2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
5 * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
24 /*****************************\
25 Reset functions and helpers
26 \*****************************/
28 #include <asm/unaligned.h>
30 #include <linux/pci.h> /* To determine if a card is pci-e */
31 #include <linux/log2.h>
38 * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212
40 * @ah: the &struct ath5k_hw
41 * @channel: the currently set channel upon reset
43 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
44 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_reset().
46 * Since delta slope is floating point we split it on its exponent and
47 * mantissa and provide these values on hw.
49 * For more infos i think this patent is related
50 * http://www.freepatentsonline.com/7184495.html
52 static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw
*ah
,
53 struct ieee80211_channel
*channel
)
55 /* Get exponent and mantissa and set it */
56 u32 coef_scaled
, coef_exp
, coef_man
,
57 ds_coef_exp
, ds_coef_man
, clock
;
59 BUG_ON(!(ah
->ah_version
== AR5K_AR5212
) ||
60 !(channel
->hw_value
& CHANNEL_OFDM
));
63 * ALGO: coef = (5 * clock * carrier_freq) / 2)
64 * we scale coef by shifting clock value by 24 for
65 * better precision since we use integers */
66 /* TODO: Half/quarter rate */
67 clock
= ath5k_hw_htoclock(1, channel
->hw_value
& CHANNEL_TURBO
);
69 coef_scaled
= ((5 * (clock
<< 24)) / 2) / channel
->center_freq
;
72 * ALGO: coef_exp = 14 - highest set bit position */
73 coef_exp
= ilog2(coef_scaled
);
75 /* Doesn't make sense if it's zero*/
76 if (!coef_scaled
|| !coef_exp
)
79 /* Note: we've shifted coef_scaled by 24 */
80 coef_exp
= 14 - (coef_exp
- 24);
83 /* Get mantissa (significant digits)
84 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
85 coef_man
= coef_scaled
+
86 (1 << (24 - coef_exp
- 1));
88 /* Calculate delta slope coefficient exponent
89 * and mantissa (remove scaling) and set them on hw */
90 ds_coef_man
= coef_man
>> (24 - coef_exp
);
91 ds_coef_exp
= coef_exp
- 16;
93 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_TIMING_3
,
94 AR5K_PHY_TIMING_3_DSC_MAN
, ds_coef_man
);
95 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_TIMING_3
,
96 AR5K_PHY_TIMING_3_DSC_EXP
, ds_coef_exp
);
103 * index into rates for control rates, we can set it up like this because
104 * this is only used for AR5212 and we know it supports G mode
106 static const unsigned int control_rates
[] =
107 { 0, 1, 1, 1, 4, 4, 6, 6, 8, 8, 8, 8 };
110 * ath5k_hw_write_rate_duration - fill rate code to duration table
112 * @ah: the &struct ath5k_hw
113 * @mode: one of enum ath5k_driver_mode
115 * Write the rate code to duration table upon hw reset. This is a helper for
116 * ath5k_hw_reset(). It seems all this is doing is setting an ACK timeout on
117 * the hardware, based on current mode, for each rate. The rates which are
118 * capable of short preamble (802.11b rates 2Mbps, 5.5Mbps, and 11Mbps) have
119 * different rate code so we write their value twice (one for long preample
120 * and one for short).
122 * Note: Band doesn't matter here, if we set the values for OFDM it works
123 * on both a and g modes. So all we have to do is set values for all g rates
124 * that include all OFDM and CCK rates. If we operate in turbo or xr/half/
125 * quarter rate mode, we need to use another set of bitrates (that's why we
126 * need the mode parameter) but we don't handle these proprietary modes yet.
128 static inline void ath5k_hw_write_rate_duration(struct ath5k_hw
*ah
,
131 struct ath5k_softc
*sc
= ah
->ah_sc
;
132 struct ieee80211_rate
*rate
;
135 /* Write rate duration table */
136 for (i
= 0; i
< sc
->sbands
[IEEE80211_BAND_2GHZ
].n_bitrates
; i
++) {
140 rate
= &sc
->sbands
[IEEE80211_BAND_2GHZ
].bitrates
[control_rates
[i
]];
142 /* Set ACK timeout */
143 reg
= AR5K_RATE_DUR(rate
->hw_value
);
145 /* An ACK frame consists of 10 bytes. If you add the FCS,
146 * which ieee80211_generic_frame_duration() adds,
147 * its 14 bytes. Note we use the control rate and not the
148 * actual rate for this rate. See mac80211 tx.c
149 * ieee80211_duration() for a brief description of
150 * what rate we should choose to TX ACKs. */
151 tx_time
= le16_to_cpu(ieee80211_generic_frame_duration(sc
->hw
,
154 ath5k_hw_reg_write(ah
, tx_time
, reg
);
156 if (!(rate
->flags
& IEEE80211_RATE_SHORT_PREAMBLE
))
160 * We're not distinguishing short preamble here,
161 * This is true, all we'll get is a longer value here
162 * which is not necessarilly bad. We could use
163 * export ieee80211_frame_duration() but that needs to be
164 * fixed first to be properly used by mac802111 drivers:
166 * - remove erp stuff and let the routine figure ofdm
168 * - remove passing argument ieee80211_local as
169 * drivers don't have access to it
170 * - move drivers using ieee80211_generic_frame_duration()
173 ath5k_hw_reg_write(ah
, tx_time
,
174 reg
+ (AR5K_SET_SHORT_PREAMBLE
<< 2));
181 static int ath5k_hw_nic_reset(struct ath5k_hw
*ah
, u32 val
)
184 u32 mask
= val
? val
: ~0U;
186 ATH5K_TRACE(ah
->ah_sc
);
188 /* Read-and-clear RX Descriptor Pointer*/
189 ath5k_hw_reg_read(ah
, AR5K_RXDP
);
192 * Reset the device and wait until success
194 ath5k_hw_reg_write(ah
, val
, AR5K_RESET_CTL
);
196 /* Wait at least 128 PCI clocks */
199 if (ah
->ah_version
== AR5K_AR5210
) {
200 val
&= AR5K_RESET_CTL_PCU
| AR5K_RESET_CTL_DMA
201 | AR5K_RESET_CTL_MAC
| AR5K_RESET_CTL_PHY
;
202 mask
&= AR5K_RESET_CTL_PCU
| AR5K_RESET_CTL_DMA
203 | AR5K_RESET_CTL_MAC
| AR5K_RESET_CTL_PHY
;
205 val
&= AR5K_RESET_CTL_PCU
| AR5K_RESET_CTL_BASEBAND
;
206 mask
&= AR5K_RESET_CTL_PCU
| AR5K_RESET_CTL_BASEBAND
;
209 ret
= ath5k_hw_register_timeout(ah
, AR5K_RESET_CTL
, mask
, val
, false);
212 * Reset configuration register (for hw byte-swap). Note that this
213 * is only set for big endian. We do the necessary magic in
216 if ((val
& AR5K_RESET_CTL_PCU
) == 0)
217 ath5k_hw_reg_write(ah
, AR5K_INIT_CFG
, AR5K_CFG
);
225 int ath5k_hw_set_power(struct ath5k_hw
*ah
, enum ath5k_power_mode mode
,
226 bool set_chip
, u16 sleep_duration
)
231 ATH5K_TRACE(ah
->ah_sc
);
232 staid
= ath5k_hw_reg_read(ah
, AR5K_STA_ID1
);
236 staid
&= ~AR5K_STA_ID1_DEFAULT_ANTENNA
;
238 case AR5K_PM_NETWORK_SLEEP
:
240 ath5k_hw_reg_write(ah
,
241 AR5K_SLEEP_CTL_SLE_ALLOW
|
245 staid
|= AR5K_STA_ID1_PWR_SV
;
248 case AR5K_PM_FULL_SLEEP
:
250 ath5k_hw_reg_write(ah
, AR5K_SLEEP_CTL_SLE_SLP
,
253 staid
|= AR5K_STA_ID1_PWR_SV
;
258 staid
&= ~AR5K_STA_ID1_PWR_SV
;
263 data
= ath5k_hw_reg_read(ah
, AR5K_SLEEP_CTL
);
265 /* If card is down we 'll get 0xffff... so we
266 * need to clean this up before we write the register
268 if (data
& 0xffc00000)
271 /* Preserve sleep duration etc */
272 data
= data
& ~AR5K_SLEEP_CTL_SLE
;
274 ath5k_hw_reg_write(ah
, data
| AR5K_SLEEP_CTL_SLE_WAKE
,
278 for (i
= 200; i
> 0; i
--) {
279 /* Check if the chip did wake up */
280 if ((ath5k_hw_reg_read(ah
, AR5K_PCICFG
) &
281 AR5K_PCICFG_SPWR_DN
) == 0)
284 /* Wait a bit and retry */
286 ath5k_hw_reg_write(ah
, data
| AR5K_SLEEP_CTL_SLE_WAKE
,
290 /* Fail if the chip didn't wake up */
301 ath5k_hw_reg_write(ah
, staid
, AR5K_STA_ID1
);
309 * Put MAC and Baseband on warm reset and
310 * keep that state (don't clean sleep control
311 * register). After this MAC and Baseband are
312 * disabled and a full reset is needed to come
313 * back. This way we save as much power as possible
314 * without puting the card on full sleep.
316 int ath5k_hw_on_hold(struct ath5k_hw
*ah
)
318 struct pci_dev
*pdev
= ah
->ah_sc
->pdev
;
322 /* Make sure device is awake */
323 ret
= ath5k_hw_set_power(ah
, AR5K_PM_AWAKE
, true, 0);
325 ATH5K_ERR(ah
->ah_sc
, "failed to wakeup the MAC Chip\n");
330 * Put chipset on warm reset...
332 * Note: puting PCI core on warm reset on PCI-E cards
333 * results card to hang and always return 0xffff... so
334 * we ingore that flag for PCI-E cards. On PCI cards
335 * this flag gets cleared after 64 PCI clocks.
337 bus_flags
= (pdev
->is_pcie
) ? 0 : AR5K_RESET_CTL_PCI
;
339 if (ah
->ah_version
== AR5K_AR5210
) {
340 ret
= ath5k_hw_nic_reset(ah
, AR5K_RESET_CTL_PCU
|
341 AR5K_RESET_CTL_MAC
| AR5K_RESET_CTL_DMA
|
342 AR5K_RESET_CTL_PHY
| AR5K_RESET_CTL_PCI
);
345 ret
= ath5k_hw_nic_reset(ah
, AR5K_RESET_CTL_PCU
|
346 AR5K_RESET_CTL_BASEBAND
| bus_flags
);
350 ATH5K_ERR(ah
->ah_sc
, "failed to put device on warm reset\n");
354 /* ...wakeup again!*/
355 ret
= ath5k_hw_set_power(ah
, AR5K_PM_AWAKE
, true, 0);
357 ATH5K_ERR(ah
->ah_sc
, "failed to put device on hold\n");
365 * Bring up MAC + PHY Chips and program PLL
366 * TODO: Half/Quarter rate support
368 int ath5k_hw_nic_wakeup(struct ath5k_hw
*ah
, int flags
, bool initial
)
370 struct pci_dev
*pdev
= ah
->ah_sc
->pdev
;
371 u32 turbo
, mode
, clock
, bus_flags
;
378 ATH5K_TRACE(ah
->ah_sc
);
380 /* Wakeup the device */
381 ret
= ath5k_hw_set_power(ah
, AR5K_PM_AWAKE
, true, 0);
383 ATH5K_ERR(ah
->ah_sc
, "failed to wakeup the MAC Chip\n");
388 * Put chipset on warm reset...
390 * Note: puting PCI core on warm reset on PCI-E cards
391 * results card to hang and always return 0xffff... so
392 * we ingore that flag for PCI-E cards. On PCI cards
393 * this flag gets cleared after 64 PCI clocks.
395 bus_flags
= (pdev
->is_pcie
) ? 0 : AR5K_RESET_CTL_PCI
;
397 if (ah
->ah_version
== AR5K_AR5210
) {
398 ret
= ath5k_hw_nic_reset(ah
, AR5K_RESET_CTL_PCU
|
399 AR5K_RESET_CTL_MAC
| AR5K_RESET_CTL_DMA
|
400 AR5K_RESET_CTL_PHY
| AR5K_RESET_CTL_PCI
);
403 ret
= ath5k_hw_nic_reset(ah
, AR5K_RESET_CTL_PCU
|
404 AR5K_RESET_CTL_BASEBAND
| bus_flags
);
408 ATH5K_ERR(ah
->ah_sc
, "failed to reset the MAC Chip\n");
412 /* ...wakeup again!...*/
413 ret
= ath5k_hw_set_power(ah
, AR5K_PM_AWAKE
, true, 0);
415 ATH5K_ERR(ah
->ah_sc
, "failed to resume the MAC Chip\n");
419 /* ...clear reset control register and pull device out of
421 if (ath5k_hw_nic_reset(ah
, 0)) {
422 ATH5K_ERR(ah
->ah_sc
, "failed to warm reset the MAC Chip\n");
426 /* On initialization skip PLL programming since we don't have
427 * a channel / mode set yet */
431 if (ah
->ah_version
!= AR5K_AR5210
) {
433 * Get channel mode flags
436 if (ah
->ah_radio
>= AR5K_RF5112
) {
437 mode
= AR5K_PHY_MODE_RAD_RF5112
;
438 clock
= AR5K_PHY_PLL_RF5112
;
440 mode
= AR5K_PHY_MODE_RAD_RF5111
; /*Zero*/
441 clock
= AR5K_PHY_PLL_RF5111
; /*Zero*/
444 if (flags
& CHANNEL_2GHZ
) {
445 mode
|= AR5K_PHY_MODE_FREQ_2GHZ
;
446 clock
|= AR5K_PHY_PLL_44MHZ
;
448 if (flags
& CHANNEL_CCK
) {
449 mode
|= AR5K_PHY_MODE_MOD_CCK
;
450 } else if (flags
& CHANNEL_OFDM
) {
451 /* XXX Dynamic OFDM/CCK is not supported by the
452 * AR5211 so we set MOD_OFDM for plain g (no
453 * CCK headers) operation. We need to test
454 * this, 5211 might support ofdm-only g after
455 * all, there are also initial register values
456 * in the code for g mode (see initvals.c). */
457 if (ah
->ah_version
== AR5K_AR5211
)
458 mode
|= AR5K_PHY_MODE_MOD_OFDM
;
460 mode
|= AR5K_PHY_MODE_MOD_DYN
;
463 "invalid radio modulation mode\n");
466 } else if (flags
& CHANNEL_5GHZ
) {
467 mode
|= AR5K_PHY_MODE_FREQ_5GHZ
;
469 if (ah
->ah_radio
== AR5K_RF5413
)
470 clock
= AR5K_PHY_PLL_40MHZ_5413
;
472 clock
|= AR5K_PHY_PLL_40MHZ
;
474 if (flags
& CHANNEL_OFDM
)
475 mode
|= AR5K_PHY_MODE_MOD_OFDM
;
478 "invalid radio modulation mode\n");
482 ATH5K_ERR(ah
->ah_sc
, "invalid radio frequency mode\n");
486 if (flags
& CHANNEL_TURBO
)
487 turbo
= AR5K_PHY_TURBO_MODE
| AR5K_PHY_TURBO_SHORT
;
488 } else { /* Reset the device */
490 /* ...enable Atheros turbo mode if requested */
491 if (flags
& CHANNEL_TURBO
)
492 ath5k_hw_reg_write(ah
, AR5K_PHY_TURBO_MODE
,
496 if (ah
->ah_version
!= AR5K_AR5210
) {
498 /* ...update PLL if needed */
499 if (ath5k_hw_reg_read(ah
, AR5K_PHY_PLL
) != clock
) {
500 ath5k_hw_reg_write(ah
, clock
, AR5K_PHY_PLL
);
504 /* ...set the PHY operating mode */
505 ath5k_hw_reg_write(ah
, mode
, AR5K_PHY_MODE
);
506 ath5k_hw_reg_write(ah
, turbo
, AR5K_PHY_TURBO
);
513 * If there is an external 32KHz crystal available, use it
514 * as ref. clock instead of 32/40MHz clock and baseband clocks
515 * to save power during sleep or restore normal 32/40MHz
518 * XXX: When operating on 32KHz certain PHY registers (27 - 31,
519 * 123 - 127) require delay on access.
521 static void ath5k_hw_set_sleep_clock(struct ath5k_hw
*ah
, bool enable
)
523 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
524 u32 scal
, spending
, usec32
;
526 /* Only set 32KHz settings if we have an external
527 * 32KHz crystal present */
528 if ((AR5K_EEPROM_HAS32KHZCRYSTAL(ee
->ee_misc1
) ||
529 AR5K_EEPROM_HAS32KHZCRYSTAL_OLD(ee
->ee_misc1
)) &&
533 AR5K_REG_WRITE_BITS(ah
, AR5K_USEC_5211
, AR5K_USEC_32
, 1);
534 /* Set up tsf increment on each cycle */
535 AR5K_REG_WRITE_BITS(ah
, AR5K_TSF_PARM
, AR5K_TSF_PARM_INC
, 61);
537 /* Set baseband sleep control registers
538 * and sleep control rate */
539 ath5k_hw_reg_write(ah
, 0x1f, AR5K_PHY_SCR
);
541 if ((ah
->ah_radio
== AR5K_RF5112
) ||
542 (ah
->ah_radio
== AR5K_RF5413
) ||
543 (ah
->ah_mac_version
== (AR5K_SREV_AR2417
>> 4)))
547 ath5k_hw_reg_write(ah
, spending
, AR5K_PHY_SPENDING
);
549 if ((ah
->ah_radio
== AR5K_RF5112
) ||
550 (ah
->ah_radio
== AR5K_RF5413
) ||
551 (ah
->ah_mac_version
== (AR5K_SREV_AR2417
>> 4))) {
552 ath5k_hw_reg_write(ah
, 0x26, AR5K_PHY_SLMT
);
553 ath5k_hw_reg_write(ah
, 0x0d, AR5K_PHY_SCAL
);
554 ath5k_hw_reg_write(ah
, 0x07, AR5K_PHY_SCLOCK
);
555 ath5k_hw_reg_write(ah
, 0x3f, AR5K_PHY_SDELAY
);
556 AR5K_REG_WRITE_BITS(ah
, AR5K_PCICFG
,
557 AR5K_PCICFG_SLEEP_CLOCK_RATE
, 0x02);
559 ath5k_hw_reg_write(ah
, 0x0a, AR5K_PHY_SLMT
);
560 ath5k_hw_reg_write(ah
, 0x0c, AR5K_PHY_SCAL
);
561 ath5k_hw_reg_write(ah
, 0x03, AR5K_PHY_SCLOCK
);
562 ath5k_hw_reg_write(ah
, 0x20, AR5K_PHY_SDELAY
);
563 AR5K_REG_WRITE_BITS(ah
, AR5K_PCICFG
,
564 AR5K_PCICFG_SLEEP_CLOCK_RATE
, 0x03);
567 /* Enable sleep clock operation */
568 AR5K_REG_ENABLE_BITS(ah
, AR5K_PCICFG
,
569 AR5K_PCICFG_SLEEP_CLOCK_EN
);
573 /* Disable sleep clock operation and
574 * restore default parameters */
575 AR5K_REG_DISABLE_BITS(ah
, AR5K_PCICFG
,
576 AR5K_PCICFG_SLEEP_CLOCK_EN
);
578 AR5K_REG_WRITE_BITS(ah
, AR5K_PCICFG
,
579 AR5K_PCICFG_SLEEP_CLOCK_RATE
, 0);
581 ath5k_hw_reg_write(ah
, 0x1f, AR5K_PHY_SCR
);
582 ath5k_hw_reg_write(ah
, AR5K_PHY_SLMT_32MHZ
, AR5K_PHY_SLMT
);
584 if (ah
->ah_mac_version
== (AR5K_SREV_AR2417
>> 4))
585 scal
= AR5K_PHY_SCAL_32MHZ_2417
;
586 else if (ee
->ee_is_hb63
)
587 scal
= AR5K_PHY_SCAL_32MHZ_HB63
;
589 scal
= AR5K_PHY_SCAL_32MHZ
;
590 ath5k_hw_reg_write(ah
, scal
, AR5K_PHY_SCAL
);
592 ath5k_hw_reg_write(ah
, AR5K_PHY_SCLOCK_32MHZ
, AR5K_PHY_SCLOCK
);
593 ath5k_hw_reg_write(ah
, AR5K_PHY_SDELAY_32MHZ
, AR5K_PHY_SDELAY
);
595 if ((ah
->ah_radio
== AR5K_RF5112
) ||
596 (ah
->ah_radio
== AR5K_RF5413
) ||
597 (ah
->ah_mac_version
== (AR5K_SREV_AR2417
>> 4)))
601 ath5k_hw_reg_write(ah
, spending
, AR5K_PHY_SPENDING
);
603 if ((ah
->ah_radio
== AR5K_RF5112
) ||
604 (ah
->ah_radio
== AR5K_RF5413
))
608 AR5K_REG_WRITE_BITS(ah
, AR5K_USEC_5211
, AR5K_USEC_32
, usec32
);
610 AR5K_REG_WRITE_BITS(ah
, AR5K_TSF_PARM
, AR5K_TSF_PARM_INC
, 1);
615 /* TODO: Half/Quarter rate */
616 static void ath5k_hw_tweak_initval_settings(struct ath5k_hw
*ah
,
617 struct ieee80211_channel
*channel
)
619 if (ah
->ah_version
== AR5K_AR5212
&&
620 ah
->ah_phy_revision
>= AR5K_SREV_PHY_5212A
) {
622 /* Setup ADC control */
623 ath5k_hw_reg_write(ah
,
625 AR5K_PHY_ADC_CTL_INBUFGAIN_OFF
) |
627 AR5K_PHY_ADC_CTL_INBUFGAIN_ON
) |
628 AR5K_PHY_ADC_CTL_PWD_DAC_OFF
|
629 AR5K_PHY_ADC_CTL_PWD_ADC_OFF
),
634 /* Disable barker RSSI threshold */
635 AR5K_REG_DISABLE_BITS(ah
, AR5K_PHY_DAG_CCK_CTL
,
636 AR5K_PHY_DAG_CCK_CTL_EN_RSSI_THR
);
638 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_DAG_CCK_CTL
,
639 AR5K_PHY_DAG_CCK_CTL_RSSI_THR
, 2);
641 /* Set the mute mask */
642 ath5k_hw_reg_write(ah
, 0x0000000f, AR5K_SEQ_MASK
);
645 /* Clear PHY_BLUETOOTH to allow RX_CLEAR line debug */
646 if (ah
->ah_phy_revision
>= AR5K_SREV_PHY_5212B
)
647 ath5k_hw_reg_write(ah
, 0, AR5K_PHY_BLUETOOTH
);
649 /* Enable DCU double buffering */
650 if (ah
->ah_phy_revision
> AR5K_SREV_PHY_5212B
)
651 AR5K_REG_DISABLE_BITS(ah
, AR5K_TXCFG
,
652 AR5K_TXCFG_DCU_DBL_BUF_DIS
);
654 /* Set DAC/ADC delays */
655 if (ah
->ah_version
== AR5K_AR5212
) {
657 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
658 if (ah
->ah_mac_version
== (AR5K_SREV_AR2417
>> 4))
659 scal
= AR5K_PHY_SCAL_32MHZ_2417
;
660 else if (ee
->ee_is_hb63
)
661 scal
= AR5K_PHY_SCAL_32MHZ_HB63
;
663 scal
= AR5K_PHY_SCAL_32MHZ
;
664 ath5k_hw_reg_write(ah
, scal
, AR5K_PHY_SCAL
);
668 if ((ah
->ah_radio
== AR5K_RF5413
) ||
669 (ah
->ah_mac_version
== (AR5K_SREV_AR2417
>> 4))) {
672 if (channel
->center_freq
== 2462 ||
673 channel
->center_freq
== 2467)
676 /* Only update if needed */
677 if (ath5k_hw_reg_read(ah
, AR5K_PHY_FAST_ADC
) != fast_adc
)
678 ath5k_hw_reg_write(ah
, fast_adc
,
682 /* Fix for first revision of the RF5112 RF chipset */
683 if (ah
->ah_radio
== AR5K_RF5112
&&
684 ah
->ah_radio_5ghz_revision
<
685 AR5K_SREV_RAD_5112A
) {
687 ath5k_hw_reg_write(ah
, AR5K_PHY_CCKTXCTL_WORLD
,
689 if (channel
->hw_value
& CHANNEL_5GHZ
)
693 ath5k_hw_reg_write(ah
, data
, AR5K_PHY_FRAME_CTL
);
696 if (ah
->ah_mac_srev
< AR5K_SREV_AR5211
) {
698 /* 5311 has different tx/rx latency masks
699 * from 5211, since we deal 5311 the same
700 * as 5211 when setting initvals, shift
701 * values here to their proper locations */
702 usec_reg
= ath5k_hw_reg_read(ah
, AR5K_USEC_5211
);
703 ath5k_hw_reg_write(ah
, usec_reg
& (AR5K_USEC_1
|
705 AR5K_USEC_TX_LATENCY_5211
|
707 AR5K_USEC_RX_LATENCY_5210
)),
709 /* Clear QCU/DCU clock gating register */
710 ath5k_hw_reg_write(ah
, 0, AR5K_QCUDCU_CLKGT
);
711 /* Set DAC/ADC delays */
712 ath5k_hw_reg_write(ah
, 0x08, AR5K_PHY_SCAL
);
713 /* Enable PCU FIFO corruption ECO */
714 AR5K_REG_ENABLE_BITS(ah
, AR5K_DIAG_SW_5211
,
715 AR5K_DIAG_SW_ECO_ENABLE
);
719 static void ath5k_hw_commit_eeprom_settings(struct ath5k_hw
*ah
,
720 struct ieee80211_channel
*channel
, u8
*ant
, u8 ee_mode
)
722 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
723 s16 cck_ofdm_pwr_delta
;
725 /* Adjust power delta for channel 14 */
726 if (channel
->center_freq
== 2484)
728 ((ee
->ee_cck_ofdm_power_delta
-
729 ee
->ee_scaled_cck_delta
) * 2) / 10;
732 (ee
->ee_cck_ofdm_power_delta
* 2) / 10;
734 /* Set CCK to OFDM power delta on tx power
735 * adjustment register */
736 if (ah
->ah_phy_revision
>= AR5K_SREV_PHY_5212A
) {
737 if (channel
->hw_value
== CHANNEL_G
)
738 ath5k_hw_reg_write(ah
,
739 AR5K_REG_SM((ee
->ee_cck_ofdm_gain_delta
* -1),
740 AR5K_PHY_TX_PWR_ADJ_CCK_GAIN_DELTA
) |
741 AR5K_REG_SM((cck_ofdm_pwr_delta
* -1),
742 AR5K_PHY_TX_PWR_ADJ_CCK_PCDAC_INDEX
),
743 AR5K_PHY_TX_PWR_ADJ
);
745 ath5k_hw_reg_write(ah
, 0, AR5K_PHY_TX_PWR_ADJ
);
747 /* For older revs we scale power on sw during tx power
749 ah
->ah_txpower
.txp_cck_ofdm_pwr_delta
= cck_ofdm_pwr_delta
;
750 ah
->ah_txpower
.txp_cck_ofdm_gainf_delta
=
751 ee
->ee_cck_ofdm_gain_delta
;
754 /* Set antenna idle switch table */
755 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_ANT_CTL
,
756 AR5K_PHY_ANT_CTL_SWTABLE_IDLE
,
757 (ah
->ah_ant_ctl
[ee_mode
][0] |
758 AR5K_PHY_ANT_CTL_TXRX_EN
));
760 /* Set antenna switch tables */
761 ath5k_hw_reg_write(ah
, ah
->ah_ant_ctl
[ee_mode
][ant
[0]],
762 AR5K_PHY_ANT_SWITCH_TABLE_0
);
763 ath5k_hw_reg_write(ah
, ah
->ah_ant_ctl
[ee_mode
][ant
[1]],
764 AR5K_PHY_ANT_SWITCH_TABLE_1
);
766 /* Noise floor threshold */
767 ath5k_hw_reg_write(ah
,
768 AR5K_PHY_NF_SVAL(ee
->ee_noise_floor_thr
[ee_mode
]),
771 if ((channel
->hw_value
& CHANNEL_TURBO
) &&
772 (ah
->ah_ee_version
>= AR5K_EEPROM_VERSION_5_0
)) {
773 /* Switch settling time (Turbo) */
774 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_SETTLING
,
775 AR5K_PHY_SETTLING_SWITCH
,
776 ee
->ee_switch_settling_turbo
[ee_mode
]);
778 /* Tx/Rx attenuation (Turbo) */
779 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_GAIN
,
780 AR5K_PHY_GAIN_TXRX_ATTEN
,
781 ee
->ee_atn_tx_rx_turbo
[ee_mode
]);
783 /* ADC/PGA desired size (Turbo) */
784 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_DESIRED_SIZE
,
785 AR5K_PHY_DESIRED_SIZE_ADC
,
786 ee
->ee_adc_desired_size_turbo
[ee_mode
]);
788 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_DESIRED_SIZE
,
789 AR5K_PHY_DESIRED_SIZE_PGA
,
790 ee
->ee_pga_desired_size_turbo
[ee_mode
]);
792 /* Tx/Rx margin (Turbo) */
793 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_GAIN_2GHZ
,
794 AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX
,
795 ee
->ee_margin_tx_rx_turbo
[ee_mode
]);
798 /* Switch settling time */
799 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_SETTLING
,
800 AR5K_PHY_SETTLING_SWITCH
,
801 ee
->ee_switch_settling
[ee_mode
]);
803 /* Tx/Rx attenuation */
804 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_GAIN
,
805 AR5K_PHY_GAIN_TXRX_ATTEN
,
806 ee
->ee_atn_tx_rx
[ee_mode
]);
808 /* ADC/PGA desired size */
809 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_DESIRED_SIZE
,
810 AR5K_PHY_DESIRED_SIZE_ADC
,
811 ee
->ee_adc_desired_size
[ee_mode
]);
813 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_DESIRED_SIZE
,
814 AR5K_PHY_DESIRED_SIZE_PGA
,
815 ee
->ee_pga_desired_size
[ee_mode
]);
818 if (ah
->ah_ee_version
>= AR5K_EEPROM_VERSION_4_1
)
819 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_GAIN_2GHZ
,
820 AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX
,
821 ee
->ee_margin_tx_rx
[ee_mode
]);
825 ath5k_hw_reg_write(ah
,
826 (ee
->ee_tx_end2xpa_disable
[ee_mode
] << 24) |
827 (ee
->ee_tx_end2xpa_disable
[ee_mode
] << 16) |
828 (ee
->ee_tx_frm2xpa_enable
[ee_mode
] << 8) |
829 (ee
->ee_tx_frm2xpa_enable
[ee_mode
]), AR5K_PHY_RF_CTL4
);
832 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_RF_CTL3
,
833 AR5K_PHY_RF_CTL3_TXE2XLNA_ON
,
834 ee
->ee_tx_end2xlna_enable
[ee_mode
]);
837 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_NF
,
838 AR5K_PHY_NF_THRESH62
,
839 ee
->ee_thr_62
[ee_mode
]);
842 /* False detect backoff for channels
843 * that have spur noise. Write the new
844 * cyclic power RSSI threshold. */
845 if (ath5k_hw_chan_has_spur_noise(ah
, channel
))
846 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_OFDM_SELFCORR
,
847 AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1
,
848 AR5K_INIT_CYCRSSI_THR1
+
849 ee
->ee_false_detect
[ee_mode
]);
851 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_OFDM_SELFCORR
,
852 AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1
,
853 AR5K_INIT_CYCRSSI_THR1
);
856 * TODO: Per channel i/q infos ? */
857 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_IQ
,
858 AR5K_PHY_IQ_CORR_ENABLE
|
859 (ee
->ee_i_cal
[ee_mode
] << AR5K_PHY_IQ_CORR_Q_I_COFF_S
) |
860 ee
->ee_q_cal
[ee_mode
]);
862 /* Heavy clipping -disable for now */
863 if (ah
->ah_ee_version
>= AR5K_EEPROM_VERSION_5_1
)
864 ath5k_hw_reg_write(ah
, 0, AR5K_PHY_HEAVY_CLIP_ENABLE
);
870 * Main reset function
872 int ath5k_hw_reset(struct ath5k_hw
*ah
, enum nl80211_iftype op_mode
,
873 struct ieee80211_channel
*channel
, bool change_channel
)
875 struct ath_common
*common
= ath5k_hw_common(ah
);
876 u32 s_seq
[10], s_ant
, s_led
[3], staid1_flags
, tsf_up
, tsf_lo
;
878 u8 mode
, freq
, ee_mode
, ant
[2];
881 ATH5K_TRACE(ah
->ah_sc
);
892 * Save some registers before a reset
894 /*DCU/Antenna selection not available on 5210*/
895 if (ah
->ah_version
!= AR5K_AR5210
) {
897 switch (channel
->hw_value
& CHANNEL_MODES
) {
899 mode
= AR5K_MODE_11A
;
900 freq
= AR5K_INI_RFGAIN_5GHZ
;
901 ee_mode
= AR5K_EEPROM_MODE_11A
;
904 mode
= AR5K_MODE_11G
;
905 freq
= AR5K_INI_RFGAIN_2GHZ
;
906 ee_mode
= AR5K_EEPROM_MODE_11G
;
909 mode
= AR5K_MODE_11B
;
910 freq
= AR5K_INI_RFGAIN_2GHZ
;
911 ee_mode
= AR5K_EEPROM_MODE_11B
;
914 mode
= AR5K_MODE_11A_TURBO
;
915 freq
= AR5K_INI_RFGAIN_5GHZ
;
916 ee_mode
= AR5K_EEPROM_MODE_11A
;
919 if (ah
->ah_version
== AR5K_AR5211
) {
921 "TurboG mode not available on 5211");
924 mode
= AR5K_MODE_11G_TURBO
;
925 freq
= AR5K_INI_RFGAIN_2GHZ
;
926 ee_mode
= AR5K_EEPROM_MODE_11G
;
929 if (ah
->ah_version
== AR5K_AR5211
) {
931 "XR mode not available on 5211");
935 freq
= AR5K_INI_RFGAIN_5GHZ
;
936 ee_mode
= AR5K_EEPROM_MODE_11A
;
940 "invalid channel: %d\n", channel
->center_freq
);
944 if (change_channel
) {
946 * Save frame sequence count
947 * For revs. after Oahu, only save
948 * seq num for DCU 0 (Global seq num)
950 if (ah
->ah_mac_srev
< AR5K_SREV_AR5211
) {
952 for (i
= 0; i
< 10; i
++)
953 s_seq
[i
] = ath5k_hw_reg_read(ah
,
954 AR5K_QUEUE_DCU_SEQNUM(i
));
957 s_seq
[0] = ath5k_hw_reg_read(ah
,
958 AR5K_QUEUE_DCU_SEQNUM(0));
961 /* TSF accelerates on AR5211 durring reset
962 * As a workaround save it here and restore
963 * it later so that it's back in time after
964 * reset. This way it'll get re-synced on the
965 * next beacon without breaking ad-hoc.
967 * On AR5212 TSF is almost preserved across a
968 * reset so it stays back in time anyway and
969 * we don't have to save/restore it.
971 * XXX: Since this breaks power saving we have
972 * to disable power saving until we receive the
973 * next beacon, so we can resync beacon timers */
974 if (ah
->ah_version
== AR5K_AR5211
) {
975 tsf_up
= ath5k_hw_reg_read(ah
, AR5K_TSF_U32
);
976 tsf_lo
= ath5k_hw_reg_read(ah
, AR5K_TSF_L32
);
980 /* Save default antenna */
981 s_ant
= ath5k_hw_reg_read(ah
, AR5K_DEFAULT_ANTENNA
);
983 if (ah
->ah_version
== AR5K_AR5212
) {
984 /* Restore normal 32/40MHz clock operation
985 * to avoid register access delay on certain
987 ath5k_hw_set_sleep_clock(ah
, false);
989 /* Since we are going to write rf buffer
990 * check if we have any pending gain_F
991 * optimization settings */
992 if (change_channel
&& ah
->ah_rf_banks
!= NULL
)
993 ath5k_hw_gainf_calibrate(ah
);
998 s_led
[0] = ath5k_hw_reg_read(ah
, AR5K_PCICFG
) &
999 AR5K_PCICFG_LEDSTATE
;
1000 s_led
[1] = ath5k_hw_reg_read(ah
, AR5K_GPIOCR
);
1001 s_led
[2] = ath5k_hw_reg_read(ah
, AR5K_GPIODO
);
1003 /* AR5K_STA_ID1 flags, only preserve antenna
1004 * settings and ack/cts rate mode */
1005 staid1_flags
= ath5k_hw_reg_read(ah
, AR5K_STA_ID1
) &
1006 (AR5K_STA_ID1_DEFAULT_ANTENNA
|
1007 AR5K_STA_ID1_DESC_ANTENNA
|
1008 AR5K_STA_ID1_RTS_DEF_ANTENNA
|
1009 AR5K_STA_ID1_ACKCTS_6MB
|
1010 AR5K_STA_ID1_BASE_RATE_11B
|
1011 AR5K_STA_ID1_SELFGEN_DEF_ANT
);
1013 /* Wakeup the device */
1014 ret
= ath5k_hw_nic_wakeup(ah
, channel
->hw_value
, false);
1019 * Initialize operating mode
1021 ah
->ah_op_mode
= op_mode
;
1023 /* PHY access enable */
1024 if (ah
->ah_mac_srev
>= AR5K_SREV_AR5211
)
1025 ath5k_hw_reg_write(ah
, AR5K_PHY_SHIFT_5GHZ
, AR5K_PHY(0));
1027 ath5k_hw_reg_write(ah
, AR5K_PHY_SHIFT_5GHZ
| 0x40,
1030 /* Write initial settings */
1031 ret
= ath5k_hw_write_initvals(ah
, mode
, change_channel
);
1036 * 5211/5212 Specific
1038 if (ah
->ah_version
!= AR5K_AR5210
) {
1041 * Write initial RF gain settings
1042 * This should work for both 5111/5112
1044 ret
= ath5k_hw_rfgain_init(ah
, freq
);
1051 * Tweak initval settings for revised
1052 * chipsets and add some more config
1055 ath5k_hw_tweak_initval_settings(ah
, channel
);
1060 ret
= ath5k_hw_txpower(ah
, channel
, ee_mode
,
1061 ah
->ah_txpower
.txp_max_pwr
/ 2);
1065 /* Write rate duration table only on AR5212 and if
1066 * virtual interface has already been brought up
1067 * XXX: rethink this after new mode changes to
1068 * mac80211 are integrated */
1069 if (ah
->ah_version
== AR5K_AR5212
&&
1070 ah
->ah_sc
->vif
!= NULL
)
1071 ath5k_hw_write_rate_duration(ah
, mode
);
1076 ret
= ath5k_hw_rfregs_init(ah
, channel
, mode
);
1081 /* Write OFDM timings on 5212*/
1082 if (ah
->ah_version
== AR5K_AR5212
&&
1083 channel
->hw_value
& CHANNEL_OFDM
) {
1084 struct ath5k_eeprom_info
*ee
=
1085 &ah
->ah_capabilities
.cap_eeprom
;
1087 ret
= ath5k_hw_write_ofdm_timings(ah
, channel
);
1091 /* Note: According to docs we can have a newer
1092 * EEPROM on old hardware, so we need to verify
1093 * that our hardware is new enough to have spur
1094 * mitigation registers (delta phase etc) */
1095 if (ah
->ah_mac_srev
>= AR5K_SREV_AR5424
||
1096 (ah
->ah_mac_srev
>= AR5K_SREV_AR5424
&&
1097 ee
->ee_version
>= AR5K_EEPROM_VERSION_5_3
))
1098 ath5k_hw_set_spur_mitigation_filter(ah
,
1102 /*Enable/disable 802.11b mode on 5111
1103 (enable 2111 frequency converter + CCK)*/
1104 if (ah
->ah_radio
== AR5K_RF5111
) {
1105 if (mode
== AR5K_MODE_11B
)
1106 AR5K_REG_ENABLE_BITS(ah
, AR5K_TXCFG
,
1109 AR5K_REG_DISABLE_BITS(ah
, AR5K_TXCFG
,
1114 * In case a fixed antenna was set as default
1115 * use the same switch table twice.
1117 if (ah
->ah_ant_mode
== AR5K_ANTMODE_FIXED_A
)
1118 ant
[0] = ant
[1] = AR5K_ANT_SWTABLE_A
;
1119 else if (ah
->ah_ant_mode
== AR5K_ANTMODE_FIXED_B
)
1120 ant
[0] = ant
[1] = AR5K_ANT_SWTABLE_B
;
1122 ant
[0] = AR5K_ANT_SWTABLE_A
;
1123 ant
[1] = AR5K_ANT_SWTABLE_B
;
1126 /* Commit values from EEPROM */
1127 ath5k_hw_commit_eeprom_settings(ah
, channel
, ant
, ee_mode
);
1131 * For 5210 we do all initialization using
1132 * initvals, so we don't have to modify
1133 * any settings (5210 also only supports
1137 /* Disable phy and wait */
1138 ath5k_hw_reg_write(ah
, AR5K_PHY_ACT_DISABLE
, AR5K_PHY_ACT
);
1143 * Restore saved values
1146 /*DCU/Antenna selection not available on 5210*/
1147 if (ah
->ah_version
!= AR5K_AR5210
) {
1149 if (change_channel
) {
1150 if (ah
->ah_mac_srev
< AR5K_SREV_AR5211
) {
1151 for (i
= 0; i
< 10; i
++)
1152 ath5k_hw_reg_write(ah
, s_seq
[i
],
1153 AR5K_QUEUE_DCU_SEQNUM(i
));
1155 ath5k_hw_reg_write(ah
, s_seq
[0],
1156 AR5K_QUEUE_DCU_SEQNUM(0));
1160 if (ah
->ah_version
== AR5K_AR5211
) {
1161 ath5k_hw_reg_write(ah
, tsf_up
, AR5K_TSF_U32
);
1162 ath5k_hw_reg_write(ah
, tsf_lo
, AR5K_TSF_L32
);
1166 ath5k_hw_reg_write(ah
, s_ant
, AR5K_DEFAULT_ANTENNA
);
1170 AR5K_REG_ENABLE_BITS(ah
, AR5K_PCICFG
, s_led
[0]);
1173 ath5k_hw_reg_write(ah
, s_led
[1], AR5K_GPIOCR
);
1174 ath5k_hw_reg_write(ah
, s_led
[2], AR5K_GPIODO
);
1176 /* Restore sta_id flags and preserve our mac address*/
1177 ath5k_hw_reg_write(ah
,
1178 get_unaligned_le32(common
->macaddr
),
1180 ath5k_hw_reg_write(ah
,
1181 staid1_flags
| get_unaligned_le16(common
->macaddr
+ 4),
1189 /* Restore bssid and bssid mask */
1190 ath5k_hw_set_associd(ah
);
1192 /* Set PCU config */
1193 ath5k_hw_set_opmode(ah
);
1195 /* Clear any pending interrupts
1196 * PISR/SISR Not available on 5210 */
1197 if (ah
->ah_version
!= AR5K_AR5210
)
1198 ath5k_hw_reg_write(ah
, 0xffffffff, AR5K_PISR
);
1200 /* Set RSSI/BRSSI thresholds
1202 * Note: If we decide to set this value
1203 * dynamicaly, have in mind that when AR5K_RSSI_THR
1204 * register is read it might return 0x40 if we haven't
1205 * wrote anything to it plus BMISS RSSI threshold is zeroed.
1206 * So doing a save/restore procedure here isn't the right
1207 * choice. Instead store it on ath5k_hw */
1208 ath5k_hw_reg_write(ah
, (AR5K_TUNE_RSSI_THRES
|
1209 AR5K_TUNE_BMISS_THRES
<<
1210 AR5K_RSSI_THR_BMISS_S
),
1213 /* MIC QoS support */
1214 if (ah
->ah_mac_srev
>= AR5K_SREV_AR2413
) {
1215 ath5k_hw_reg_write(ah
, 0x000100aa, AR5K_MIC_QOS_CTL
);
1216 ath5k_hw_reg_write(ah
, 0x00003210, AR5K_MIC_QOS_SEL
);
1219 /* QoS NOACK Policy */
1220 if (ah
->ah_version
== AR5K_AR5212
) {
1221 ath5k_hw_reg_write(ah
,
1222 AR5K_REG_SM(2, AR5K_QOS_NOACK_2BIT_VALUES
) |
1223 AR5K_REG_SM(5, AR5K_QOS_NOACK_BIT_OFFSET
) |
1224 AR5K_REG_SM(0, AR5K_QOS_NOACK_BYTE_OFFSET
),
1233 /* Set channel on PHY */
1234 ret
= ath5k_hw_channel(ah
, channel
);
1239 * Enable the PHY and wait until completion
1240 * This includes BaseBand and Synthesizer
1243 ath5k_hw_reg_write(ah
, AR5K_PHY_ACT_ENABLE
, AR5K_PHY_ACT
);
1246 * On 5211+ read activation -> rx delay
1249 * TODO: Half/quarter rate support
1251 if (ah
->ah_version
!= AR5K_AR5210
) {
1253 delay
= ath5k_hw_reg_read(ah
, AR5K_PHY_RX_DELAY
) &
1254 AR5K_PHY_RX_DELAY_M
;
1255 delay
= (channel
->hw_value
& CHANNEL_CCK
) ?
1256 ((delay
<< 2) / 22) : (delay
/ 10);
1258 udelay(100 + (2 * delay
));
1264 * Perform ADC test to see if baseband is ready
1265 * Set tx hold and check adc test register
1267 phy_tst1
= ath5k_hw_reg_read(ah
, AR5K_PHY_TST1
);
1268 ath5k_hw_reg_write(ah
, AR5K_PHY_TST1_TXHOLD
, AR5K_PHY_TST1
);
1269 for (i
= 0; i
<= 20; i
++) {
1270 if (!(ath5k_hw_reg_read(ah
, AR5K_PHY_ADC_TEST
) & 0x10))
1274 ath5k_hw_reg_write(ah
, phy_tst1
, AR5K_PHY_TST1
);
1277 * Start automatic gain control calibration
1279 * During AGC calibration RX path is re-routed to
1280 * a power detector so we don't receive anything.
1282 * This method is used to calibrate some static offsets
1283 * used together with on-the fly I/Q calibration (the
1284 * one performed via ath5k_hw_phy_calibrate), that doesn't
1285 * interrupt rx path.
1287 * While rx path is re-routed to the power detector we also
1288 * start a noise floor calibration, to measure the
1289 * card's noise floor (the noise we measure when we are not
1290 * transmiting or receiving anything).
1292 * If we are in a noisy environment AGC calibration may time
1293 * out and/or noise floor calibration might timeout.
1295 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_AGCCTL
,
1296 AR5K_PHY_AGCCTL_CAL
);
1298 /* At the same time start I/Q calibration for QAM constellation
1299 * -no need for CCK- */
1300 ah
->ah_calibration
= false;
1301 if (!(mode
== AR5K_MODE_11B
)) {
1302 ah
->ah_calibration
= true;
1303 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_IQ
,
1304 AR5K_PHY_IQ_CAL_NUM_LOG_MAX
, 15);
1305 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_IQ
,
1309 /* Wait for gain calibration to finish (we check for I/Q calibration
1310 * during ath5k_phy_calibrate) */
1311 if (ath5k_hw_register_timeout(ah
, AR5K_PHY_AGCCTL
,
1312 AR5K_PHY_AGCCTL_CAL
, 0, false)) {
1313 ATH5K_ERR(ah
->ah_sc
, "gain calibration timeout (%uMHz)\n",
1314 channel
->center_freq
);
1318 * If we run NF calibration before AGC, it always times out.
1319 * Binary HAL starts NF and AGC calibration at the same time
1320 * and only waits for AGC to finish. Also if AGC or NF cal.
1321 * times out, reset doesn't fail on binary HAL. I believe
1322 * that's wrong because since rx path is routed to a detector,
1323 * if cal. doesn't finish we won't have RX. Sam's HAL for AR5210/5211
1324 * enables noise floor calibration after offset calibration and if noise
1325 * floor calibration fails, reset fails. I believe that's
1326 * a better approach, we just need to find a polling interval
1327 * that suits best, even if reset continues we need to make
1328 * sure that rx path is ready.
1330 ath5k_hw_noise_floor_calibration(ah
, channel
->center_freq
);
1332 /* Restore antenna mode */
1333 ath5k_hw_set_antenna_mode(ah
, ah
->ah_ant_mode
);
1336 * Configure QCUs/DCUs
1339 /* TODO: HW Compression support for data queues */
1340 /* TODO: Burst prefetch for data queues */
1343 * Reset queues and start beacon timers at the end of the reset routine
1344 * This also sets QCU mask on each DCU for 1:1 qcu to dcu mapping
1345 * Note: If we want we can assign multiple qcus on one dcu.
1347 for (i
= 0; i
< ah
->ah_capabilities
.cap_queues
.q_tx_num
; i
++) {
1348 ret
= ath5k_hw_reset_tx_queue(ah
, i
);
1350 ATH5K_ERR(ah
->ah_sc
,
1351 "failed to reset TX queue #%d\n", i
);
1358 * Configure DMA/Interrupts
1362 * Set Rx/Tx DMA Configuration
1364 * Set standard DMA size (128). Note that
1365 * a DMA size of 512 causes rx overruns and tx errors
1366 * on pci-e cards (tested on 5424 but since rx overruns
1367 * also occur on 5416/5418 with madwifi we set 128
1368 * for all PCI-E cards to be safe).
1370 * XXX: need to check 5210 for this
1371 * TODO: Check out tx triger level, it's always 64 on dumps but I
1372 * guess we can tweak it and see how it goes ;-)
1374 if (ah
->ah_version
!= AR5K_AR5210
) {
1375 AR5K_REG_WRITE_BITS(ah
, AR5K_TXCFG
,
1376 AR5K_TXCFG_SDMAMR
, AR5K_DMASIZE_128B
);
1377 AR5K_REG_WRITE_BITS(ah
, AR5K_RXCFG
,
1378 AR5K_RXCFG_SDMAMW
, AR5K_DMASIZE_128B
);
1381 /* Pre-enable interrupts on 5211/5212*/
1382 if (ah
->ah_version
!= AR5K_AR5210
)
1383 ath5k_hw_set_imr(ah
, ah
->ah_imr
);
1385 /* Enable 32KHz clock function for AR5212+ chips
1386 * Set clocks to 32KHz operation and use an
1387 * external 32KHz crystal when sleeping if one
1389 if (ah
->ah_version
== AR5K_AR5212
)
1390 ath5k_hw_set_sleep_clock(ah
, true);
1393 * Disable beacons and reset the register
1395 AR5K_REG_DISABLE_BITS(ah
, AR5K_BEACON
, AR5K_BEACON_ENABLE
|
1396 AR5K_BEACON_RESET_TSF
);