mm-only debug patch...
[mmotm.git] / drivers / net / wireless / ath / ath5k / reset.c
blob3dab3d856d7b3409af819832d397320a8bf7b6b7
1 /*
2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
5 * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
22 #define _ATH5K_RESET
24 /*****************************\
25 Reset functions and helpers
26 \*****************************/
28 #include <asm/unaligned.h>
30 #include <linux/pci.h> /* To determine if a card is pci-e */
31 #include <linux/log2.h>
32 #include "ath5k.h"
33 #include "reg.h"
34 #include "base.h"
35 #include "debug.h"
37 /**
38 * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212
40 * @ah: the &struct ath5k_hw
41 * @channel: the currently set channel upon reset
43 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
44 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_reset().
46 * Since delta slope is floating point we split it on its exponent and
47 * mantissa and provide these values on hw.
49 * For more infos i think this patent is related
50 * http://www.freepatentsonline.com/7184495.html
52 static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
53 struct ieee80211_channel *channel)
55 /* Get exponent and mantissa and set it */
56 u32 coef_scaled, coef_exp, coef_man,
57 ds_coef_exp, ds_coef_man, clock;
59 BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
60 !(channel->hw_value & CHANNEL_OFDM));
62 /* Get coefficient
63 * ALGO: coef = (5 * clock * carrier_freq) / 2)
64 * we scale coef by shifting clock value by 24 for
65 * better precision since we use integers */
66 /* TODO: Half/quarter rate */
67 clock = ath5k_hw_htoclock(1, channel->hw_value & CHANNEL_TURBO);
69 coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
71 /* Get exponent
72 * ALGO: coef_exp = 14 - highest set bit position */
73 coef_exp = ilog2(coef_scaled);
75 /* Doesn't make sense if it's zero*/
76 if (!coef_scaled || !coef_exp)
77 return -EINVAL;
79 /* Note: we've shifted coef_scaled by 24 */
80 coef_exp = 14 - (coef_exp - 24);
83 /* Get mantissa (significant digits)
84 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
85 coef_man = coef_scaled +
86 (1 << (24 - coef_exp - 1));
88 /* Calculate delta slope coefficient exponent
89 * and mantissa (remove scaling) and set them on hw */
90 ds_coef_man = coef_man >> (24 - coef_exp);
91 ds_coef_exp = coef_exp - 16;
93 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
94 AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
95 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
96 AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
98 return 0;
103 * index into rates for control rates, we can set it up like this because
104 * this is only used for AR5212 and we know it supports G mode
106 static const unsigned int control_rates[] =
107 { 0, 1, 1, 1, 4, 4, 6, 6, 8, 8, 8, 8 };
110 * ath5k_hw_write_rate_duration - fill rate code to duration table
112 * @ah: the &struct ath5k_hw
113 * @mode: one of enum ath5k_driver_mode
115 * Write the rate code to duration table upon hw reset. This is a helper for
116 * ath5k_hw_reset(). It seems all this is doing is setting an ACK timeout on
117 * the hardware, based on current mode, for each rate. The rates which are
118 * capable of short preamble (802.11b rates 2Mbps, 5.5Mbps, and 11Mbps) have
119 * different rate code so we write their value twice (one for long preample
120 * and one for short).
122 * Note: Band doesn't matter here, if we set the values for OFDM it works
123 * on both a and g modes. So all we have to do is set values for all g rates
124 * that include all OFDM and CCK rates. If we operate in turbo or xr/half/
125 * quarter rate mode, we need to use another set of bitrates (that's why we
126 * need the mode parameter) but we don't handle these proprietary modes yet.
128 static inline void ath5k_hw_write_rate_duration(struct ath5k_hw *ah,
129 unsigned int mode)
131 struct ath5k_softc *sc = ah->ah_sc;
132 struct ieee80211_rate *rate;
133 unsigned int i;
135 /* Write rate duration table */
136 for (i = 0; i < sc->sbands[IEEE80211_BAND_2GHZ].n_bitrates; i++) {
137 u32 reg;
138 u16 tx_time;
140 rate = &sc->sbands[IEEE80211_BAND_2GHZ].bitrates[control_rates[i]];
142 /* Set ACK timeout */
143 reg = AR5K_RATE_DUR(rate->hw_value);
145 /* An ACK frame consists of 10 bytes. If you add the FCS,
146 * which ieee80211_generic_frame_duration() adds,
147 * its 14 bytes. Note we use the control rate and not the
148 * actual rate for this rate. See mac80211 tx.c
149 * ieee80211_duration() for a brief description of
150 * what rate we should choose to TX ACKs. */
151 tx_time = le16_to_cpu(ieee80211_generic_frame_duration(sc->hw,
152 sc->vif, 10, rate));
154 ath5k_hw_reg_write(ah, tx_time, reg);
156 if (!(rate->flags & IEEE80211_RATE_SHORT_PREAMBLE))
157 continue;
160 * We're not distinguishing short preamble here,
161 * This is true, all we'll get is a longer value here
162 * which is not necessarilly bad. We could use
163 * export ieee80211_frame_duration() but that needs to be
164 * fixed first to be properly used by mac802111 drivers:
166 * - remove erp stuff and let the routine figure ofdm
167 * erp rates
168 * - remove passing argument ieee80211_local as
169 * drivers don't have access to it
170 * - move drivers using ieee80211_generic_frame_duration()
171 * to this
173 ath5k_hw_reg_write(ah, tx_time,
174 reg + (AR5K_SET_SHORT_PREAMBLE << 2));
179 * Reset chipset
181 static int ath5k_hw_nic_reset(struct ath5k_hw *ah, u32 val)
183 int ret;
184 u32 mask = val ? val : ~0U;
186 ATH5K_TRACE(ah->ah_sc);
188 /* Read-and-clear RX Descriptor Pointer*/
189 ath5k_hw_reg_read(ah, AR5K_RXDP);
192 * Reset the device and wait until success
194 ath5k_hw_reg_write(ah, val, AR5K_RESET_CTL);
196 /* Wait at least 128 PCI clocks */
197 udelay(15);
199 if (ah->ah_version == AR5K_AR5210) {
200 val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA
201 | AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY;
202 mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA
203 | AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY;
204 } else {
205 val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
206 mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
209 ret = ath5k_hw_register_timeout(ah, AR5K_RESET_CTL, mask, val, false);
212 * Reset configuration register (for hw byte-swap). Note that this
213 * is only set for big endian. We do the necessary magic in
214 * AR5K_INIT_CFG.
216 if ((val & AR5K_RESET_CTL_PCU) == 0)
217 ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG);
219 return ret;
223 * Sleep control
225 int ath5k_hw_set_power(struct ath5k_hw *ah, enum ath5k_power_mode mode,
226 bool set_chip, u16 sleep_duration)
228 unsigned int i;
229 u32 staid, data;
231 ATH5K_TRACE(ah->ah_sc);
232 staid = ath5k_hw_reg_read(ah, AR5K_STA_ID1);
234 switch (mode) {
235 case AR5K_PM_AUTO:
236 staid &= ~AR5K_STA_ID1_DEFAULT_ANTENNA;
237 /* fallthrough */
238 case AR5K_PM_NETWORK_SLEEP:
239 if (set_chip)
240 ath5k_hw_reg_write(ah,
241 AR5K_SLEEP_CTL_SLE_ALLOW |
242 sleep_duration,
243 AR5K_SLEEP_CTL);
245 staid |= AR5K_STA_ID1_PWR_SV;
246 break;
248 case AR5K_PM_FULL_SLEEP:
249 if (set_chip)
250 ath5k_hw_reg_write(ah, AR5K_SLEEP_CTL_SLE_SLP,
251 AR5K_SLEEP_CTL);
253 staid |= AR5K_STA_ID1_PWR_SV;
254 break;
256 case AR5K_PM_AWAKE:
258 staid &= ~AR5K_STA_ID1_PWR_SV;
260 if (!set_chip)
261 goto commit;
263 data = ath5k_hw_reg_read(ah, AR5K_SLEEP_CTL);
265 /* If card is down we 'll get 0xffff... so we
266 * need to clean this up before we write the register
268 if (data & 0xffc00000)
269 data = 0;
270 else
271 /* Preserve sleep duration etc */
272 data = data & ~AR5K_SLEEP_CTL_SLE;
274 ath5k_hw_reg_write(ah, data | AR5K_SLEEP_CTL_SLE_WAKE,
275 AR5K_SLEEP_CTL);
276 udelay(15);
278 for (i = 200; i > 0; i--) {
279 /* Check if the chip did wake up */
280 if ((ath5k_hw_reg_read(ah, AR5K_PCICFG) &
281 AR5K_PCICFG_SPWR_DN) == 0)
282 break;
284 /* Wait a bit and retry */
285 udelay(50);
286 ath5k_hw_reg_write(ah, data | AR5K_SLEEP_CTL_SLE_WAKE,
287 AR5K_SLEEP_CTL);
290 /* Fail if the chip didn't wake up */
291 if (i == 0)
292 return -EIO;
294 break;
296 default:
297 return -EINVAL;
300 commit:
301 ath5k_hw_reg_write(ah, staid, AR5K_STA_ID1);
303 return 0;
307 * Put device on hold
309 * Put MAC and Baseband on warm reset and
310 * keep that state (don't clean sleep control
311 * register). After this MAC and Baseband are
312 * disabled and a full reset is needed to come
313 * back. This way we save as much power as possible
314 * without puting the card on full sleep.
316 int ath5k_hw_on_hold(struct ath5k_hw *ah)
318 struct pci_dev *pdev = ah->ah_sc->pdev;
319 u32 bus_flags;
320 int ret;
322 /* Make sure device is awake */
323 ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
324 if (ret) {
325 ATH5K_ERR(ah->ah_sc, "failed to wakeup the MAC Chip\n");
326 return ret;
330 * Put chipset on warm reset...
332 * Note: puting PCI core on warm reset on PCI-E cards
333 * results card to hang and always return 0xffff... so
334 * we ingore that flag for PCI-E cards. On PCI cards
335 * this flag gets cleared after 64 PCI clocks.
337 bus_flags = (pdev->is_pcie) ? 0 : AR5K_RESET_CTL_PCI;
339 if (ah->ah_version == AR5K_AR5210) {
340 ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
341 AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_DMA |
342 AR5K_RESET_CTL_PHY | AR5K_RESET_CTL_PCI);
343 mdelay(2);
344 } else {
345 ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
346 AR5K_RESET_CTL_BASEBAND | bus_flags);
349 if (ret) {
350 ATH5K_ERR(ah->ah_sc, "failed to put device on warm reset\n");
351 return -EIO;
354 /* ...wakeup again!*/
355 ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
356 if (ret) {
357 ATH5K_ERR(ah->ah_sc, "failed to put device on hold\n");
358 return ret;
361 return ret;
365 * Bring up MAC + PHY Chips and program PLL
366 * TODO: Half/Quarter rate support
368 int ath5k_hw_nic_wakeup(struct ath5k_hw *ah, int flags, bool initial)
370 struct pci_dev *pdev = ah->ah_sc->pdev;
371 u32 turbo, mode, clock, bus_flags;
372 int ret;
374 turbo = 0;
375 mode = 0;
376 clock = 0;
378 ATH5K_TRACE(ah->ah_sc);
380 /* Wakeup the device */
381 ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
382 if (ret) {
383 ATH5K_ERR(ah->ah_sc, "failed to wakeup the MAC Chip\n");
384 return ret;
388 * Put chipset on warm reset...
390 * Note: puting PCI core on warm reset on PCI-E cards
391 * results card to hang and always return 0xffff... so
392 * we ingore that flag for PCI-E cards. On PCI cards
393 * this flag gets cleared after 64 PCI clocks.
395 bus_flags = (pdev->is_pcie) ? 0 : AR5K_RESET_CTL_PCI;
397 if (ah->ah_version == AR5K_AR5210) {
398 ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
399 AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_DMA |
400 AR5K_RESET_CTL_PHY | AR5K_RESET_CTL_PCI);
401 mdelay(2);
402 } else {
403 ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
404 AR5K_RESET_CTL_BASEBAND | bus_flags);
407 if (ret) {
408 ATH5K_ERR(ah->ah_sc, "failed to reset the MAC Chip\n");
409 return -EIO;
412 /* ...wakeup again!...*/
413 ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
414 if (ret) {
415 ATH5K_ERR(ah->ah_sc, "failed to resume the MAC Chip\n");
416 return ret;
419 /* ...clear reset control register and pull device out of
420 * warm reset */
421 if (ath5k_hw_nic_reset(ah, 0)) {
422 ATH5K_ERR(ah->ah_sc, "failed to warm reset the MAC Chip\n");
423 return -EIO;
426 /* On initialization skip PLL programming since we don't have
427 * a channel / mode set yet */
428 if (initial)
429 return 0;
431 if (ah->ah_version != AR5K_AR5210) {
433 * Get channel mode flags
436 if (ah->ah_radio >= AR5K_RF5112) {
437 mode = AR5K_PHY_MODE_RAD_RF5112;
438 clock = AR5K_PHY_PLL_RF5112;
439 } else {
440 mode = AR5K_PHY_MODE_RAD_RF5111; /*Zero*/
441 clock = AR5K_PHY_PLL_RF5111; /*Zero*/
444 if (flags & CHANNEL_2GHZ) {
445 mode |= AR5K_PHY_MODE_FREQ_2GHZ;
446 clock |= AR5K_PHY_PLL_44MHZ;
448 if (flags & CHANNEL_CCK) {
449 mode |= AR5K_PHY_MODE_MOD_CCK;
450 } else if (flags & CHANNEL_OFDM) {
451 /* XXX Dynamic OFDM/CCK is not supported by the
452 * AR5211 so we set MOD_OFDM for plain g (no
453 * CCK headers) operation. We need to test
454 * this, 5211 might support ofdm-only g after
455 * all, there are also initial register values
456 * in the code for g mode (see initvals.c). */
457 if (ah->ah_version == AR5K_AR5211)
458 mode |= AR5K_PHY_MODE_MOD_OFDM;
459 else
460 mode |= AR5K_PHY_MODE_MOD_DYN;
461 } else {
462 ATH5K_ERR(ah->ah_sc,
463 "invalid radio modulation mode\n");
464 return -EINVAL;
466 } else if (flags & CHANNEL_5GHZ) {
467 mode |= AR5K_PHY_MODE_FREQ_5GHZ;
469 if (ah->ah_radio == AR5K_RF5413)
470 clock = AR5K_PHY_PLL_40MHZ_5413;
471 else
472 clock |= AR5K_PHY_PLL_40MHZ;
474 if (flags & CHANNEL_OFDM)
475 mode |= AR5K_PHY_MODE_MOD_OFDM;
476 else {
477 ATH5K_ERR(ah->ah_sc,
478 "invalid radio modulation mode\n");
479 return -EINVAL;
481 } else {
482 ATH5K_ERR(ah->ah_sc, "invalid radio frequency mode\n");
483 return -EINVAL;
486 if (flags & CHANNEL_TURBO)
487 turbo = AR5K_PHY_TURBO_MODE | AR5K_PHY_TURBO_SHORT;
488 } else { /* Reset the device */
490 /* ...enable Atheros turbo mode if requested */
491 if (flags & CHANNEL_TURBO)
492 ath5k_hw_reg_write(ah, AR5K_PHY_TURBO_MODE,
493 AR5K_PHY_TURBO);
496 if (ah->ah_version != AR5K_AR5210) {
498 /* ...update PLL if needed */
499 if (ath5k_hw_reg_read(ah, AR5K_PHY_PLL) != clock) {
500 ath5k_hw_reg_write(ah, clock, AR5K_PHY_PLL);
501 udelay(300);
504 /* ...set the PHY operating mode */
505 ath5k_hw_reg_write(ah, mode, AR5K_PHY_MODE);
506 ath5k_hw_reg_write(ah, turbo, AR5K_PHY_TURBO);
509 return 0;
513 * If there is an external 32KHz crystal available, use it
514 * as ref. clock instead of 32/40MHz clock and baseband clocks
515 * to save power during sleep or restore normal 32/40MHz
516 * operation.
518 * XXX: When operating on 32KHz certain PHY registers (27 - 31,
519 * 123 - 127) require delay on access.
521 static void ath5k_hw_set_sleep_clock(struct ath5k_hw *ah, bool enable)
523 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
524 u32 scal, spending, usec32;
526 /* Only set 32KHz settings if we have an external
527 * 32KHz crystal present */
528 if ((AR5K_EEPROM_HAS32KHZCRYSTAL(ee->ee_misc1) ||
529 AR5K_EEPROM_HAS32KHZCRYSTAL_OLD(ee->ee_misc1)) &&
530 enable) {
532 /* 1 usec/cycle */
533 AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, 1);
534 /* Set up tsf increment on each cycle */
535 AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 61);
537 /* Set baseband sleep control registers
538 * and sleep control rate */
539 ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR);
541 if ((ah->ah_radio == AR5K_RF5112) ||
542 (ah->ah_radio == AR5K_RF5413) ||
543 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
544 spending = 0x14;
545 else
546 spending = 0x18;
547 ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING);
549 if ((ah->ah_radio == AR5K_RF5112) ||
550 (ah->ah_radio == AR5K_RF5413) ||
551 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) {
552 ath5k_hw_reg_write(ah, 0x26, AR5K_PHY_SLMT);
553 ath5k_hw_reg_write(ah, 0x0d, AR5K_PHY_SCAL);
554 ath5k_hw_reg_write(ah, 0x07, AR5K_PHY_SCLOCK);
555 ath5k_hw_reg_write(ah, 0x3f, AR5K_PHY_SDELAY);
556 AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
557 AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x02);
558 } else {
559 ath5k_hw_reg_write(ah, 0x0a, AR5K_PHY_SLMT);
560 ath5k_hw_reg_write(ah, 0x0c, AR5K_PHY_SCAL);
561 ath5k_hw_reg_write(ah, 0x03, AR5K_PHY_SCLOCK);
562 ath5k_hw_reg_write(ah, 0x20, AR5K_PHY_SDELAY);
563 AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
564 AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x03);
567 /* Enable sleep clock operation */
568 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG,
569 AR5K_PCICFG_SLEEP_CLOCK_EN);
571 } else {
573 /* Disable sleep clock operation and
574 * restore default parameters */
575 AR5K_REG_DISABLE_BITS(ah, AR5K_PCICFG,
576 AR5K_PCICFG_SLEEP_CLOCK_EN);
578 AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
579 AR5K_PCICFG_SLEEP_CLOCK_RATE, 0);
581 ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR);
582 ath5k_hw_reg_write(ah, AR5K_PHY_SLMT_32MHZ, AR5K_PHY_SLMT);
584 if (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))
585 scal = AR5K_PHY_SCAL_32MHZ_2417;
586 else if (ee->ee_is_hb63)
587 scal = AR5K_PHY_SCAL_32MHZ_HB63;
588 else
589 scal = AR5K_PHY_SCAL_32MHZ;
590 ath5k_hw_reg_write(ah, scal, AR5K_PHY_SCAL);
592 ath5k_hw_reg_write(ah, AR5K_PHY_SCLOCK_32MHZ, AR5K_PHY_SCLOCK);
593 ath5k_hw_reg_write(ah, AR5K_PHY_SDELAY_32MHZ, AR5K_PHY_SDELAY);
595 if ((ah->ah_radio == AR5K_RF5112) ||
596 (ah->ah_radio == AR5K_RF5413) ||
597 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
598 spending = 0x14;
599 else
600 spending = 0x18;
601 ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING);
603 if ((ah->ah_radio == AR5K_RF5112) ||
604 (ah->ah_radio == AR5K_RF5413))
605 usec32 = 39;
606 else
607 usec32 = 31;
608 AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, usec32);
610 AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 1);
612 return;
615 /* TODO: Half/Quarter rate */
616 static void ath5k_hw_tweak_initval_settings(struct ath5k_hw *ah,
617 struct ieee80211_channel *channel)
619 if (ah->ah_version == AR5K_AR5212 &&
620 ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
622 /* Setup ADC control */
623 ath5k_hw_reg_write(ah,
624 (AR5K_REG_SM(2,
625 AR5K_PHY_ADC_CTL_INBUFGAIN_OFF) |
626 AR5K_REG_SM(2,
627 AR5K_PHY_ADC_CTL_INBUFGAIN_ON) |
628 AR5K_PHY_ADC_CTL_PWD_DAC_OFF |
629 AR5K_PHY_ADC_CTL_PWD_ADC_OFF),
630 AR5K_PHY_ADC_CTL);
634 /* Disable barker RSSI threshold */
635 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_DAG_CCK_CTL,
636 AR5K_PHY_DAG_CCK_CTL_EN_RSSI_THR);
638 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DAG_CCK_CTL,
639 AR5K_PHY_DAG_CCK_CTL_RSSI_THR, 2);
641 /* Set the mute mask */
642 ath5k_hw_reg_write(ah, 0x0000000f, AR5K_SEQ_MASK);
645 /* Clear PHY_BLUETOOTH to allow RX_CLEAR line debug */
646 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212B)
647 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BLUETOOTH);
649 /* Enable DCU double buffering */
650 if (ah->ah_phy_revision > AR5K_SREV_PHY_5212B)
651 AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
652 AR5K_TXCFG_DCU_DBL_BUF_DIS);
654 /* Set DAC/ADC delays */
655 if (ah->ah_version == AR5K_AR5212) {
656 u32 scal;
657 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
658 if (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))
659 scal = AR5K_PHY_SCAL_32MHZ_2417;
660 else if (ee->ee_is_hb63)
661 scal = AR5K_PHY_SCAL_32MHZ_HB63;
662 else
663 scal = AR5K_PHY_SCAL_32MHZ;
664 ath5k_hw_reg_write(ah, scal, AR5K_PHY_SCAL);
667 /* Set fast ADC */
668 if ((ah->ah_radio == AR5K_RF5413) ||
669 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) {
670 u32 fast_adc = true;
672 if (channel->center_freq == 2462 ||
673 channel->center_freq == 2467)
674 fast_adc = 0;
676 /* Only update if needed */
677 if (ath5k_hw_reg_read(ah, AR5K_PHY_FAST_ADC) != fast_adc)
678 ath5k_hw_reg_write(ah, fast_adc,
679 AR5K_PHY_FAST_ADC);
682 /* Fix for first revision of the RF5112 RF chipset */
683 if (ah->ah_radio == AR5K_RF5112 &&
684 ah->ah_radio_5ghz_revision <
685 AR5K_SREV_RAD_5112A) {
686 u32 data;
687 ath5k_hw_reg_write(ah, AR5K_PHY_CCKTXCTL_WORLD,
688 AR5K_PHY_CCKTXCTL);
689 if (channel->hw_value & CHANNEL_5GHZ)
690 data = 0xffb81020;
691 else
692 data = 0xffb80d20;
693 ath5k_hw_reg_write(ah, data, AR5K_PHY_FRAME_CTL);
696 if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
697 u32 usec_reg;
698 /* 5311 has different tx/rx latency masks
699 * from 5211, since we deal 5311 the same
700 * as 5211 when setting initvals, shift
701 * values here to their proper locations */
702 usec_reg = ath5k_hw_reg_read(ah, AR5K_USEC_5211);
703 ath5k_hw_reg_write(ah, usec_reg & (AR5K_USEC_1 |
704 AR5K_USEC_32 |
705 AR5K_USEC_TX_LATENCY_5211 |
706 AR5K_REG_SM(29,
707 AR5K_USEC_RX_LATENCY_5210)),
708 AR5K_USEC_5211);
709 /* Clear QCU/DCU clock gating register */
710 ath5k_hw_reg_write(ah, 0, AR5K_QCUDCU_CLKGT);
711 /* Set DAC/ADC delays */
712 ath5k_hw_reg_write(ah, 0x08, AR5K_PHY_SCAL);
713 /* Enable PCU FIFO corruption ECO */
714 AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5211,
715 AR5K_DIAG_SW_ECO_ENABLE);
719 static void ath5k_hw_commit_eeprom_settings(struct ath5k_hw *ah,
720 struct ieee80211_channel *channel, u8 *ant, u8 ee_mode)
722 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
723 s16 cck_ofdm_pwr_delta;
725 /* Adjust power delta for channel 14 */
726 if (channel->center_freq == 2484)
727 cck_ofdm_pwr_delta =
728 ((ee->ee_cck_ofdm_power_delta -
729 ee->ee_scaled_cck_delta) * 2) / 10;
730 else
731 cck_ofdm_pwr_delta =
732 (ee->ee_cck_ofdm_power_delta * 2) / 10;
734 /* Set CCK to OFDM power delta on tx power
735 * adjustment register */
736 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
737 if (channel->hw_value == CHANNEL_G)
738 ath5k_hw_reg_write(ah,
739 AR5K_REG_SM((ee->ee_cck_ofdm_gain_delta * -1),
740 AR5K_PHY_TX_PWR_ADJ_CCK_GAIN_DELTA) |
741 AR5K_REG_SM((cck_ofdm_pwr_delta * -1),
742 AR5K_PHY_TX_PWR_ADJ_CCK_PCDAC_INDEX),
743 AR5K_PHY_TX_PWR_ADJ);
744 else
745 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TX_PWR_ADJ);
746 } else {
747 /* For older revs we scale power on sw during tx power
748 * setup */
749 ah->ah_txpower.txp_cck_ofdm_pwr_delta = cck_ofdm_pwr_delta;
750 ah->ah_txpower.txp_cck_ofdm_gainf_delta =
751 ee->ee_cck_ofdm_gain_delta;
754 /* Set antenna idle switch table */
755 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
756 AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
757 (ah->ah_ant_ctl[ee_mode][0] |
758 AR5K_PHY_ANT_CTL_TXRX_EN));
760 /* Set antenna switch tables */
761 ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant[0]],
762 AR5K_PHY_ANT_SWITCH_TABLE_0);
763 ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant[1]],
764 AR5K_PHY_ANT_SWITCH_TABLE_1);
766 /* Noise floor threshold */
767 ath5k_hw_reg_write(ah,
768 AR5K_PHY_NF_SVAL(ee->ee_noise_floor_thr[ee_mode]),
769 AR5K_PHY_NFTHRES);
771 if ((channel->hw_value & CHANNEL_TURBO) &&
772 (ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0)) {
773 /* Switch settling time (Turbo) */
774 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
775 AR5K_PHY_SETTLING_SWITCH,
776 ee->ee_switch_settling_turbo[ee_mode]);
778 /* Tx/Rx attenuation (Turbo) */
779 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN,
780 AR5K_PHY_GAIN_TXRX_ATTEN,
781 ee->ee_atn_tx_rx_turbo[ee_mode]);
783 /* ADC/PGA desired size (Turbo) */
784 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
785 AR5K_PHY_DESIRED_SIZE_ADC,
786 ee->ee_adc_desired_size_turbo[ee_mode]);
788 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
789 AR5K_PHY_DESIRED_SIZE_PGA,
790 ee->ee_pga_desired_size_turbo[ee_mode]);
792 /* Tx/Rx margin (Turbo) */
793 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
794 AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
795 ee->ee_margin_tx_rx_turbo[ee_mode]);
797 } else {
798 /* Switch settling time */
799 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
800 AR5K_PHY_SETTLING_SWITCH,
801 ee->ee_switch_settling[ee_mode]);
803 /* Tx/Rx attenuation */
804 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN,
805 AR5K_PHY_GAIN_TXRX_ATTEN,
806 ee->ee_atn_tx_rx[ee_mode]);
808 /* ADC/PGA desired size */
809 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
810 AR5K_PHY_DESIRED_SIZE_ADC,
811 ee->ee_adc_desired_size[ee_mode]);
813 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
814 AR5K_PHY_DESIRED_SIZE_PGA,
815 ee->ee_pga_desired_size[ee_mode]);
817 /* Tx/Rx margin */
818 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
819 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
820 AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
821 ee->ee_margin_tx_rx[ee_mode]);
824 /* XPA delays */
825 ath5k_hw_reg_write(ah,
826 (ee->ee_tx_end2xpa_disable[ee_mode] << 24) |
827 (ee->ee_tx_end2xpa_disable[ee_mode] << 16) |
828 (ee->ee_tx_frm2xpa_enable[ee_mode] << 8) |
829 (ee->ee_tx_frm2xpa_enable[ee_mode]), AR5K_PHY_RF_CTL4);
831 /* XLNA delay */
832 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RF_CTL3,
833 AR5K_PHY_RF_CTL3_TXE2XLNA_ON,
834 ee->ee_tx_end2xlna_enable[ee_mode]);
836 /* Thresh64 (ANI) */
837 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_NF,
838 AR5K_PHY_NF_THRESH62,
839 ee->ee_thr_62[ee_mode]);
842 /* False detect backoff for channels
843 * that have spur noise. Write the new
844 * cyclic power RSSI threshold. */
845 if (ath5k_hw_chan_has_spur_noise(ah, channel))
846 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR,
847 AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1,
848 AR5K_INIT_CYCRSSI_THR1 +
849 ee->ee_false_detect[ee_mode]);
850 else
851 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR,
852 AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1,
853 AR5K_INIT_CYCRSSI_THR1);
855 /* I/Q correction
856 * TODO: Per channel i/q infos ? */
857 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
858 AR5K_PHY_IQ_CORR_ENABLE |
859 (ee->ee_i_cal[ee_mode] << AR5K_PHY_IQ_CORR_Q_I_COFF_S) |
860 ee->ee_q_cal[ee_mode]);
862 /* Heavy clipping -disable for now */
863 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_1)
864 ath5k_hw_reg_write(ah, 0, AR5K_PHY_HEAVY_CLIP_ENABLE);
866 return;
870 * Main reset function
872 int ath5k_hw_reset(struct ath5k_hw *ah, enum nl80211_iftype op_mode,
873 struct ieee80211_channel *channel, bool change_channel)
875 struct ath_common *common = ath5k_hw_common(ah);
876 u32 s_seq[10], s_ant, s_led[3], staid1_flags, tsf_up, tsf_lo;
877 u32 phy_tst1;
878 u8 mode, freq, ee_mode, ant[2];
879 int i, ret;
881 ATH5K_TRACE(ah->ah_sc);
883 s_ant = 0;
884 ee_mode = 0;
885 staid1_flags = 0;
886 tsf_up = 0;
887 tsf_lo = 0;
888 freq = 0;
889 mode = 0;
892 * Save some registers before a reset
894 /*DCU/Antenna selection not available on 5210*/
895 if (ah->ah_version != AR5K_AR5210) {
897 switch (channel->hw_value & CHANNEL_MODES) {
898 case CHANNEL_A:
899 mode = AR5K_MODE_11A;
900 freq = AR5K_INI_RFGAIN_5GHZ;
901 ee_mode = AR5K_EEPROM_MODE_11A;
902 break;
903 case CHANNEL_G:
904 mode = AR5K_MODE_11G;
905 freq = AR5K_INI_RFGAIN_2GHZ;
906 ee_mode = AR5K_EEPROM_MODE_11G;
907 break;
908 case CHANNEL_B:
909 mode = AR5K_MODE_11B;
910 freq = AR5K_INI_RFGAIN_2GHZ;
911 ee_mode = AR5K_EEPROM_MODE_11B;
912 break;
913 case CHANNEL_T:
914 mode = AR5K_MODE_11A_TURBO;
915 freq = AR5K_INI_RFGAIN_5GHZ;
916 ee_mode = AR5K_EEPROM_MODE_11A;
917 break;
918 case CHANNEL_TG:
919 if (ah->ah_version == AR5K_AR5211) {
920 ATH5K_ERR(ah->ah_sc,
921 "TurboG mode not available on 5211");
922 return -EINVAL;
924 mode = AR5K_MODE_11G_TURBO;
925 freq = AR5K_INI_RFGAIN_2GHZ;
926 ee_mode = AR5K_EEPROM_MODE_11G;
927 break;
928 case CHANNEL_XR:
929 if (ah->ah_version == AR5K_AR5211) {
930 ATH5K_ERR(ah->ah_sc,
931 "XR mode not available on 5211");
932 return -EINVAL;
934 mode = AR5K_MODE_XR;
935 freq = AR5K_INI_RFGAIN_5GHZ;
936 ee_mode = AR5K_EEPROM_MODE_11A;
937 break;
938 default:
939 ATH5K_ERR(ah->ah_sc,
940 "invalid channel: %d\n", channel->center_freq);
941 return -EINVAL;
944 if (change_channel) {
946 * Save frame sequence count
947 * For revs. after Oahu, only save
948 * seq num for DCU 0 (Global seq num)
950 if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
952 for (i = 0; i < 10; i++)
953 s_seq[i] = ath5k_hw_reg_read(ah,
954 AR5K_QUEUE_DCU_SEQNUM(i));
956 } else {
957 s_seq[0] = ath5k_hw_reg_read(ah,
958 AR5K_QUEUE_DCU_SEQNUM(0));
961 /* TSF accelerates on AR5211 durring reset
962 * As a workaround save it here and restore
963 * it later so that it's back in time after
964 * reset. This way it'll get re-synced on the
965 * next beacon without breaking ad-hoc.
967 * On AR5212 TSF is almost preserved across a
968 * reset so it stays back in time anyway and
969 * we don't have to save/restore it.
971 * XXX: Since this breaks power saving we have
972 * to disable power saving until we receive the
973 * next beacon, so we can resync beacon timers */
974 if (ah->ah_version == AR5K_AR5211) {
975 tsf_up = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
976 tsf_lo = ath5k_hw_reg_read(ah, AR5K_TSF_L32);
980 /* Save default antenna */
981 s_ant = ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA);
983 if (ah->ah_version == AR5K_AR5212) {
984 /* Restore normal 32/40MHz clock operation
985 * to avoid register access delay on certain
986 * PHY registers */
987 ath5k_hw_set_sleep_clock(ah, false);
989 /* Since we are going to write rf buffer
990 * check if we have any pending gain_F
991 * optimization settings */
992 if (change_channel && ah->ah_rf_banks != NULL)
993 ath5k_hw_gainf_calibrate(ah);
997 /*GPIOs*/
998 s_led[0] = ath5k_hw_reg_read(ah, AR5K_PCICFG) &
999 AR5K_PCICFG_LEDSTATE;
1000 s_led[1] = ath5k_hw_reg_read(ah, AR5K_GPIOCR);
1001 s_led[2] = ath5k_hw_reg_read(ah, AR5K_GPIODO);
1003 /* AR5K_STA_ID1 flags, only preserve antenna
1004 * settings and ack/cts rate mode */
1005 staid1_flags = ath5k_hw_reg_read(ah, AR5K_STA_ID1) &
1006 (AR5K_STA_ID1_DEFAULT_ANTENNA |
1007 AR5K_STA_ID1_DESC_ANTENNA |
1008 AR5K_STA_ID1_RTS_DEF_ANTENNA |
1009 AR5K_STA_ID1_ACKCTS_6MB |
1010 AR5K_STA_ID1_BASE_RATE_11B |
1011 AR5K_STA_ID1_SELFGEN_DEF_ANT);
1013 /* Wakeup the device */
1014 ret = ath5k_hw_nic_wakeup(ah, channel->hw_value, false);
1015 if (ret)
1016 return ret;
1019 * Initialize operating mode
1021 ah->ah_op_mode = op_mode;
1023 /* PHY access enable */
1024 if (ah->ah_mac_srev >= AR5K_SREV_AR5211)
1025 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1026 else
1027 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ | 0x40,
1028 AR5K_PHY(0));
1030 /* Write initial settings */
1031 ret = ath5k_hw_write_initvals(ah, mode, change_channel);
1032 if (ret)
1033 return ret;
1036 * 5211/5212 Specific
1038 if (ah->ah_version != AR5K_AR5210) {
1041 * Write initial RF gain settings
1042 * This should work for both 5111/5112
1044 ret = ath5k_hw_rfgain_init(ah, freq);
1045 if (ret)
1046 return ret;
1048 mdelay(1);
1051 * Tweak initval settings for revised
1052 * chipsets and add some more config
1053 * bits
1055 ath5k_hw_tweak_initval_settings(ah, channel);
1058 * Set TX power
1060 ret = ath5k_hw_txpower(ah, channel, ee_mode,
1061 ah->ah_txpower.txp_max_pwr / 2);
1062 if (ret)
1063 return ret;
1065 /* Write rate duration table only on AR5212 and if
1066 * virtual interface has already been brought up
1067 * XXX: rethink this after new mode changes to
1068 * mac80211 are integrated */
1069 if (ah->ah_version == AR5K_AR5212 &&
1070 ah->ah_sc->vif != NULL)
1071 ath5k_hw_write_rate_duration(ah, mode);
1074 * Write RF buffer
1076 ret = ath5k_hw_rfregs_init(ah, channel, mode);
1077 if (ret)
1078 return ret;
1081 /* Write OFDM timings on 5212*/
1082 if (ah->ah_version == AR5K_AR5212 &&
1083 channel->hw_value & CHANNEL_OFDM) {
1084 struct ath5k_eeprom_info *ee =
1085 &ah->ah_capabilities.cap_eeprom;
1087 ret = ath5k_hw_write_ofdm_timings(ah, channel);
1088 if (ret)
1089 return ret;
1091 /* Note: According to docs we can have a newer
1092 * EEPROM on old hardware, so we need to verify
1093 * that our hardware is new enough to have spur
1094 * mitigation registers (delta phase etc) */
1095 if (ah->ah_mac_srev >= AR5K_SREV_AR5424 ||
1096 (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
1097 ee->ee_version >= AR5K_EEPROM_VERSION_5_3))
1098 ath5k_hw_set_spur_mitigation_filter(ah,
1099 channel);
1102 /*Enable/disable 802.11b mode on 5111
1103 (enable 2111 frequency converter + CCK)*/
1104 if (ah->ah_radio == AR5K_RF5111) {
1105 if (mode == AR5K_MODE_11B)
1106 AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
1107 AR5K_TXCFG_B_MODE);
1108 else
1109 AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
1110 AR5K_TXCFG_B_MODE);
1114 * In case a fixed antenna was set as default
1115 * use the same switch table twice.
1117 if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
1118 ant[0] = ant[1] = AR5K_ANT_SWTABLE_A;
1119 else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
1120 ant[0] = ant[1] = AR5K_ANT_SWTABLE_B;
1121 else {
1122 ant[0] = AR5K_ANT_SWTABLE_A;
1123 ant[1] = AR5K_ANT_SWTABLE_B;
1126 /* Commit values from EEPROM */
1127 ath5k_hw_commit_eeprom_settings(ah, channel, ant, ee_mode);
1129 } else {
1131 * For 5210 we do all initialization using
1132 * initvals, so we don't have to modify
1133 * any settings (5210 also only supports
1134 * a/aturbo modes)
1136 mdelay(1);
1137 /* Disable phy and wait */
1138 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
1139 mdelay(1);
1143 * Restore saved values
1146 /*DCU/Antenna selection not available on 5210*/
1147 if (ah->ah_version != AR5K_AR5210) {
1149 if (change_channel) {
1150 if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
1151 for (i = 0; i < 10; i++)
1152 ath5k_hw_reg_write(ah, s_seq[i],
1153 AR5K_QUEUE_DCU_SEQNUM(i));
1154 } else {
1155 ath5k_hw_reg_write(ah, s_seq[0],
1156 AR5K_QUEUE_DCU_SEQNUM(0));
1160 if (ah->ah_version == AR5K_AR5211) {
1161 ath5k_hw_reg_write(ah, tsf_up, AR5K_TSF_U32);
1162 ath5k_hw_reg_write(ah, tsf_lo, AR5K_TSF_L32);
1166 ath5k_hw_reg_write(ah, s_ant, AR5K_DEFAULT_ANTENNA);
1169 /* Ledstate */
1170 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, s_led[0]);
1172 /* Gpio settings */
1173 ath5k_hw_reg_write(ah, s_led[1], AR5K_GPIOCR);
1174 ath5k_hw_reg_write(ah, s_led[2], AR5K_GPIODO);
1176 /* Restore sta_id flags and preserve our mac address*/
1177 ath5k_hw_reg_write(ah,
1178 get_unaligned_le32(common->macaddr),
1179 AR5K_STA_ID0);
1180 ath5k_hw_reg_write(ah,
1181 staid1_flags | get_unaligned_le16(common->macaddr + 4),
1182 AR5K_STA_ID1);
1186 * Configure PCU
1189 /* Restore bssid and bssid mask */
1190 ath5k_hw_set_associd(ah);
1192 /* Set PCU config */
1193 ath5k_hw_set_opmode(ah);
1195 /* Clear any pending interrupts
1196 * PISR/SISR Not available on 5210 */
1197 if (ah->ah_version != AR5K_AR5210)
1198 ath5k_hw_reg_write(ah, 0xffffffff, AR5K_PISR);
1200 /* Set RSSI/BRSSI thresholds
1202 * Note: If we decide to set this value
1203 * dynamicaly, have in mind that when AR5K_RSSI_THR
1204 * register is read it might return 0x40 if we haven't
1205 * wrote anything to it plus BMISS RSSI threshold is zeroed.
1206 * So doing a save/restore procedure here isn't the right
1207 * choice. Instead store it on ath5k_hw */
1208 ath5k_hw_reg_write(ah, (AR5K_TUNE_RSSI_THRES |
1209 AR5K_TUNE_BMISS_THRES <<
1210 AR5K_RSSI_THR_BMISS_S),
1211 AR5K_RSSI_THR);
1213 /* MIC QoS support */
1214 if (ah->ah_mac_srev >= AR5K_SREV_AR2413) {
1215 ath5k_hw_reg_write(ah, 0x000100aa, AR5K_MIC_QOS_CTL);
1216 ath5k_hw_reg_write(ah, 0x00003210, AR5K_MIC_QOS_SEL);
1219 /* QoS NOACK Policy */
1220 if (ah->ah_version == AR5K_AR5212) {
1221 ath5k_hw_reg_write(ah,
1222 AR5K_REG_SM(2, AR5K_QOS_NOACK_2BIT_VALUES) |
1223 AR5K_REG_SM(5, AR5K_QOS_NOACK_BIT_OFFSET) |
1224 AR5K_REG_SM(0, AR5K_QOS_NOACK_BYTE_OFFSET),
1225 AR5K_QOS_NOACK);
1230 * Configure PHY
1233 /* Set channel on PHY */
1234 ret = ath5k_hw_channel(ah, channel);
1235 if (ret)
1236 return ret;
1239 * Enable the PHY and wait until completion
1240 * This includes BaseBand and Synthesizer
1241 * activation.
1243 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1246 * On 5211+ read activation -> rx delay
1247 * and use it.
1249 * TODO: Half/quarter rate support
1251 if (ah->ah_version != AR5K_AR5210) {
1252 u32 delay;
1253 delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
1254 AR5K_PHY_RX_DELAY_M;
1255 delay = (channel->hw_value & CHANNEL_CCK) ?
1256 ((delay << 2) / 22) : (delay / 10);
1258 udelay(100 + (2 * delay));
1259 } else {
1260 mdelay(1);
1264 * Perform ADC test to see if baseband is ready
1265 * Set tx hold and check adc test register
1267 phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
1268 ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
1269 for (i = 0; i <= 20; i++) {
1270 if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
1271 break;
1272 udelay(200);
1274 ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
1277 * Start automatic gain control calibration
1279 * During AGC calibration RX path is re-routed to
1280 * a power detector so we don't receive anything.
1282 * This method is used to calibrate some static offsets
1283 * used together with on-the fly I/Q calibration (the
1284 * one performed via ath5k_hw_phy_calibrate), that doesn't
1285 * interrupt rx path.
1287 * While rx path is re-routed to the power detector we also
1288 * start a noise floor calibration, to measure the
1289 * card's noise floor (the noise we measure when we are not
1290 * transmiting or receiving anything).
1292 * If we are in a noisy environment AGC calibration may time
1293 * out and/or noise floor calibration might timeout.
1295 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1296 AR5K_PHY_AGCCTL_CAL);
1298 /* At the same time start I/Q calibration for QAM constellation
1299 * -no need for CCK- */
1300 ah->ah_calibration = false;
1301 if (!(mode == AR5K_MODE_11B)) {
1302 ah->ah_calibration = true;
1303 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1304 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1305 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1306 AR5K_PHY_IQ_RUN);
1309 /* Wait for gain calibration to finish (we check for I/Q calibration
1310 * during ath5k_phy_calibrate) */
1311 if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1312 AR5K_PHY_AGCCTL_CAL, 0, false)) {
1313 ATH5K_ERR(ah->ah_sc, "gain calibration timeout (%uMHz)\n",
1314 channel->center_freq);
1318 * If we run NF calibration before AGC, it always times out.
1319 * Binary HAL starts NF and AGC calibration at the same time
1320 * and only waits for AGC to finish. Also if AGC or NF cal.
1321 * times out, reset doesn't fail on binary HAL. I believe
1322 * that's wrong because since rx path is routed to a detector,
1323 * if cal. doesn't finish we won't have RX. Sam's HAL for AR5210/5211
1324 * enables noise floor calibration after offset calibration and if noise
1325 * floor calibration fails, reset fails. I believe that's
1326 * a better approach, we just need to find a polling interval
1327 * that suits best, even if reset continues we need to make
1328 * sure that rx path is ready.
1330 ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
1332 /* Restore antenna mode */
1333 ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
1336 * Configure QCUs/DCUs
1339 /* TODO: HW Compression support for data queues */
1340 /* TODO: Burst prefetch for data queues */
1343 * Reset queues and start beacon timers at the end of the reset routine
1344 * This also sets QCU mask on each DCU for 1:1 qcu to dcu mapping
1345 * Note: If we want we can assign multiple qcus on one dcu.
1347 for (i = 0; i < ah->ah_capabilities.cap_queues.q_tx_num; i++) {
1348 ret = ath5k_hw_reset_tx_queue(ah, i);
1349 if (ret) {
1350 ATH5K_ERR(ah->ah_sc,
1351 "failed to reset TX queue #%d\n", i);
1352 return ret;
1358 * Configure DMA/Interrupts
1362 * Set Rx/Tx DMA Configuration
1364 * Set standard DMA size (128). Note that
1365 * a DMA size of 512 causes rx overruns and tx errors
1366 * on pci-e cards (tested on 5424 but since rx overruns
1367 * also occur on 5416/5418 with madwifi we set 128
1368 * for all PCI-E cards to be safe).
1370 * XXX: need to check 5210 for this
1371 * TODO: Check out tx triger level, it's always 64 on dumps but I
1372 * guess we can tweak it and see how it goes ;-)
1374 if (ah->ah_version != AR5K_AR5210) {
1375 AR5K_REG_WRITE_BITS(ah, AR5K_TXCFG,
1376 AR5K_TXCFG_SDMAMR, AR5K_DMASIZE_128B);
1377 AR5K_REG_WRITE_BITS(ah, AR5K_RXCFG,
1378 AR5K_RXCFG_SDMAMW, AR5K_DMASIZE_128B);
1381 /* Pre-enable interrupts on 5211/5212*/
1382 if (ah->ah_version != AR5K_AR5210)
1383 ath5k_hw_set_imr(ah, ah->ah_imr);
1385 /* Enable 32KHz clock function for AR5212+ chips
1386 * Set clocks to 32KHz operation and use an
1387 * external 32KHz crystal when sleeping if one
1388 * exists */
1389 if (ah->ah_version == AR5K_AR5212)
1390 ath5k_hw_set_sleep_clock(ah, true);
1393 * Disable beacons and reset the register
1395 AR5K_REG_DISABLE_BITS(ah, AR5K_BEACON, AR5K_BEACON_ENABLE |
1396 AR5K_BEACON_RESET_TSF);
1398 return 0;
1401 #undef _ATH5K_RESET