapter
->rx_ps_hdr_size
;
4913 bufsz
= adapter
->rx_buffer_len
;
4915 while (cleaned_count
--) {
4916 rx_desc
= E1000_RX_DESC_ADV(*rx_ring
, i
);
4918 if (adapter
->rx_ps_hdr_size
&& !buffer_info
->page_dma
) {
4919 if (!buffer_info
->page
) {
4920 buffer_info
->page
= alloc_page(GFP_ATOMIC
);
4921 if (!buffer_info
->page
) {
4922 adapter
->alloc_rx_buff_failed
++;
4925 buffer_info
->page_offset
= 0;
4927 buffer_info
->page_offset
^= PAGE_SIZE
/ 2;
4929 buffer_info
->page_dma
=
4930 pci_map_page(pdev
, buffer_info
->page
,
4931 buffer_info
->page_offset
,
4933 PCI_DMA_FROMDEVICE
);
4936 if (!buffer_info
->skb
) {
4937 skb
= netdev_alloc_skb(netdev
, bufsz
+ NET_IP_ALIGN
);
4939 adapter
->alloc_rx_buff_failed
++;
4943 /* Make buffer alignment 2 beyond a 16 byte boundary
4944 * this will result in a 16 byte aligned IP header after
4945 * the 14 byte MAC header is removed
4947 skb_reserve(skb
, NET_IP_ALIGN
);
4949 buffer_info
->skb
= skb
;
4950 buffer_info
->dma
= pci_map_single(pdev
, skb
->data
,
4952 PCI_DMA_FROMDEVICE
);
4954 /* Refresh the desc even if buffer_addrs didn't change because
4955 * each write-back erases this info. */
4956 if (adapter
->rx_ps_hdr_size
) {
4957 rx_desc
->read
.pkt_addr
=
4958 cpu_to_le64(buffer_info
->page_dma
);
4959 rx_desc
->read
.hdr_addr
= cpu_to_le64(buffer_info
->dma
);
4961 rx_desc
->read
.pkt_addr
=
4962 cpu_to_le64(buffer_info
->dma
);
4963 rx_desc
->read
.hdr_addr
= 0;
4967 if (i
== rx_ring
->count
)
4969 buffer_info
= &rx_ring
->buffer_info
[i
];
4973 if (rx_ring
->next_to_use
!= i
) {
4974 rx_ring
->next_to_use
= i
;
4976 i
= (rx_ring
->count
- 1);
4980 /* Force memory writes to complete before letting h/w
4981 * know there are new descriptors to fetch. (Only
4982 * applicable for weak-ordered memory model archs,
4983 * such as IA-64). */
4985 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
4995 static int igb_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
4997 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4998 struct mii_ioctl_data
*data
= if_mii(ifr
);
5000 if (adapter
->hw
.phy
.media_type
!= e1000_media_type_copper
)
5005 data
->phy_id
= adapter
->hw
.phy
.addr
;
5008 if (igb_read_phy_reg(&adapter
->hw
, data
->reg_num
& 0x1F,
5020 * igb_hwtstamp_ioctl - control hardware time stamping
5025 * Outgoing time stamping can be enabled and disabled. Play nice and
5026 * disable it when requested, although it shouldn't case any overhead
5027 * when no packet needs it. At most one packet in the queue may be
5028 * marked for time stamping, otherwise it would be impossible to tell
5029 * for sure to which packet the hardware time stamp belongs.
5031 * Incoming time stamping has to be configured via the hardware
5032 * filters. Not all combinations are supported, in particular event
5033 * type has to be specified. Matching the kind of event packet is
5034 * not supported, with the exception of "all V2 events regardless of
5038 static int igb_hwtstamp_ioctl(struct net_device
*netdev
,
5039 struct ifreq
*ifr
, int cmd
)
5041 struct igb_adapter
*adapter
= netdev_priv(netdev
);
5042 struct e1000_hw
*hw
= &adapter
->hw
;
5043 struct hwtstamp_config config
;
5044 u32 tsync_tx_ctl_bit
= E1000_TSYNCTXCTL_ENABLED
;
5045 u32 tsync_rx_ctl_bit
= E1000_TSYNCRXCTL_ENABLED
;
5046 u32 tsync_rx_ctl_type
= 0;
5047 u32 tsync_rx_cfg
= 0;
5050 short port
= 319; /* PTP */
5053 if (copy_from_user(&config
, ifr
->ifr_data
, sizeof(config
)))
5056 /* reserved for future extensions */
5060 switch (config
.tx_type
) {
5061 case HWTSTAMP_TX_OFF
:
5062 tsync_tx_ctl_bit
= 0;
5064 case HWTSTAMP_TX_ON
:
5065 tsync_tx_ctl_bit
= E1000_TSYNCTXCTL_ENABLED
;
5071 switch (config
.rx_filter
) {
5072 case HWTSTAMP_FILTER_NONE
:
5073 tsync_rx_ctl_bit
= 0;
5075 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT
:
5076 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT
:
5077 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT
:
5078 case HWTSTAMP_FILTER_ALL
:
5080 * register TSYNCRXCFG must be set, therefore it is not
5081 * possible to time stamp both Sync and Delay_Req messages
5082 * => fall back to time stamping all packets
5084 tsync_rx_ctl_type
= E1000_TSYNCRXCTL_TYPE_ALL
;
5085 config
.rx_filter
= HWTSTAMP_FILTER_ALL
;
5087 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC
:
5088 tsync_rx_ctl_type
= E1000_TSYNCRXCTL_TYPE_L4_V1
;
5089 tsync_rx_cfg
= E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE
;
5092 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ
:
5093 tsync_rx_ctl_type
= E1000_TSYNCRXCTL_TYPE_L4_V1
;
5094 tsync_rx_cfg
= E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE
;
5097 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC
:
5098 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC
:
5099 tsync_rx_ctl_type
= E1000_TSYNCRXCTL_TYPE_L2_L4_V2
;
5100 tsync_rx_cfg
= E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE
;
5103 config
.rx_filter
= HWTSTAMP_FILTER_SOME
;
5105 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ
:
5106 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ
:
5107 tsync_rx_ctl_type
= E1000_TSYNCRXCTL_TYPE_L2_L4_V2
;
5108 tsync_rx_cfg
= E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE
;
5111 config
.rx_filter
= HWTSTAMP_FILTER_SOME
;
5113 case HWTSTAMP_FILTER_PTP_V2_EVENT
:
5114 case HWTSTAMP_FILTER_PTP_V2_SYNC
:
5115 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ
:
5116 tsync_rx_ctl_type
= E1000_TSYNCRXCTL_TYPE_EVENT_V2
;
5117 config
.rx_filter
= HWTSTAMP_FILTER_PTP_V2_EVENT
;
5124 /* enable/disable TX */
5125 regval
= rd32(E1000_TSYNCTXCTL
);
5126 regval
= (regval
& ~E1000_TSYNCTXCTL_ENABLED
) | tsync_tx_ctl_bit
;
5127 wr32(E1000_TSYNCTXCTL
, regval
);
5129 /* enable/disable RX, define which PTP packets are time stamped */
5130 regval
= rd32(E1000_TSYNCRXCTL
);
5131 regval
= (regval
& ~E1000_TSYNCRXCTL_ENABLED
) | tsync_rx_ctl_bit
;
5132 regval
= (regval
& ~0xE) | tsync_rx_ctl_type
;
5133 wr32(E1000_TSYNCRXCTL
, regval
);
5134 wr32(E1000_TSYNCRXCFG
, tsync_rx_cfg
);
5137 * Ethertype Filter Queue Filter[0][15:0] = 0x88F7
5138 * (Ethertype to filter on)
5139 * Ethertype Filter Queue Filter[0][26] = 0x1 (Enable filter)
5140 * Ethertype Filter Queue Filter[0][30] = 0x1 (Enable Timestamping)
5142 wr32(E1000_ETQF0
, is_l2
? 0x440088f7 : 0);
5144 /* L4 Queue Filter[0]: only filter by source and destination port */
5145 wr32(E1000_SPQF0
, htons(port
));
5146 wr32(E1000_IMIREXT(0), is_l4
?
5147 ((1<<12) | (1<<19) /* bypass size and control flags */) : 0);
5148 wr32(E1000_IMIR(0), is_l4
?
5150 | (0<<16) /* immediate interrupt disabled */
5151 | 0 /* (1<<17) bit cleared: do not bypass
5152 destination port check */)
5154 wr32(E1000_FTQF0
, is_l4
?
5156 | (1<<15) /* VF not compared */
5157 | (1<<27) /* Enable Timestamping */
5158 | (7<<28) /* only source port filter enabled,
5159 source/target address and protocol
5161 : ((1<<15) | (15<<28) /* all mask bits set = filter not
5166 adapter
->hwtstamp_config
= config
;
5168 /* clear TX/RX time stamp registers, just to be sure */
5169 regval
= rd32(E1000_TXSTMPH
);
5170 regval
= rd32(E1000_RXSTMPH
);
5172 return copy_to_user(ifr
->ifr_data
, &config
, sizeof(config
)) ?
5182 static int igb_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
5188 return igb_mii_ioctl(netdev
, ifr
, cmd
);
5190 return igb_hwtstamp_ioctl(netdev
, ifr
, cmd
);
5196 s32
igb_read_pcie_cap_reg(struct e1000_hw
*hw
, u32 reg
, u16
*value
)
5198 struct igb_adapter
*adapter
= hw
->back
;
5201 cap_offset
= pci_find_capability(adapter
->pdev
, PCI_CAP_ID_EXP
);
5203 return -E1000_ERR_CONFIG
;
5205 pci_read_config_word(adapter
->pdev
, cap_offset
+ reg
, value
);
5210 s32
igb_write_pcie_cap_reg(struct e1000_hw
*hw
, u32 reg
, u16
*value
)
5212 struct igb_adapter
*adapter
= hw
->back
;
5215 cap_offset
= pci_find_capability(adapter
->pdev
, PCI_CAP_ID_EXP
);
5217 return -E1000_ERR_CONFIG
;
5219 pci_write_config_word(adapter
->pdev
, cap_offset
+ reg
, *value
);
5224 static void igb_vlan_rx_register(struct net_device
*netdev
,
5225 struct vlan_group
*grp
)
5227 struct igb_adapter
*adapter
= netdev_priv(netdev
);
5228 struct e1000_hw
*hw
= &adapter
->hw
;
5231 igb_irq_disable(adapter
);
5232 adapter
->vlgrp
= grp
;
5235 /* enable VLAN tag insert/strip */
5236 ctrl
= rd32(E1000_CTRL
);
5237 ctrl
|= E1000_CTRL_VME
;
5238 wr32(E1000_CTRL
, ctrl
);
5240 /* enable VLAN receive filtering */
5241 rctl
= rd32(E1000_RCTL
);
5242 rctl
&= ~E1000_RCTL_CFIEN
;
5243 wr32(E1000_RCTL
, rctl
);
5244 igb_update_mng_vlan(adapter
);
5246 /* disable VLAN tag insert/strip */
5247 ctrl
= rd32(E1000_CTRL
);
5248 ctrl
&= ~E1000_CTRL_VME
;
5249 wr32(E1000_CTRL
, ctrl
);
5251 if (adapter
->mng_vlan_id
!= (u16
)IGB_MNG_VLAN_NONE
) {
5252 igb_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
5253 adapter
->mng_vlan_id
= IGB_MNG_VLAN_NONE
;
5257 igb_rlpml_set(adapter
);
5259 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
5260 igb_irq_enable(adapter
);
5263 static void igb_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
5265 struct igb_adapter
*adapter
= netdev_priv(netdev
);
5266 struct e1000_hw
*hw
= &adapter
->hw
;
5267 int pf_id
= adapter
->vfs_allocated_count
;
5269 if ((hw
->mng_cookie
.status
&
5270 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
5271 (vid
== adapter
->mng_vlan_id
))
5274 /* add vid to vlvf if sr-iov is enabled,
5275 * if that fails add directly to filter table */
5276 if (igb_vlvf_set(adapter
, vid
, true, pf_id
))
5277 igb_vfta_set(hw
, vid
, true);
5281 static void igb_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
5283 struct igb_adapter
*adapter
= netdev_priv(netdev
);
5284 struct e1000_hw
*hw
= &adapter
->hw
;
5285 int pf_id
= adapter
->vfs_allocated_count
;
5287 igb_irq_disable(adapter
);
5288 vlan_group_set_device(adapter
->vlgrp
, vid
, NULL
);
5290 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
5291 igb_irq_enable(adapter
);
5293 if ((adapter
->hw
.mng_cookie
.status
&
5294 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
5295 (vid
== adapter
->mng_vlan_id
)) {
5296 /* release control to f/w */
5297 igb_release_hw_control(adapter
);
5301 /* remove vid from vlvf if sr-iov is enabled,
5302 * if not in vlvf remove from vfta */
5303 if (igb_vlvf_set(adapter
, vid
, false, pf_id
))
5304 igb_vfta_set(hw
, vid
, false);
5307 static void igb_restore_vlan(struct igb_adapter
*adapter
)
5309 igb_vlan_rx_register(adapter
->netdev
, adapter
->vlgrp
);
5311 if (adapter
->vlgrp
) {
5313 for (vid
= 0; vid
< VLAN_GROUP_ARRAY_LEN
; vid
++) {
5314 if (!vlan_group_get_device(adapter
->vlgrp
, vid
))
5316 igb_vlan_rx_add_vid(adapter
->netdev
, vid
);
5321 int igb_set_spd_dplx(struct igb_adapter
*adapter
, u16 spddplx
)
5323 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
5328 case SPEED_10
+ DUPLEX_HALF
:
5329 mac
->forced_speed_duplex
= ADVERTISE_10_HALF
;
5331 case SPEED_10
+ DUPLEX_FULL
:
5332 mac
->forced_speed_duplex
= ADVERTISE_10_FULL
;
5334 case SPEED_100
+ DUPLEX_HALF
:
5335 mac
->forced_speed_duplex
= ADVERTISE_100_HALF
;
5337 case SPEED_100
+ DUPLEX_FULL
:
5338 mac
->forced_speed_duplex
= ADVERTISE_100_FULL
;
5340 case SPEED_1000
+ DUPLEX_FULL
:
5342 adapter
->hw
.phy
.autoneg_advertised
= ADVERTISE_1000_FULL
;
5344 case SPEED_1000
+ DUPLEX_HALF
: /* not supported */
5346 dev_err(&adapter
->pdev
->dev
,
5347 "Unsupported Speed/Duplex configuration\n");
5353 static int __igb_shutdown(struct pci_dev
*pdev
, bool *enable_wake
)
5355 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5356 struct igb_adapter
*adapter
= netdev_priv(netdev
);
5357 struct e1000_hw
*hw
= &adapter
->hw
;
5358 u32 ctrl
, rctl
, status
;
5359 u32 wufc
= adapter
->wol
;
5364 netif_device_detach(netdev
);
5366 if (netif_running(netdev
))
5369 igb_reset_interrupt_capability(adapter
);
5371 igb_free_queues(adapter
);
5374 retval
= pci_save_state(pdev
);
5379 status
= rd32(E1000_STATUS
);
5380 if (status
& E1000_STATUS_LU
)
5381 wufc
&= ~E1000_WUFC_LNKC
;
5384 igb_setup_rctl(adapter
);
5385 igb_set_rx_mode(netdev
);
5387 /* turn on all-multi mode if wake on multicast is enabled */
5388 if (wufc
& E1000_WUFC_MC
) {
5389 rctl
= rd32(E1000_RCTL
);
5390 rctl
|= E1000_RCTL_MPE
;
5391 wr32(E1000_RCTL
, rctl
);
5394 ctrl
= rd32(E1000_CTRL
);
5395 /* advertise wake from D3Cold */
5396 #define E1000_CTRL_ADVD3WUC 0x00100000
5397 /* phy power management enable */
5398 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5399 ctrl
|= E1000_CTRL_ADVD3WUC
;
5400 wr32(E1000_CTRL
, ctrl
);
5402 /* Allow time for pending master requests to run */
5403 igb_disable_pcie_master(&adapter
->hw
);
5405 wr32(E1000_WUC
, E1000_WUC_PME_EN
);
5406 wr32(E1000_WUFC
, wufc
);
5409 wr32(E1000_WUFC
, 0);
5412 *enable_wake
= wufc
|| adapter
->en_mng_pt
;
5414 igb_shutdown_serdes_link_82575(hw
);
5416 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5417 * would have already happened in close and is redundant. */
5418 igb_release_hw_control(adapter
);
5420 pci_disable_device(pdev
);
5426 static int igb_suspend(struct pci_dev
*pdev
, pm_message_t state
)
5431 retval
= __igb_shutdown(pdev
, &wake
);
5436 pci_prepare_to_sleep(pdev
);
5438 pci_wake_from_d3(pdev
, false);
5439 pci_set_power_state(pdev
, PCI_D3hot
);
5445 static int igb_resume(struct pci_dev
*pdev
)
5447 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5448 struct igb_adapter
*adapter
= netdev_priv(netdev
);
5449 struct e1000_hw
*hw
= &adapter
->hw
;
5452 pci_set_power_state(pdev
, PCI_D0
);
5453 pci_restore_state(pdev
);
5455 err
= pci_enable_device_mem(pdev
);
5458 "igb: Cannot enable PCI device from suspend\n");
5461 pci_set_master(pdev
);
5463 pci_enable_wake(pdev
, PCI_D3hot
, 0);
5464 pci_enable_wake(pdev
, PCI_D3cold
, 0);
5466 igb_set_interrupt_capability(adapter
);
5468 if (igb_alloc_queues(adapter
)) {
5469 dev_err(&pdev
->dev
, "Unable to allocate memory for queues\n");
5473 /* e1000_power_up_phy(adapter); */
5477 /* let the f/w know that the h/w is now under the control of the
5479 igb_get_hw_control(adapter
);
5481 wr32(E1000_WUS
, ~0);
5483 if (netif_running(netdev
)) {
5484 err
= igb_open(netdev
);
5489 netif_device_attach(netdev
);
5495 static void igb_shutdown(struct pci_dev
*pdev
)
5499 __igb_shutdown(pdev
, &wake
);
5501 if (system_state
== SYSTEM_POWER_OFF
) {
5502 pci_wake_from_d3(pdev
, wake
);
5503 pci_set_power_state(pdev
, PCI_D3hot
);
5507 #ifdef CONFIG_NET_POLL_CONTROLLER
5509 * Polling 'interrupt' - used by things like netconsole to send skbs
5510 * without having to re-enable interrupts. It's not called while
5511 * the interrupt routine is executing.
5513 static void igb_netpoll(struct net_device
*netdev
)
5515 struct igb_adapter
*adapter
= netdev_priv(netdev
);
5516 struct e1000_hw
*hw
= &adapter
->hw
;
5519 if (!adapter
->msix_entries
) {
5520 igb_irq_disable(adapter
);
5521 napi_schedule(&adapter
->rx_ring
[0].napi
);
5525 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
5526 struct igb_ring
*tx_ring
= &adapter
->tx_ring
[i
];
5527 wr32(E1000_EIMC
, tx_ring
->eims_value
);
5528 igb_clean_tx_irq(tx_ring
);
5529 wr32(E1000_EIMS
, tx_ring
->eims_value
);
5532 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
5533 struct igb_ring
*rx_ring
= &adapter
->rx_ring
[i
];
5534 wr32(E1000_EIMC
, rx_ring
->eims_value
);
5535 napi_schedule(&rx_ring
->napi
);
5538 #endif /* CONFIG_NET_POLL_CONTROLLER */
5541 * igb_io_error_detected - called when PCI error is detected
5542 * @pdev: Pointer to PCI device
5543 * @state: The current pci connection state
5545 * This function is called after a PCI bus error affecting
5546 * this device has been detected.
5548 static pci_ers_result_t
igb_io_error_detected(struct pci_dev
*pdev
,
5549 pci_channel_state_t state
)
5551 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5552 struct igb_adapter
*adapter
= netdev_priv(netdev
);
5554 netif_device_detach(netdev
);
5556 if (state
== pci_channel_io_perm_failure
)
5557 return PCI_ERS_RESULT_DISCONNECT
;
5559 if (netif_running(netdev
))
5561 pci_disable_device(pdev
);
5563 /* Request a slot slot reset. */
5564 return PCI_ERS_RESULT_NEED_RESET
;
5568 * igb_io_slot_reset - called after the pci bus has been reset.
5569 * @pdev: Pointer to PCI device
5571 * Restart the card from scratch, as if from a cold-boot. Implementation
5572 * resembles the first-half of the igb_resume routine.
5574 static pci_ers_result_t
igb_io_slot_reset(struct pci_dev
*pdev
)
5576 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5577 struct igb_adapter
*adapter
= netdev_priv(netdev
);
5578 struct e1000_hw
*hw
= &adapter
->hw
;
5579 pci_ers_result_t result
;
5582 if (pci_enable_device_mem(pdev
)) {
5584 "Cannot re-enable PCI device after reset.\n");
5585 result
= PCI_ERS_RESULT_DISCONNECT
;
5587 pci_set_master(pdev
);
5588 pci_restore_state(pdev
);
5590 pci_enable_wake(pdev
, PCI_D3hot
, 0);
5591 pci_enable_wake(pdev
, PCI_D3cold
, 0);
5594 wr32(E1000_WUS
, ~0);
5595 result
= PCI_ERS_RESULT_RECOVERED
;
5598 err
= pci_cleanup_aer_uncorrect_error_status(pdev
);
5600 dev_err(&pdev
->dev
, "pci_cleanup_aer_uncorrect_error_status "
5601 "failed 0x%0x\n", err
);
5602 /* non-fatal, continue */
5609 * igb_io_resume - called when traffic can start flowing again.
5610 * @pdev: Pointer to PCI device
5612 * This callback is called when the error recovery driver tells us that
5613 * its OK to resume normal operation. Implementation resembles the
5614 * second-half of the igb_resume routine.
5616 static void igb_io_resume(struct pci_dev
*pdev
)
5618 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5619 struct igb_adapter
*adapter
= netdev_priv(netdev
);
5621 if (netif_running(netdev
)) {
5622 if (igb_up(adapter
)) {
5623 dev_err(&pdev
->dev
, "igb_up failed after reset\n");
5628 netif_device_attach(netdev
);
5630 /* let the f/w know that the h/w is now under the control of the
5632 igb_get_hw_control(adapter
);
5635 static void igb_rar_set_qsel(struct igb_adapter
*adapter
, u8
*addr
, u32 index
,
5638 u32 rar_low
, rar_high
;
5639 struct e1000_hw
*hw
= &adapter
->hw
;
5641 /* HW expects these in little endian so we reverse the byte order
5642 * from network order (big endian) to little endian
5644 rar_low
= ((u32
) addr
[0] | ((u32
) addr
[1] << 8) |
5645 ((u32
) addr
[2] << 16) | ((u32
) addr
[3] << 24));
5646 rar_high
= ((u32
) addr
[4] | ((u32
) addr
[5] << 8));
5648 /* Indicate to hardware the Address is Valid. */
5649 rar_high
|= E1000_RAH_AV
;
5651 if (hw
->mac
.type
== e1000_82575
)
5652 rar_high
|= E1000_RAH_POOL_1
* qsel
;
5654 rar_high
|= E1000_RAH_POOL_1
<< qsel
;
5656 wr32(E1000_RAL(index
), rar_low
);
5658 wr32(E1000_RAH(index
), rar_high
);
5662 static int igb_set_vf_mac(struct igb_adapter
*adapter
,
5663 int vf
, unsigned char *mac_addr
)
5665 struct e1000_hw
*hw
= &adapter
->hw
;
5666 /* VF MAC addresses start at end of receive addresses and moves
5667 * torwards the first, as a result a collision should not be possible */
5668 int rar_entry
= hw
->mac
.rar_entry_count
- (vf
+ 1);
5670 memcpy(adapter
->vf_data
[vf
].vf_mac_addresses
, mac_addr
, ETH_ALEN
);
5672 igb_rar_set_qsel(adapter
, mac_addr
, rar_entry
, vf
);
5677 static void igb_vmm_control(struct igb_adapter
*adapter
)
5679 struct e1000_hw
*hw
= &adapter
->hw
;
5682 if (!adapter
->vfs_allocated_count
)
5685 /* VF's need PF reset indication before they
5686 * can send/receive mail */
5687 reg_data
= rd32(E1000_CTRL_EXT
);
5688 reg_data
|= E1000_CTRL_EXT_PFRSTD
;
5689 wr32(E1000_CTRL_EXT
, reg_data
);
5691 igb_vmdq_set_loopback_pf(hw
, true);
5692 igb_vmdq_set_replication_pf(hw
, true);